
1

Real-time Characteristics and Safety of
Embedded Systems

1.1 Introduction

What an embedded system is, is not exactly defined. In general, this term is
understood to mean a special-purpose computer system designed to control
or support the operation of a larger technical system (termed the embedding
system) usually having mechanical components and in which the embedded
system is encapsulated. Unlike a general-purpose computer, it only performs a
few specific, more or less complex pre-defined tasks. It is expected to function
without human interaction and, therefore, it usually has sensors and actuators,
but not peripheral interfaces like keyboards or monitors, except if the latter
are required to operate the embedding system. Often, it functions under real-
time constraints, what means that service requests must be handled within
pre-defined time intervals.

Embedded systems are composed of hardware and corresponding software
parts. The complexity of the hardware ranges from very simple programmable
chips (like field programmable gate arrays or FPGAs) over single microcon-
troller boards to complex distributed computer systems. Usually the software
is stored in ROMs, as embedded systems seldom have mass storage facilities.
Peripheral interfaces communicate with the process environments, and usu-
ally include digital and analogue inputs and outputs to connect with sensors
and actuators.

In simpler cases, the software consists of a single program running in a
loop, which is started on power-on, and which responds to certain events in
the environment. In more complex cases, operating systems are employed,
providing features like multitasking, different scheduling policies, synchroni-
sation, resource management and others, to be dealt with later in this book.

The trend towards distributed architectures away from centralised ones
assures modularity for structured design, better distribution of processing
power, robustness, fault tolerance, and other advantages.

4 1 Real-time Characteristics and Safety of Embedded Systems

There are almost no areas of modern technology which could do without
embedded systems. They appear in all areas of industrial applications and
process control, in cars, in home appliances, entertainment electronics, cellular
phones, video and photo cameras, and many more places. We even have them
implanted, or wear them in our garments, shoes, or eye glasses. Their major
spread has occurred particularly in the last decade. They pervade areas where
they were only recently not considered. As they are becoming ubiquitous, we
gradually do not notice them any more.

Contemporary cars, for example, contain dozens of embedded comput-
ers connected via hierarchically organised multi-level networks to communi-
cate low-level sensory information or inter-processor messages, and to provide
higher application-level interconnection of multimedia appliances, navigation
systems, etc. The driver is not aware of the computers involved, but is merely
utilising the new functionality. Within such automotive systems, there are
also safety-critical components being prepared to deal in the near future with
functions like drive-, brake-, or steer-by-wire. Should such a system fail, the
consequences are much different than for, e.g., Anti-Blocking Systems, whose
function simply ceases in the case of a failure without putting users in im-
mediate danger. With to the failure of an x-by-wire facility, however, drivers
would not even be in a position to stop their cars safely.

Such considerations brought into light another aspect that has not been
observed before. Since in the past embedded systems were considered to be
sensitive high-technology elements, they were observed with a certain amount
of precautious scepticism and doubt in their proper functioning. Special care
was taken in their implementation, and they were not employed in the most
safety-critical environments, like control units of nuclear power plants.

As a consequence of the increasing complexity of control algorithms in
such applications, for better flexibility, and for economic reasons, however,
and of getting used to their application in other areas, embedded systems
have also found their way into more safety-critical areas where the integrity
of the systems substantially depends on them. Any failures could have severe
consequences: they may result in massive material losses or endanger human
safety. Often the implementation of embedded systems is inadequate with
regard to the means and/or the methods employed. Therefore, it is the prime
goal of this book to point out what should be considered in the various design
domains of embedded systems. A number of long existing guidelines, methods,
and technologies of proper design will be mentioned and some elaborated in
more detail.

By definition, embedded systems operate in the real-time domain, which
means that their temporal behaviour is — at least — equally as important as
their functional behaviour. This fact is often not considered seriously enough.
There are a number of misconceptions that have been identified in an early
paper by Stankovic [104]; some characteristic and still partially valid ones will
be elaborated later in this chapter.

1.2 Real-time Systems and their Properties 5

While verifying embedded systems’ conformance to functional specifica-
tions is well established, temporal circumstances are seldom consistently veri-
fied. The methods and techniques employed are predominantly based on test-
ing, and the quality achieved mainly depends on the experience and intuition
of the designers. It is almost never proven at design time that such a system
will meet its temporal requirements in every situation that it may encounter.

Unfortunately, this situation was identified more than 20 years ago, when
the basic principles of the real-time research domain was already well organ-
ised. Although adequate partial solutions were known for a number of years,
in practice embedded systems design did not progress essentially during this
time. Therefore, in this work we present certain contributions to several crit-
ical areas of control systems design in a holistic manner, with the aim to
improve both functional and temporal correctness. The implementation of
long established, but often neglected, viable solutions will be shown with ex-
amples, rather than devising new methods and techniques. As verification of
functional correctness is more established than that of temporal correctness,
although equally important, special emphasis will be given to the latter.

While adequate verification of temporal and functional behaviour is im-
portant for high quality design of embedded systems, it cannot be taken as
a sufficient basis to improve their dependability. It is necessary to consider
the principles of fault management and safety measures for such systems in
the early design phases, which means that common commercial off-the-shelf
control computers are usually unsuitable for safety-critical applications.

In the late 1980s, the International Electrotechnical Commission (IEC)
started the standardisation of safety issues in computer control [58]. It iden-
tified four Safety Integrity Levels (SIL), with SIL 4 being the most critical
one (more details follow in Section 1.3.2). This book, however, is concerned
with applications falling into the least demanding first level SIL 1, which al-
lows the use of computer control systems based on generic microprocessors.
It is desirable that such systems should formally be proven correct or even be
safety-licensed. Owing to the complexity of software-based computer control
systems, however, this is very difficult if not impossible to achieve.

1.2 Real-time Systems and their Properties

Let us start with some examples that demonstrate what real-time behaviour
of a system actually is. A very good, but unexpected, example of proper
and problem-oriented temporal behaviour, dynamic handling of priorities,
synchronisation, adaptive scheduling and much more is the daily work of a
housekeeper and parent, whose tasks are to care for children, to do a lot of
housework and shopping, and to cook for the family. Apart from that, the
housekeeper also receives telephone calls and visitors. Some of these tasks
are known in advance and can be statically planned (scheduled), like sending
children to school, doing laundry, cooking lunch, or shopping. On the other

6 1 Real-time Characteristics and Safety of Embedded Systems

hand, there are others that happen sporadically, like a visit of a postman,
telephone calls, or other events, that cannot be planned in advance. The re-
actions to them must be scheduled dynamically, i.e., current plans must be
adapted when such events occur.

For statically scheduled tasks, often a chain of activities must be properly
carried through. For instance, to send the children to the school bus, they
must be woken on time, they must use the bathroom along with other family
members, enough time must be allowed for breakfast which is prepared in
parallel with the children being in the bathroom and getting dressed. The
deadline is quite firm, namely, the departure of the school bus. In the planning,
enough time must be allocated for all these activities. It is not a good idea,
however, to allow for too much slack, since the children should not have to
get up much earlier than necessary, thus losing sleep in the morning.

After sending the children to school, there are further tasks to be taken
care of. Housekeeping, laundry, cooking and shopping are carried out in an
interleaved manner and partly in parallel. Some of these tasks have more or
less strict deadlines (e.g., lunch should be ready for the children coming in
from school). The deadlines can be set according to the time of the day (or
the clock) or relative to the flow of other events. If the housekeeper is cooking
eggs or boiling milk, the time until they will be ready is known in advance.
If a sporadic event like a telephone call or postman’s visit occurs during that
time, the housekeeper must decide whether to accept it or not. If the event is
urgent, it may be decided to re-schedule the procedure and interrupt cooking
until the event is taken care of. Needless to say, that there are events with high
and absolute priorities that will be handled regardless of other consequences;
if, for example, a child is approaching a hot electric iron, then the housekeeper
will interrupt any other activity whatsoever, even at the cost of milk boiling
over.

Knowing his or her resources well, the housekeeper behaves very rationally.
If, for instance, food provisions are kept in the same room where the laundry
is done, the housekeeper will collect the vegetables needed for cooking when
going there to start the washing machine, although they will not be needed
until a later stage in the course of the housework planned, e.g., after having
made the beds.

1.2.1 Definitions, Classification and Properties

Following the pattern of the above example, in technical control systems there
is usually a process that needs to be carried through. A process is the totality
of activities in a system which influence each other and by which material,
energy, or information is transformed, transported, or stored [28]. Specifically,
a technical process is a process dealing with technical means. The basic ele-
ment of a process is the task. It represents the elementary and atomic entity
of parallel execution. The task concept is fundamental for asynchronous pro-

1.2 Real-time Systems and their Properties 7

gramming. It is concerned with the execution of a program in a computing
system during the lifetime of a process.

Considering the housewife example again, it is interesting that very com-
plex sequences of tasks are quite normal for ordinary people like in the house-
keeper example, and are carried out just with common sense. In the so-called
“high technology” world of computers, however, people are reluctant to con-
sider similar problems that way. Instead, sophisticated methods and proce-
dures are devised to match obsolete approaches that were used in the past
due to under-development, such as static priority scheduling.

Control systems should be considered in terms of tasks with their inherent
natural properties. Each one’s urgency is expressed by its deadline and not
by artificially assigned priorities. This concept matches the natural behaviour
of the housewife, as it is her goal to perform her tasks in such a sequence
and schedule that each tasks will be completed before its deadline. This nat-
ural perception of tasks, priorities and deadlines is the essence of real-time
behaviour:

In the real-time operating mode of a computer system the programs for
the processing of data arriving from the outside are permanently ready,
so that their results will be available within predetermined periods of
time [27].

Let us now consider two further examples that will lead us to a classification
of real-time systems.

In preparation for a journey, we visit a travel agent to book a flight and
buy tickets. The agent’s job is to see which flights are available, to check the
prices, and to make a reservation. If the service is busy, or there are any other
unfortunate circumstances, this can take some time, or could even not be
completed during our margin of patience. In the latter case, the agent could
not fulfill the job, and we did not get our tickets. The deadline that has not
been met was not very firmly set; it depended on a number of circumstances,
e.g., we were in a hurry or in a bad mood. Also, the longer we had to wait,
the higher the probability that we would go to another agent next time.

When we go to the airport after the booking, the deadlines are set differ-
ently: if we are for some reason late and arrive after the door is closed (that
deadline was known to us in advance), we have failed. It does not matter if
we were late only by a few seconds or an hour. It does not even matter if we
made any other functional mistake, for example went to wrong airport: it is
the same if the failure to board was due to a functional or temporal error.

Considering the two examples above, we can classify the real-time systems
into two general categories: systems with hard and soft real-time behaviour.
Their main difference lies in the cost or penalty for missing their deadlines
(see Figure 1.1). In the case of soft real-time systems, like in our example
of flight ticketing, after a certain deadline the costs or penalty (customer
dissatisfaction and, consequently, possibility of losing the customer) begin to
rise. After a certain time, the action can be considered to have failed.

8 1 Real-time Characteristics and Safety of Embedded Systems

penalty for the
missed deadline

deadline

hard real−time

soft real−time

time of
termination
of a task

Fig. 1.1. Soft vs hard real-time temporal behavioural

In the case of hard real-time systems, as in our second example of missing
a flight, the action has failed immediately after the deadline is missed. The
cost or penalty function exhibits a jump to a certain high value indicating
total failure, which may be high material costs or even endangering of envi-
ronmental or human safety. Hence, hard real-time systems are those for which
it holds that:

although functionally correct, the results produced after a certain pre-
defined deadline are incorrect and, thus, useless.

A task’s failure to perform its function in due time may have different con-
sequences. According to them, the hard- or soft real-time task may or may
not be mission-critical, i.e., the main objective of the entire application could
not be met. Sometimes, however, a failure of a task can be tolerated, e.g.,
when as a consequence only the performance is reduced to a certain extent.
For instance, MPEG video-decoders in multimedia applications operate in the
hard real-time mode: if a frame could not be decoded and composed before
it would have to be put on screen, which is a hard deadline, the task failed
as the frame is missing. The consequence would be flickering, which can be
tolerated if it does not happen often — thus, it is not mission-critical.

On the other hand, soft real-time systems can be safety-critical. As an ex-
ample, let us consider a diagnostics system whose goal is to report a situation
of alert. Since human reaction times are relatively long and variable, it is not
sensible to require the system’s reaction to be within a precisely defined time-
frame. However, the action’s urgency increases with delay. The soft real-time
deadline has a very positive side effect, namely, it allows other tasks more
time to deal with the situation causing the alert and possibly to solve it.

Figure 1.1 depicts, and the definitions describe, two extreme cases of hard
and soft real-time behaviour. In reality, however, the boundaries are often not
so strict. Moreover, beside cost, benefit functions may also be considered, and
different curves can be drawn [97]. Jensen describes the problem colourfully:

1.2 Real-time Systems and their Properties 9

“They (the real-time research community) have consensus on a pre-
cise technical (and correct) definition of “hard real-time,” but left “soft
real-time” to be tautologically defined as “not hard” — that is accu-
rate and precise, but no more useful than dichotomising all colours
into “black” and “not black” [67].

Together with Gouda and others [44] he has further elaborated the issue with
“Time/Utility Functions” based on earliness, tardiness and lateness.

From the above we can conclude that predictability of temporal behaviour
is the ultimate property of real-time systems. The necessary condition is de-
terminism of temporal behaviour of the (sub-) systems. Strict and realistic
predictability, however, is very difficult to achieve — practically impossible
regarding the hardware and system architectures as employed in state-of-the-
art embedded control systems. Hence, a much more pragmatic approach is
needed.

In [105], Stankovic and Ramamritham elaborate two different approaches
to predictability: the layer-by-layer (microscopic) and the top-layer (macro-
scopic) approach. The former stands for low-level predictability which is de-
rived hierarchically: a layer in the design of a real-time system (processor,
system architecture, scheduling, operating system, language, application) can
only be predictable if all underlying layers are predictable. This type of pre-
dictability is necessary for low-level critical parts of real-time systems, and it
should be provable.

For the higher layers (real-time databases, artificial intelligence, and other
complex controls) microscopic predictability cannot be achieved. In these cases
it is important that best effort is to be devoted, and that temporal behaviour
is observed. The goal is to meet the deadlines in most cases. However, since it
was not possible to prove that they are met in all cases, provisions should be
made for the rare occasions of missed deadlines. Fault tolerance means should
be implemented to resolve this situation. These must be simple and, thus,
provably predictable in the microscopic sense.

The history of systematic research into real-time systems goes back at
least to the 1970s. Although many solutions to the essential questions have
been found very early, there are still many misconceptions that characterise
this domain. In 1988, Stankovic collected many of them [104]. He found that
one of the most characteristic misconceptions in the domain of hard real-time
systems is that real-time computing is often considered as fast computing;
probably to a lesser extent, this misconception is still alive. It is obvious from
the above-mentioned facts that computer speed itself cannot guarantee that
specified timing requirements will be met. Instead, predictability of temporal
behaviour has been recognised as the ultimate objective. Being able to assure
that a process will be serviced within a predefined timeframe is of utmost
importance. Thus

10 1 Real-time Characteristics and Safety of Embedded Systems

A computer system can be used in real-time operating mode if it is
possible to prove at design time that in all cases all requests will be
served within predefined timeframes.

Beside timeliness, which is ensured by predictability, another requirement
real-time systems should fulfill is simultaneity. This property is more severe,
especially in multitasking and multiprocessor environments. It involves the
demand that the execution behaviour of a process should be timely even in
the presence of other parallel processes, whose number and behaviour are not
known at design time and with whom it will share resources. It is not always
possible to prove this property, but it should be considered and best efforts
made.

Finally, real-time systems are inherently safety-related. For that reason,
real-time systems should be dependable which, beside the properties of func-
tional and temporal correctness, also includes robustness and permanent
readiness. This property renders them particularly hard to design. The safety
issues will be elaborated later in this chapter.

1.2.2 Problems in Adequate Implementation of Embedded
Applications and General Guidelines

Although guidelines for proper design and implementation of embedded con-
trol systems operating in real-time environments have been known for a long
time, in practice ad hoc approaches still prevail to a large extent. There are
some major causes for this phenomenon:

• The basic problem seems to be the mismatch between the design objectives
of generic universal computing and embedded control systems. It is reason-
able to employ various low-level (caching, pipelining, etc.) and high-level
measures (dynamic structures, objects, etc.) to achieve the best possible
average performance with universal computers. Often, these measures are
based on improvement of statistical properties and are, thus, in contradic-
tion to the ultimate requirement of real-time systems, viz., temporal deter-
minism and predictability. There are no modern and powerful processors
with easily predictable behaviour, nor compilers for languages that would
prevent us from writing software with non-predictable run times. Prac-
tically all dynamic and “virtual” features aiming to enhance the average
performance of non-real-time systems are, therefore, considered harmful.
Inappropriate categories and optimality criteria widely employed in sys-
tems design are probabilistic and statistical terms, fairness in task pro-
cessing, and minimisation of average reaction time. In contrast to this, the
view adequate for real-time systems can be characterised by observation
of hard timing constraints and worst cases, prevention of deadlocks, pre-
vention of features taking arbitrarily long to execute, static analysis, and
recognition of the constraints imposed by the real, i.e., physical, world.

1.2 Real-time Systems and their Properties 11

• The costs of consistently designed real-time embedded applications are
much higher than conventional software. Timing circumstances need to be
considered in all design stages, from specification to maintenance. Espe-
cially the verification and validation phases, when performed properly, are
much more demanding and costly than in conventional computing.

• Designers of embedded systems are often reluctant to observe guidelines
for proper design. Often overloaded, they tend to develop their applications
in the usual way that was more or less appropriate in previous projects,
but may fail in a critical situation. Owing to lack of time, knowledge, and
will, they are not prepared to do the hard, annoying and time-consuming
work of proving their designs’ functional and temporal correctness.

The notion of time has long been ignored as a category in computer science.
It is suggested in a natural way by the flow of occurrences in the world sur-
rounding us. As the fourth dimension of our (Euclidean) space of experience,
time is already a model defined by law and technically represented by Univer-
sal Time Co-ordinated (UTC). Time is an absolute measure and a practical
tool allowing us to plan processes and future events easily and predictably
with their mutual interactions requiring no further synchronisation. This is
contrasted by the conceptual primitivity of computing, whose central notion
algorithm is time-independent. Here, time is reduced to predecessor-successor
relations, and is abstracted away even in parallel systems. No absolute time
specifications are possible, the timing of actions is left implicit in real-time
systems, and there are no time-based synchronisation schemes. As a result,
the poor state of the “art” is characterised by computers using interval timers
and software clocks with low (and in operation decreasing) accuracy, which
are much more primitive than wrist watches. Moreover, meeting temporal
conditions cannot be guaranteed, timer interrupts may be lost, every inter-
rupt causes overhead, and clock synchronisation in distributed systems is still
assumed to be a serious problem, although radio receivers for official date and
time signals, as already available for 100 years and widely used for many pur-
poses, providing the precise and worldwide only legal time UTC could easily
and cheaply be incorporated in any node.

The core problem of contemporary information technology, however, is
complexity, which is particularly severe in embedded systems design. It can be
observed that people tend to use sophisticated and complicated measures and
approaches when they feel that they need to provide good real-time solutions
for demanding and critical applications. It is, however, much more appropriate
to find simple solutions, which are transparent and understandable and, thus,
safer. Simplicity is a means to realise dependability, which is the fundamental
requirement of safety-related systems. (Easy) understandability is the most
important precondition to prove the correctness of real-time systems, since
safety-licensing (verification) is a social process with a legal quality.

There is a large number of examples for extensive complexity, or bet-
ter, “artificial complicatedness”. Thus, for instance, the standard document

12 1 Real-time Characteristics and Safety of Embedded Systems

DIN 19245 of the fieldbus system Profibus consists of 750 pages, and a tele-
phone exchange, which burned down in Reutlingen, had an installed software
base of 12 million lines of code. On the other hand, a good example of success-
fully employing simple means in a high-technology environment is the general
purpose computer used for the Space Shuttle’s main control functions. It is
based on five redundant IBM AP-101S computer systems whose development
started in 1972; the last revision is from 1984, and it was deployed in 1991.
They come out with 256k of 32 bit words of storage, and were programmed in
the high-level assembly language HAL. Simplicity and stability of the design
ensure the application’s high integrity.

A serious problem in the design of safety-critical embedded systems is
dependability of software:

We are now faced with a society in which the amount of software is
doubling about every 18 months in consumer electronic devices, and
in which software defect density is more or less unchanged in the last
20 years.

In spite of this, we persist in the delusion that we can write software
sufficiently well to justify its inclusion at the highest levels of safety
criticality.

Considering, for instance, the mean time between failure of a typical
modern disk of around 500,000 h, the widening gulf between software
quality and hardware quality becomes even more emphatic, to the point
that the common procedure in safety critical systems of triplicating the
same incredibly reliable hardware system and running the same much
less reliable software in each channel seems questionable to say the
least [52].

Software must be valid and correct, which means that it must fulfil its
problem specification. For the validity of specifications there is no more au-
thority of control — except the developers’ wishes, or more or less vaguely
formulated requests. In principle, automatic verification is possible. Valida-
tion, on the other hand, is inherently hard, because it involves the human
element to a great extent.

Software always contains design errors and, thus, needs correctness proofs,
as tests cannot show the absence of errors. Safety-licensing of systems, whose
behaviour is largely program-controlled, is still an unsolved problem, whose
severity is increased by the legal requirement that verification must be based
on object code. The still too big semantic gap between specifications on one
hand and the too low a level programming constructs available on the other
can be coped with by the-other-way-around approach, viz., to select program-
ming and verification methods of the utmost simplicity and, hence, highest
trustworthiness, and to custom-tailor execution platforms for them.

Descartes (1641) pointed out the very nature of verification, which is nei-
ther a scientific nor a technical, but a cognitive process :

1.3 Safety of Embedded Computer Control Systems 13

Verum est quod valde clare et distincte percipio.1

Verification is also a social process, since mathematical proofs rely on con-
sensus between the members of the mathematical community. To verify safety-
related computerised systems, this consensus ought to be as wide as possible.
Furthermore, verification has a legal quality as well, in particular for embed-
ded systems whose malfunctioning can result in liability suits. Simplicity can
be used as the fundamental design principle to fight complexity and to create
confidence. Based on simplicity, easy understandability of software verifica-
tion methods — preferably also for non-experts — is the most important
precondition to prove software correctness.

Design-integrated verification with the quality of mathematical rigour and
oriented at the comprehension capabilities of non-experts ought to replace
testing to facilitate safety-licensing. It should be characterised by simple, in-
herently safe programming — better specification, re-use of already licensed
application-oriented modules, graphics instead of text, and rigourous — but
not necessarily formal — verification methods understandable by non-experts
such as judges. The more safety-critical a function is, the more simple the
related software and its verification ought to be.

Simple solutions are the most difficult ones: they require high innova-
tion and complete intellectual penetration of issues.

Progress is the road from the primitive via the complicated to the sim-
ple.

(Biedenkopf, 1994)

1.3 Safety of Embedded Computer Control Systems

To err is human, but to really foul things up requires a computer.
(Farmers’ Almanac, 1978)

As society increasingly depends on computerised systems for control and
automation functions in safety-critical applications and, for economical rea-
sons, it is desirable to replace hardwired logic by programmable electronic
systems in safety-related automation, there is a big demand for highly depend-
able programmable electronic systems for safety-critical embedded control and
regulation applications. This domain forms a relatively new field, which still
lacks its scientific foundations. Its significance arises from the growing aware-
ness for safety in our society on the one hand, and from the technological
trend towards more flexible, i.e., program controlled, automation devices on
the other hand. It is the aim to reach the state that computer-based systems
can be constructed with a sufficient degree of confidence in their dependability.

1 That which I perceive very clearly and distinctly is true.

14 1 Real-time Characteristics and Safety of Embedded Systems

Let us start with an example of a fault-tolerant design. In the Airbus 340
family, the fly-by-wire system, which is an extremely safety-critical feature,
incorporates multiple redundancy [112]. There are three primary and two sec-
ondary main computers, each one comprising two units with different software.
The primary and secondary computers run on different processors, and have
different hardware and different architectures. They were designed and are
supplied by different vendors. Only one flight computer is sufficient for full
operation. Since mechanical signaling was retained for rudder movement and
horizontal stabiliser trim, the aircraft can, if necessary, still be flown relying
on mechanical systems only. Each computer has its command and monitoring
units running in parallel; see Figure 1.2. They have separate hardware. The
software for different channels in each computer was designed by different
groups using different languages. Each control surface is controlled by differ-
ent actuators which are driven by different computers. The hydraulic system
is triplicated and the corresponding lines take different routes through the
aircraft. The power supply sources and the signaling lanes are segregated.

actuator
outputs

command

monitor

check
sensor
inputs

Fig. 1.2. Architecture of an A340 computer

In case of a loss of system resources, the flight control system may be re-
configured dynamically. This involves switching to alternative control software
while maintaining system availability. Three operational modes are supported:

Normal - control plus reduction of workload,
Alternate - minimum computer-mediated control, and
Direct - no computer-mediation of pilot commands.

In spite of all these measures, there has been a number of incidents and
accidents that may be related to the flight control system or its specifications,
although a direct dependence has never been proven.

As functional and non-functional demands for computer systems have con-
tinued to grow over the last 30 years, so has the size of the resulting systems.
They have become extremely large, consisting of many components, includ-
ing distributed and parallel software, hardware, and communications, which
increasingly interface with a large number of external devices, such as sensors
and actuators. Another reason for large (and certain small) systems grow-
ing extensively complex is also the large number and complexity of inter-
connections between their components. Naturally, neither size nor number
of connections nor components are the only sources of complexity. As users
place increasing importance on such non-functional objectives as availability,

1.3 Safety of Embedded Computer Control Systems 15

fault tolerance, security, safety, and traceability, the operation of a complex
computer system is also required to be “non-stop”, real-time, adaptable, and
dependable, providing graceful degradation.

It is typical that such systems have lifetimes measured in decades. Over
such periods, components evolve, logical and physical interconnections change,
and interfaces and operational semantics do likewise, often leading to increased
system complexity. Other factors that may also affect complexity are geo-
graphic distribution of processing and databases, interaction with humans,
and unpredictability of system reactions to unexpected sequences of external
events. When left unchecked, non-functional objectives, especially in legacy
systems, can easily be violated. For instance, there are big, commercial off-
the-shelf, embedded systems now running large amounts of software basically
unknown to the user, which are problematic when trying to use them for
real-time applications.

The safety of control systems needs to be established by certification. In
that process, developers need to convince official bodies that all relevant haz-
ards have been identified and dealt with. Certification methods and procedures
used in different countries and in different industry domains vary to a large
extent. Depending on national legislation and practice, currently the licensing
authorities are still very reluctant or even refuse to approve safety-related tech-
nical systems, whose behaviour is exclusively program-controlled. In general,
safety-licensing is denied for highly safety-critical systems relying on software
with non-trivial complexity. The reasons lie mainly in a lack of confidence
in complex software systems, and in the considerable effort needed for their
safety validation. In practice, a number of established methods and guidelines
have already proven its usefulness for the development of high integrity soft-
ware employed for the control of safety-critical technical processes. Prior to
its application, such software is further subjected to appropriate measures for
its verification and validation.

However, according to the present state-of-the-art, all these measures can-
not guarantee the correctness of larger programs with mathematical rigour.
The method of diverse back-translation, for instance, which is the only general
method approved by TÜV Rheinland (a public German licensing authority) to
verify safety-critical software, is so cumbersome that up to two person-months
are needed to verify just 4kB of machine code [48]. Practice has shown that
even such small software components may include severe deficiencies as soft-
ware developers mainly focus on functionality and often neglect safety issues.
The problems encountered are exacerbated by the need to verify proper real-
time behaviour.

16 1 Real-time Characteristics and Safety of Embedded Systems

1.3.1 Brief History of Safety Standards Relating to Computers in
Control

This section provides a brief historical overview of the most important inter-
national, European and German safety standards. The list is roughly ordered
by the year of publication.

DIN VVDE 0801 and DIN V19250: [31, 32]
These documents belong to the first German safety standards applicable
to general electric/electronic/programmable electronic (E/E/PE) safety-
related systems comprehensively covering software aspects. Previous stan-
dards that dealt with the use of software covered only few life-cycle ac-
tivities and were rather sector-specific, e.g., IEC 60880 [57] “Software for
Computers in the Safety Systems of Nuclear Power Stations”. Although
officially published in different years, viz., DIN V VDE 0801 in 1990 and
DIN V 19250 in 1994, there is a close link between them. They estab-
lish eight safety requirement classes (German: Anforderungsklassen), with
AK 1 the lowest and AK 8 the highest.
DIN V VDE 0801: Principles for using Computers Safety-related Sys-

tems
This standard defines techniques and measures required to meet each
of the requirement classes. It includes techniques to control the EF-
FECT of hardware failures as well as measures to avoid the insertion of
design-faults during hardware and software development. These mea-
sures cover design, coding, implementation, integration and validation,
but the life-cycle approach is not explicitly mentioned.

DIN V 19250: Control Technology; Fundamental Safety Aspects for Mea-
surement and Control Equipment
This standard specifies a methodology to establish the potential risk
to individuals. The methodology takes the consequences of failures as
well as the their probabilities into account. A risk graph is used to
map the potential risk to one of the eight requirement classes.

EUROCAE-ED-12B: Software Considerations in Airborne Systems
and Equipment Certification [38]
This standard, which is equivalent to the US standard RTCA DO-178B,
was drafted by a co-operation of the European Organisation for Civil
Aviation Equipment (EUROCAE) and its US counterpart Radio Tech-
nical Commission for Aeronautics (RTCA). It was released in 1992 and
replaces earlier versions published in 1982 (DO-178/ED-12) and in 1985
(DO-178A/ED-12A). The standard considers the entire software life-cycle
and provides a thorough basis for certifying software used in avionic sys-
tems like airplanes. It defines five levels of criticality, from A (Software
whose failure would cause or contribute to a catastrophic failure of the
aircraft) to E (Software whose failure would have no effect on the aircraft
or on pilot workload).

1.3 Safety of Embedded Computer Control Systems 17

EN 954: Safety of Machinery — Safety-related Parts of Control
Systems [37]
This standard was developed by the European Committee for Standardis-
ation (CEN) and has two parts: General Principles for Design and Valida-
tion, Testing, Fault Lists. Part 1 was first released in 1996, Part 2 in 1999.
The standard complies with the basic terminology and methodology intro-
duced in EN 292-1 (1991), and covers the following five steps of the safety
life-cycle: hazard analysis and risk assessment, selection of measures to
reduce risk, specification of safety requirements that safety-related parts
must meet, design, and validation. It defines five safety categories: B, 1,
2, 3 and 4. The lowest category is B which requires no special measures
for safety, and the highest is 4 requiring sophisticated techniques to avoid
the consequences of any single fault. The standard focuses merely on the
application of fault tolerance techniques in parts of machinery, it does not
consider the system and its life-cycle as a whole [102].

ANSI/ISA S84.01: Application of Safety Instrumented Systems for
the Process Industry [3]
This is the US standard for safety systems in the process industry. It was
primarily introduced in 1996, and founded on the draft of IEC 61508 pub-
lished in 1995. The standard follows nearly the same life-cycle approach
as IEC 61508 and, thus, can be considered a sector-specific derivative of
this umbrella standard. The specialisation on the process industry be-
comes apparent by its strong focus on Safety Instrumented Systems (SIS)
and Safety Instrumented Functions (SIFs). According to the standard,
SISs transfer a process to a safe state in case predefined conditions are
violated, such as overruns of pressure or temperature limits. SIFs are the
actions that a SIS carries out to achieve this. Since the committee initially
thought that SIL 4 applications do not exist in the process industry, the
first edition defined only three SILs, which are equivalent to SIL 1 to 3 of
IEC 61508. However, the new release, ANSI/ISA S84.00.01-2004, includes
the highest class SIL 4.

IEC 61508: Functional Safety of Electrical/Electronic/Programm-
able Electronic (E/E/PE) Safety-related Systems [58]
The first draft of this standard was devised by IEC’s Scientific Committee
65A and published in 1995 under the name “IEC 1508 Functional Safety:
Safety-related Systems”. After it gained wide publicity, a revised version
was released in December 1998 as IEC 61508. This version comprises seven
parts:
Part 1: General requirements
Part 2: Requirements for electrical/electronic/programmable electronic

safety-related systems
Part 3: Software requirements
Part 4: Definitions and abbreviations

18 1 Real-time Characteristics and Safety of Embedded Systems

Part 5: Examples of methods for the determination of safety integrity
levels

Part 6: Guidance on the application of IEC 61508-2 and IEC 61508-3
Part 7: Overview of techniques and measures
The first four parts are normative, i.e., they state definite requirements,
whereas Parts 5 to 7 are informative, i.e., they supplement the normative
parts by offering guidance rather than stating requirements.
The standard defines four Safety Integrity Levels (SILs). SIL 1 is the low-
est, SIL 4 the highest safety class. It is important to note that SILs are
measures of the safety requirements of a given process; an individual prod-
uct cannot carry a SIL rating. If a vendor claims a product to be certified
for SIL 3, this means that it is certified for use in a SIL 3 environment
[102].
The standard has a “generic” character, i.e., it is intended as basis for writ-
ing sector- or application-specific standards. Nevertheless, if application-
specific standards are not available, this umbrella standard can be used
on its own.
In December 2001, CENELEC published a European version as EN 61508.
It obliged all its member countries to implement this European version at
national level by August 2002, and to withdraw conflicting national stan-
dards by August 2004. That is why DIN V VDE 0801 and DIN V 19250,
as well as their extensions, were withdrawn at that date.

EN 50126, EN 50128 and EN 50129: CENELEC railway standards
[34, 35, 36]
These three standards represent the backbone of the European safety li-
censing procedure for railway systems. They were developed by the Comité
Européen de Normalisation Electrotechnique (CENELEC), the European
Committee for Electrotechnical Standardisation in Brussels.
EN 50126: Railway Applications — The Specification and Demonstration

of Dependability, Reliability, Availability, Maintainability and Safety
(RAMS)

EN 50128: Railway Applications — Software for Railway Control and
Protection Systems

EN 50129: Railway Applications — Safety-Related Electronic Systems
for Signaling

This suite of standards, which is often referred to as the “CENELEC
railway standards”, was created with the intention to increase compati-
bility between rail systems throughout Europe and to allow mutual ac-
ceptance of approvals given by the different railway authorities. EN 50126
was published in 1999, whereas EN 50128 and EN 50129, which represent
application-specific derivatives of IEC 61508 for railways, were released in
2002.

1.3 Safety of Embedded Computer Control Systems 19

IEC 61511: Functional Safety: Safety Instrumented Systems for the
Process Industry Sector [59]
This safety standard was first released in 2003, and represents a sector-
specific implementation of IEC 61508 for the process industry. Thus, it
covers the same safety life-cycle approach and re-iterates many definitions
of its umbrella standard. Aspects that are of crucial importance for this
application area, such as sensors und actuators, are treated in considerably
higher detail. The standard consists of three parts named “Requirements”,
“Guidance to Support the Requirements”, and “Hazard and Risk Assess-
ment Techniques”.
In September 2004, the IEC added a “Corrigendum” to the standard,
and the ANSI adopted this version as new ANSI/ISA 84.00.01-2004
(IEC 61511 MOD). The US version is identical to IEC 61511 with one
exception, a “grandfather clause” that preserves the validity of approvals
for existing SISs.

IEC 61513: Nuclear Power Plants — Instrumentation and Control
for Systems Important to Safety — General Requirements for
Systems [60]
This sector-specific derivative of IEC 61508 for nuclear power plants was
primarily released in 2002. Other safety standards for nuclear facilities
like, e.g., IEC 60880 were revised in conformity with IEC 61508.

There are many more safety standards related to Programmable Electronic
Systems (PES), especially in the military area. This sometimes causes un-
certainty in choosing the standard applicable for a given application, e.g.,
EN 954-1 or IEC 61508 [41]. Moreover, if a system is used in several regions
with different legal licensing authorities, e.g., intercontinental aircraft, they
may need to conform with multiple safety standards.

The overview presented in this section highlights the importance of
IEC 61508. Its principles are internationally recognised as fundamental to
modern safety management. Its life-cycle approach and holistic system view
is applied in many modern safety standards — not only the ones that fall
under the regulations of CENELEC.

1.3.2 Safety Integrity Levels

In the late 1980s, the IEC started the standardisation of safety issues in com-
puter control [58]. They identified four Safety Integrity2 Levels SIL 1 to SIL 4,
with SIL 4 being the most critical one. In Table 1.1, applicable programming
methods, language constructs, and verification methods are assigned to the
safety integrity levels.

2 Safety integrity is the likelihood of a safety-related system to perform the required
safety functions satisfactorily under all stated conditions within a stated period
of time [107].

20 1 Real-time Characteristics and Safety of Embedded Systems

Table 1.1. Safety integrity levels

Safety
integrity
level

Verification method Language constructs
Typical
programming
method

SIL 4 Social consensus Marking table entries Cause-effect tables

SIL 3
Diverse
back translation

Procedure calls

Function block
diagrams with
formally verified
libraries

SIL 2
Symbolic execution,
formal correctness
proofs

Procedure call,
assignment,
case selection,
iteration restricted
loop

Language subsets
enabling
(formal)
verification

SIL 1 All
Inherently safe ones,
application oriented
ones

Static language
with safe
constructs

For applications with highest safety-criticality falling into the SIL 4 group,
one is not allowed to employ programming means such as we are used to. They
can only be “programmed” using cause-effect tables (such as programming of
simple PLA3, PAL and similar programmable hardware devices), which are
executed by hardware proven correct. The rows in cause-effect tables are as-
sociated with events, occurrence of which gives rise to Boolean preconditions.
They can be verified by deriving the control functions from the rules read out
from the tables stored in permanent memory and comparing them with the
specifications. In Figure 1.3 a safety-critical fire fighting application is pre-
sented as a combination of cause-effect tables and functional block macros.

At SIL 3, programming of sequential software is already allowed, although
only in a very limited form as interconnection of formally verified routines.
No compilers may be used, because there are no formally proven correct com-
pilers yet. A convenient way to interconnect routines utilises Function Block
Diagrams as known from programmable logic controllers [56]. The suitable
verification method is diverse back-translation: several inspectors take a pro-
gram code from memory, disassemble it, and derive the control function. If
they can all prove that it matches the specifications, a certificate can be issued
[73]. This procedure is very demanding and can only be used in the case of
pre-fabricated and formally proven correct software components.

3 Programmable Logic Array.

1.3 Safety of Embedded Computer Control Systems 21

cause & effect table

functional block macros

logging into a database

deluge

fire
damper

flame
Area 1
Fuel
select.

flame
detect

gaz

gaz

gaz

gaz

UV

IR

Fig. 1.3. An example of a safety-critical application

SIL 2 is the first level to allow for programming in the usual sense. Since
formal verification of the programs is still required, only a safe subset of
the chosen language may be used, providing for procedure calls, assignments,
alternative selection, and loops with bounded numbers of iterations.

Conventional programming is possible for applications with the integrity
requirements falling into SIL 1. However, since their safety is still critical, only
static languages are permitted without dynamic features such as pointers
or recursion that could jeopardise their integrity. Further, constructs that
could lead to temporal or functional inconsistencies are also restricted. Any
reasonable verification methods can be used.

In this book, applications falling into SIL 1 will be considered, although
for safety back-up systems or partial implementations of critical subsystems
higher levels could also apply. For that reason, in the sequel we shall only refer
to SIL 1.

1.3.3 Dealing with Faults in Embedded Control Systems

A good systematic elaboration of handling faults and a taxonomy from this
domain was presented by Storey [107]. Some points are summarised below.
Faults may be characterised in different ways, for example, by:

Nature: random faults (hardware failure), systematic faults (design faults,
software faults);

Duration: permanent (systematic faults), transient (alpha particle strikes
on semiconductor memories), intermittent (faulty contacts); or by

Extent: local (single hardware or software module), global (system).

More and more, the general public is realising the inherent safety problems
associated with computerised systems, and particularly with their software.
Hardware is subject to wear, transient or random faults, and unintended envi-
ronmental influences. These sources of non-dependability can, to a very large
extent, be coped with successfully by applying a wide spectrum of redundancy
and fault-tolerance methods.

22 1 Real-time Characteristics and Safety of Embedded Systems

Software, on the other hand, does not wear out nor can environmental
circumstances cause software faults. Instead, software is imperfect, with all
errors being design errors, i.e., of systematic nature, and their causes always
being latently present. They originate from insufficient insight into the prob-
lems at hand, leading to incomplete or inappropriate requirements and design
flaws. Programming errors may add new failure modes that were not apparent
at the requirements level. In general, not all errors contained in the resulting
software can be detected by applying the methods prevailing in contemporary
software development practice. Since the remaining errors may endanger the
environment and even human lives, embedded systems are often less trust-
worthy than they ought to be. Taking the high and fast increasing complexity
of control software into account, it is obvious that the problem of software
dependability will exacerbate severely.

As already mentioned, due to the complexity of programmable control
systems, faults are an unavoidable fact. A discipline coping with them is called
“fault management”. Broadly, its measures can be subdivided into four groups
of techniques:

Fault avoidance aims to prevent faults from entering a system during the
design stage,

Fault removal attempts to find faults before the system enters service (test-
ing),

Fault detection aims to find faults in the system during service to minimise
their effects, and

Fault tolerance allows the system to operate correctly in the presence of
faults.

The best way to cope with faults is to prevent them from occurring. A good
practice is to restrict the use of potentially dangerous features. Compliance
with these restrictions must be checked by the compiler. For instance, dynamic
features like recursion, references, virtual addressing, or dynamic file names
and other parameters can be restricted, if they are not absolutely necessary.

It is important to consider the possible hazards, i.e., the capability to do
harm to people, property or the environment [107], during design time of a
control system. In this sense the appropriate actions can be categorised as:

• Identification of possible hazards associated with the system and their
classification,

• Determination of methods to dealing with these hazards,
• Assignment of appropriate reliability and availability requirements,
• Determination of an appropriate Safety Integrity Level, and
• Specification of appropriate development methods.

Hazard analysis presents a range of techniques that provide diverse insight
into the characteristics of a system under investigation. The most common
approaches are Failure Modes and Effects Analysis (FMEA), Hazard and Op-

1.3 Safety of Embedded Computer Control Systems 23

erability Studies (HAZOP), and the Event- and Fault Tree Analyses (ETA
and FTA).

Fault tree analysis in particular appears to be most suitable for use in the
design of embedded control systems. It is a graphical method using symbols
similar to those used in digital systems design, and some additional ones rep-
resenting primary and secondary (the implicit) fault events to represent the
logical function of the effects of faults in a system. The potential hazards are
identified; then the faults and their interrelations that could lead to undesired
events are explored. Once the fault tree is constructed it can be analysed, and
eventually improvements proposed by adding redundant resources or alterna-
tive algorithms.

Since it is not possible in non-trivial cases to guarantee that there are no
faults, it is important to detect them properly in order to deal with them.
Some examples of fault-detection schemes are:

Functionality checking involves software routines that check the function-
ality of the hardware, usually memories, processor or communication re-
sources.

Consistency checking. Using knowledge about the reasonable behaviour of
signals or data, their validity may be checked. An example is range check-
ing.

Checking pairs. In the case of redundant resources it is possible to check
whether different instances of partial systems behave similarly.

Information redundancy. If feasible, it is reasonable to introduce certain
redundancy in the data or signals in order to allow for fault detection,
like checksums or parities.

Loop-back testing. In order to prevent faults of signal or data transmission,
they can be transmitted back to the sources and verified.

Watchdog timers. To check the viability of a system, its response to a peri-
odical signal is tested. If there is no response within a predefined interval,
a timer detects a fault.

Bus monitoring. Operation of a computer system can often be monitored
by observing the behaviour on its system bus to detect hardware failures.

It is advisable that these fault-detection techniques are implemented as op-
erating system kernel functions, or in any other way built into the system
software. Their employment is thus technically decoupled from their imple-
mentation allowing for their systematic use.

1.3.4 Fault-tolerance Measures

Approaches of Fault-Tolerant Control can be divided into two categories: pas-
sive and active fault tolerant control. The key difference between them is that
an active fault tolerant control system includes a fault detection and isolation
(FDI) system, and that fault handling is carried out based on information on
faults delivered by the FDI system. In a passive fault tolerant control system,

24 1 Real-time Characteristics and Safety of Embedded Systems

on the other hand, the system components and controllers are designed to
be robust to possible faults to a certain degree. Figure 1.4 sketches the basic
classification of fault tolerant control concepts.

fault tolerance

passive active
− robust components
− design for fault
 tolerance redundance

− hardware
− software

reconfiguration
− computer system
− control methods

combined methods

integrated fault tolerance

Fig. 1.4. Classification of fault-tolerance measures

Passive measures to improve fault tolerance mean that any reasonable
effort must be made to make a design robust. For instance, the components
must be selected accordingly, and with reasonable margins in critical features.
Also, fault tolerance should already be considered in the design of subsystems.
In addition to enhancing the quality and robustness of process components,
using redundancy is a traditional way to improve process reliability and avail-
ability. However, because of the increased costs and complexity of the system,
its usability is limited.

Evidently more flexible and cost effective is the reconfiguration scheme.
Fault tolerance is achieved by system and/or controller reconfiguration, i.e.,
after faults are identified and a reduction of system performance is observed,
the overall system performance will be recovered (possibly to an acceptable
degree, only) by a reconfiguration of parts of the control system under real-
time conditions. This is a new challenge in the field of control engineering. In
the following, the most common approaches for this are briefly sketched.

Redundancy

The most common measure to make a system tolerant to faults is to employ
redundant resources. In the area of computing this idea originated in 1949:
although still not tolerant to faults, EDVAC already had two ALUs to detect
errors in calculation. Probably the first fault-tolerant computer was SAPO
[87] built in Prague from 1950 to 1954 under the supervision of A. Svoboda,
using relays and a magnetic drum memory. The processor used triplication and
voting, and the memory implemented error detection with automatic retries

1.3 Safety of Embedded Computer Control Systems 25

when an error was detected. A second machine developed by the same group
(EPOS) also contained comprehensive fault-tolerance features.

The most simple model of redundancy-based fault tolerance is Triple Mod-
ular Redundancy (TMR): three resources with a voter allow for recognising a
single resource failure. This is also called two-out-of-three (2oo3). The model
can be extended to N-Modular Redundancy (NMR), which can accommodate
more failures, but becomes more and more expensive. Seldom does N exceed
5 (3oo5). For other examples please refer to Section 7.3.1.

There are several ways in which the redundancy can be employed:

Hardware redundancy: e.g., in form of TMR,
Software redundancy: e.g., diversely implemented routines in recovery blocks,

see below,
Information redundancy: e.g., as parity bits or redundant codes, and
Time redundancy: i.e., repetitive calculations to cope with the intermittent

faults. fault-detection

Both in hardware and software redundancy it is most important to avoid com-
mon mode failures. They can be coped with successfully by design diversity.
For a good example, see the description of the Airbus fly-by-wire computer
control system on Page 14. To achieve a fully decoupled design, one should
start with separate specifications to avoid errors in this stage, which are most
costly and difficult to find by testing — a wrong system can thus even be
verified formally!

Sometimes, the sources of common mode faults are deeply anchored in
the designers by their education and training. This introduces a social com-
ponent of fault management. This social problem of common mode failures
was addressed by M.P. Hilsenkopf, an expert concerned with research and
development for French nuclear power plants [53]. He pointed out that safety
critical components are developed in parallel in two places by two different
groups without a contact, viz., in Toulouse and Paris. Starting with separate
acquisition of requirements from physicists and engineers, they each provide
their own specifications each. Based on that, they develop, verify and validate
two different solutions. Then they swap them for final testing. Since they have
both specified and developed their solutions, both groups know the problem
very well, they know which questions and difficulties they had to solve, and
they check how the respective competing group has coped with them. Thus,
they verify each others’ design on their own specifications, and both try to
prove that their solution is better.

Reconfiguration

Owing to the fixed structure and high demands for hardware and software
resources, and for economic reasons in less critical applications, the employ-
ment of the redundancy strategy is usually limited to certain specific technical
processes or to key system components like the central computing system or

26 1 Real-time Characteristics and Safety of Embedded Systems

the bus system. To cover entire systems, fault-tolerant strategies with fault
accommodation or system and/or controller reconfiguration are more suitable.

Owing to significantly different functions and working principles, the prob-
lems related to reconfiguration of control methods, algorithms and approaches
as well as of the computer platforms, on which the latter and signal and data
processing are running, are generally considered in separate and usually inde-
pendent contexts. In this book we shall deal in more detail with the aspect of
reconfiguring computer control systems, and with supporting the methods of
higher-level control system reconfiguration.

When the occurrence of faults is detected, a system decides either to ac-
commodate these faults or to perform controller and/or hardware reconfigu-
ration, which might imply graceful performance degradation or, in the case of
severe faults, to drive the component or process concerned into a safe mode.
The decision on the type of action taken by the reconfiguration system is
based on the evaluation of the actual system performance provided by a mon-
itoring system, and on the need to assure an adequate transient behaviour
upon reconfiguration.

Thus, for reconfiguration, designers prepare different solutions to a prob-
lem with gradually decreasing quality; the last one usually drives the system
into a safe failing mode. For each of the solutions the necessary resources and
the preconditions are listed. On the other hand, the computer system archi-
tecture provides for reconfiguration of the hardware in order to cope with
resource failure. The optimum approach is normally run at the start, utilising
all (or most of) the computer and control resources. This is also the main
difference between redundancy and reconfiguration: most of the operational
resources are always used.

Important components of reconfiguration-based fault-tolerant control are
a fault detection system and a reconfiguration manager: based on the infor-
mation provided by the former and on the resource needs attached to the
gradually degraded options, the latter decides on the operating mode. Since
the reconfiguration manager represents a central point of failure, it must be
implemented in the safest possible way. It may be redundant or distributed
among the other resources, which by a voting protocol then compete for tak-
ing over control. An example for the latter solution is the protocol to select a
new time master in the case of failure in the TTCAN protocol [64]; cf. Section
3.5.2.

With respect to application design, dynamic reconfiguration resembles
software redundancy (see below) — the recovery approaches or N versions
of a control algorithm. According to the occurrence of faults, control will be
switched to the most competent version, utilising the sound resources, and
providing the best possible quality of service.

Hardware Fault Tolerance

In the design of fault-tolerant hardware, systems can be classified as static,
dynamic or hybrid.

1.3 Safety of Embedded Computer Control Systems 27

Static systems utilise fault effect masking, i.e., preventing the effects of
faults to propagate further into the systems. They use some voting mech-
anism to compare the outputs and mask the effect of faults. Well-known
approaches include the n-modular redundancy, TMR with replicated vot-
ers (to eliminate the danger that a single voter fails).

Dynamic systems try to detect faults instead of masking their effects. The
technique used is providing the stand-by resources. There is a single sys-
tem producing output. If a fault is detected, control is switched to a redun-
dant resource. The latter may have been running all the time in parallel
with the master resource (hot stand-by), or was switched on when the
master resource failed. In the case of hot redundancy, faults can be de-
tected by, e.g., self-checking pairs. In this case, obviously the redundant
resource is more reliable, although probably delivering lower quality of
service.
Static redundancy masks faults and they do not appear in the system. This
is, however, achieved at a high cost for massive redundancy. Dynamic sys-
tems utilise less redundancy and provide continuous service, but introduce
transient faults to the system: when an error occurs, the fault is in the
first instant propagated, then coped with.

Hybrid systems combine the properties of the former two classes: by com-
bining the techniques of dynamic redundancy with voters, they detect
faults, mask their effects, and switch to stand-by units.

Software Fault Tolerance

Software fault tolerance copes with faults (of whatever origin) by software
means rather than tolerating software errors. There are two major methods
falling into this category, N-version programming and recovery blocks.

N-version programming resembles static hardware redundancy. A problem
is solved by N different and diversely designed programs, all fulfilling the re-
quirements stated in the specifications. All these programs are then run on the
same data, either sequentially, or in parallel in the case of a multiprocessing
system. If the results do not match, a fault is assumed and the results are
blocked. The disadvantage of this method is that it either requires a multi-
processor system or takes more than N-times more time even if the system is
working correctly.

Recovery blocks do not take much more time if there is no fault. Again,
N versions of a program are designed, but only the most appropriate one
is executed first. If a fault can be recognised, the results are discarded, the
intermediate system states are reset, and the next alternative solution is tried.
Eventually, one alternative must fulfil the requirements, or at least assure fail-
safe behaviour. There are two different types of recovery blocks techniques
[23, 24], backward and forward recovery.

The principle of backward recovery is to return to a previous consistent sys-
tem state after an inconsistency (fault) is detected by consistency tests called

28 1 Real-time Characteristics and Safety of Embedded Systems

postconditions. This can be done in two ways; (1) by the operating system
recording the current context before a program is “run”, and restoring it after
its unsuccessful termination, or (2) by recovery blocks inside the context of a
task. The syntax of a recovery block (RB) could be

RB ≡ ensure post by P0 else by P1 else by . . . else failure

where P0, P1, etc. are alternatives which are consecutively tried until either
consistency is ensured by meeting the post -condition, or the failure-handler
is executed to bring the system into a safe state. Each alternative should
independently be able to ensure consistent results.

The forward error recovery technique tries to obtain a consistent state
from partly inconsistent data. Which data are usable can be determined by
consistency tests, error presumptions, or with the help of independent external
sources.

If in embedded process control systems an action directly affects a periph-
eral process, an irreversible change of initial states inside a failed alternative is
caused. In this case, backward recovery is generally not possible. As a conse-
quence, no physical control outputs should be generated inside the alternatives
which may cause backward recovery in case of failure, i.e., inside those which
have postconditions. If this is not feasible, only forward recovery is possible,
bringing the system into a certain predefined, safe, and stable state.

1.4 Summary of Chapter 1 and Synopsis of What
Follows

In this introduction, some definitions have been laid down and the nature of
real-time systems’ execution behaviour has been demonstrated on examples.
Safety issues have been discussed together with a brief enumeration of exist-
ing fault management measures and standards. This chapter has introduced
terminology and provided the structure of guidelines on which the remaining
chapters will build.

In the remainder of Part I, the concepts most important in designing dis-
tributed embedded real-time control systems will be elaborated. To start with,
multitasking is the topic of Section 2, as it presents the nature of complex
embedded control systems. In the section, first the approaches to task man-
agement are introduced and, then, two most common issues, scheduling and
synchronisation, are dealt with. The preferred solutions are elaborated in more
detail.

Sections 3 and 4 more specifically deal with hardware and software aspects
of embedded systems design. They present some original solutions to certain
problems, which have been developed by the authors, and which constitute
guidelines for the implementation of platforms for distributed systems. In
Part II the latter are elaborated in detail.

