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1. INTRODUCTION

Preclinical cell culture and animal efficacy testing
models are currently used to identify, assess, and priori-
tize chemical agents and natural products with the aim of
preventing human cancer. If little is known about a
potential agent, the first step is a sequential series of
short-term in vitro prescreens of mechanistic, biochemi-
cal assays. These assays provide quantitative data to help
establish an early indication of chemopreventive efficacy
and to assist in prioritizing agents for further evaluation
in longer-term in vitro transformation bioassays and
whole animal models. Promising chemical agents or
combinations of agents that work through different
inhibitory mechanisms are subsequently tested in well-
established chemically induced or spontaneous animal
tumor/cancer models, which typically include models of
the colon, lung, bladder, mammary, prostate, and skin.
These animal bioassays afford a strategic framework for

evaluating agents according to defined criteria, and not
only provide evidence of agent efficacy, but also serve to
generate valuable dose-response, toxicity, and pharma-
cokinetic data required prior to Phase I clinical safety
testing. Based on preclinical efficacy and toxicity screen-
ing studies, only the most successful agents considered
to have potential as human chemopreventives will
progress into clinical chemoprevention trials.

Six key elements are necessary for the ideal animal
model for chemoprevention testing: the animal model
should bear relevance to human cancers, not only in terms
of specific organ sites but also in producing cancerous
lesions of similar pathology; the genetic abnormalities of
these lesions should resemble those found in humans; the
model should have relevant intermediate lesions that sim-
ulate or approximate the human cancer process both his-
tologically and molecularly; the model should be capable
of producing a consistent tumor burden of greater
than 80% lesions within a reasonable period of time (less

2

02_chap_Kelloff-2.qxd  08/12/2004  2:23 pm  Page 39



40 Steele et al.

than 6 mo); the carcinogen or genetic defect used to pro-
duce cancer should bear relevance to that encountered by
humans; and the predictive values and accuracy of the
animal model for human efficacy should be >80% (i.e.,
agents positive in animal tests are positive in clinical tri-
als and agents negative in animals are negative in clinical
trials). While it is generally understood that no current
animal model is ideal, research and development of bet-
ter animal models is ongoing in many laboratories in an
increasing variety of organ sites. In this chapter, a review
of currently used animal models for chemoprevention
efficacy testing will be presented (Table 1).

2. MAMMARY CANCER MODELS

A growing number of animal mammary cancer pre-
vention models are used routinely or currently being
developed. Both the 7,12-dimethylbenz[a]anthracene

(DMBA)- and methylnitrosourea (MNU)-induced
mammary gland carcinogenesis models are routinely
used for screening. The 50-d-old rat MNU-induced
cancer model is popular because it typically produces
100% incidence of adenocarcinomas within 120–150 d
of carcinogen treatment (1). MNU does not require
metabolic activation, and therefore cannot detect agents
that alter carcinogen metabolism. In this model, 50-d-
old Sprague-Dawley female rats are given a single iv
injection of 50 mg MNU/kg-bw (pH 5.0). The chemo-
preventive agent is usually started 1 wk prior to car-
cinogen treatment and continued until the animals are
sacrificed. Tumor multiplicity is typically 4 to 6 per
animal and the latency is usually 65–80 d. Agents that
are positive in this model are then usually tested in
older animals, where the carcinogen is administered to
100–120-d-old animals (2). Mammary glands of older

Table 1
Animal Models in Current Use for the Screening and Development of Chemopreventive Agents

Organ site Species Carcinogena Endpoint measured

Mammary gland Rat MNU Adenocarcinomas

Rat DMBA Adenocarcinomas and
adenomas

Lung Hamster DEN Adenocarcinomas

Hamster MNU Squamous cell carcinomas

Rat NNK Adenomas and squamous cell
carcinomas

Mouse B[a]P, NNK, vinyl carbamate, Adenomas and adenocarcinomas
DEN, uracil mustard,
urethane, cigarette smoke

Colon Rat AOM, IQ, PhIP Aberrant crypts and adeno-
carcinomas

Prostate Rat MNU Adenocarcinomas

Bladder Mouse OH-BBN Transitional cell carcinomas

Rat OH-BBN Transitional cell carcinomas

Skin Mouse DMBA or UV Papillomas and squamous
cell carcinomas

Ovary Rat DMBA Epithelial and thecal cell
carcinomas

Rat BOP Thecal cell carcinomas

Esophagus Rat NMBA Squamous cell carcinomas

Head and neck Rat 4NQO Squamous cell carcinomas

Hamster DMBA Squamous cell carcinomas

Pancreas Hamster BOP Ductal carcinomas
aAbbreviations: MNU, methylnitrosourea; DMBA, dimethylbenz[a]anthracene; DEN, diethylnitrosamine; NNK, 4-(methylni-

trosamino)-1-(3-pyridyl)-1-butanone; B[a]P, benzo[a]pyrene; AOM, azoxymethane; IQ, 2-amino-3-methylimidazo[4,5-f]quinoline;
PhIP, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine; OH-BBN, N-butyl-N-(4-hydroxylbutyl)nitrosamine; UV, ultraviolet light;
BOP, N-nitrobis-(2-oxopropyl)amine; NMBA, N-nitroso-methylbenzylamine; 4-NQO, 4-nitroquinoline-1-oxide.
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rats are more similar in terms of proliferation rates and
differentiation to those of mature women. Incidence
and multiplicity of cancers are lower in this case and
must be compensated by having more animals per
group and experimental times lengthened to 180 d. The
cancers produced are hormone-dependent and are usu-
ally associated with activated ras. This model correctly
identified the human cancer-preventive agents tamox-
ifen and N-(4-hydroxy)phenylretinamide (3–5). It
should be stated that this model is highly sensitive to
weight loss and decreased weight gain over the course
of the experiment. For example, acute reductions of
body weight gain of 6, 12, or 15% at the time of MNU
treatment resulted in decreased mammary cancer mul-
tiplicities of 15, 44, and 55% respectively without
chemopreventive agent administration (6,7).

The second mammary model commonly used is the
DMBA model. Again, 50-d-old rats are given 12 mg of
carcinogen ig and tumors arise within 120 d of carcino-
gen treatment (8,9). These tumors are usually encapsu-
lated adenocarcinomas, adenomas, and fibroadenomas
that arise in approx 80–100% of the animals. DMBA is
a polycyclic aromatic hydrocarbon and requires activa-
tion by the cytochrome P450 enzyme system.
Therefore this model can detect agents that modulate
the P450 system or detoxify carcinogens via a phase 2
enzyme system (e.g., glutathione-S-transferases).
Tumor multiplicity is usually in the range of 3–4 per
animal, and latency is similar to the MNU model at 65
to 80 d.

Recently, newer transgenic models have become
more prevalent. These are covered in a separate chapter
by Lubet et al., Chapter 3 in this volume.

3. LUNG CANCER MODELS

Two hamster models, the diethylnitrosamine (DEN)
lung and the MNU tracheal model, have been used to
evaluate the efficacy of potential chemopreventive
agents in inhibiting lung cancer. The DEN model
induces lung adenocarcinomas following twice-weekly
sc injections of 17.8 mg DEN/kg-bw starting at 7–8 wk
of age and continuing for 20 wk (10). This treatment
usually produces 90–100% tracheal tumors and
40–50% lung tumors in treated male Syrian golden
hamsters. Serial sacrifice studies have shown that
these lung tumors arise from pulmonary Clara and
endocrine cells, while tracheal tumors arise from the
basal cells of the trachea. Chemopreventive agents are
usually administered in diet starting 1 wk prior to the
first carcinogen treatment and continuing for 180 d.

The primary endpoint is percent reduction of lung
tumor incidence. The pathology of these lung tumors
resembles small-cell lung cancer with neuroendocrine
features. In the MNU hamster tracheal model, 5%
MNU in saline is administered once a week for 15 wk
by a specially designed catheter that exposes a defined
area of the trachea of male Syrian golden hamsters to
the carcinogen (11). The chemopreventive agent is
supplied in the diet, or more recently by aerosol, for
180 d beginning 1 wk prior to the first carcinogen
exposure. Within this time period, 40–50% of the ani-
mals acquire tracheal squamous cell carcinomas and
chemopreventive efficacy is measured as a reduction
in that percentage.

Another lung cancer chemoprevention model uses
the tobacco-specific carcinogen 4-(methylnitrosamino)-
1-(3-pyridyl)-1-butanone (NNK) to induce lung tumors
in rats (12). For this model, male F344 rats are given
NNK (1.5 mg/kg-bw) by sc injection three times a
week for 21 wk. The assay is terminated at week 98
post-carcinogen exposure; tumor incidence is deter-
mined by dividing the number of animals with cancers
by the total number of animals treated. Since the
tumors are very large, tumor multiplicity is not deter-
mined. The majority of animals develop lung adenomas,
with fewer adenocarcinomas and occasionally a squa-
mous cell carcinoma. In addition to lung tumors, NNK
also induces nasal cavity tumors.

For the past several years, the mouse lung adenoma
model has been more frequently used because it is very
efficient, consistent, and reliable. Several carcinogens
can cause lung adenoma, including benzo[a]pyrene
(B[a]P), NNK, vinyl carbamate, DEN, uracil mustard,
and urethane. In the B[a]P model, female Strain A/J
mice at 15 wk of age are given either a single i.p. dose
of 100 mg B[a]P/kg-bw or three ig gavages of 2 mg
B[a]P in 0.2 mL vegetable oil with 3–4 d between dos-
ings. The animals are then held for about 16 wk for
development of pulmonary adenomas. Typically, 8–10
adenomas arise per animal with 100% incidence. In this
model, the chemopreventive agent can be given either in
the diet or by aerosol administration. Aerosol adminis-
tration has major advantages over diet for agents with
known toxicity to gastrointestinal organs and poor meta-
bolic profiles (i.e., they are rapidly metabolized and
excreted). For example, striking results have been
observed by administering budesonide, a glucocorticoid,
by aerosol for very short periods of time (13,14). With
most carcinogens (B[a]P, NNK, etc.) a small percentage
(<10%) of adenomas eventually become carcinomas
after a period of 1 yr or more.
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The protocol for the NNK Strain A/J mouse model
calls for female mice 6 wk of age (15) to be given a sin-
gle dose of 10µm NNK in saline by i.p. injection.
Typically 6–8 adenomas per animal develop within
the 16-wk bioassay with 100% incidence. At 52 wk,
adenocarcinoma incidence is about 70–80% with a
multiplicity of 15–17 tumors (mostly solid alveolar
adenomas plus a few adenocarcinomas) per animal. In
this model, N-acetyl-l-cysteine and β-carotene had no
effect on cancer incidence or multiplicity resulting
from exposing respiratory epithelium to a tobacco
smoke carcinogen, a result that positively correlates
with that found in human studies (16).

Vinyl carbamate was given to 8–9-wk-old Strain A
mice by a single i.p. injection of 60mg/kg-bw in 0.2 mL
saline. At 24 wk, there are typically 20–30 lung tumors
per animal and about 12% are carcinomas; at 1 yr there
are about 30% carcinomas (17). This model, with its
high tumor multiplicity and capability to produce sig-
nificant frequencies of carcinomas, is attractive for
lung cancer prevention studies.

Recently, tobacco smoke has been used to induce
lung adenomas in the Strain A mouse model (18). This
animal model is important because it mimics the cancer
induction process in humans by a complex mixture of
chemical carcinogens and promoting agents. Strain A
mice are exposed to cigarette smoke by inhalation of
tobacco smoke for 5 mo followed by a 4-mo smoke-
free recovery period. Both benign and malignant lung
tumors are produced by this model. The tumor inci-
dence of control animals is about 30%, while the
tumor incidence in smoke-exposed animals is about
80% (19).

4. COLON CANCER MODELS

The azoxymethane (AOM)-induced aberrant rat
colon crypt model has become a primary whole-animal
screening assay for potential chemopreventive agents
due to its short time course, low cost, and requirement
for only a small amount of test agent. Aberrant colon
crypts are single and multiple colonic crypts containing
cells exhibiting dysplasia (20–23). The aberrant crypts
are induced in 8-wk-old F344 rats by two injections of
15 mg AOM/kg-bw 1 wk apart. Protocols A and B are
used. Under Protocol A, animals are fed the test agent
diet from 1 wk before the first AOM injection to 3 wk
after the first injection, for a total of 4 wk. Protocol B
was designed to test the effects of the chemopreventive
agent on the post-initiation phase of colon carcinogene-
sis. Rats receive the chemopreventive agent from 4 to 8

wk after the first AOM exposure. The AOM rat colon
tumor model treats the animals similarly initially, but
holds these animals on the chemopreventive agent diet
until about 40 wk post-carcinogen, when cancer inci-
dence is approx 70% and multiplicity is 1–2 tumors
per animal. Both benign and malignant tumors are
found at sacrifice. In the mouse model, methoxyacetyl-
methane acetate, the ultimate carcinogenic metabolite
of AOM, is given by ip injection (20 mg/kg-bw) once a
week for 4 wk. Colon tumors appear within 38 wk after
dosing (24). Celecoxib, a COX-2-specific inhibitor
recently approved to prevent polyps in humans, was
positive in the AOM rat colon tumor model using both
early and late interventions (25). Other carcinogens
used in primarily rat models are 2-amino-3-methylimi-
dazo [4,5-f)quinoline (IQ) and 2-amino-1-methyl-6-
phenylimidazo[4,5-b]pyridine (PhIP) (26). Other
animal models for colon cancer are discussed in Chapter
4 in this book by Lipkin et al.

5. PROSTATE CANCER MODELS

The MNU Bosland model, named after its devel-
oper, is a rat model that develops a high incidence of
dorsolateral prostate cancer (27). Male Wistar-
Unilever rats are treated with 50 mg of cyproterone
acetate at 8–9 wk of age, then receive daily injections
of 100 mg testosterone propionate/kg-bw for 3 d. Sixty
hours after the first testosterone dose, rats receive a
single iv injection of MNU. Two weeks later, each rat
is  implanted sc with two silastic tubes containing 40
mg of crystalline testosterone. These tubes are
replaced after 6 mo. The rats are sacrificed at 13 mo
after the MNU injection, and the prostates are exam-
ined histologically for microscopic and macroscopic
tumors in each area of the prostate and associated tis-
sues. Typically 60–80% of the rats develop carcino-
mas in the dorsolateral prostate within the 13-mo
time frame. It is possible to define the site of origin
for small lesions (hyperplasia, carcinoma in situ, and
small carcinomas). However, for large lesions it is
often impossible to determine where the tumor orig-
inated. In this model, adenocarcinomas are malig-
nant but rarely metastasize to distant sites.

The Lobund rat model has been used by many inves-
tigators to study prostate cancer and its prevention (28).
Similarly to the experimental protocol above, MNU is
injected once i.v.; one wk later, testosterone pellets are
implanted onto the animals’ backs. The animals are sac-
rificed 427 d later when 25% have tumors of the acces-
sory sex organs. Recently, however, histopathological
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analysis of the tumors found that cancers of the dorso-
lateral prostate are the least frequent and at later stages
are overgrown by cancers from other glands, such as
the seminal vesicle (29).

6. BLADDER CANCER MODELS

The N-butyl-N-(4-hydroxylbutyl)nitrosamine (OH-
BBN)-induced mouse and rat bladder cancer models have
been in use for many years with inherent advantages and
disadvantages. In mice, bladder tumors induced by OH-
BBN typically are transitional cell carcinomas, morpho-
logically similar to those found in human bladder cancer
(30). These cancers are highly invasive and aggressive in
nature. Intragastric administration of 7.5 mg OH-BBN
over an 8-wk period to 50-d-old male DBF mice
(C57BL/6 X DBS/2F1) typically results in a 40–60%
tumor incidence at 6–8 mo post-carcinogen with an
average multiplicity of 0.5–0.7 tumors/mouse. A twice-
weekly carcinogen treatment for 8 wk to female F344
rats results in similar transitional cell carcinomas at 8 mo,
but the tumors are more papillary and slowly growing.
In the rat, incidence of premaligant lesions (hyperplasias
and papillomas) is near 100%, and cancer incidence is
roughly 60%. Nonsteroidal antiinflammatory drugs
(NSAIDs) are profoundly effective in inhibiting bladder
cancer in these animal models (31); recently the COX-2
inhibitor celecoxib caused a greater than 90% reduction
in bladder cancers in both mice and rats (32). The drug
development process for the chemopreventive agents 2-
difluoromethylornithine (DFMO) and oltipraz, using ani-
mal models for bladder cancer inhibition, has been
reviewed (33,34).

7. SKIN CANCER MODELS

Compounds effective in preventing skin carcino-
genesis have typically been identified in the classical
two-stage DMBA-12-O-tetradecanoylphorbol-13-
acetate (TPA) mouse skin cancer model (35,36). Both
CD-1 and SENCAR mice are highly susceptible to
skin tumor induction by a single DMBA dose and mul-
tiple doses of TPA applied topically over a 20-wk
period. Skin papillomas appear as early as 6 wk post-
carcinogen treatment, eventually progressing to squa-
mous cell carcinomas by 18 wk (37). Other
carcinogens, most notably B[a]P, have also been used
in this model to induce skin cancers (38). More
recently, a UV mouse skin model is gaining in use for
testing chemopreventive agents due to its high rele-
vance to the etiology of human skin cancer. Skh hair-
less mice are given multiple exposures to UV

irradiation over a 24-wk period and develop skin
lesions in approx 30 wk. Chemopreventive test agents
are either administered in the diet or applied topically
to the skin. Using this protocol, 100% of the mice
develop skin tumors by 34–36 wk and have tumor
multiplicities of about four tumors per animal (39). A
number of NSAIDs and green tea polyphenols have
proven effective in this model (40,41).

8. OVARIAN CANCER MODELS

There is no established animal model for ovarian
cancer chemoprevention studies. A potential model
employs surgical implantation of thread soaked in
DMBA into ovaries of Wistar-Furth rats at 7–8 wk of
age (42). Sterile silk thread immersed in melted DMBA
allows about 200 µg DMBA to be adsorbed to the thread,
which is then passed twice through the left ovary of the
rats. This model appears promising due to finding that
about half of the cancers are epithelial in nature, while
the other half are granulosa/thecal tumors. The fre-
quency of tumors is near 80% at 300 d post-carcinogen
exposure. More than half of the cancers are poorly dif-
ferentiated adenocarcinomas and the balance are mainly
thecal/granulosa cell tumors (Dr. Keith Crist, Medical
College of Ohio, unpublished results).

A second model currently under development also
involves a carcinogen, N-nitrobis-(2-oxopropyl)amine
(BOP), administered to Lewis rats (modified from
43,44). At 8 and 14 d of age, the female rats are injected
sc with 0.8 mg of BOP, and at 45 d of age the animals
are put onto diets containing chemopreventive agents.
The study typically is terminated when the animals are
about 8 mo old. The cancers produced are predomi-
nately granulosa/thecal tumors (Dr. Clinton Grubbs,
University of Alabama, Birmingham, unpublished
results). However, only about 10% of all human ovarian
cancers are granulosa/thecal in nature.

9. ESOPHAGUS CANCER MODELS

Esophageal cancers can be induced in rats by the
administration of N-nitroso-N-methylbenzylamine
(NMBA). Studies conducted in China indicate that
N-nitro compounds and their precursors are possible eti-
ological factors in human esophageal cancers (45). In this
model, male F344 rats are given NMBA (0.5 mg/kg-bw)
by sc injection three times a week for 5 wk (46). The
use of this model for chemoprevention studies has
recently been reviewed by leaders in its development
(47). The chemopreventive agents are given either in diet
or in drinking water for the full 25 wk of the experiment.
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11. PANCREAS CANCER MODEL

Human pancreatic cancer has an extremely low 1-yr
survival rate and current therapies are usually ineffec-
tive. One animal model being used to screen agents
with potential cancer preventive activity is the hamster
BOP model (59,60). Pancreatic tumors induced in
Syrian hamsters resemble human pancreatic cancer in
many aspects. In response to BOP, these rodents develop
pancreatic ductal (ductular) carcinomas. In this model,
male Syrian golden hamsters are injected sc with BOP
in normal saline three times at weekly intervals. The test
chemopreventive agents are administered in the diet
beginning 2 wk after the last BOP exposure. Typically,
a 48-wk period following the last carcinogen exposure
is needed to develop sufficient tumors in the pancreas.
The pancreases are histologically sectioned and scored
for hyperplasias, dysplasias, and cancers.

12. CONCLUSIONS

Preclinical animal models have been used extensively
in efficacy testing of potential chemopreventive agents
(61–64). Standardized statistical methodology has been
proposed to evaluate data from most of these animal
model experiments based on the various endpoints
(65). Clearly, there is much room for improving current
animal models to reflect the etiology and progression of
the human cancer process. There is also a need to
develop animal models for testing cancer preventive
agents in other organs, including brain, kidney, cervix,
and lymphatic cancers. Validation of animal models for
predicting efficacy of agents in human clinical trials
will await further human data on positive and negative
chemopreventive agents. To date, accuracy has been
remarkably high, with positive correlations for
tamoxifen and 4-HPR for breast cancer and aspirin and
celecoxib for colon cancer, and negative correlation for
β-carotene for lung cancer.
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