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Basic Principles

1.1 Introduction

The field of spectroscopy is in general concerned with the interaction between matter and
electromagnetic radiation. Atoms and molecules have a range of discrete energy levels cor-
responding to different electronic, vibrational or rotational states. The interaction between
atoms and electromagnetic radiation is characterized by the absorption and emission of
photons, such that the energy of the photons exactly matches an energy level difference
in the atom. Since the energy of a photon is proportional to the frequency, the different
forms of spectroscopy are often distinguished on the basis of the frequencies involved. For
instance, absorption and emission between electronic states of the outer electrons typically
require frequencies in the ultraviolet (UV) range, hence giving rise to UV spectroscopy.
Molecular vibrational modes are characterized by frequencies just below visible red light
and are thus studied with infrared (IR) spectroscopy. Nuclear magnetic resonance (NMR)
spectroscopy uses radiofrequencies, which are typically in the range of 10–800 MHz.

NMR is the study of the magnetic properties (and energies) of nuclei. The absorption
and emission of electromagnetic radiation can be observed when the nuclei are placed in
a (strong) external magnetic field. Purcell, Torrey and Pound [1] at MIT, Cambridge and
Bloch, Hansen and Packard [2] at Stanford simultaneously, but independently discovered
NMR in 1946. In 1952 Bloch and Purcell shared the Nobel Prize for physics in recognition
of their pioneering achievements [1–4]. At this stage, NMR was purely an experiment
for physicists to determine the nuclear magnetic moments of nuclei. NMR could only
develop into one of the most versatile forms of spectroscopy after the discovery that nuclei
within the same molecule absorb energy at different resonance frequencies. These so-called
chemical shift effects, which are directly related to the chemical environment of the nuclei,
were first observed in 1950 by Proctor and Yu [5], and independently by Dickinson [6].

In the first two decades, NMR spectra were recorded in a continuous wave mode in which
the magnetic field strength or the radiofrequency (RF) was swept through the spectral area
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of interest, whilst keeping the other fixed. In 1966, NMR was revolutionized by Ernst and
Anderson [7] who introduced pulsed NMR in combination with Fourier transformation.
Pulsed or Fourier transform NMR is at the heart of all modern NMR experiments.

The induced energy level difference of nuclei in an external magnetic field is very small
when compared with the thermal energy, making it that the energy levels are almost equally
populated. As a result the absorption of photons is very low, making NMR a very insensitive
technique when compared with the other forms of spectroscopy. However, the low energy
absorption makes NMR also a noninvasive and nondestructive technique, ideally suited for
in vivo measurements. It is believed that, by observing the water signal from his own finger,
Bloch was the first to use NMR on a living system. Soon after the discovery of NMR, others
showed the utility of using NMR to study living objects. In 1950, Shaw and Elsken [8] used
proton NMR to investigate the water content of vegetable material. Odebald and Lindstrom
[9] obtained proton NMR signals from a number of mammalian preparations in 1955.
Continued interest in defining and explaining the properties of water in biological tissues
led to the promising report of Damadian in 1971 [10] that NMR properties (relaxation
times) of malignant tumorous tissue significantly differs from normal tissue, suggesting
that (proton) NMR may have diagnostic value. In the early 1970s, the first experiments of
NMR spectroscopy on intact living tissues were reported. Moon and Richards [11] used
31P NMR on intact red blood cells and showed how the intracellular pH can be determined
from chemical shift differences. In 1974, Hoult et al. [12] reported the first study of 31P
NMR to study intact, excised rat hind leg.

Around the same time reports on in vivo NMR spectroscopy appeared, Lauterbur [13]
and Mansfield and Grannell [14] described the first reports of a major application of modern
NMR, namely in vivo NMR imaging or magnetic resonance imaging (MRI). By applying
position dependent magnetic fields in addition to the static magnetic field, they were able
to reconstruct the spatial distribution of the spins in the form of an image. Lauterbur and
Mansfield shared the 2003 Nobel Prize in medicine. In vivo NMR spectroscopy or magnetic
resonance spectroscopy (MRS) and MRI have evolved from relatively simple one or two
RF pulse sequences to complex techniques involving spatial localization, water and lipid
suppression and spectral editing for MRS and time-varying magnetic field gradients, ultra
fast and multiparametric acquisition schemes for MRI.

In this chapter the basic phenomenon of NMR is considered. After establishing the
Larmor resonance condition with a combination of classical and quantum mechanical
arguments, the NMR phenomenon is approached from a more practical point of view
with the aid of the macroscopic Bloch equations. The phenomena of chemical shift, scalar
coupling and spin echoes will be described, as well as some elementary processing of the
NMR signal.

1.2 Classical Description

NMR is based on the concept of nuclear spin. Before discussing the properties of nuclear
spins, some relations from classical physics will be introduced which will simplify further
discussions. Although classical physics is incapable of describing the quantum mechanical
spin, it can be used to create a familiar frame of reference in which the existence of a spin
angular momentum can be visualized.
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Motion (linear or rotational) always has a corresponding momentum (linear or angular).
For an object of mass m and velocity v, the linear momentum p is given by:

p = mv (1.1)

Conceptually, momentum can be thought of as the tendency for an object to continue its
motion. The momentum only changes when an external force F is applied, in accordance
with Newton’s second law:

F =
(

dp
dt

)
= ma (1.2)

where a is the acceleration. In the absence of external forces, the object does not accelerate
(or decelerate) and the linear momentum and hence the speed is constant.

Now consider an object rotating with constant velocity about a fixed point at a distance
r. This motion is described with an angular momentum vector L, defined as:

L = r × p (1.3)

Therefore, the magnitude of L is mvr and its direction is perpendicular to the plane of
motion. Angular momentum can only be changed when an external torque is applied, in
analogy with the application of force on a linear momentum. Torque T (or rotational force)
is defined as the cross product of force and the distance over which the force has to be
delivered:

T = r × F = r ×
(

dp
dt

)
=

(
dL
dt

)
(1.4)

Now suppose that the rotating object carries an electrical charge so that a current loop
is created. According to classical physics this current generates a magnetic field, which
is characterized by the magnetic dipole moment, µ, a fundamental magnetic quantity
associated with the current. In general the magnetic moment µ is given by:

µ = [current][area] (1.5)

For an object of mass m and charge e rotating at constant rotational velocity v about a fixed
point at distance r, the magnetic moment µ is given by:

µ =
[ ev

2�r

]
�r2 (1.6)

Using L = mvr, a fundamental relation between magnetic moment and angular moment
is obtained:

µ =
( e

2m

)
L = �L (1.7)

where � is the (classical) gyromagnetic ratio. It turns out that relation (1.7) is valid for
any periodic, orbital motion, including microscopic motion of elementary particles. In the
next section it is shown that relation (1.7) is also obtained when using quantum mechanical
arguments. When the rotating object is placed in an external magnetic field B0, the loop
will feel a torque given by:

T = µ × B0 (1.8)



c01 JWBK188/Degraff September 18, 2007 18:24 Char Count=

4 In Vivo NMR Spectroscopy

Combining Equations (1.4), (1.7) and (1.8) gives:(
dµ

dt

)
= �µ × B0 (1.9)

Since the amplitude of µ is constant, the differential equation in Equation (1.9) expresses
the fact that µ changes its orientation relative to B0, i.e. µ rotates (precesses) about B0.
Alternatively, a precession of µ about B0 can be described by:(

dµ

dt

)
= µ × ω0 (1.10)

Combining Equations (1.9) and (1.10) results in the famous Larmor equation:

ω0 = γB0

or

ν0 =
(ω0

2�

)
=

( �

2�

)
B0 (1.11)

The precession (or Larmor) frequency �0 is thus directly proportional to the applied
magnetic field B0 and also to the gyromagnetic ratio � (or µ), which is characteristic for
the nucleus under investigation.

A magnetic moment in an external magnetic field also has an associated magnetic energy
defined as:

E = −µ · B0 = −µB0cos � (1.12)

where θ is the angle between the magnetic moment µ and the external magnetic field B0.
Equation (1.12) indicates that the magnetic energy is minimized when µ is parallel with
B0 (θ = 0◦) and maximized when µ is antiparallel with B0 (θ = 180◦). According to
Equation (1.12), the classical magnetic moment may assume any orientation (0◦ ≤ θ ≤
180◦), with energy varying between +µB0 and −µB0. Therefore, even though classical
mechanics can create a familiar picture of the relation between angular momentum, mag-
netic moment and Larmor frequency, it cannot explain how the general resonance condition
for spectroscopy, �E = h�, relates to the magnetic energy associated with the magnetic
moment. A quantum mechanical treatment is necessary to obtain information about the
interaction of electromagnetic waves and nuclear spins. In the next section basic quantum
mechanical concepts are introduced, after which the NMR resonance condition is derived.

1.3 Quantum Mechanical Description

One of the fundamental postulates in quantum mechanics is that the angular momentum
of elementary particles (be it protons, neutrons, or electrons) is limited to discrete values,
i.e. the angular momentum L is quantized and its amplitude is given by:

L =
(

h

2�

) √
I (I + 1) (1.13)

where I is the spin quantum number, which can only be integral or half-integral and h
is Planck’s constant. Since angular momentum is a vector, the full description of L must
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involve its amplitude, given by Equation (1.13), and its direction. In quantum mechanics
the direction of angular momentum is specified by a second quantum number m, which can
only have certain discrete orientations with respect to a given direction. The component of
angular momentum in the z direction, Lz, is given by:

Lz =
(

h

2�

)
m (1.14)

Quantum mechanics shows that m can have 2I+1 values, given by:

m = I, I − 1, I − 2, . . . ,−I (1.15)

For protons, neutrons and electrons, the spin quantum number I equals 1/2. For nuclei,
I cannot simply be calculated by summation of its individual components. However, by
using the atomic mass and the charge number, I can be deduced from the following rules:

1. For nuclei with an odd mass number, I is half-integral (1/2, 3/2, 5/2, . . . , e.g. 1H, 13C,
15N, 23Na, 31P).

2. For nuclei with an even mass number and an even charge number, I is zero (e.g. 12C,
16O, 32S).

3. For nuclei with an even mass and an odd charge number I is an integral number (1, 2,
. . . , e.g. 2H, 14N).

By analogy with Equation (1.7), elementary particles also have a magnetic moment µ

which is related to the angular momentum L through:

µ = �L (1.16)

where � is again the gyromagnetic ratio. Since the angular momentum is quantized, the
magnetic moment will also be quantized. The component of the magnetic moment along
the longitudinal z axis is given [by analogy with Equation (1.14)] by:

µz = �

(
h

2�

)
m (1.17)

where m is given by Equation (1.15). In an external magnetic field B0, the particle acquires
a magnetic energy given by Equation (1.12). Combining this classical description of the
magnetic energy with the quantum mechanical formulation of magnetic moment gives:

E = −µzB0 = −�

(
h

2�

)
mB0 (1.18)

Since m is a discrete quantum number [see Equation (1.15)], the energy levels are also
quantized. For a particle of spin I = 1/2, there are only two energy levels (m = –1/2 and
+1/2) and the energy difference �E is given by (see Figure 1.1):

�E = �

(
h

2�

)
B0 (1.19)

The resonance phenomenon in NMR is achieved by applying an oscillating magnetic field
perpendicular to �z with a frequency �0, such that the energy equals the magnetic energy
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Figure 1.1 (A) The nuclear spin energy for a spin-1/2 nucleus as a function of the external
magnetic field strength B0. (B) The lower energy level (α spin state) corresponds to magnetic
moments parallel with B0, while spins in the higher energy level (β spin state) have an
antiparallel alignment with B0. For all currently available magnets, the energy level difference
between the two spin states corresponds to electromagnetic radiation in the RF range.

given by Equation (1.19), i.e. the energy of the electromagnetic wave is given by:

�E = h�0 (1.20)

Combining Equations (1.19) and (1.20) will give the earlier derived Larmor equation:

�0 =
( �

2�

)
B0 (1.21)

Even though the classical and quantum mechanical descriptions of NMR lead to the
same result, they play a different role in the understanding of the technique. Quantum
mechanics is the only theory which can quantitatively describe the NMR phenomenon.
Classical principles are mainly used to visualize the effects of RF pulses on macroscopic
magnetization vectors.

1.4 Macroscopic Magnetization

Figure 1.2A shows the precession (at the Larmor frequency) of a magnetic moment around
an external magnetic field according to classical principles. Quantization of magnetic
moment (and magnetic energy) can readily be incorporated in this picture. For elementary
particles the angle θ between µ and B0 can no longer be arbitrary as in Section 1.2 but is
given by:

cos θ = m√
I(I + 1)

(1.22)

For a nucleus of spin I = 1/2, m = +1/2 or −1/2 yielding an angle θ = 54.74◦ relative
to the +z or −z axis, respectively. Therefore, the nuclei of spin I = 1/2 are distributed on
the surface of two cones, and rotate about B0 at the Larmor frequency (Figure 1.2B). In
the general case of a spin I nucleus, the magnetic moments will be distributed on 2I+1
cones at discrete angles θ as defined by Equation (1.22). For a spin 1/2 nucleus the two
spin states m = +1/2 (µ parallel with B0) and m = –1/2 (µ antiparallel to B0) are often
referred to as the � and � spin states, respectively.
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z

B0 B0A B

Figure 1.2 (A) A nuclear spin precessing in an external magnetic field B0. The spin magnetic
moment � precesses about B0, in which the orientation θ and the amplitude (along z) µz are
quantized. (B) In a macroscopic ensemble of nuclear spin-1/2, the spins distribute themselves
among two possible orientations according to the Boltzmann equation.

So far, only the behavior of individual nuclear spins has been considered. However, a
macroscopic sample contains many spins, which will be randomly distributed on the cones.
As a consequence of the small energy difference between the spin states there will be a
small difference in the population of these spin states. This population difference can be
calculated using the Boltzmann equation. For the situation shown in Figure 1.2B the energy
difference �E = h� gives rise to a population distribution given by:(

nα

nβ

)
= e�E/kT = eh�/kT (1.23)

where n� is the number of spins in the � (low energy) state, n� is the number of spins in
the � (high energy state), k is the Boltzmann constant and T is the absolute temperature.
Since at normal temperature, h� is much less than the thermal energy kT, the exponent in
Equation (1.23) can be simplified through an expansion and truncation of a Taylor series
to give: (

nα

nβ

)
= 1 +

(
h�

kT

)
(1.24)

For a macroscopic sample containing one million nuclear spins at 37 ◦C (T = 310.15 K)
and in a magnetic field of 9.4 T, corresponding to � = 400 MHz, the population difference
between the � and � spin states is only 31 spins (corresponding to 0.0031 %). Since the final
received signal is proportional to the population difference, NMR is a rather insensitive
technique compared with other forms of spectroscopy, where the energy difference is much
larger.

The total net magnetic moment (i.e. ‘the magnetization’), M, of a macroscopic sample
is the resultant of the sum over all individual magnetic moments µ. Since the magnetic
moments are randomly distributed on the cones, there will be no net component of M in
the transverse xy plane (see Figure 1.2B). However, due to the population difference there
will be a net component of M parallel with B0 along the +z axis. At thermal equilibrium
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the magnitude of the longitudinal magnetization, M0 is:

M0 =
n∑

i=1

µi = nαµz + nβµz = �

(
h

4�

)
(nα − nβ) (1.25)

Using Equation (1.24), (h�/kT) � 1 and n = n� + n� where n is the total number of
nuclear spins in the macroscopic sample, the population difference (n� − n�) is given by:

(nα − nβ) ≈
(

nh�

2kT

)
(1.26)

Therefore, at thermal equilibrium, the amplitude of the macroscopic magnetization vector
M0 is:

M0 =
(

γh

2�

)2 (
nB0

4kT

)
(1.27)

From Equation (1.27) several important features concerning the sensitivity of NMR ex-
periments can be deduced. The quadratic dependence of M0 on the gyromagnetic ratio
� implies that nuclei resonating at high frequency [see Equation (1.11)] also generate
relatively intense NMR signals. Hydrogen has the highest � of the commonly encountered
nuclei, and has therefore the highest relative intensity. The linear dependence of M0 on
the magnetic field strength B0 implies that higher magnetic fields improve the sensitivity.
In fact this argument (and the related increase in chemical shift dispersion) has caused a
steady drive towards higher magnetic field strength which now typically range from 1.5 T
to 17.5 T (or up to circa 11.7 T for in vivo applications). Finally, the inverse proportionality
of M0 to the temperature T indicates that sensitivity can be enhanced at lower sample
temperatures. Obviously, the latter option is unrealistic for in vivo applications.

The actual experimental sensitivity is determined by many factors, like sample volume,
gyromagnetic ratio, natural abundance of the nucleus studied, (sample) noise, relaxation
parameters and magnetic field strength. Although some factors can be predicted by Equation
(1.27), others (e.g. noise) need a more detailed treatment which will be given in Chapter
10. The intrinsic sensitivities of the most relevant nuclei encountered in in vivo NMR
spectroscopy are summarized in Table 1.1.

1.5 Excitation

In NMR experiments, macroscopic samples are studied, containing many individual spins.
Figure 1.2B demonstrates clearly how the spin angular moments are distributed on a discrete
number of cones. The quantum mechanical representation is convenient to illustrate the spin
distribution, but it is not very suitable to illustrate the interaction of the spins with external
magnetic fields. Therefore the classical picture of the net macroscopic magnetization vector
M0 will be used in further discussions.

In order to observe nuclear magnetization, the precessional motion needs to be detected.
However, at thermal equilibrium the spins have no phase coherence in the transverse plane
and the net longitudinal magnetization is a static vector. Nuclear magnetization can only
be observed by rotating the net longitudinal magnetization towards or onto the trans-
verse plane. This can be accomplished by a second magnetic field in the transverse plane



c01 JWBK188/Degraff September 18, 2007 18:24 Char Count=

Basic Principles 9

Table 1.1 NMR properties of commonly encountered nuclei in in vivo NMR

Isotope Spin
Gyromagnetic ratio
(107 rad T−1 s−1)

NMR frequency
at 2.35 T (MHz)

Natural
abundance (%)

Relative
sensitivitya

1H 1/2 26.752 100.000 99.985 1.00
2H 1 4.107 15.351 0.015 1.45 × 10−6

3He 1/2 −20.380 76.181 1.4 × 10−4 5.75 × 10−7

7Li 3/2 10.398 38.866 92.58 0.272
13C 1/2 6.728 25.145 1.108 1.76 × 10−4

14N 1 1.934 7.228 99.630 1.00 × 10−3

15N 1/2 −2.712 10.137 0.370 3.86 × 10−6

17O 5/2 −3.628 13.562 0.037 1.08 × 10−5

19F 1/2 25.181 94.094 100.000 0.834
23Na 3/2 7.080 26.466 100.000 9.27 × 10−2

31P 1/2 10.841 40.481 100.000 6.65 × 10−2

39K 3/2 1.250 4.672 93.100 4.75 × 10−4

129Xe 1/2 −7.452 27.856 26.44 5.71 × 10−3

aRelative sensitivity is calculated as the product of NMR sensitivity (proportional to |γ 3| × I(I + 1)) and the natural
abundance.

oscillating in the RF (MHz) range, i.e. B1maxcos(ωt), where B1max is the amplitude of
the applied field and ω its frequency. In modern Fourier transform NMR, the B1 field
is applied as a RF pulse (i.e. turned on for a finite time T and turned off again). During
the RF pulse, the magnetization will precess about B0 and B1. Throughout this chapter
and the remainder of the book anticlockwise rotations will be used in accordance with
the theory first developed by Bloch [2–4]. The initially longitudinal magnetization expe-
riences a torque from the applied B1 field, which results in a rotation of M0 towards the
transverse plane (Figure 1.3). Because two external magnetic fields act simultaneously

z

x

y

B0

Figure 1.3 Excitation of magnetization in the nonrotating, laboratory frame xyz. The longitu-
dinal magnetization M0, initially aligned with the z axis, will precess about the static magnetic
field B0 and the irradiating RF field B1 in the transverse plane. This results in a rotation towards
the transverse plane due to B1 and a simultaneous precession at the Larmor frequency about
B0. In this case B1 was calibrated to rotate M0 by 90◦ away from the z axis to give complete
excitation.
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Figure 1.4 Excitation of magnetization in the rotating frequency frame of reference x′y′z′. (A)
At thermal equilibrium the Boltzmann distribution of individual nuclear spins in a macroscopic
sample creates a net magnetization vector along +z′. Since the individual spins have no phase
coherence (i.e. their phases are randomly distributed), there is no net magnetization in the
transverse plane. (B) A magnetic field B1 along −x′ rotates the net macroscopic magnetization
towards +y′. On the microscopic level this is equivalent to the generation of phase coherence
between the individual spins. (C) When the magnetic field B1 is calibrated to give complete
excitation, the spins have attained complete phase coherence resulting in a net magnetization
vector along +y′. No magnetization remains along z′.

on M0, the rotation of M0 during the applied B1 field appears to be rather complex. In
Section 1.6 the concept of rotating frames of reference will be introduced which consider-
ably simplifies the rotations. When the applied B1 field is applied long enough, M0 can be
completely excited onto the transverse plane or even inverted to the -z axis, giving rise to
so-called 90◦ excitation and 180◦ inversion RF pulses, respectively. Following the pulse,
the magnetization experiences only the main magnetic field B0 and will precess around it
with the Larmor frequency. For the observant reader the rotation of magnetization towards
the transverse plane may seem in violation with the quantum mechanical property of spins
to be either parallel or antiparallel with the main magnetic field B0. However, a link between
individual spins, which can only be parallel or antiparallel to the static magnetic field, and
macroscopic transverse magnetization can still be understood with a classical description.
Figure 1.4 shows an ensemble of individual spins at thermal equilibrium, i.e. the phase of
the spins is random such that the net transverse magnetization is zero. Application of a per-
pendicular RF magnetic field has two effects on the spins. First, the two spin states become
more equally populated as a 90◦ nutation (rotation) angle is approached and second the spins
come into a state of phase coherence [15], i.e. the external magnetic field forces the phases
of the spins to attain coherence thereby generating transverse magnetization. The trans-
verse magnetization coherently rotates about B0 at the Larmor frequency �0 and induces
an electromotive force (emf) in the receiver coil surrounding the sample. The amplitude
of the induced emf is determined by Faraday’s law of elctromagnetic induction. After
amplification this induced emf gives directly rise to the NMR signal. Sections 1.7 and 1.9
will deal with the processing of NMR signal to recognizable spectra and Chapter 10 will
deal will the theory of detection systems and coils.



c01 JWBK188/Degraff September 18, 2007 18:24 Char Count=

Basic Principles 11

1.6 Bloch Equations

In Section 1.2 it was shown that, when placed in a magnetic field B, a magnetic moment µ

experiences a torque which is proportional to the time derivative of the angular momentum
[Equations (1.4) and (1.8)]. Utilizing the fact that the magnetization is the sum over all
magnetic moments, i.e. Equation (1.25), the expression of motion for a single magnetic
moment can be generalized for the total magnetization, giving:

dM(t)

dt
= M(t) × γB(t) (1.28)

where B(t) may include time-varying components in addition to the static magnetic field
B0. At thermal equilibrium, in the absence of additional (time-varying) magnetic fields,
Equation (1.28) simply expresses the fact that the z component of the magnetization M is
constant, i.e.:

dMz(t)

dt
= 0 (1.29)

No net x and y components of M exist at thermal equilibrium, and therefore no NMR signal
can be detected. As qualitatively illustrated in Figure 1.3, the longitudinal magnetization Mz

must be rotated onto the transverse plane, after which the rotating transverse magnetization
will induce signal in a receive coil through Faraday’s law of induction. From Equation
(1.28) it follows that Mz can be perturbed by a second magnetic field perpendicular to Mz

and since this field is rotating at the Larmor frequency in the RF range of the electromagnetic
spectrum, it is often referred to as a RF magnetic field.

The magnetic component of a RF field that is linearly polarized along the x axis in the
laboratory frame can be written as:

B1(t) = 2B1 max cos ωt[x] (1.30)

where B1max is the maximum amplitude of the applied field, ω is the angular transmitter
or carrier frequency of the RF field and [x] represents a unit vector along the x axis. The
linearly polarized field can be decomposed into two circularly polarized fields rotating in
opposite direction about the z axis (Figure 1.5) according to:

B1(t) = B1 max (cos ωt[x] + sin ωt[y]) + B1 max (cos ωt[x] − sin ωt[y]) (1.31)

Only the field rotating in the same sense as the magnetic moment interacts significantly
with the magnetic moment. The counter rotating field influences the spins to the order
(B1/2B0)2, which is typically a very small number known as the Bloch–Siegert shift [16].
Since under most conditions the counter rotating field can be ignored, the linearly polarized
RF field of Equation (1.31) is then equivalent to a rotating magnetic field given by:

B1x(t) = B1 max (cos ωt[x] − sin ωt[y]) = B1x cos ωt + B1y sin ωt (1.32)

A similar expression can be derived for B′
1y(t).

In the presence of two magnetic fields B0 and B1, Equation (1.28) can be expanded
to yield the Bloch equations in the laboratory frame of reference in the absence of
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A B

B1 B1

yy

x x

Figure 1.5 Decomposition of a linear oscillating magnetic field (A) into two rotating magnetic
fields (B) with frequencies –ω and +ω, respectively.

relaxation [3]:

dMx(t)

dt
= � [My(t)B0 − Mz(t)B1y] (1.33)

dMy(t)

dt
= � [Mz(t)B1x − Mx(t)B0] (1.34)

dMz(t)

dt
= � [Mx(t)B1y − My(t)B1x] (1.35)

Relaxation is the process of return to thermal equilibrium after a perturbation. Components
of the magnetization M (i.e. Mx, My and Mz) return to thermal equilibrium in an exponential
manner. The components perpendicular (i.e. Mx and My) and parallel (i.e. Mz) to B0 relax
with different time constants. The relaxation process can be written as:

dMx(t)

dt
= −Mx(t)

T2
(1.36)

dMy(t)

dt
= −My(t)

T2
(1.37)

dMz(t)

dt
= −Mz(t) − M0

T1
(1.38)

T1 and T2 are relaxation time constants. T1 is the longitudinal relaxation time (or spin-
lattice relaxation time) and describes the return of longitudinal magnetization after a
perturbation. T1 relaxation is in principle a process in which energy from the spins
is transferred to the surrounding ‘lattice’ (which can be either solid or liquid). T2 is
the transverse relaxation time (or spin-spin relaxation time) and describes the disappear-
ance of transverse magnetization. T2 relaxation is an entropy-process, since spins exchange
energy between themselves (there is no net energy transfer) causing a decrease in phase
coherence (i.e. an increase in global chaos or entropy). T1 and T2 relaxation processes in
biological tissues are discussed in detail in Chapter 3. Combining Equations (1.33)–(1.35)
and Equations (1.36)–(1.38) yields the complete Bloch equations in the laboratory
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frame [3]:

dMx(t)

dt
= � [My(t)B0 − Mz(t)B1y] − Mx(t)

T2
(1.39)

dMy(t)

dt
= � [Mz(t)B1x − Mx(t)B0] − My(t)

T2
(1.40)

dMz(t)

dt
= � [Mx(t)B1y − My(t)B1x] − (Mz(t) − M0)

T1
(1.41)

Until this point the NMR experiment has been described in a Cartesian frame fixed with
respect to the laboratory (i.e. the ‘laboratory’ frame). It turns out to be more convenient to
describe NMR in a rotating frame. Therefore, consider a new set of Cartesian axes (x′, y′

and z′) rotating about the static magnetic field B0 with frequency ω. The z and z’ axes of
the laboratory and rotating frames, respectively, are collinear with the external magnetic
field B0. The components of the magnetization in the rotating frame are given by:

M′
x = Mx cos ωt + My sin ωt (1.42)

M′
y = My cos ωt − Mx sin ωt (1.43)

M′
z = Mz (1.44)

Therefore, using Equations (1.42)–(1.44) the Bloch equations in the rotating frame can be
calculated from Equations (1.39)–(1.41), i.e.:

dM′
x(t)

dt
= −(ω0 − ω)M′

y(t) − �B′
1yM′

z(t)
M′

x(t)

T2
(1.45)

dM′
y(t)

dt
= (ω0 − ω)M′

x(t) + �B′
1xM′

z(t) − M′
y(t)

T2
(1.46)

dM′
z(t)

dt
= �B′

1yM′
x(t) − �B′

1xM′
y(t) − (M′

z(t) − M0)

T1
(1.47)

where the definitions of B′
1x and B′

1y as specified in Equation (1.32) are used. In all follow-
ing text the prime will be omitted as it is assumed that the magnetization vector evolves in
the rotating frame of reference. The conversion to a rotating frame of reference has conse-
quences for the magnetic field vectors encountered in that frame. In a frame that rotates with
a frequency equal to the frequency of B1, B1 appears static. Furthermore, the precessional
motion of the magnetization (i.e. ω0 = −�B0) appears to be reduced to a value (ω0 − ω).
Figure 1.6A shows the generation of transverse magnetization for ω=ω0. Since the vectors
are drawn in the rotating frame of reference, the magnetization simply precesses about the
applied B1 field towards the transverse plane. Comparison with Figure 1.3, which shows the
same situation in the laboratory frame illustrates the clarity of a rotating frame. It is conve-
nient to define an effective magnetic field Be, which is the vector sum of (ω0 −ω)/� and B1,
since the magnetization precesses about the effective field. The magnitude of Be is given by

Be = |Be| =
√

B2
1 +

(
ω0 − ω

�

)2

(1.48)

On-resonance (i.e. when the frequency of the applied RF pulse ω equals the Larmor
frequency ω0), Equation (1.48) reduces to Be = B1 and the magnetization simply rotates
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Figure 1.6 Magnetic field vectors encountered in the rotating frame of reference x′y′z′ during
excitation. (A) On-resonance, the effective, external magnetic field vector equals the magnetic
field vector B1 along x′. The longitudinal magnetization experiences a torque and will rotate
towards the transverse plane through an angle θ. (B) Off-resonance, the frequency of the
magnetic field B1 no longer equals the Larmor frequency, resulting in an additional magnetic
field vector ∆ω/γ along z′. The effective magnetic field Be then equals the vector sum of B1

and ∆ω/γ . The longitudinal magnetization will experience a torque from this effective field,
resulting in a more complex rotation about Be.

about B1 as shown in Figure 1.6A. In the event of a nonvanishing off-resonance vector
(i.e. ω �= ω0), the effective magnetic field Be is tilted from the transverse plane (Figure
1.6B). The magnetization will precess about Be, leading to a more complex rotation
when compared with the on-resonance situation. Off-resonance effects during RF pulses
(excitation) are discussed in detail in Chapter 5. For the remainder of this chapter it will
be assumed that off-resonance effects are negligible.

1.7 Fourier Transform NMR

Following a RF pulse which is calibrated to rotate M0 by 90◦ (i.e. complete excitation),
the magnetization is placed in the transverse plane of the rotating frame of reference.
The magnetization precesses about B0 at the Larmor frequency and induces an emf in a
receiving coil positioned in the transverse plane. Because of T2 relaxation, the transverse
magnetization and consequently the emf will decrease as a function of time. However,
macroscopic and microscopic inhomogeneity in the main magnetic field B0 will create a
distribution of locally different B0 magnetic fields across the sample, leading to a distri-
bution of Larmor frequencies. When a macroscopic sample is considered, this distribution
leads to a more rapid loss of transverse magnetization than caused by pure T2 relaxation.
The origin and compensation of B0 inhomogeneity is discussed in great detail in Chapter
10. For a sample with uniform proton density and T2 relaxation constants, the acquired
signal in the presence of magnetic field inhomogeneity can be described by:

Mxy(t) = Mxy(0)e−t/T2

∫
r

e+i��B0(r)tdr = Mxy(0)e−t/T∗
2 (1.49)
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Figure 1.7 The free induction decay (FID) of nuclear magnetization following an excitation
pulse. The transverse magnetization precesses at the Larmor frequency and decays with a
characteristic time constant T2* as time progresses. The complex three-dimensional FID can
be completely described by two projections on the (Mx, t) and (My, t) planes, corresponding
to the real and imaginary components of the FID, respectively.

where �B0 is indicative of B0 inhomogeneity and equals (B0(r) − B0,nom) where B0(r) is
the magnetic field strength at position r and B0,nom represent the nominal magnetic field
strength. Mxy is the complex transverse magnetization (Mxy = Mx + iMy). Note that even
though the T2* relaxation is often presented as a single-exponential decay, in practice it
is a multi-exponential decay depending on the local B0 magnetic field inhomogeneity of
individual spins as expressed by Equation (1.49).

The time-dependence of the emf (or signal intensity) is called the free induction decay
(FID). The complex motion of the transverse magnetization as function of time can be
represented as shown in Figure 1.7. NMR spectrometers separately detect the x and y
components of this complex motion (see Chapter 10 for more details) and commonly the
projections on the xt and yt planes are shown, which are given by:

Mx(t) = M0 cos [(ω0 − ω) t + φ] e−t/T∗
2 (1.50)

My(t) = M0 sin [(ω0 − ω) t + φ] e−t/T∗
2 (1.51)

where � is the phase at t = 0. Mx(t) and My(t) are normally referred to as the real and
imaginary FIDs, respectively. Although the FIDs hold all the relevant information about the
nuclear spins, like their resonance frequencies and relative abundance, they are seldom used
directly. Normally the time-domain data (i.e. the FID) is converted to frequency-domain
data (i.e. the spectrum) by a Fourier transformation [17]. The Fourier transformation of a
time-domain signal f(t) gives a frequency-domain signal F(ω) according to:

F(ω) =
∫ +∞

−∞
f(t)e−iωtdt or F(�) =

∫ +∞

−∞
f(t)e−i2��tdt (1.52)

Fourier transformation is a reversible operation, so that a time-domain signal can be
calculated from a frequency-domain signal with an inverse Fourier transformation given
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by:

f(t) = 1

2�

∫ +∞

−∞
F(ω)e+iωtdω or f(t) =

∫ +∞

−∞
F(�)e+i2��td� (1.53)

In principle it is possible to construct a spectrum from one of the components of the complex
FID [i.e. either Mx(t) or My(t)]. However, in that case negative and positive frequencies can
not be discriminated since cos(ω) = cos(−ω). Therefore, both components of the complex
FID are measured, using so-called quadrature detection. More details about quadrature
detection can be found in Chapter 10, while the characteristics of Fourier transformations
are described in Appendix A3. Fourier transformation of the time-domain signals yields
the real and imaginary frequency-domain signals (i.e. the spectrum) given by:

R(ω) = A(ω) cos φ − D(ω) sin φ (1.54)

I(ω) = A(ω) sin φ + D(ω) cos φ (1.55)

where

A(ω) = M0T∗
2

1 + (ω0 − ω)2T∗2
2

(1.56)

D(ω) = M0(ω0 − ω)T∗2
2

1 + (ω0 − ω)2T∗2
2

(1.57)

A(ω) and D(ω) describe the absorption and dispersion components of a Lorentzian line-
shape and are drawn in Figure 1.8A. The width at half height, ��1/2, of the absorption
component of a Lorentzian lineshape equals 1/(�T2*). The dispersive component is sub-
stantially broader, with a net integrated intensity of zero. Therefore, for the best separation
(or resolution) of multiple lines in a NMR spectrum, absorption mode spectra are generally
desired. However, when � �= 0 a mixture of absorption and dispersion signals is observed
(Figure 1.8B) as described by Equations (1.54) and (1.55) (Figure 1.8B). Pure absorption
mode spectra can be obtained by ‘phasing’ the observed, mixed R(ω) and I(ω) spectra
according to:

A(ω) = R(ω) cos φc + I(ω) sin φc (1.58)

D(ω) = I(ω) cos φc − R(ω) sin φc (1.59)

By interactively adjusting the phase �c, absorption mode spectra are obtained when �c = �
(Figure 1.8C). Due to hardware imperfections and/or timing errors the phase � may depend
upon the resonance frequency ω. The simple ‘zero-order’ phase correction of Equations
(1.58) and (1.59) is no longer adequate and one needs to resort to higher-order phase
corrections as well. On most NMR spectrometers phase correction is performed according
to:

φc = φ0 + (ω0 − ω)φ1 (1.60)

where �0 and �1 are the zero and first order phase corrections, respectively. The adjustable
phase �c therefore contains contributions from a constant phase correction �0 for all
resonances and a linear, frequency-dependent phase correction �1. For some dedicated
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Figure 1.8 Principle components of a NMR spectrum. (A) Complex Fourier transformation of
an exponentially decaying FID gives rise to Lorentzian absorption and dispersion lineshapes.
(B) In general, the initial phase of the FID is nonzero, such that a mixture of absorption
and dispersion lineshapes is obtained. The dispersive component exhibits broad ‘tails’ which
decreases the spectral resolution. The dispersive component can be eliminated by ‘phasing’
the spectrum, such that only the absorption component remains as shown in (C). From the
phased spectrum, the frequency ν, the signal height h and linewidth at half height �ν1/2 can
be accurately measured. (D) Phase information is completely eliminated when presenting the
spectrum in magnitude mode, given by the square root of the sums of the squares of the ab-
sorption and dispersion components [i.e. Equation (1.61)]. Because the dispersive component
is included the resonance is substantially broader than the pure absorption lineshape.
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experiments even higher-order phase corrections may be necessary, but these will not be
discussed here.

When the phase of the signal is not relevant, or if the phase can not be adjusted properly
with zero- and first-order phase corrections (as in some two-dimensional NMR experiments,
see Chapter 8), the signal can be presented in absolute value (or magnitude) mode. An
absolute value signal is defined as:

M(ω) =
√

R(ω)2 + I(ω)2 (1.61)

Figure 1.8D shows the absolute-value spectrum of the resonance line shown in Figure
1.8A. Because of the dispersive component, the resonance is much broader than in the
corresponding phased spectrum (Figure 1.8C).

1.8 Chemical Shift

So far most of the descriptions assumed a macroscopic sample containing only one type
of nuclear spin, having a resonance frequency given by Equation (1.11). If the frequency
of nuclear spins were solely determined by the resonance condition of Equation (1.11),
NMR spectroscopy would be of minor importance in chemistry and medicine. Nuclei of
the same element (or isotope) even in different molecules, would resonate at the same fre-
quency because of their identical gyromagnetic ratio. Fortunately, however, the resonance
frequency ω not only depends on the gyromagnetic ratio � and the external magnetic
field B0, but is also highly sensitive to the chemical environment of the nucleus under
investigation [5, 6]. This is commonly referred to as the chemical shift. The phenomenon
of chemical shift is caused by shielding (screening) of nuclei from the external magnetic
field by electrons surrounding them. Figure 1.9A shows a schematic representation of the
electrons around a nucleus. When placed in an external magnetic field, the electrons will
rotate about B0 in an opposite sense to the proton spin precession. Since this precession
of electrons involves motion of charge, there will be an associated magnetic moment µe,
in analogy to the existence to a nuclear magnetic moment. The electron magnetic moment
opposes the primary applied magnetic field B0. Therefore, the electrons will reduce the
magnetic field that is sensed by the nucleus. This effect can be expressed in terms of an
effective magnetic field B at the nucleus:

B = B0(1 − 	) (1.62)

where 	 is the shielding (or screening) constant. 	 is a dimensionless number [normally
expressed in parts per million (ppm)], which depends on the chemical environment of the
nucleus. Using Equation (1.62), the resonance condition of Equation (1.11) can be modified
to:

� =
( �

2�

)
B0(1 − 	) (1.63)

Most often chemical shifts are not expressed in units of Hertz, since this would make
chemical shifts dependent on the magnetic field strength. Instead chemical shifts are
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Figure 1.9 Origin of the chemical shift. (A) The electrons surrounding a nucleus can be
regarded as small currents, giving rise to a magnetic moment �e at the nucleus. Since the
magnetic moment opposes the external magnetic field, the effective magnetic field at the
nucleus is reduced, thereby leading to a different Larmor frequency and hence a different
chemical shift. The reduction of the effective magnetic field by surrounding electrons is often
referred to as electronic shielding. (B) The electronegative oxygen atoms in lactate shift the
electron density away from the protons, leading to reduced electronic shielding and thus to a
higher Larmor frequency. (C) The proton NMR spectrum of lactate is readily explained by the
fact that the methine proton is closer to electronegative oxygen atoms than the three methyl
protons, thus leading to a higher Larmor frequency and chemical shift.

expressed in terms of ppm. By convention the chemical shift 
 is defined as:

δ = � − �ref

�ref
× 106 (1.64)

where � and �ref are the frequencies of the compound under investigation and of a ref-
erence compound, respectively. The reference compound should ideally be chemically
inert and its chemical shift should be independent of external variables (temperature, ionic
strength, shift reagents) and should produce a strong (singlet) resonance signal well sep-
arated from all other resonances. A widely accepted reference compound for 1H and 13C
NMR is tetramethylsilane (TMS) to which 
 = 0 has been assigned. However, the use
of TMS is restricted to NMR on compounds in organic solvents. For aqueous solutions,
3-(trimethylsilyl) propionate (TSP) or 2,2-dimethyl-2-silapentane-5-sulfonate (DSS) are
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typically used, of which DSS is more desirable as the chemical shift is temperature and pH
independent [18]. Unfortunately, none of these compounds is found in in vivo systems and
can therefore never be used as internal references. TSP and DSS can in principle be used
as external reference compounds, being placed adjacent to the object under investigation.
However, under these circumstances the observed chemical shift needs to be corrected for
bulk magnetic susceptibility effects as well as macroscopic inhomogeneity of the main
magnetic field (see Chapter 10). Differences in susceptibility and local magnetic field
strength between the object under investigation and the adjacent external reference make
the use of external chemical shift referencing undesirable. For in vivo applications other
resonances have been used as an internal reference. Commonly used internal references
are the methyl resonance of N-acetyl aspartate (2.01 ppm) for 1H MRS of the brain and
the phosphocreatine resonance (0.00 ppm) for 31P MRS of brain and muscle.

1.9 Digital Fourier Transform NMR

The quality and/or information content of NMR spectra is determined by the signal-to-
noise ratio (S/N) and the line width of the resonances. This relates through the Fourier
transformation directly to the S/N and the T2* relaxation decay of the FID. Next it will be
demonstrated that the appearance of NMR spectra can be improved by specific manipula-
tions of the FID.

1.9.1 Multi-scan Principle

The S/N can be improved by averaging, i.e. adding the FIDs of n consecutive, identical
experiments leads to an improvement in S/N of a factor

√
n [19, 20]. This is because the

voltage of the signal S increases linearly with n, while for the random processes of noise N
the power increases linearly. Since power is proportional to the square of voltage, the noise
voltage increases as

√
n, leading to an overall improvement of the S/N of n/

√
n = √

n.
In practice, the improvement in S/N of in vivo NMR by time-averaging is limited, since
an improvement of a factor 10 requires a prolongation of measurement time by a factor
102 = 100. Typically, an in vivo NMR experiment is a compromise between sufficient
signal-to-noise and the allowable duration of the experiment.

1.9.2 Time-domain Filtering

Using Fourier transformation as the only data processing of the NMR time domain signals
seldom results in an optimal frequency domain spectrum in terms of S/N, resolution or gen-
eral appearance. Using the characteristics of the Fourier transformation (see Appendix A3),
several manipulations prior to Fourier transformation can be performed on the NMR time
domain signal to influence the S/N, resolution or remove broad background signals.

Apodization (or time-domain filtering) is a commonly used manipulation and essentially
multiplies a time domain signal with a filter function, according to:

ffiltered(t) = foriginal(t) × ffilter(t) (1.65)

where foriginal(t) and ffiltered(t) are the original and filtered time-domain functions, respec-
tively, and ffilter(t) is the applied filter function. Multiplication of two functions in the
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time-domain is equivalent to the convolution of the Fourier transforms in the frequency
domain, i.e.:

Ffiltered(ω) = FT[ffiltered(t)] = FT[foriginal(t) × ffilter(t)] = Foriginal(ω) ∗ Ffilter(ω) (1.66)

where * indicates the convolution between Foriginal(ω) and Ffilter(ω). Some commonly used
filter functions are:

1. Exponential weighting

ffilter(t) = e−t/Tw (1.67)

A decreasing monoexponential apodization function improves the S/N of the frequency-
domain spectrum, since the (noisy) data points at the end of the FID are attenuated,
while the data points at the beginning of the FID are relatively unaffected. Another
consequence of the exponential weighting function is an increase in the resonance
linewidths, since the apparent T∗

2w becomes:

1

T∗
2w

= 1

T∗
2

+ 1

Tw
(1.68)

If sufficient data have been recorded to minimize truncation artifacts (tmax > 3T∗
2), then

optimal sensitivity is obtained by using a so-called matched filter in which Tw = T∗
2. The

improved S/N comes at the expense of a doubling of the spectral linewidth, i.e. spectral
resolution has been traded for sensitivity. Besides improving the S/N, this apodization
can also be used on FIDs where the last data points have been truncated resulting in
artifacts in the frequency domain (Figure 1.10F/G). For Tw < 0 the apodization leads
to a resolution enhancement, since the apparent T∗

2w becomes longer, resulting in line
narrowing. However, the S/N is decreased since the data points at the end of the FID
with relative high noise contribution are becoming more pronounced.

2. Lorentz–Gaussian transformation

ffilter(t) = e+t/TL e−t2/T2
G (1.69)

The Lorentz–Gaussian filtering function converts a Lorentzian lineshape to a Gaussian
lineshape. A Gaussian lineshape decays to the baseline in a narrower frequency range
as would a Lorentzian lineshape with the same linewidth at half height, i.e. a Lorentzian
lineshape produces longer ‘tails’ which are a disadvantage when accurate determination
(by integration) of overlapping resonance lines is required (Figure 1.11E). It is there-
fore sometimes advantageous to convert the theoretically predicted Lorentzian NMR
lineshape to a more narrow Gaussian lineshape. The principle of the Lorentz–Gaussian
transformation is to cancel (or decrease) the Lorentzian part of the FID [by multi-
plying with exp(+t/TL), where TL = T∗

2, such that exp(+t/TL) × exp(−t/T∗
2) = 1]

while increasing the Gaussian character of the FID [by multiplying with exp(−t2/T2
G)].

Using a sufficiently long TG value, a significant resolution enhancement can be achieved.
Figure 1.11 shows the process of time-domain filtering on a 31P FID. Even though an
increasing exponential filter (Figure 1.11C) and a Lorentz–Gaussian transformation can
achieve the same resolution enhancement, the former is accompanied by a significant
decrease in sensitivity, which can be minimal with a Lorentz–Gaussian transformation.
In fact, the two adjustable parameters in Equation (1.69) can be used to improved the
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Figure 1.10 The effects of time-domain apodization on the frequency-domain spectrum. (A)
Fourier transformation of a 31P FID gives (B) a NMR spectrum composed of resonances from
phosphocreatine and ATP. The spectral S/N, as defined as the peak height over the root mean
square noise level, is typically not optimal. (C, D) Multiplication of the FID with a decaying
exponential function will lead to (E) a significant increase in S/N, at the expense of a decrease
in spectral resolution. (F) When time-domain acquisition has stopped before the NMR signal
has decayed to zero, (G) the resulting NMR spectrum displays characteristic sinc-like wiggles.
Apodization of the truncated time-domain signal can restore the Lorentzian lineshapes, giving
a weighted FID and spectrum similar to those in (D) and (E).

S/N without a significant decrease in spectral resolution (Figure 1.11F/G) or to improve
the spectral resolution without a significant decrease in sensitivity (Figure 1.11H/I).
Besides the mentioned, most commonly used apodization functions, a wide range of
other functions are available each with specific characteristics regarding sensitivity and
resolution [21].

1.9.3 Analog-To-Digital Conversion

So far the NMR signal has been described as a continuous, analog signal. However, the
relatively simple but tedious Fourier transformation (and many other mathematical opera-
tions, like phasing and time domain filtering) are most conveniently performed by digital
computer algorithms. As a consequence the analog FID signal received in the coil must be
converted to a digital signal. This is done with an analog-to-digital converter (ADC), which
measures the instantaneous value of the FID at equal time intervals (Figure 1.12). The speed
of the analog-to-digital conversion is prescribed by the sampling theory [17]. This theory
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Figure 1.11 The effects of time-domain apodization on the frequency-domain spectrum.
(A, B) Time and frequency domain signals without apodization. The spectral S/N in (B)
was assigned a relative value of 1.0. (C, D) Time-domain multiplication with an increasing
exponential function improves the spectral resolution at the expense of a greatly reduced S/N.
(E) Lorentzian and Gaussian resonance lines of equal FWHM and integrated amplitude. (F,
G) Lorentz-to-Gauss transformation adjusted to give the same spectral resolution as in (B),
results in an improved sensitivity. (H, I) When the Lorentz-to-Gauss transformation parameters
are adjusted to provide the same spectral SNR as in (B), the spectral resolution is significantly
improved.
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Figure 1.12 Theory of analog-to-digital conversion. (A) A given time domain signal is sampled
at 0.2 ms intervals, giving rise to a total spectral width of 5000 Hz and a Nyquist sampling
frequency of 2500 Hz. The Larmor frequency of both resonances is smaller than the Nyquist
sampling frequency, such that they can be adequately sampled. This gives a NMR spectrum
(C) consisting of two resonances at the appropriate Larmor frequencies. (B) When the sample
contains a resonance with a Larmor frequency ν above the Nyquist sampling frequency F,
the signal is still sampled, but now at an apparent frequency ν0 − F + ν, resulting in a NMR
spectrum with a resonance at the incorrect, apparent frequency (D).

states that any sinusoidal signal of frequency F can be accurately described when it is sam-
pled at least twice per cycle. This minimum sampling rate is called the Nyquist frequency
FNyquist. The spectral bandwidth SW equals 2FNyquist, since frequencies between −FNyquist

and +FNyquist are accurately sampled. The time between the data points is known as the
dwell time and equals 1/SW. If a signal is present with an absolute frequency greater than
the Nyquist frequency, then this signal will still be digitized, but at an incorrect frequency
(Figure 1.12). A resonance with frequency �0 + FNyquist + �, where �0 is the center of the
spectral bandwidth, will appear after Fourier transformation at a position with frequency
�0 − FNyquist + �. This so-called aliasing of resonances can be eliminated by increasing the
spectral bandwidth, after which the minimum spectral bandwidth needed to unambiguously
observe all the resonances can be determined. Aliasing of signal seems at first sight a large
problem in FT NMR, since noise from outside the spectral region would be folded back into
the spectrum thereby dramatically decreasing the obtainable S/N. However, high-frequency
noise components can easily be filtered out before the ADC sampling by audio-filters
(see Chapter 10). A cut-off filter, such as a Butterworth filter, does not affect signals within
the spectral range, while suppressing (i.e. multiplying by zero) all signals (i.e. noise) out-
side the spectral range. To obtain optimal S/N without distortions from the cut-off points of
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the filter, the filter bandwidth is normally set 10–25 % larger than the spectral width. More
recent advances in digital electronics have led to the introduction of digital audio-filters
with a much sharper cut-off profile.

1.9.4 Zero Filling

In general, the FID of a spectrum with spectral width SW = 2FNyquist is sampled by
the ADC over N points in accordance with the Nyquist sampling frequency. Through
a discrete Fourier transformation, the NMR spectrum will also contain N points. The
spectral resolution �� is therefore SW/N, which is equivalent to the reciprocal of the total
acquisition (sampling) time Tacq, which is composed of N sampling periods of duration �t:

�� = 1

Tacq
= 1

N�t
(1.70)

For an experiment with 256 points sampled and Tacq = 102.4 ms, leading to SW = 2FNyquist

= 2500 Hz, the spectral resolution is 9.77 Hz (2500 Hz/256). As can be seen from Figure
1.13, this spectral resolution is often too low to fully resolve the resonances present, i.e. it
is desirable to have knowledge about the spectral amplitudes at intermediate frequencies.
This can be achieved by decreasing the spectral width or by increasing the acquisition time.
However, aliasing limits the increase in spectral resolution by decreasing the spectral width.
Increasing the acquisition time will lead to increased data storage and an increase of the
relative noise contribution as the signal intensity decreases with increasing acquisition time.
Alternatively, the process of extending the acquisition time can be simulated by extending
the acquired FID (which has decayed to zero amplitude) artificially by adding a string of
points with zero amplitude to the FID prior to Fourier transformation. This process is known
as zero filling. Figure 1.13 shows the effect of zero filling on the appearance of the �-ATP

–200–1000100200
frequency (Hz)

1

2

8

4

16

Figure 1.13 Effect of zero filling on the spectral resolution. The triplet resonance of β-ATP
is not well-resolved following a FT of the acquired data points (giving a spectral resolution of
9.77 Hz per point). Zero filling the original data (with a power of 2), completely resolves the
triplet resonance (giving a spectral resolution of 0.61 Hz per point after 16 times zero filling).
After four times zero filling no further improvement in spectral resolution is observed.
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resonance from a 31P spectrum. The relatively coarse spectral resolution results in an ap-
parent doublet signal following direct Fourier transformation of the measured time domain
signal. While the signal at intermediate frequencies is accurately digitized in the time-
domain (since the frequencies are smaller than the Nyquist frequency), it is not visualized
in the frequency-domain simply because the discrete Fourier transformation only calculates
the signal at a limited number of discrete frequencies. Increasing the number of time domain
points by zero filling allows the calculation of additional frequency domain points at inter-
mediate frequencies, revealing the expected triplet structure for �-ATP. While zero filling
does not increase the information content of the data, it can greatly improve the spectral
appearance.

1.10 Spin–Spin Coupling

The NMR resonance frequencies, or chemical shifts, give direct information about the
chemical environment of nuclei, thereby greatly aiding in the unambiguous detection and
assignment of compounds. The integrated resonance area is, in principle (see Exercise
1.5 and Chapter 9), directly proportional to the concentration of the compounds, thereby
making NMR a quantitative technique. An additional feature that can be observed in
high-resolution NMR spectra is the splitting of resonances into several smaller lines, a
phenomenon often referred to as scalar coupling, J coupling or spin-spin coupling [22].
Scalar coupling originates from the fact that nuclei with magnetic moments can influence
each other, besides directly through space (dipolar coupling) also through electrons in
chemical bonds (scalar coupling). Even though dipolar interactions are the main mechanism
for relaxation in a liquid, there is no net interaction between nuclei since rapid molecular
tumbling averages the dipolar interactions to zero. However, interactions through chemical
bonds do not average to zero and give rise to the phenomenon of scalar coupling.

In the following a qualitative description of scalar coupling is given. A more quantita-
tive description can be found in Chapter 8. Consider an isolated proton and an isolated
carbon-13 atom as depicted in Figure 1.14A. Electrons in s-orbitals have a finite probability
of being at the nucleus, giving rise to a hyperfine interaction between nuclear and elec-
tronic spins. The Fermi contact governs the interaction between the nuclear and electron
spins and (energetically) favors an antiparallel over a parallel arrangement. In terms of
energy level diagrams, the two separate (two-level) 1H and 13C energy level diagrams can
be combined into one diagram (Figure 1.15A) with four energy levels, corresponding
to the four nuclear spin combinations. The four allowed energy level transitions (for
which the spin quantum number m changes by ±1) give rise to two resonance frequencies,
�H at the proton frequency and �C at the carbon-13 frequency.

Now consider the situation where the proton and carbon-13 nuclei are covalently bound,
as in [1-13C]glucose (Figure 1.14B). The interaction between the two electrons inside
a chemical bond is governed by the Pauli exclusion principle which demands that the
electron spins are antiparallel. When both nuclear spins are antiparallel to the external
magnetic field B0, i.e. the high-energy �� state, the two bonding electrons can not both
be antiparallel to the nuclear spins, leading to an energetically less favorable state (Figure
1.15B). The �� energy level increases by an amount proportional to 1JHC/4 where 1JHC

is the one-bond, heteronuclear scalar coupling constant. Similar arguments can be used
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Fermi contact

Fermi contact

Pauli exclusion principle

A

B

Figure 1.14 Spin-spin interactions involved with scalar coupling. (A) In isolated atoms, the
Fermi contact energetically favors an antiparallel orientation between nuclear and electronic
spins. (B) In chemical bonds, the Pauli exclusion principle demands that the electron spins
are in an antiparallel orientation thereby potentially forcing nuclear and electron spins in an
energetically higher parallel orientation, depending on the nuclear spin state.

to describe the energy increase for the �� state. However, for the �� and �� states the
electron spins can be antiparallel to the nuclear spins leading to an energetically more
favorable situation. The energy level diagram for a scalar coupled two-spin system still
only allows four transitions, but they now correspond to four different frequencies at �H +
1JCH/2 and �H − 1JCH/2 on the proton channel and at �C + 1JCH/2 and �C − 1JCH/2 on the
carbon-13 channel. Each of the resonances has been divided into two new resonances of
equal intensity separated by 1JCH, giving rise to the NMR spectrum shown in Figure 1.16.

Similar arguments can be used to explain scalar coupling over two or three chemical
bonds. While scalar coupling constants over one and three chemical bonds are typically
positive, the scalar coupling constant over two chemical bonds is typically negative as can
easily be deduced following arguments identical to those used for Figure 1.14. Because the
basis of scalar coupling relies on magnetic interactions between electron spins and distant
nuclear spins, the scalar coupling constant rapidly decreases with increasing number of
chemical bonds and can typically be ignored for four or more bonds. The scalar coupling
constant is independent of the applied external magnetic field, since it is based on the
fundamental principle of spin-spin pairing and is therefore expressed in Hertz (Hz). Typ-
ical magnitudes of scalar coupling constants are: 1H-1H, 1–15 Hz; 1H-13C, 100–200 Hz;
1H-15N, 70–110 Hz; 1H-31P, 10–20 Hz; 13C-13C, 30–80 Hz; and 31P-O-31P, 15–20 Hz.
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Figure 1.15 Energy level diagram for (A) two isolated carbon-13 and proton nuclei and
(B) a 13C-1H ‘molecule’ with a covalent chemical bond between the carbon-13 and proton
nuclei. The diagram in (A) is simply an extension of Figure 1.1B and allows two carbon-13
transitions with the same frequency νC and two proton transitions with the same frequency
νH giving rise to singlet resonances in the carbon-13 and proton NMR spectra, respectively.
When the carbon-13 and proton nuclei form a chemical bond, the nuclear spins affect each
other through the bonding electrons. The ββ spin state (i.e. the nuclear spin for both 13C and
1H is in the β state) becomes energetically less favorable as one of the two nuclear-electronic
spin orientations is forced to be parallel. The same is true for the αα spin state, whereas in
the αβ and βα spin states all spin orientations can be antiparallel. The same energy-level
perturbations now give rise to two carbon-13 transitions with different frequencies, νC + J/2
and νC − J/2 and two protons transitions with different frequencies, νH + J/2 and νH − J/2,
which will lead to the NMR spectra shown in Figure 1.16.

All scalar coupling constants are for one chemical bond, except for 1H-1H and 31P-O-31P
interactions which stretch over three and two bonds, respectively.

The situation shown in Figure 1.16 is only valid when the frequency difference between
the two scalar-coupled spins is much larger than the scalar coupling between them. For
a heteronuclear interaction as shown in Figure 1.15 this requirement is certainly valid, as
the frequency difference is typically several tens of MHz, while the heteronuclear scalar
coupling is less than 200 Hz. When the condition |�A − �X| � JAX holds, the two-spin AX
spin system is referred to as a weakly coupled spin system and the corresponding NMR
spectrum is often referred to as a first-order spectrum. However, for many homonuclear
interactions the frequency difference |�A − �B| is of the same order of magnitude as
the homonuclear scalar coupling constant JAB, giving rise to so-called strongly coupled
spin systems. In a strongly coupled two-spin system, the �� and �� spin states become
mixed, as summarized in Table 1.2. As a result of this mixing of spin states, the simple
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Figure 1.16 Scalar coupling between carbon-13 and proton nuclei leads to a splitting of
the singlet resonances into so-called doublet resonances. The resonances at the lower and
higher frequencies are associated with energy level transitions in which the nuclear spin of the
scalar-coupling partner is in the α and β spin-state, respectively.

four-resonance-line spectrum (Figure 1.16) becomes more complicated as shown in Figure
1.17A and summarized in Table 1.3. The effects of strong coupling on the appearance
of NMR spectra can not be understood in a classical sense, but requires full quantum-
mechanical density matrix calculations [23]. Strongly coupled spin-systems produce so-
called second-order spectra that are characterized by features not present in first-order
spectra. Most noticeably from Figure 1.17A is the so-called ‘roof effect’ in which a line
from the outer to the inner resonances forms an imaginary roof. This effect is another
feature of NMR spectra that indicates that two multiplets belong to the same molecule and
can therefore aid in the identification of compounds.

Table 1.2 Energy characteristics for an AB spin system

Energy level Spin functiona Energyb

1 ββ
1
2

h(νA + νB) + 1
4

hJAB

2 αβ cos θ +βα sin θ
1
2

hC − 1
4

hJAB

3 βα cos θ −αβ sin θ −1
2

hC − 1
4

hJAB

4 αα −1
2

h(νA + νB) + 1
4

hJAB

a2θ = arcsin(JAB/C).

bC =
√

(νA − νB)2 + J 2
AB.
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| A– B| = 5JAB

| A– B| = 3JAB

| A– B| = JAB

| A– B| = 0.5JAB

| A– B| = 0

| A– B| = 10JAB

| A– B| >> JAB
A B A Bfrequency frequency

A B

Figure 1.17 Simulated (A) AB and (B) A2B2 NMR spectra showing the effects of varying
the ratio of the scalar coupling constant to the frequency difference between the A and B
resonances. The lower NMR spectra are indicative of weakly coupled AX and A2X2 spin
systems, producing a first-order NMR spectrum, while the higher spectra are indicative of
strongly coupled AB and A2B2 spin systems, displaying strong second-order effects, like the
appearance of additional resonances, as well as the so-called ‘roof effect’ (dotted lines).

1.10.1 Spectral Characteristics

To understand the splitting pattern encountered in NMR spectra of more complicated, but
weakly coupled multi-spin systems, it is convenient to discriminate between nonequivalent,
chemically equivalent and magnetically equivalent nuclei. For equivalent nuclei all physical
and chemical properties (like reaction rates or exchange processes) are the same. The
difference between chemically and magnetically equivalent nuclei is more subtle. Consider
two nuclei with the same chemical shift, which are coupled to a third magnetic nucleus
having a different chemical shift. When the scalar coupling constant of the two nuclei with
the third nucleus is different, the nuclei are said to be chemically equivalent (since the
chemical shift and therefore the chemical environment are identical) but not magnetically
equivalent. For magnetically equivalent nuclei, the scalar coupling constant with a shared
third nucleus must be identical.
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Table 1.3 Transition frequencies and relative intensities for an AB spin system

Transition Frequency Relative intensity

1 → 2 1
2 (νA + νB) + 1

2 JAB − 1
2 C 1 − sin 2θ

1 → 3 1
2 (νA + νB) + 1

2 JAB + 1
2 C 1 + sin 2θ

3 → 4 1
2 (νA + νB) − 1

2 JAB − 1
2 C 1 + sin 2θ

2 → 4 1
2 (νA + νB) − 1

2 JAB + 1
2 C 1 − sin 2θ

Magnetically equivalent nuclei are always chemically equivalent and chemically equiv-
alent nuclei can never produce a first-order spectrum. Keeping the issues of equivalence in
mind, the appearance of first-order spectra can be predicted by some simple rules:

1. Magnetically equivalent nuclei do not produce an observable splitting of the corre-
sponding resonance lines. This is because quantum mechanical selection rules prohibit
the appropriate transitions. Therefore, for instance, there is no scalar coupling between
the protons within an isolated methyl group (CH3) even though they are only separated
by two chemical bonds.

2. When there are more than two magnetic nuclei in a molecule, scalar coupling may
occur between each pair of nuclei, resulting in a complex splitting pattern. The pattern
for a given nucleus can be explained by the method of successive splitting. Consider
three nonequivalent spins A, M and X (a so-called AMX spin system). The large
difference in alphabetical order of the spins indicates a large difference in resonance
frequency. An ABC spin system represents a scalar-coupled three-spin system with
three nonequivalent spins which have similar chemical shifts (and do therefore not
produce a first order spectrum). An AX2 spin system represents a three-spin system
with two nonequivalent nuclei (A and X) and two magnetically equivalent nuclei (X2).
The AMX spin system has spin-spin coupling between A and M (with JAM) and between
M and X (with JMX). The splitting pattern of spin A is relatively simple, since it only
experiences spin M. The resonance line of spin A will therefore be split in two lines
separated by the scalar coupling constant JAM. Similarly, the resonance for spin X is
split once by the scalar coupling constant JMX. However, the pattern for spin M is more
complicated. First the coupling to spin A is considered resulting in two lines (a doublet),
followed by the coupling to spin X, resulting in a splitting of each line in two more
lines, giving a final ‘doublet-of-doublets’ (four lines of equal intensity).

3. The presence of magnetically equivalent nuclei in a group of interacting spins simplifies
the appearance of the spectrum. The splitting pattern of spin A in an AXn spin system
(where n is the number of magnetically equivalent spins) is simply given by a binomial
distribution in which the lines are separated by the scalar coupling constant (e.g. n = 2
results in three lines with amplitudes in a 1:2:1 ratio).

Using these rules the appearance of all first-order spectra can be predicted. For example,
Figure 1.18 shows the 1H spectrum of lactic acid (lactate). Lactate can be seen as a AX3

spin system, i.e. three magnetically equivalent methyl protons coupled to a single methine
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Figure 1.18 The method of successive splitting for an AX3 spin system (e.g. lactate, with a
methyl group resonating at 1.31 ppm and a methine proton resonating at 4.10 ppm). The
A resonance splits successively in a doublet, a triplet and a quartet, while the X resonance
splits into a doublet. Note that the binomial distribution (e.g. 1:3:3:1 for a quartet) only arises
for magnetically equivalent nuclei which have an identical scalar coupling constant with a
common coupling partner. Since the multiplet resonances at 4.10 and 1.31 ppm originate
from one and three protons, respectively, the relative integrated areas of the two multiplets
are therefore also one and three.

proton. Generally, the carbonyl and hydroxyl protons are invisible due to rapid exchange
with water protons. Since the magnetically equivalent methyl protons do not produce any
splitting among themselves, they only feel the methine proton, resulting in a doublet signal.
The methine proton experiences three spins with an identical scalar coupling constant,
resulting in four lines (a quartet) with a 1:3:3:1 binomial signal distribution. All the signals
in the doublet and in the quartet are separated by the same scalar coupling constant. The
relative integrated amplitude of the peaks at 1.31 ppm and 4.11 ppm is 3:1, respectively,
since there are three methyl protons versus one methine proton.

In a two-spin system the effects of strong coupling changed the relative intensity and
frequency of resonances (Figure 1.17A). However, in situations with more than two spins,
like in a A2B2 four-spin system, the effects of strong coupling can also lead to additional
resonances (Figure 1.17B). This is because the mixed energy levels allow energy transitions
(�m = ±1) that are simply not present when the energy levels are not mixed (i.e. when
the spin-system is weakly coupled). It should be realized that while the behavior and
spectral appearance of strongly coupled spin systems is no longer intuitive, it can still
be quantitatively calculated through the use of the density matrix formalism, as will be
discussed in Chapter 9. Note that the ‘roof effect’ is also visible for more complicated spin
systems, as evident in Figure 1.17B.
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Figure 1.19 The effects of multiple excitations and T1 relaxation on the establishment of a
longitudinal steady-state condition. When the repetition time TR is five times the T1 relaxation
time (black line) a steady-state situation is instantaneously achieved for which Mxy(0) = M0.
However, when TR < 5T1 (gray line), T1 relaxation is incomplete in between excitations and
a steady-state situation is achieved only following a number of excitations.

1.11 T1 Relaxation

In Section 1.6 T1 and T2 relaxation were introduced as the return of longitudinal mag-
netization following a perturbation and the disappearance of transverse magnetization,
respectively. T1 and T2 relaxation are so fundamental to NMR that they essentially affect
any NMR experiment. Knowledge of T1 relaxation is required for signal quantification,
the study of chemical exchange and the design of optimal timings for data acquisition.
Consider a simple pulse-acquire experiment with an �◦ excitation pulse and a repetition
time TR. Figure 1.19 shows the amount of longitudinal magnetization over time when the
sequence is continuously repeated, as would be the situation in the case of signal averag-
ing. In the case of a 90◦ pulse the longitudinal magnetization is reduced to zero after each
90◦ pulse, after which it is allowed to recover through T1 relaxation according to:

Mz(TR) = M0(1 − e−TR/T1 ) (1.71)

which reduces to Mz(TR) = M0 for TR > 5T1. The amplitude of the transverse magneti-
zation is given by Mxy = Mzsin� = M0. However, even though full excitation is achieved
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Figure 1.20 Graphical representation of the relation between the optimal nutation angle
(Ernst angle, in degrees) and the ratio of repetition time TR to the T1 relaxation time of a (α◦ -
acquisition) experiment. The optimal nutation angle is the nutation angle which produces the
highest S/N per unit of time for a given TR to T1 ratio.

during each scan, the experiment is not optimal in terms of signal per unit of time [=
0.2(M0/T1)] because the majority of scan time is used to wait for recovery of the longi-
tudinal magnetization by T1 relaxation. Repeating the experiment with a 60◦ excitation
angle TR = T1 results in the temporal Mz and Mxy modulations shown in Figure 1.19.
During the first few scans the excitation pulse rotates more magnetization away from the
longitudinal axis than can recover through T1 relaxation. However, after about three scans
the amount of signal decrease by excitation and signal recovery by T1 relaxation are equal
to each other, making the steady-state longitudinal magnetization prior to each excitation
pulse equal to (see also Exercise 1.7):

Mz(α, T1) = M0(1 − e−TR/T1 )

(1 − cos α e−TR/T1 )
(1.72)

Note that Equations (1.71) and (1.72) are both derived under the assumption that Mxy =
0 immediately prior to excitation. Experimentally this can be achieved by using TR >

5T2 or by applying magnetic field gradient crushers to dephase any remaining transverse
magnetization (see Chapter 4 for more details). For a 60◦ excitation pulse and TR = T1

the signal per unit of time increases to ∼0.67(M0/T1). Even though the signal acquired per
excitation is smaller as compared with � = 90◦ and TR = 5T1, the number of excitations
per unit time has increased fivefold leading to a higher amount of acquired signal per unit
time. It is straightforward to show (see also Exercise 1.7) that the optimal nutation angle
�opt for maximum signal per unit time is given by:

αopt = arccos(e−TR/T1 ) (1.73)

which is known as the Ernst angle. When TR > 5T1, the exponential term vanishes and the
optimal nutation angle is 90◦. For shorter TR, the nutation angle gets smaller in order to
reduce the saturation of longitudinal magnetization and to maximize the acquired signal.
Figure 1.20 shows the Ernst angle as a function of TR/T1. Note that in general signal
acquisition should not begin until the steady-state condition underlying Equation (1.73)
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has been reached. Experimentally this is achieved with so-called dummy scans which
are identical to the real scan with the only difference that no data are acquired. The
dummy scans help to achieve the steady-state condition, after which data acquisition can
commence. Certain � and TR/T1 combinations require several dozen dummy scans before
the steady-state situation is achieved.

Data acquisition with a short repetition time and corresponding Ernst angle is frequently
used in fast MRI (see Chapter 4), as well as in MRS on low-sensitivity nuclei, like
phosphorus-31. But while the more efficient data acquisition improves the spectral S/N,
it also introduces significant T1 weighting which varies for metabolites with different T1

relaxation times. Therefore, quantitative interpretation of metabolite spectra acquired under
saturating conditions requires knowledge of the T1 relaxation time.

The inversion recovery sequence is the classical ‘gold-standard’ for the determination of
T1 relaxation times. The inversion recovery method consists of two pulses and two delays.
After full signal recovery during a long repetition time TR, the longitudinal magnetization is
inverted by a 180◦ inversion pulse. The magnetization partially recovers during an inversion
recovery delay t, after which the longitudinal magnetization is excited onto the transverse
plane by a 90◦ excitation pulse. Following data acquisition, the sequence can be repeated,
starting with recovery of longitudinal magnetization during the repetition time TR.

The signal intensity Mz(t) during the recovery period t following the 180◦ inversion
pulse can be described by:

Mz(t) = M0 − (M0 − Mz(0))e−t/T1 (1.74)

where Mz(0) is the longitudinal magnetization at t = 0, immediately following the inversion
pulse. For a perfect inversion pulse, Mz(0) = –M0. The T1 relaxation time constant can be
obtained by acquiring NMR spectra (or images) at different recovery times t between 0 and
5T1. For t = 0, the inverted longitudinal magnetization has not yet recovered and is excited
to the –y′ axis by a 90◦ pulse along the –x′ axis, resulting in a maximal negative resonance
line after Fourier transformation. For t = 5T1, the inverted magnetization has completely
recovered to the +z′ axis and is excited to +y′, resulting in a maximal positive resonance
line. Figure 1.21A shows typical inversion recovery spectra as a function of the recovery
time t. Fitting the integrated resonance areas to Equation (1.74) gives an estimate of the
T1 relaxation time (Figure 1.21B). In general a three parameter fit [M0, Mz(0) and T1] is
preferred over a two-parameter fit (only M0 and T1), since the additional parameter makes
the estimation of T1 independent of the inversion accuracy or systematic offsets in the
inversion recovery delays. A crude method of estimating the T1 relaxation time constant
is to determine the time of zero-crossing, tnull in the recovery curve, after which the T1

relaxation can be calculated as T1 = tnull/ln2. Inversion recovery is a very reliable technique
for the measurement of T1, with an inherent insensitivity toward B0 and B1 magnetic field
inhomogeneity. However, the technique is rather time-inefficient, since the experimental
duration is dictated by the return of the thermal equilibrium magnetization following
excitation. The low temporal resolution of inversion recovery has led to the development
of many fast alternatives. Saturation recovery is a simple modification, in which the 180◦

inversion pulse is replaced by a 90◦ excitation pulse. Since the 90◦ excitation pulse reduces
the longitudinal magnetization to zero at time t = 0, irrespective of the signal recovery
prior to excitation, saturation recovery does not require a long repetition time, thereby
significantly increasing the temporal resolution. Many other methods are more than an
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Figure 1.21 Measurement of T1 relaxation through the use of an inversion recovery method.
(A) Upon inversion of the longitudinal magnetization, the magnetization relaxes back to its
thermal equilibrium value with a T1 relaxation time constant. Excitation at different inversion
times results in spectra representing a discrete sampling of the T1 recovery curve. (B) T1

relaxation constants can be obtained by fitting the spectra in (A) with Equation (1.74). The
time of zero-crossing (‘nulling’) of the longitudinal magnetization, tnull, is given by T1ln2 and
can provide a crude estimate of T1.

order of magnitude faster than inversion recovery and some will be discussed in terms of
fast T1 mapping by MRI (Chapter 4). However, it should be realized that the increased time
resolution is often traded for increased sensitivity towards experimental imperfections, like
B1 magnetic field inhomogeneity, decreased S/N or sufficient accuracy over only a limited
range of T1 relaxation times.

1.12 T2 Relaxation and Spin-echoes

The observation of NMR signal depends upon the generation of phase coherence. The
existence of phase coherence is finite due to T∗

2 relaxation. According to Equation (1.49),
T∗

2 relaxation is composed of intrinsic T2 relaxation and dephasing by macroscopic and
microscopic magnetic field inhomogeneity. Following a 90◦ pulse, phase coherence is
generated which disappears with a time constant T∗

2, thereby obscuring any information
about T2. However, through the generation of so-called spin-echoes [24] it is possible to
separate the contribution of T2 and magnetic field inhomogeneity. The simplest experiment
to generate spin echoes (and obtain information on T2) is the Hahn sequence [24] of two RF
pulses shown in Figure 1.22A. An initial 90◦ RF pulse (irradiated along the −x axis of the
rotating frame, i.e. 90◦−x) creates transverse magnetization (phase coherence) along the y
axis (Figure 1.22B). During the subsequent delay the magnetization starts losing coherence,
since spins experience, besides the intrinsic T2 relaxation, a range of B0 magnetic fields
and therefore precess about z with a variety of Larmor frequencies (Figure 1.22C). In
other words, spins at different spatial positions acquire different phases due to variations
in the main magnetic field. The phase �(r) acquired by spins at position r is given by
�(r) = ��B0(r)TE/2, where �B0(r) represents the magnetic field inhomogeneity, being
the difference between the magnetic field at position r, B0(r) and the nominal magnetic
field across the entire sample, Bnom. After the delay TE/2, a 180◦

y RF pulse is applied to
the sample, which causes all magnetization vectors to rotate about y by 180◦, leading to a
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Figure 1.22 Spin-echo formation for uncoupled spins. In a spin-echo experiment (A), the
spins are excited (B) after which they dephase in the transverse plane during the first half
of the echo time, due to B0 magnetic field inhomogeneity and frequency offsets (C). A
180◦ refocusing pulse mirrors all magnetization vectors along the y axis (D) after which
the spins rephase during the second half of the echo time due to the same B0 magnetic field
inhomogeneity and frequency offsets. At the echo time TE, the rephasing is complete and a
spin-echo is formed (E). Obviously, the signal has decayed due to T2 relaxation.

resetting of the acquired phase from +�(r) to –�(r). During a second delay TE/2 the spins
precess again at their local Larmor frequencies (Figure 1.22D) and because the phase was
reset by the 180◦ pulse, the spins will be refocused along the y’ axis at the end of the second
delay to form a spin echo (Figure 1.22E). The time between the 90◦ pulse and the top of
the spin-echo (i.e. where optimal refocusing occurs) is referred to as the echo time TE.
At the top of the echo, the effects of B0 magnetic field inhomogeneity are refocused (i.e.
their phase effect is eliminated) and the signal decrease is caused exclusively by inherent
T2 relaxation (neglecting diffusion effects). The spin echo experiment is one of the most
important elementary pulse sequences for in vivo NMR spectroscopy. Spin-echoes form
the basis for spatial localization, water suppression, spectral editing and a wide range of
additional delayed-acquisition methods. Spin echo techniques can also be used to filter out
components with short T2 relaxation times and they allow the acquisition of an artifact-
free FID (e.g. the second half of the echo). This is because in a simple 90◦ pulse-acquire
experiment, the first points of the FID can be distorted due to the close proximity of a high
power 90◦ pulse (i.e. breakthrough of RF power). Furthermore, the spin-echo sequence can
be used to measure the T2 relaxation time by performing several experiments in which the
echo time is varied (Figure 1.23). The corresponding spectra can be fitted to an exponential
curve, according to:

Mxy(TE) = Mxy(0)e−TE/T2 (1.75)

to obtain the T2 relaxation time constant. An alternative method to measure T2 is the
Carr–Purcell–Meiboom–Gill (CPMG) experiment [25, 26], in which the single 180◦ refo-
cusing pulse is replaced by a train of successive 180◦ pulses. The main advantage of the
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Figure 1.23 Measurement of T2 relaxation through the use of a spin-echo method. (A) NMR
spectra obtained at different echo times. (B) the T2 relaxation time constants can be obtained
by fitting the data presented in (A) with Equation (1.75).

CPMG method is that signal loss during the echo time as a result of diffusion is greatly
reduced, such that the measured T2 relaxation time constant is closer to the intrinsic, dipolar
T2 relaxation time constant. The effects of diffusion are detailed in Chapter 3.

1.13 Exercises

1.1 A 2 L water-filled sphere (T = 298.15 K) is placed inside a 3.0 T MR magnet.

A Calculate the net access of proton spins in the low-energy �-state (hint: water
density = 1.00 g mL−1 and Avogadro constant = 6.02214 × 1023 mol−1).

B Calculate the error that is made by ignoring all higher order terms in the Taylor
expansion of Equation (1.23) for T = 298.15 K, 4.0 K and 0.01 K.

1.2 Derive the Bloch equations in the laboratory frame in the absence of relaxation
[Equations (1.33)–(1.35)] from Equation (1.28).

1.3 Show that free precession of the transverse magnetization according to:

Mx(t) = Mx(0) cos ωt + My(0) sin ωt

and

My(t) = My(0) cos ωt − Mx(0) sin ωt

is a solution of the Bloch equations in the laboratory frame [Equations (1.33)–(1.35)]
in the absence of a perturbing magnetic RF field.

1.4 A Derive the Bloch equations in the rotating frame [Equations (1.45)–(1.47)] from
the Bloch equations in the laboratory frame [Equations (1.39)–(1.41)].

B Show that Equations (1.50) and (1.51) are solutions of the Bloch equations in the
rotating frame (assume that T2 = T∗

2).

1.5 A Derive the expression for the full line width at half maximum (FWHM) for the
absorption component of a Lorentzian line [e.g. Equation (1.56)].

B Derive the expression for the FWHM for the magnitude component of a Lorentzian
line.
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C Derive the expression for the absorption and dispersion parts of a resonance line
originating from a full spin-echo (as opposed to a FID).

D Determine the peak heights and integrals of (the absorption component of)
Lorentzian lines originating from a FID and a full spin-echo.

1.6 Longitudinal magnetization can be ‘excited’ into the transverse plane by a 90◦ (or
�/2) pulse.

A Starting from the Bloch equations in the rotating frame, derive an expression for
the conversion of longitudinal magnetization Mz into transverse magnetization
My by a RF pulse of length T and amplitude B1 applied on-resonance along the
x′ axis. Ignore T1 and T2 relaxation. Show how the nutation angle depends on the
pulse amplitude and length.

B If the pulse length of the 90◦ pulse is 1.0 ms, what is the required B1 magnitude
in �T to achieve excitation?

C How many Larmor precession cycles will occur in the laboratory frame at B0 =
3.0 T during the 90◦ excitation pulse?

1.7 Consider a pulse-acquire experiment consisting of a RF pulse generating a nutation
angle � followed by a recovery time TR.

A Starting with the Bloch equation for T1 relaxation [i.e. Equation (1.38)] derive
an expression for the recovery of the longitudinal magnetization following a
perturbation.

B Derive the expression for the steady-state longitudinal magnetization [i.e. Equa-
tion (1.72)] for the pulse-acquire sequence.

C Calculate after how many experiments the longitudinal magnetization is within
1 % of the steady-state magnetization when � = 40◦ and TR = T1.

D Suppose that 10 blocks of four averages are acquired sequentially in one exper-
iment with � = 40◦ and TR = T1 starting from an initial thermal equilibrium
situation. Calculate the difference between the acquired signal in the first and the
last block due to incomplete T1 saturation during the first block.

E Derive the Ernst angle expression from Equation (1.72).
F Calculate the Ernst angle for the excitation pulse of a spin-echo sequence with

TR = 0.5T1. Assume negligible T1 relaxation during the echo time TE.

1.8 In a properly executed spin-echo sequence, the resonances of all (uncoupled) spins
appear with the same relative phase. The absolute phase of all resonances can be
made zero by a simple zero-order phase correction.

A Calculate the phase difference between the creatine methyl (3.03 ppm) and NAA
methyl (2.01 ppm) proton resonances at 7.05 T in the presence of a 500 �s timing
error.

B In a proton spectrum acquired at 4.0 T (water is on-resonance at 4.7 ppm), the
choline methyl (3.22 ppm) and NAA methyl (2.01 ppm) resonances appear with
relative phases of 30◦ and 210◦, respectively. Calculate the required zero- and first-
order phase corrections to properly phase the spectrum to pure absorption lines.

1.9 Given the Gaussian line shape:

FG(ω) =
√

�

4
M0T2Ge− (ω0−ω)2T2

2G
4
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A Find the expression for the FWHM.
B For single Lorentzian and Gaussian resonance lines of equal line width and area,

calculate the signal height-to-noise advantage of a Gaussian line (assuming equal
noise levels).

C For single Lorentzian and Gaussian resonance lines of equal line width and area,
calculate the line width advantage of a Gaussian line at 10 % of the respective
peak heights.

1.10 Consider a (hypothetical) 1H NMR spectrum with the following five resonances:

Resonance 1: triplet resonance (3JHH = 7 Hz) at 1.1 ppm with relative intensity (as
determined by numerical integration) of 307.

Resonance 2: quartet resonance (3JHH = 7 Hz) at 3.9 ppm with relative intensity 198.
Resonance 3: doublet-of-doublets (3JHH = 11 and 8 Hz) at 7.2 ppm with relative

intensity 102.
Resonance 4: doublet resonance (3JHH = 8 Hz) at 8.5 ppm with relative intensity

105.
Resonance 5: doublet resonance (3JHH = 11 Hz) at 10.0 ppm with relative intensity

96.

With the knowledge that the 1H NMR spectrum originates from an organic molecule
C5H8O2, determine the complete chemical structure of the compound.

1.11 Consider a weakly coupled four-spin system AMX2 with chemical shift positions
given by 
A = 5.0 ppm, 
M = 1.5 ppm and 
X = 3.0 ppm relative to a carrier
frequency of 200 MHz.

A Sketch the NMR spectrum for this compound when JAM = 20 Hz, JMX = 10 Hz
and JAX = 0 Hz. Assume equal T1 and T2 characteristics for all resonances.

B Sketch the NMR spectrum for this compound when JAM = 20 Hz, JMX = 10 Hz
and JAX = 5 Hz. Assume equal T1 and T2 characteristics for all resonances.

C When the NMR spectrum is acquired with a pulse-acquire sequence (� = 90◦,
TR = 0.5 s, number of averages 8 192) sketch the NMR spectrum for this com-
pound when JAM = 0 Hz, JMX = 10 Hz and JAX = 0 Hz and T1A = 5.0 s, T1M =
1.0 s, T1X = 2.0 s. Assume equal T2 characteristics for all resonances.

1.12 A proton NMR signal is acquired as 512 complex points during an acquisition time
of 102.4 ms.

A Determine the spectral width of the experiment.
B Determine the apparent spectral frequency position of a signal with a frequency

of +3800 Hz.
C Determine the apparent spectral frequency position of a signal with a frequency

of −16 000 Hz.

1.13 In a proton NMR spectrum the resonance from 2,2-dimethyl-2-silapentane-5-
sulfonate (DSS) is detected at 170.345213 MHz. Two other resonances occur at
170.345453 MHz and 170.345668 MHz, respectively.

A Calculate the chemical shifts of the two resonances in PPM.
B Calculate the frequencies of the two compounds at 7.05 T when DSS appears at

a frequency of 300.176544 MHz.
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1.14 The time domain data from a sample consists of three sinusoidal functions (M0 =
150, 300 and 200) oscillating at different frequencies (250, 300 and 500 Hz) and
decaying at different rates (T2 = 50, 50 and 100 ms).

A Sketch the Fourier transform spectrum acquired from the sample when the initial
phase is zero for all resonances. Indicate linewidths (in Hz) and relative peaks
heights.

B Sketch the Fourier transform spectrum acquired from the sample when the initial
phases are 0◦, 90◦ and 135◦, respectively.

1.15 Show that the real and imaginary frequency domain signals given by Equations
(1.54) and (1.55) reduce to pure absorption and dispersion signals following a phase
correction according to Equations (1.58) and (1.59) with �c = �.

1.16 Hund’s rule states that if two or more empty orbitals are available, electrons occupy
each with spins parallel until all orbitals have one electron. When chemical bonds in
sp3 hybridized structures are considered, describe the signs of 2JHH and 3JHH relative
to 1JCH using similar arguments as used for Figures 1.14 and 1.15.
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