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Chapter 2
Static Analysis of Contact Problems
for an Elastic Half-Space

Abstract The second chapter is devoted to the mathematical formulation of mixed
problems of the elasticity theory for a half-space and to the numerical-and-analytical
methods of their solution. The results obtained in this chapter on developing the
mathematical means are the reference data for BEM-based numerical modeling of
the spatial contact interaction. The integrated boundary equations of the spatial con-
tact problem are written for the case when the calculation scheme is accepted in
the form of variously deepened punches undergoing the action of the spatial sys-
tem of forces. It is shown how to reduce the initial integral equation system of the
contact problem with respect to the contact stress function and the punch displace-
ment parameters to the appropriate finite-dimensional algebraic analogue. Much
attention is paid to calculating the matrix coefficients of the resolving system of
algebraic equations. A numerical-and-analytical procedure is given for integrating
Mindlin’s fundamental solutions over flat triangular and quadrangular boundary ele-
ments, arbitrary oriented in the half-space. For convenience, to apply the developed
approach in practical calculations, the boundary integral equations of the spatial
contact problems for a number of essential special cases are presented. The contact
problems at axial loading and torsion of absolutely rigid rotation bodies deepened
into the half-space, are considered. Boundary-element formulations of the contact
problems for complex-shaped punches with flat and smooth bases (shallow foun-
dations), situated on spatially nonhomogeneous bases of the semi-infinite elastic
massif type are presented.

2.1 Boundary Integral Equations of the Contact Problem
for an Absolutely Rigid Punch, Deepened into an Elastic
Half-Space, Under a Spatial Load System

Consider an elastic homogeneous half-space z ≥ 0, containing a cavity Swith a
boundary � from the side of the surface z = 0. The mechanical properties of the
half-space are determined by the elastic modulus E and Poisson’s ratio ν. We
assume the surface z = 0, being the boundary of the half-space, to be free from any
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92 2 Static Analysis of Contact Problems for an Elastic Half-Space

Fig. 2.1 Calculation scheme
for the contact problem of a
volumetric punch, deepened
into an elastic half-space

load. In the cavity S an absolutely rigid volumetric punch is deepened, subject to a
static load, reduced to a resultant force P = {P1, P2, P3} and a resultant moment
M = {M1, M2, M3} where Pi, Mi (i = 1, 2, 3) are the projections of the corre-
sponding vectors onto the axes of the Cartesian coordinate system OX1X2X3 (OXYZ)
(Fig. 2.1). The contact problem of spatial theory of elasticity for the deepened punch
consists in the determination of contact stress on the surface of interaction of the
elastic medium with the punch as well as the determination of the parameters of its
displacement as a rigid solid. We assume the punch to be welded with the elastic
half-space, i.e. on the contact surface of the punch and the base the displacements
coincide (the second-order boundary conditions according to Galin [14] are ful-
filled). In order to derive the main equations of the contact problem we follow a
rather demonstrative method, first considered by Kovneristov [20] and later applied
by Shishov [29] while solving the problems in an axisymmetric arrangement. The
method suggests the involvement of Betti’s theorem of reciprocity [24] that requires
the concept of basic and auxiliary states of an elastic body to be introduced.

As a basic state we consider an elastic half-space with a cavity S, in each point of
whose surface the displacements ui (N) are given and the stresses Pj (N) are acting,
being a distributed reaction from the side of the punch (Fig. 2.1). The stress-strained
state of the base in the initial contact problem will be equivalent to the basic state
introduced into the consideration.

In order to build auxiliary states consider a solid elastic half-space, loaded in a
point K (ξ,η,ζ) by unit concentrated forces

Aj = δ(x − ξ , y − η, z − ζ ), i = 1,2,3 (2.1)

directed along the coordinate axes, respectively. The load point K (ξ,η,ζ) is chosen
outside the domain bounded by the surface �. Virtually remove the elastic body
S′ from the half-space, the surface � of the body S′ being identical to that of the
rigid punch. In order to keep the half-space, weakened by the cavity, in equilibrium,
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Fig. 2.2 Elastic half-space,
weakened by a cavity,
corresponding to the
deepened punch shape

forces σij (N, K) and displacements Uij (N, K), being the fundamental Mindlin’s solu-
tions, should be distributed over the surface � (Fig. 2.2).

We take the advantage of the Betti’s theorem of reciprocity [24], linking the
solution of two different problems for the same domain of an elastic body: the work
of the system of forces of the basic state on the displacements of the auxiliary state
is equal to the work, performed by the system of forces of the auxiliary state on the
displacements of the basic state. The equations of reciprocity of the works for the
basic and the auxiliary states considered in this contact problem, are given by

∫ ∫

�

[
p1(N)U1i(K, N) + p2(N)U2i(K, N) + p3(N)U3i(K, N)

]
d� =

=
∫ ∫

�

[σ1i(K, N)u1(N) + σ2i(K, N)u2(N) + σ3i(K, N)u3(N)] d� + ui(K),

i = 1,2,3.

(2.2)

Equation (2.2) gives the integral representation of displacements at any point
(outside the punch) of the elastic half-space and is known as Somigliana identity for
the displacements [10, 24]. This equation could be immediately used formally as an
initial one. Note that Eq. (2.2) lacks the integrity over the half-space surface, since
the absence of stress at the free surface of the elastic half-space in the basic state
had been initially assumed, and the fundamental Mindlin equation was obtained
under the same condition. The Somigliana equation explains the main advantage
of the boundary integral equation method (and the boundary-element method as a
method of its numerical implementation), consisting in the fact the displacement
vector components (and, consequently, the stresses) are determined solely by the
boundary data at the punch surface. In other words, if the displacement values ui

and forces pj at the � boundary are known, then using the Somigliana identity (2.2)
one can always find the displacements and, consequently, deformations and stresses
at any internal point K (ξ, η, ζ) of the elastic half-space.
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The deformations of the half-space can be determined using Eq. (2.2) in a con-
ventional way after differentiating and using the Cauchy relations

ε11 = ∂u1

∂ξ
(K), ε22 = ∂u2

∂η
(K), ε33 = ∂u3

∂ζ
(K),

ε12 = ε21 = 1

2

(
∂u1

∂η
(K) + ∂u2

∂ξ
(K)

)
, ε23 = ε32 = 1

2

(
∂u2

∂ζ
(K) + ∂u3

∂η
(K)

)
,

ε13 = ε31 = 1

2

(
∂u1

∂ζ
(K) + ∂u3

∂ξ
(K)

)
,

which afterwards enables the stress tensor components in the elastic half-space for
the basic state to be determined using Hooke equations

σk(K) = 2G

[
ν

1 − 2ν
θ (K) + εk(K)

]
, k = 1,2,3,

τ12 = 2Gε12(K), τ23 = 2Gε23(K), τ13 = 2Gε13(K)

where G = E/2(1+ν) is the shear modulus, θ (K) = ε11+ε22+ε33 is dilatation. The
obtained equations are cumbersome and, therefore, not given here in the extended
form.

In order to obtain the equations of the contact problem, we direct the point
K (ξ,η,ζ) of application of the unit concentrated forces toward the deepened punch
surface, i.e. perform a limiting transition from the internal point to the boundary
one. The limiting transition results in a system of three boundary integral equations

1

2
ui(K) =

∫ ∫

�

⎡
⎣ 3∑

j=1

(pj(N)Uji(K, N) − uj(N)σji(K, N))

⎤
⎦ d�, (2.3)

i, j = 1, 2, 3; K(ξ ,η,ζ ) ∈ �, N(x1, x2, x3) ∈ �.

The factor 1/2 on the left-hand side of Eq. (2.3) arises due to the fact the unit
forces in the point K (ξ,η,ζ) in the auxiliary state are divided by the surface � in
two parts: one acts at the half-space with the cavity, the other acts at the punch-
shaped elastic body being removed. The singularity of the equations consists in an
unlimited increase of the integrands at N→K. It will be shown below (Sect. 2.3) that
all the integrals, containing functions Uij (N, K) with a weak singularity (of the 1/R
type), can be calculated for flat integration surfaces numerically-and-analytically
with any degree of accuracy. Integrals, containing functions σij (N, K) with a strong
singularity (of the 1/R2 type), require special calculation in the sense of the Cauchy
principal value. Below it will be shown that for the contact problems considered
here the integrals, containing cores with strong singularities, can be excluded out of
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consideration after the account of displacements of the punch as a rigid solid as well
as the application of equilibrium equations for the auxiliary state.

The displacement of the punch as a rigid solid enables the following relation to
be written for the points on the contact surface [21]:

ui(K) = �i − εijkζjψk (2.4)

where �i are translational displacements of the punch, ψk are small rotations of
the punch with respect to the coordinate axes, i, j, k = 1, 2, 3, K(ξ ,η,ζ ) ∈ �, ζ1 =
ξ , ζ2 = η, ζ3 = ζ .

The boundary integral equations (2.3) of the contact problem for the deepened
punch with the account of Eq. (2.4) take the following form (summation over the
repeated indices is assumed):

1

2

(
�i − εijkζjψk

) =
∫ ∫

�

pjUjid� −�j

∫ ∫

�

σjid� + ψk

∫ ∫

�

εjlkζlσjid�, (2.5)

i, j,k,l =1, 2, 3.
The three obtained equations (2.5) can be essentially simplified by using the

equilibrium equations for the elastic body S′ in the shape of the deepened punch for
the auxiliary states from the action of the unit concentrated forces on the surface �:

∫ ∫

�

σjid� = 1

2
δji,

∫ ∫

�

εjlkζlσjid� = 1

2
εijkζj, i, j, k, l = 1, 2, 3. (2.6)

With the account of Eq. (2.6) the boundary integral equations of the spatial con-
tact problem for the rigid punch deepened into an elastic half-space, are given by

∫ ∫

�

⎡
⎣ 3∑

j=1

(
pj(N)Uji(K, N)

)
⎤
⎦ d� = �i − εijkζjψk, i,j,k,l = 1,2,3. (2.7)

Equation (2.7) assert that the displacement of any point on the punch contact
surface is numerically equal to the work of contact forces pj(N) in the basic state on
the displacements Uji (K, N) of the auxiliary state.

Rigid displacements �i and rotations ψk of the punch (i, k = 1, 2, 3) are also
unknown, and to determine them one should invoke six equations of the punch equi-
librium (in the basic state):

Pi =
∫ ∫

�

pi(N)d�, Mi =
∫ ∫

�

εijkxjpk(N)d�, (i, j, k = 1,3). (2.8)

Thus the solution of the spatial contact problem for an absolutely rigid punch
of arbitrary shape, deepened into an elastic half-space, under an external static load
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of a general type is determined by a system of nine integral equations (2.7), (2.8)
which for convenience hereinafter can be presented in the following extended form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ ∫

�

[
p1(N)U11(K, N) + p2(N)U12(K, N) + p3(N)U13(K, N)

]
d� = �1 + ηψ3 − ζψ2,

∫ ∫

�

[
p1(N)U21(K, N) + p2(N)U22(K, N) + p3(N)U23(K, N)

]
d� = �2 + ζψ1 − ξψ3,

∫ ∫

�

[
p1(N)U31(K, N) + p2(N)U32(K, N) + p3(N)U33(K, N)

]
d� = �3 + ξψ2 − ηψ1,

(2.9)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ ∫

�

p1(N)d� = P1,
∫ ∫

�

p2(N)d� = P2,
∫ ∫

�

p3(N)d� = P3

∫ ∫

�

[
p3(N)x2 − p2(N)x3

]
d� = M1,

∫ ∫

�

[
p1(N)x3 − p3(N)x1

]
d� = M2,

∫ ∫

�

[
p2(N)x1 − p1(N)x2

]
d� = M3.

(2.10)

Having solved the system of Eqs. (2.9), (2.10), one can determine three func-
tions of contact stresses pi and six parameters �i, ψ iψi (i = 1, 2, 3) of the punch
displacement as a rigid solid, i.e. the stress-strained state at the contact surface � is
determined.

2.2 Finite-Measure Analogue of the Contact Problem Using
Direct Boundary-Element Method

Analytical solutions of the system of integral equations (2.7), (2.8) formulated in
Sect. 2.1 for deepened punches of any particular geometrical shape have not been
obtained yet even for the simplest loading schemes. The main difficulty here, as has
been noted by many authors, concerns the integration of the fundamental Mindlin’s
solution.

For the numerical solution of the spatial contact problem, formulated in the most
general way, we use the boundary-element method in its direct formulation [7, 10,
34] when the unknown function values on the boundary have the physical sense
of contact pressures and play the role of source densities determining the stress-
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strained state inside the stressed domain. The method application to an essentially
spatial contact problem under consideration is reduced to the following stages:

(1) discretization of the boundary surface G by means of a finite element ensemble;
(2) determination for the boundary elements of a finite set of nodes with respect

to which the collocation method is applied, enabling the node values of the
unknowns to be related based on a finite-measure analogue of the initial integral
equations;

(3) formation of the resolving system of algebraic equations whose coefficients
are calculated by analytical and/or numerical integration over each boundary
element;

(4) direct or iterative solution of the resolving system of algebraic equations;
(5) finding of the stress-strained state in the given internal points of the stressed

medium with invoking the schemes of numerical integration of various orders.

Hereinafter we restrict ourselves to the discretization of the contact surface �
with a set of boundary elements of polygonal (as a rule, triangular, and/or quadran-
gular) shape (Fig. 2.3). The overwhelming majority of volumetric deepened punches
in the problems of civil engineering (first of all, for geotechnical purposes, see Sects.
3.3 and 3.4) are restricted by fragments of planes or second-order (conical, cylin-
drical, or spherical) surfaces. A moderate number of flat boundary elements enables
the punch boundary of practically any geometrical shape to be approximated with a
required accuracy. Therefore, application of non-flat boundary elements in the con-
tact problems of geotechnics is hardly appropriate. Here we note once again that,
since in this approach one uses the fundamental Mindlin’s solution for the problem
of the concentrated force inside the elastic half-space (automatically satisfying the
boundary conditions on the stress-free base surface), only the contact surface of the
punch and the base can be discretized.

Fig. 2.3 Discretization of the
contact surface of the punch
and the elastic base using the
boundary elements
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After the boundary-element discretization of the boundary � the integral equa-
tion system of the contact problem is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�i =
m∑

q=1

∫ ∫

��q

pj(N)Uji(Kf , N)d� + ζk ψj εijk;

Pi =
m∑

q=1

∫ ∫

��q

pi(N)d�; Mi =
m∑

q=1

∫ ∫

��q

εijkpj(N)xkd�;

i,j,k = 1,3, f ,q = 1,2,...m

(2.11)

where m is the number of the boundary elements on the punch contact sur-
face, ��q is the surface of the q-th boundary element, Kf are the collocation
points (the finite-element gravity centres), ζk are the coordinates of the point Kf

(ζ1 = ξ , ζ2 = η, ζ3 = ζ ).
The system of Eqs. (2.11) is the consequence of the system of Eqs. (2.7), (2.8)

where the calculation of 2-D integrals over the surface G is substituted by the sum
of integrals over the flat surfaces of the introduced boundary elements ��q, q =
1, 2. . .m.

Within each boundary element one should assume that the contact forces pi vary
according to a pre-given law. As a rule, polynomial (constant, linear, quadratic,
or higher-order) approximation is applied [7, 10, 17, 34, 36]. Application of the
boundary-element method to the solution of spatial static problems for finite-size
bodies (local strength problems) shows that quite satisfactory results are achieved
already at application of piecewise constant or piecewise linear approximation of
the unknown densities, in particular, of the stress function. Note that in [16], based
on the analysis of the literature, a hypothetic idea is suggested to choose the order of
approximation for each boundary element by a unit higher than the order of approx-
imation of the functions to be found. Though this statement has not been proved
strictly (it is only confirmed by calculations for the flat and the axisymmetric cases),
a conclusion is made that it is appropriate to combine flat boundary elements and
constancy of the sought function, second-order elements and linear variation of the
sought functions etc. Violation of this correspondence is not justified since it does
not result in a guaranteed increase of the accuracy of the approximate solution. Thus,
at further application of flat boundary elements the approximation of piecewise con-
stant variation of the sought function of contact stress will be to a certain extent
justified. Then, taking into account that stress pi in theory of elasticity is presented
by a derivative of displacement ui, the application of constant stress on a boundary
element corresponds to a linear variation of displacement in the plane of each finite
element. This is in agreement with the linear distribution of displacements of the
boundary surface of an absolutely rigid punch and is an additional argument for the
piecewise constant approximation of the contact stress function in the proposed ver-
sion of the numerical boundary-element method with application of flat boundary
elements.
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For m collocation nodes, in which the condition of fulfillment of boundary inte-
gral equations is set, we choose points, uniformly distributed over the discretized
punch surface. It is quite natural to obtain the first 3m equations of the algebraic
system of the boundary-element method by locating the unit forces of the auxiliary
state in the gravity centres of the boundary elements. Then, in accordance with the
approximation applied, the system of integral boundary equations of the spatial con-
tact problem for the absolutely rigid punch deepened into a half-space together with
the integral equilibrium equations can be given in the following discrete form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�i =
m∑

q=1
pj(Nq)

∫ ∫

��q

Uji(Kf , Nq)d� + ζk ψj εijk;

Pi =
m∑

q=1
pj(Nq)�sq; Mi =

m∑
q=1

pj(Nq)εijkxk�sq;

i, j, k = 1,3, q, f = 1,2,...m

(2.12)

where pj(Nq) = p(q)
j are the averaged values of contact stresses in the j-th direc-

tion within the q-th boundary element, Nq ∈ ��q, �� q is the surface of the q-th
boundary element, �Sq = mes(��q) is the surface of the q-th boundary element.

In an extended notation the equation system (2.12) is given by

m∑
q=1

⎡
⎢⎣p1(Nq)

∫ ∫

��q

U1j(Kf , Nq)d� + p2(Nq)
∫ ∫

��q

U2j(Kf , Nq)d�+

+p3(Nq)
∫ ∫

��q

U3j(Kf , Nq)d�

⎤
⎥⎦ =

⎧⎪⎪⎨
⎪⎪⎩

�1 + ζfψ2 − ηfψ3, j = 1,

�2 + ξfψ3 − ζfψ1, j = 2,

�3 + ηfψ1 − ξfψ2, j = 3, f = 1,...,m,
(2.13)

m∑
q=1

p1(Nq)�sq = P1,
m∑

q=1

p2(Nq)�sq = P2,
m∑

q=1

p3(Nq)�sq = P3, (2.14a, b, c)

m∑
q=1

[
p3(Nq)yq − p2(Nq)zq

]
�sq = M1, (2.14d)

m∑
q=1

[
p1(Nq)zq − p3(Nq)xq

]
�sq = M2, (2.14e)

m∑
q=1

[
p2(Nq)xq − p1(Nq)yq

]
�sq = M3 (2.14f)
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and enables the resolving system of linear algebraic equations of the boundary-
element method to be set in a matrix form

A·Z = B (2.15)

where A =
(

D3m×3m C3m×6
T6×3m 0

)
is a square block matrix of the order of (3m + 6),

D3m×3m =
(
δ
(fq)
ij

)
is the influence matrix, δ(fq)ij =

⎛
⎜⎜⎜⎝
δ
(fq)
11 δ

(fq)
12 δ

(fq)
13

δ
(fq)
21 δ

(fq)
22 δ

(fq)
23

δ
(fq)
31 δ

(fq)
32 δ

(fq)
33

⎞
⎟⎟⎟⎠ , f , q =

1,m;

C3m×6 = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 z1 −y1
0 1 0 −z1 0 x1
0 0 1 y1 −x1 0
... ... ... ... ... ...
1 0 0 0 zm −ym

0 1 0 −zm 0 xm

0 0 1 ym −xm 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

T6×3m =

⎛
⎜⎜⎜⎜⎜⎜⎝

�s1 0 0 | �s2 0 0 |...
0 �s1 0 | 0 �s2 0 |...
0 0 �s1 | 0 0 �s2 |...
0 −z1�s1 y1�s1 | 0 −z2�s2 y2�s2 |...

z1�s1 0 −x1�s1 | z2�s2 0 −x2�s2 |...
−y1�s1 x1�s1 0 | −y2�s2 x2�s2 0 |...

... | �sm 0 0

... | 0 �sm 0

... | 0 0 �sm

... | 0 −zm�sm ym�sm

... | zm�sm 0 −xm�sm

... | −ym�sm xm�sm 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

Z and B are column vectors of the size (3m + 6):

Z = (p1(N1), p2(N1), p3(N1)..p1(Nm), p2(Nm), p3(Nm);�1,�2,�3,ψ1,ψ2,ψ3)
T ,

B = (0,0,0,...;P1, P2, P3, M1, M2, M3)
T .

The dimensionality of the system of Eq. (2.15) equals (3m+6)×(3m+6) where
m is the total number of the boundary elements used for the approximation of the
contact surface of the punch and the elastic base. The vector of the unknowns Z
includes 3m components of contact stresses pi(Nk) = p(k)

i as well as six parameters
�i, ψ i of the punch displacement as a rigid solid (i = 1, 2, 3; k= 1, 2,...m). In a
general case, the block D3m×3m of the matrix A is non-symmetrical and completely
filled. This block is characterized by the diagonal predominance of coefficients.
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Application of a conventional Gauss elimination method to solve the linear algebraic
equation system (2.15), as shown by a vast experience of calculations performed,
results in the numerical solution accuracy and stability, sufficient for the practical
purposes. The details of efficient implementation of algorithms of solutions of linear
algebraic equation systems of the boundary-element method, appropriate for the
specific features of Eq. (2.15), are given below in Sect. 3 (Sect. 3.4).

The coefficients of the main block D3m×3m of the matrix A are surface integrals
of the fundamental Mindlin’s solution

δ
(fq)
ij =

∫ ∫

��q

Uij(Kf , N)d�(N) (2.16)

The analytical calculation of these integrals over flat triangular or quadrangular
domains, arbitrarily oriented in an elastic half-space, seems impossible. In practice
we have carried out the efficient integration by means of an original numerical-and-
analytical approach. It can be assumed that formation of the matrix coefficients of
Eq. (2.15) is the key point of the whole boundary-element method since it requires
both regular and improper integrals to be calculated with high precision and simul-
taneously in an optimal way from the point of view of the computation time. These
issues need to be considered in more detail what is performed in the following
subsection.

2.3 Numerical-and-Analytical Method of Integration
of Fundamental Mindlin’s Solutions

Formation of the matrix of coefficients of the resolving system (2.15) of linear alge-
braic equations of the boundary-element method is reduced to the calculations of
surface integrals of the fundamental Mindlin’s solution for the displacements

δij =
∫ ∫

��q

Uij(Kf , N)d�(N) (2.17)

The domains of integration of Eq. (2.17) are the simplest flat polygons (triangles
and quadrangles), arbitrarily oriented in the half-space.

The difficulties in the calculation of the integrals of Eq. (2.17) consist in the fact
that when the double integrals are reduced to iterated integrals, the primitives cannot
be found; besides, near the collocation points (when they belong to the integration
domain ��) the integrands become unlimited. In the last case direct application
of standard procedures of numerical integration does not lead to the desired results
since for 2-D improper integrals it is very difficult to reveal the specific features
in the vicinity of the point K(ξ ,η,ζ ) of application of unit concentrated force by a
finite number of summands of the cubature formulae. The experience of numerical
calculations has shown that this requires a quite considerable increase of the num-
ber of integration points and, simultaneously, their concentration near the integrand
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singularities (adaptive numerical integration [34]) in order to obtain the result of
the desired accuracy. As a result, sufficient accuracy of the approximate values of
improper surface integrals requires too much computer time.

Consider the calculation of surface integrals of U(K,N) Mindlin displacements
based on the complementary possibilities provided by analytical and numerical inte-
gration methods with direct account of the integrand structure.

In Mindlin equations (1.7) for the displacements the singular terms are funda-
mental Kelvin’s solutions for the whole space, other terms have no singularities
(since they correspond to an imaginary point K̃(ξ ,η, − ζ ) of unit concentrated force
application). Hence, similarly to [9, 10], it is natural to present Mindlin formulae in
the form

Uij = (Uij)
K + (Uij)

C (2.18)

where superscripts K and C correspond to the singular Kelvin’s solution and the
auxiliary (regular) solution, respectively. As shown by the experience of numerous
calculations, analytical determination of improper integrals of the Kelvin functions
(containing only R1 powers, at K ∈ ΔΓ ) and numerical integration of complete
Mindlin’s solutions at K /∈ ΔΓ has appeared an efficient (both in accuracy and in
speed) combined method of calculation of improper surface integrals in the spatial
problems of elasticity theory for a half-space.

Numerical integration was performed using the cubature formulae of various
order with the highest accuracy degree. In each separate case the choice of the
number of nodes of the cubature formulae was performed on the base of empiric
criteria obtained from an extended series of numerical experiments, including the
dependences on the discretization degree and the contact surface shape. A common
feature of the obtained regularities was an increase of the order of quadratures with
the decrease of the distance from the point K to the integration domain. The detailed
data on the numerical integration procedures are presented in Appendix B.

In order to determine the improper surface integrals with a weak (integrable)
singularity in the centre of gravity of the boundary element one can apply analyti-
cal transformations. As mentioned above, the singularities in the integrand expres-
sions are determined by the summands of the fundamental Kelvin’s solutions for an
unbounded elastic space [7]:

(Uij)
K(K, N) = 1

16πG(1 − ν)
·
[

3 − 4ν

R
δij + zizj

R3

]
(2.19)

where zi = ζi − ξi, R =
√

z2
1 + z2

2 + z2
3, N(ζ1,ζ2,ζ3) is a point in the integration

domain, K(ξ1, ξ2, ξ3) is the point of application of a unit force (source), ξi are
global Cartesian coordinates. Note that the Kelvin’s solution is a special case of the
Mindlin’s solution and can be obtained from it at R1 = R, R2→ R.

From the tensor notation of Eq. (2.19) it follows that the problem is reduced to
the exact calculation of the following integrals with a singularity in the centre of
gravity of a flat boundary element
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I1 =
∫ ∫

��

d�

R1
, I2 =

∫ ∫

��

z1z3

R3
1

d�, I3 =
∫ ∫

��

z2z3

R3
1

d�, I4 =
∫ ∫

��

z2
1

R3
1

d�, (2.20)

I5 =
∫ ∫

��

z2
2

R3
1

d�, I6 =
∫ ∫

��

z2
3

R3
1

d�, I7 =
∫ ∫

��

z1z2

R3
1

d�.

If boundary elements on the surface of the half-space x3 = 0 are used, an addi-
tional pair of surface integrals should be included into consideration:

I8 =
∫ ∫

��

z1

R2
1

d�, I9 =
∫ ∫

��

z2

R2
1

d�. (2.21)

We connect the point of application of the unit concentrated force K(ξ ,η,ζ ) ∈ ��
with the vertices of the boundary element ��j (Fig. 2.4) within which this point is
located. As a result, the flat integration domain will be divided into m̄ additional
triangular subelements ��jk where k= 1, 2,..,m̄. Here m̄ = 3 for a triangular bound-
ary element, m̄ = 4 for a quadrangular one. It is clear that such an additional mesh,
being internal for each boundary element, does not lead to any changes in the gen-
eral approximating grid on the contact surface. Then, each of the improper integrals
considered in Eqs. (2.20) and (2.21) should be substituted by a sum

∫ ∫

��j

zα1 zβ2 zγ3
Rδ1

d� =
m̄∑

k=1

∫ ∫

��jk

zα1 zβ2 zγ3
Rδ1

d�. (2.22)

Here α, β, γ , δ are integer powers, determined in accordance with Eqs. (2.18)
and (2.19).

Separate terms in the sum of Eq. (2.22) will be reduced to a set of elementary
functions by performing calculations according to a uniform procedure. The apices

Fig. 2.4 Representation of
triangular and quadrangular
elements using triangular
subelements with a common
vertex
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Fig. 2.5 Geometrical
representations for integration
over a flat triangular domain
with a singularity of the
integrand in one of the
vertices

of a currently considered fragment��jk anti-clockwise are put into correspondence
with the points M1(X1, Y1, Z1), M2(X2, Y2, Z2), M3(X3, Y3, Z3) in such a way that
the first of them be simultaneously the point of application of the unit concentrated
force (the boundary-element centre of gravity). In the plane of the triangle M1M2M3
we introduce a polar coordinate system with a pole in the point M1, the polar axis
being normal to the M2M3 side (Fig. 2.5). We will show that the singularities of the
integrands for the integrals under consideration in the point M1, due to the introduc-
tion of the above polar coordinate systems, annihilate.

Denote
∣∣M1M∗

∣∣ = |r̄∗| = D, M1M3 = r̄13, M1M2 = r̄12. Then

R̄1 = R1
(
cosϕ · ēρ + sinϕ · ē⊥

)

where ēρ = r̄∗|r̄∗| = {A1, A2, A3} ; ē⊥ = r̄23|r̄23| = {B1,B2,B3} .

After the transition to the polar coordinates (R1, ϕ) I1 can be readily calculated:

I1 =
∫ ∫

��jk

d�

R1
=

ϕ2∫

ϕ1

dϕ

D/ cosϕ∫

0

dR1 = D

ϕ2∫

ϕ1

dϕ

cosϕ
=

=D

2
· ln

(
1 + sinϕ2

1 − sinϕ2
· 1 − sinϕ1

1 + sinϕ1

)
= D ln

⎛
⎜⎝

1 + tan
ϕ2

2

1 − tan
ϕ2

2

·
1 − tan

ϕ1

2

1 + tan
ϕ1

2

⎞
⎟⎠ .

(2.23)
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The components of the vector R̄1 are written as

z1 = R1 (A1 · cosϕ + B1 · sinϕ) ,
z2 = R1 (A2 · cosϕ + B2 · sinϕ) ,
z3 = R1 (A3 · cosϕ + B3 · sinϕ)

(2.24)

or, since x′ = R1 cosϕ, y′ = R1 sinϕ are the components of the R̄1 vector in the
plane of the triangle M1M2M3 (in the Cartesian coordinate system OX′Y ′, formed
by eρ ,e⊥ vectors), then

z1 = A1 · x′ + B1 · y′,
z2 = A2 · x′ + B2 · y′,
z3 = A3 · x′ + B3 · y′.

(2.25)

Using Eqs. (2.24), (2.25), the sought integrals can be given by

Iq = Qq · J1 + Sq · J2 + Tq · J3, q = 2,3,...,7;

I8 = A1 · J4 + B1 · J5, I9 = A2 · J4 + B2 · J5

where

Q2 = A1 · A3, S2 = B1 · B3, T2 = A3 · B1 + A1 · B3;

Q3 = A2 · A3, S3 = B2 · B3, T3 = A3 · B2 + A2 · B3;

Q4 = A2
1, S4 = B2

1, T4 = 2A1 · B1;

Q5 = A2
2, S5 = B2

2, T5 = 2A2 · B2;

Q6 = A2
3, S6 = B2

3, T6 = 2A3 · B3;

Q7 = A1 · A2, S7 = B1 · B2, T7 = A2 · B1 + A1 · B2;

J1 =
∫ ∫

��jk

(
x′)2

R3
1

d�, J2 =
∫ ∫

��jk

(
y′)2

R3
1

d�, J3 =
∫ ∫

��jk

x′y′

R3
1

d�,

J4 =
∫ ∫

��jk

x′

R2
1

d�, J5 =
∫ ∫

��jk

y′

R2
1

d�.

Now the integrals J1, J2,. . ., J5 after the transition to the polar coordinates are
obtained in quadratures

J1 = D (sinϕ2 − sinϕ1) , J2 = I1 − J1, J3 = −D (cosϕ2 − cosϕ1) ,

J4 = D
[
A1 (ϕ2 − ϕ1)+ B1 ln

∣∣∣ cosϕ1
cosϕ2

∣∣∣
]

, J5 = D
[
A2 (ϕ2 − ϕ1)+ B2 ln

∣∣∣ cosϕ1
cosϕ2

∣∣∣
]

.

(2.26)

Considering the coordinates Xi, Yi, Zi, (i= 1, 2, 3) of the apices of the triangular
subelement ��jk to be known, for the sake of completeness we give the formulae
to determine the Ai, Bi (i= 1, 2, 3), and D values:
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A1 = X∗−X1
D , A2 = Y∗−Y1

D , A3 = Z∗−Z1
D ,

B1 = X3−X2

R̂
, B2 = Y3−Y2

R̂
, B3 = Z3−Z2

R̂
,

R̂ =
√
(X3 − X2)

2 + (Y3 − Y2)
2 + (Z3 − Z2)

2,

D =
√
(X∗ − X1)

2 + (Y∗ − Y1)
2 + (Z∗ − Z1)

2,

X∗ = X2 + (X2 − X3) · t, Y∗ = Y2 + (Y2 − Y3) · t, Z∗ = Z2 + (Z2 − Z3) · t,

t = ((X2 − X1) (X3 − X2)+ (Y2 − Y1) (Y3 − Y2)+ (Z2 − Z1) (Z3 − Z2)) /R̂2.

The presented expressions Eqs. (2.23), (2.26) for the improper integrals over a
flat triangular domain with a singularity in one of its apices enable the accuracy of
calculation of the diagonal coefficients of the canonical equation matrix to be essen-
tially increased at a simultaneous decrease of the computation time (in comparison
with only numerical integration being used).

In the analytical integration we mostly followed the approach suggested by Cruse
[12] who was among the first to obtain analytical expressions for diagonal coeffi-
cients of the influence matrix for a flat triangular boundary element. In addition to
[12], we have also obtained analytical expressions for special (limiting) integrals,
arising at the application of boundary elements on the half-space surface. As one
should expect, the final equations (2.23), (2.26) with the accuracy to identity trans-
formations, are in agreement with the results of [12]. Besides, note that the expres-
sions obtained here have the advantages of giving directly the formulae with the
known coordinates of the boundary-element nodes what is convenient for practical
applications.

In a series of numerical comparison experiments it has been found that the pre-
sented analytical-and-numerical integration method appeared comparable in effi-
ciency with the known methods (in view of speed at the given calculation accuracy).
In our case the natural increase of the computation time for the integration of the
Mindlin’s solution is caused by the fact the latter being more complicated than the
Kelvin’s solution (the presence of additional eighteen deformation cores) and is to a
great extent justified by the condition of vanishing of stress at the half-space surface
being automatically satisfied.

In view of the comparison performed we would give a brief account of other
existing approaches to the formation of influence matrices in the direct boundary-
element method for spatial problems of theory of elasticity [5, 6, 35–38]. In all of
the known studies the results are obtained in closed form only in the case when the
external normal does not change its direction, i.e. for flat boundary elements being
used.

A rather descriptive numerical-and-analytical method of calculation of the matrix
of an algebraic analogue of the system of boundary integral equations was suggested
by Yakimchuk and Kvitka [38]. In the boundary-element plane a local polar coordi-
nate system was introduced. The surface integrals were reduced to iterated integrals
for which the integration over the polar radius was performed analytically using a



2.3 Numerical-and-Analytical Method of Integration of Fundamental Mindlin’s Solutions 107

software for computation of indefinite integrals (Analytic language). Numerical inte-
gration over the angular variable, using the quadrature formulae, is recommended.
The procedure of formation of the influence matrix, suggested in [38] which its
authors call semianalytical, does not seem to have visible advantages and has not
been further developed or spread for the solution of spatial problems of theory of
elasticity in the studies performed by other groups. Since we have performed effi-
cient numerical integration of the fundamental Mindlin’s solutions over the optimal
quadrature formulae without a transition to consideration of iterated integrals, the
semianalytical method, proposed in [38], in case being applied to a half-space, will
only create additional difficulties and will obviously be inefficient.

Expressions of a rather cumbersome structure at the analytical calculation of
integrals from the Kelvin’s solution with density functions in the form of algebraic
polynomials are given in [36]. The formulae have a sufficiently general form and are
applicable both in the cases the collocation point (pole) belonging to the integration
domain (K ∈ Δ�) and being located outside it (K /∈ Δ�). Parallel translation and
rotation of the Cartesian coordinate system axes are used for the transition to the
plane of the boundary element��. Later, in [37], Roytfarb et al. have also obtained
in a closed analytical form the expressions for the coefficients of the Kelvin influ-
ence matrix in a special case (with respect to [37]) of piecewise constant approxi-
mation of the sought densities and using a local polar coordinate system linked to
a side of a polygon, arbitrarily oriented in space. In spite of the obvious efficiency
of the methods developed in [36, 37], they possess certain inconveniences in the
practical application of the obtained results for solution of problems for an elastic
half-space. Namely, the formulae for the primitives contain a great number of tran-
scendental functions, the reliable calculation of which is known to require double-
precision computations and, hence, additional computation time. In the case under
consideration, when part of the terms (Uij)c in the Mindlin’s solution is always sub-
ject to numerical integration, the use of analytical transformation to obtain all the
coefficients of the Kelvin influence matrix (the total number of integrals is 3m×3m
where m is the number of the boundary elements on the contact surface) is abso-
lutely unjustified. As has been shown by intentional numerical experiments, this
increases the computation time by factor of 1.5/2 without a noticeable increase of
the calculation accuracy.

In [5, 6, 35], the earlier approach of [36] is developed, using the method of analyt-
ical integration of the Mindlin’s solutions over triangular flat elements. The practi-
cal applicability of the proposed method was restricted by the presence of primitives
only for the cases when the flat integration domain was parallel to the axes of the
global coordinate system, in which the expressions for the integrands were written.
Such approach leaves beyond consideration a great class of problems, important for
applications, when at the approximation of contact surfaces boundary elements with
different angles of inclination with respect to the coordinate axes arise (Sect. 3.4).
Unfortunately, until now we failed to obtain primitives in double integrals from the
additional terms of the Mindlin’s solution for flat, arbitrarily oriented boundary ele-
ments even using such modern powerful software for analytical transformations as
Matcad, Maple, Mathematica, Derive etc.



108 2 Static Analysis of Contact Problems for an Elastic Half-Space

2.4 Punch in the Shape of a Rotation Body, Deepened
into an Elastic Half-Space

If the contact surface of a punch is a rotation surface and its loading and the bound-
ary conditions possess axial symmetry, the spatial problem of theory of elasticity is
essentially simplified. In this case it is quite natural to use more precise and efficient
procedures of numerical solution, taking into account the symmetry of the problem.
This will save the computation resources and revise the calculation formulae, finally
resulting in a more rational design solutions.

In a cylindrical coordinate system (r,ϕ, z), for which the Oz axis is combined
with the punch axis, all the parameters of the stress-strained state are independent
of the angular coordinate φ and, due to such azimuthal symmetry, the contact prob-
lem becomes two-dimensional. The simplest axisymmetric punches are a sphere, a
cylinder, a cone (including a frustum of a cone). More complicated axisymmetric
structures are presented in Sect. 3.4.

Contact problems with an axial symmetry for punches, deepened into an elastic
half-space, can be divided in two groups. The first one corresponds to the forced

(a) (b)

(c)

Fig. 2.6 Axially symmetrical contact problem for a rigid punch, deepened into an elastic half-
space: (a) calculation scheme; (b) contact stress in the horizontal plane; (c) cyclic (over the angular
coordinate) discretization of the contact surface and representation of the contact stress vector on
the boundary elements
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loading of the punch along the symmetry axis and is characterized by action of
tangential and normal stresses on the contact surface as well as radial and axial dis-
placements in the stressed base (Fig. 2.6a). The second group corresponds to the
punch torsion under a torque, collinear to the symmetry axis, and is characterized
by the action of a pair of tangential contact stresses and solely tangential displace-
ments in the elastic half-space, i.e. the stress distribution, inversely symmetrical with
respect to the axis (Fig. 2.7a).

For axisymmetric problems, being one of the most important classes of spatial
problems of theory of elasticity, there are efficient methods of solution; a great
number of forms of general solution are known [31]. The problem is eventually
two-dimensional, for its solution well developed means of theory of analytic and
p-analytic functions can be used [3, 26]. According to [31], the studies of axisym-
metric stress-strained state of bodies of finite size is one of the most extensively
developed fields of theory of elasticity, the better results have been achieved only
for the flat problem. Nevertheless, still no analytical solutions of contact problems
with axial symmetry for punches of even the simplest shape, deepened into an elas-
tic half-space, are available.

Below we present the integral equations for contact problems with axial symme-
try and construct efficient boundary-element algorithms of their solution, suitable

(b)(a)

(c)

Fig. 2.7 Torsion of an elastic half-space by a rigid deepened punch in the shape of a rotation body:
(a) calculation scheme; (b) stress-strained state of the horizontal plane; (c) cyclic (over the angular
coordinate) discretization of the contact surface and representation of the contact stress vector on
the boundary elements
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for punches in the shape of rotation bodies without any restrictions on the merid-
ional cross-section shape.

2.4.1 Axisymmetric Contact Problem

At central loading by an axial force P3 = Pz a deepened absolutely rigid punch in
the shape of a rotation body will be displaced only vertically. The stressed state of
an elastic half-space is characterized by radial pr and vertical pz components of the
contact stress vector (there is no tangential stress due to the axial symmetry) which
depend only on the vertical coordinate (Fig. 2.6a, b).

The system of equations of the spatial contact problem for a deepened axisym-
metric punch, written using the theorem of reciprocity of works for the basic and
the auxiliary states (see Sect. 2.1), is given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ ∫

�

[
pr(N)U(1)

r (K, N) + pz(N)W(1)(K, N)
]

d� −�3

∫ ∫

�

p(1)
z (K, N)d� = 0,

∫ ∫

�

[
pr(N)U(3)

r (K, N) + pz(N)W(3)(K, N)
]

d� −�3

∫ ∫

�

p(3)
z (K, N)d� = 1

2
�3

(2.27)
where �3 is vertical displacement of the punch, pr(N), pz(N) are the projections of
the contact stress vector in the point N on the cylindrical coordinate system axes,
U(k)

r (K, N), W(k)(K, N) are displacements of points of the elastic half-space, deter-
mined from the following formulae

{
U(k)

r (K, N) = U1 k(K, N) · cosϕ + U2 k(K, N) · sinϕ,
W(k)(K, N) = U3 k(K, N), k = 1,3

(2.28)

Uij(K, N), i, j = 1,3 is the fundamental Mindlin’s solution, written in the global
Cartesian coordinate system, � is the punch contact surface, points N ∈ � and
K ∈ Γ .

The obtained integral equations (2.27) are essentially simplified if one takes
into account the equilibrium equations of an elastic body in the shape of the deep-
ened punch in the auxiliary state under the action of unit concentrated forces (see
Sect. 2.1):

∫ ∫

�

p(1)
z (K, N)d� = 0,

∫ ∫

�

p(3)
z (K, N)d� = 1

2
. (2.29)

After substitution of Eq. (2.29) into Eq. (2.27), one obtains integral equations
of the axisymmetric contact problem for a rigid punch, deepened into an elastic
half-space in the shape of a rotation body, under an axial load:
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ ∫

�

[
pr(N)U(1)

r (K, N) + pz(N)W(1)(K, N)
]

d� = 0,

∫ ∫

�

[
pr(N)U(3)

r (K, N) + pz(N)W(3)(K, N)
]

d� = �3,
(2.30)

Boundary integral equations for the axisymmetric problem of Eq. (2.30) can be
as well obtained in a formal way using the general equations of the spatial contact
problem (2.9) in a special case when the punch does not undergo any rotations
(ψ1 = ψ2 = ψ3 = 0) and displacements across the symmetry axis (�1 = �2 = 0).
Then the integral equation system (2.9) is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ ∫

�

[
p1(N)U11(K, N) + p2(N)U12(K, N) + p3(N)U13(K, N)

]
d� = 0,

∫ ∫

�

[
p1(N)U21(K, N) + p2(N)U22(K, N) + p3(N)U23(K, N)

]
d� = 0,

∫ ∫

�

[
p1(N)U31(K, N) + p2(N)U32(K, N) + p3(N)U33(K, N)

]
d� = �3.

(2.31)

In the plane, orthogonal to the punch symmetry axis, for each contact point S
we introduce a local coordinate system whose axes are directed tangentially (t)
and normally (n) to the cross-section contour (Fig. 2.6b). Then, using the formu-
lae for transformation of the displacement and stress vector components at the axis
rotation

{
p1 = pr · cosϕ − pt · sinϕ,
p2 = pr · sinϕ − pt · cosϕ,

{
U1 = Ur · cosϕ − Ut · sinϕ,
U2 = Ur · sinϕ − Ut · cosϕ,

(2.32)

the system (2.31) can be presented in projections on the cylindrical coordinate sys-
tem axes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ ∫

�

[
pr(N)U(1)

r (K, N) + pt(N)U(1)
t (K, N) + p3(N)U(1)

3 (K, N)
]

d� = 0,

∫ ∫

�

[
pr(N)U(2)

r (K, N) + pt(N)U(2)
t (K, N) + p3(N)U(2)

3 (K, N)
]

d� = 0,

∫ ∫

�

[
pr(N)U(3)

r (K, N) + pt(N)U(3)
t (K, N) + p3(N)U(3)

3 (K, N)
]

d� = �3.

(2.33)
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Due to the symmetry at the axial loading the tangential components of the contact
stress vector will be zero (pt = 0) what considerably simplifies the system (2.33).
Taking into account the fact that the first and the second equations of Eq. (2.33)
are linearly dependent (i.e. one of them is a consequence of the other), the inte-
gral equation system of the axisymmetric contact problem takes the above form of
Eq. (2.30).

Equation (2.30) should be complemented with an integral equation of equilib-
rium

∫ ∫

�

pz (N) d� = P3 (2.34)

where P3 is the resultant of the external forces, applied to the punch in the direction
of the z axis.

Note that other five integral equations of equilibrium in the system (2.10) are
fulfilled identically since at the axial loading P1 = P2 = M1 = M2 = M3 = 0,
pr and pz are independent of the angular coordinate ϕ, and after the transition form
double integrals to iterated integrals each of the terms will contain zero factors

2π∫

0

cosϕdϕ = 0,

2π∫

0

sinϕdϕ = 0.

Thus, the axisymmetric problem of theory of elasticity, consisting in the deter-
mination of the contact forces pr, pz and vertical displacements �3, is reduced to
the solution of the integral equation system (2.30) under the integral condition of
Eq. (2.34) being fulfilled. Having found the solution, one can easily calculate the
normal p(n) and tangential p(τ) contact stresses based on the known relations

{
p(n) = pr · cos θ + pz · sin θ ,
p(τ ) = −pr · sin θ + pz · cos θ

(2.35)

where θ is the angle between the external normal to the contact surface and the
horizontal plane (Fig. 2.6a).

For an approximate solution of the axisymmetric contact problem under consid-
eration we use the direct boundary-element method combined with the piecewise
constant approximation of the contact stress function what will enable the integral
equations (2.30) and (2.34) to be reduced to a system of linear algebraic equations.

The most convenient way is to divide the contact surface of the punch in the
shape of a rotation body into flat boundary elements whose nodes are formed by
intersection of the “geographical” system of coordinate lines. For this purpose we
build Q planes, containing the symmetry axis, turned by equal angles �ϕ = 2π/Q.
As a result, on the punch surface Q meridional zones will be formed. Then we
build M′ = M +1 horizontal planes, not necessarily equidistant. Consequently, the
surface of the deepened part of the punch will be divided into M×Q boundary ele-
ments, among which there will be Q triangular and (M–1)×Q quadrangular elements
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(Fig. 2.6c). We can say that we use cyclic discretization of the rotation surface over
the angular coordinate since at a rotation around the symmetry axis by an angle,
multiple of �ϕ = 2π/Q, there will be a coincidence of all the boundary-element
nodes with their initial positions. Note that the variation of the distance between the
horizontal planes enables one, taking into account the curvature of the punch gener-
atrix, to perform discretization uniformly with the required vertical condensation.

After the discretization of the surface of contact between the deepened part of the
punch and the elastic half-space, the formed system of linear algebraic equations of
the boundary-element method is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
n=1

[pr(Nn)
∫ ∫

��n

d� + pz(Nn)
∫ ∫

��n

W(1)(Ki, N)d�] = 0,

N∑
n=1

[pr(Nn)
∫ ∫

��n

U(3)
r (Ki, N)d� + pz(Nn)

∫ ∫

��n

W(3)(Ki, N)d�] = �3

N∑
n=1

pz(Nn)�sn = P3, i = 1,2,...,N.

, (2.36)

Here the following notations are used: N = M×Q is the total number of the bound
elements on the punch contact surface; pr(Nn), pz(Nn) are the averaged values of the
radial and vertical contact stress, respectively, within the n-th boundary element; Ki

are the collocation points (the gravity centres of the boundary elements);�Sn is the
area of the n-th boundary element.

We further reduce the system (2.36), assuming the above discretization of the
contact surface between the punch and the base to be regular, cyclic over the angular
coordinate. The latter condition enables one to increase essentially the dimension-
ality of the algebraic analogue in comparison with the system of Eqs. (2.10) and
(2.9) for the general spatial contact problem. If the punch generatrix was divided
by the horizontal planes into M sections, and over the angular coordinate into Q
meridional zones (being determined by equal dihedral angles �ϕ = 2π/Q), then the
system (2.36) with the account of the cyclicity requirement is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M∑
m=1

⎡
⎢⎣pr(Nm)

Q∑
q=1

∫ ∫

��M(q−1)+m

U(1)
r (Ki, N)d� + pz(Nm)

Q∑
q=1

∫ ∫

��M(q−1)+m

W(1)(Ki, N)d�

⎤
⎥⎦ = 0,

M∑
m=1

⎡
⎢⎣pr(Nm)

Q∑
q=1

∫ ∫

��M(q−1)+m

U(3)
r (Ki, N)d� + pz(Nm)

Q∑
q=1

∫ ∫

��M(q−1)+m

W(3)(Ki, N)d�

⎤
⎥⎦ = �3

M∑
m=1

pz(Nm)�sm = P3/Q, i = 1,2,...,M.

,

(2.37)

Here M = N/Q is the number of boundary elements in a single meridional zone
of the punch contact surface.
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For the sake of convenient realization of numerical algorithms the algebraic ana-
logue Eq. (2.37) of the integral equation system of the axisymmetric contact prob-
lem is presented in the matrix form:

A·Z = B (2.38)

where A =
(

D2 M×2 M C2 M×1
T1×2 M 0

)
is a square block matrix of the order (2M + 1),

D2M×2M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a(1)11 b(1)11 a(1)21 b(1)21 ... a(1)M1 b(1)M1

a(3)11

...

b(3)11

...

a(3)21

...

b(3)21

...

... a(3)M1

...

b(3)M1

...

a(1)1M b(1)1M a(1)2M b(1)2M ... a(1)MM b(1)MM

a(3)1M b(3)1M a(3)2M b(3)2M ... a(3)MM b(3)MM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is the influence matrix,

C2 M×1 = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
1
...
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, T1×2 M = (0,�s1;0,�s2;...;0,�sM) ;

Z and B are column vectors of the size (2M + 1):

Z = (pr(N1), pz(N1); pr(N2), pz(N2);...pr(NM),pz(NM);�3)
T ,

B = (0,0;0,0;...;P3)
T ;

�Si (i = 1, 2,. . .M) are the areas of flat triangles or quadrangles, dividing the merid-
ional zone into the boundary elements whose numbering is determined in accor-
dance with the vertical coordinate variation;

a(k)
im =

Q∑
q=1

∫ ∫

��M(q−1)+m

U(k)
r (Ki, N)d� =

=
Q∑

q=1
cosϕq

∫ ∫

��M(q−1)+m

U1 k(Ki, N)d� +
Q∑

q=1
sinϕq

∫ ∫

��M(q−1)+m

U2 k(Ki, N)d�;

b(k)im =
Q∑

q=1

∫ ∫

��M(q−1)+m

W(k)(Ki, N)d� =
Q∑

q=1

∫ ∫

��M(q−1)+m

U3 k(Ki, N)d�
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are the coefficients of the influence matrix D2M×2M, determined by the numerical-
and-analytical integration method, described above in Sect. 2.3, ϕq = (2q−1)π/Q,
k = 1, 3; 4, m = 1, 2,. . ., M.

It is seen that the dimensionality of the algebraic analogue of the boundary
contact problem equals (2M + 1) with respect to the values of �3 and pr(Nm),
pz(Nm) (m = 1, 2,. . .M) where M is the boundary element number along the punch
generatrix.

2.4.2 Torsion of an Axisymmetric Punch in an Elastic Half-Space

Consider a punch in the shape of a rotation body, deepened into an elastic half-space,
under the action of a sole torque M3 �=0 (P1 = P2 = P3 = M1 = M2 = 0). Then
the punch displacement will be determined only by the angle ψ3 �=0 (ψ1 = ψ2 =
�1 = �2 = �3 = 0), characterizing the punch rotation around the Oz axis
(Fig. 2.7a). The equation system (2.9) in the special case under consideration is
given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ ∫

�

[
p1(N)U11(K, N) + p2(N)U12(K, N) + p3(N)U13(K, N)

]
d� = η · ψ3,

∫ ∫

�

[
p1(N)U21(K, N) + p2(N)U22(K, N) + p3(N)U23(K, N)

]
d� = −ξ · ψ3,

∫ ∫

�

[
p1(N)U31(K, N) + p2(N)U32(K, N) + p3(N)U33(K, N)

]
d� = 0.

(2.39)

Similarly to the case of the axisymmetric problem (see Sect. 2.4.1), using the
formulae (2.32) for the transformation of the vector components at the axis rotation,
the system (2.39) is presented in projections onto the cylindrical coordinate system
axes
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ ∫

�

[
pr(N)U(1)

r (K, N) + pt(N)U(1)
t (K, N) + pz(N)U(1)

z (K, N)
]

d� = η · ψ3,

∫ ∫

�

[
pr(N)U(2)

r (K, N) + pt(N)U(2)
t (K, N) + pz(N)U(2)

z (K, N)
]

d� = −ξ · ψ3,

∫ ∫

�

[
pr(N)U(3)

r (K, N) + pt(N)U(3)
t (K, N) + pz(N)U(3)

z (K, N)
]

d� = 0.

(2.40)

Since, according to the problem formulation, the punch does not undergo axial
forces, there will arise no vertical stress on the contact surface, i.e. pz = 0. Besides,
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the system (2.40) will be additionally simplified due to the fact that its first and sec-
ond equations are linearly dependent (one is the consequence of the other). As a
result, the system of boundary integral equations for the contact problem of an elas-
tic half-space torsion due to the axial rotation of a deepened punch will be given by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫ ∫

�

[
pr(N)U(1)

r (K, N) + pt(N)U(1)
t (K, N)

]
d� = η · ψ3,

∫ ∫

�

[
pr(N)U(3)

r (K, N) + pt(N)U(3)
t (K, N)

]
d� = 0,

(2.41)

where
⎧⎨
⎩

U(k)
r (K, N) = U1 k(K, N) · cosϕ + U2 k(K, N) · sinϕ,

U(k)
t (K, N) = −U1 k(K, N) · sinϕ + U2 k(K, N) · cosϕ,k = 1,3.

(2.42)

The equation system (2.41) becomes closed if it is complemented by the integral
equilibrium equation

∫ ∫

�

[
x1p2(N) − x2p1(N)

]
d� = M3. (2.43)

Evidently, the other five equilibrium equations of the system (2.10) will be iden-
tically fulfilled due to the symmetry of the problem and independence of the con-
tact stress on the angular coordinate, similarly to the case of the axial loading
(Sect. 2.4.1).

The equilibrium equation (2.43), similarly to the boundary integral equations
(2.41), can be written in terms of the radial and tangential projections of the stress
vector. Taking into account that x1 = rcosϕ, x2 = rsinϕ, and p1 and p2 are expressed
in terms of pr and pt using Eq. (2.32), the equilibrium equation (2.43) is given by

∫ ∫

�

pt · rd� = M3 (2.44)

where r =
√

x2
1 + x2

2 = r(z) is the radial coordinate of the contact surface points.
Thus, the inverse symmetrical problem of theory of elasticity, consisting in the

determination of the contact forces pr and pt and rotation angles ψ3, is reduced
to the solution of the integral equation system (2.41), the integral condition of Eq.
(2.44) being fulfilled. Note that the found solution will simultaneously determine
the normal p(n) = pr and tangential p(τ) = pt contact stresses (Fig. 2.7c).

The approximate solution of the inverse symmetrical contact problem will be
obtained similarly to the above considered (Sect. 2.4.1) axisymmetric problem,
using the direct boundary-element method in combination with the piecewise
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constant approximation of the contact stress function. Assuming the discretization
with the cyclic symmetry to be performed (Fig. 2.7c) and omitting cumbersome
intermediate calculations, the integral equations (2.41) and (2.44) can be readily
reduced to the following system of linear algebraic equations of the direct boundary-
element method:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M∑
m=1

⎡
⎢⎣pr(Nm)

Q∑
q=1

∫ ∫

��M(q−1)+m

U(1)
r (Ki, N)d� + pt(Nm)

Q∑
q=1

∫ ∫

��M(q−1)+m

U(1)
t (Ki, N)d�

⎤
⎥⎦ = ηi · ψ3,

M∑
m=1

⎡
⎢⎣pr(Nm)

Q∑
q=1

∫ ∫

��M(q−1)+m

U(3)
r (Ki, N)d� + pt(Nm)

Q∑
q=1

∫ ∫

��M(q−1)+m

U(3)
t (Ki, N)d�

⎤
⎥⎦ = 0,

M∑
m=1

pt(Nm)rm�sm = M3/Q, i = 1,2,...,M.

(2.45)

Here pr(Nm) and pt(Nm) are the averaged values of the radial and tangential con-
tact stress, respectively, within the m-th boundary element, the rest of notations
being the same as those in Sect. 2.4.1.

In the matrix form the algebraic analogue (2.45) of the integral equation system
is given by

A·Z = B (2.46)

where A =
(

F2 M×2 M G2 M×1
H1×2 M 0

)
is a square block matrix of the order (2M + 1),

F2 M×2 M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g(1)11 h(1)11 g(1)21 h(1)21 ... g(1)M1 h(1)M1

g(3)11

...

h(3)11

...

g(3)21

...

h(3)21

...

... g(3)M1

...

h(3)M1

...

g(1)1 M h(1)1 M g(1)2 M h(1)2 M ... g(1)MM h(1)MM

g(3)1 M h(3)1 M g(3)2 M h(3)2 M ... g(3)MM h(3)MM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is the influence matrix,

G2 M×1 = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

η1
0
η2
0
...
ηM

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, H1×2 M = (0,r1�s1;0,r2�s2;...;0,rM�sM) ;
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Z and B are column vectors of the size (2M + 1):

Z = (pr(N1), pt(N1); pr(N2),pt(N2);...pr(NM),pt(NM);ψ3)
T ,

B = (0,0;0,0;...;M3)
T ;

g(k)im =
Q∑

q=1

∫ ∫

��M(q−1)+m

U(k)r (Ki, N) d� =

=
Q∑

q=1
cosϕq

∫ ∫

��M(q−1)+m

U1 k (Ki, N) d� +
Q∑

q=1
sinϕq

∫ ∫

��M(q−1)+m

U2 k (Ki, N) d�;

h(k)im =
Q∑

q=1

∫ ∫

��M(q−1)+m

U(k)t (Ki, N) d� =

= −
Q∑

q=1
sinϕq

∫ ∫

��M(q−1)+m

U1 k (Ki, N) d� +
Q∑

q=1
cosϕq

∫ ∫

��M(q−1)+m

U2 k (Ki, N) d�

are the coefficients of the influence matrix F2M×2M, ϕq = (2q−1)π/Q, k = 1, 3;
i, m = 1, 2,. . .,M.

Evidently, the dimensionality and the structure of the matrix representation of
the algebraic analogue of the boundary contact problem in terms of ψ3 and pr(Nm),
pz(Nm) (m = 1, 2,. . .M) values are the same as in the above axisymmetric case.

Thus, we have considered the integral equations of the contact problems for deep-
ened punches with axial symmetry and have constructed an efficient method of their
solution ob the base of direct boundary-element formulation. The results of the for-
mulations presented in Sects. 2.4.1 and 2.4.2 enable numerical solutions of the class
of contact problems of theory of elasticity, important for practical application, to
be effectively constructed. Attention should be paid to the following main advan-
tages of the elaborated algorithms, increasing the efficiency of application of the
boundary-element method in engineering.

As noted above, spatial contact problems of theory of elasticity with axial sym-
metry are two-dimensional, since, due to the independence of the geometrical shape
of the punch and the boundary conditions on the angular coordinate, the character-
istics of the stress-strained state of the base will be determined only by virtue of the
radial r and vertical z coordinates. The application of the boundary-element method
with a special cyclic discretization of the contact surface additionally reduces the
geometrical dimensionality of the problem: the contact stresses are to be determined
only for the points of the broken line, approximating the punch generatrix. Conse-
quently the application of the boundary-element method, enabling the possibility of
further reduction of dimensionality, reduces the axisymmetric contact problem to a
one-dimensional one.
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The time, required for the solution of the contact problems with axial sym-
metry, will be essentially shortened in comparison with the problems in gen-
eral spatial formulation, due to the two reasons. First, the dimensionality of the
resolving systems of algebraic equations is reduced, and for these systems, in
case Gauss elimination method being used, the solution time is proportional to
N3 (N is the number of the equations). Besides, due to the angular (cyclic) sym-
metry the time for the computation of the influence matrix coefficients will be
reduced by factor of 3Q/2. In practice, in our calculations of contact problems
with axial symmetry, based on the proposed reduced formulation, with the number
of the boundary elements of about 400, the total computation time was reduced in
average by factor of 20 in comparison with that required in case of application of
the spatial scheme of the most general way. It should be also mentioned that by
increasing the number of the boundary elements along the angular coordinate one
can increase the accuracy of the numerical solution of contact problems with axial
symmetry without increasing the dimensionality of the system of resolving algebraic
equations, increasing only the computation time for the formation of the influence
matrix, i.e. without extending the computer RAM resources.

Finally we note that in a great many of studies, devoted to the solution of axisym-
metric problems of theory of elasticity for the finite-size bodies, using the Kelvin’s
solution, the implementation of the boundary-element method implies a procedure
of analytical integration over the angular coordinate (See, e.g., the references in
[7, 10, 17]). This results in complete elliptical integrals of the first and second order,
which, in turn, for the sake of convenience of further numerical calculations, are
presented in the form of an expansion over polynomials [1]. A number of authors
note that in the axisymmetric case the integral cores have a rather complicated form
and the related calculations are cumbersome. In [29], devoted to the axisymmetric
contact problem for a rigid deepened punch, integration of the Mindlin’s solution
over the angular coordinate is performed numerically. Evidently, such an algorithm
can be efficient only for the punches of cylindrical shape when the radial coordi-
nate of the contact surface points remains constant. The approach developed here
seems more convenient since it enables the solutions for both axisymmetric prob-
lems and problems of general spatial formulation to be obtained, based on the same
computation algorithm of formation of influence matrices, without loss in accuracy.

2.5 Contact Problems for Rigid Punches Located on the Elastic
Base Surface

Considering a spatial contact problem for a rigid punch and an elastic base, we
analyze a limiting case when the punch is not deepened, i.e. is located on the elas-
tic base surface (Fig. 2.8). We also assume the punch bottom to be flat; then the
contact domain F will be a part of the half-space surface. Hence, in the boundary
integral equations of the general spatial contact problem (2.9), (2.10) one should
imply z = ζ = 0, and the fundamental Mindlin’s solution to be transformed into a
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Fig. 2.8 Calculation scheme
for the spatial contact
problem for a non-deepened
rigid punch with a flat
bottom, located at the surface
of the elastic base

combined Boussinesq-Cerruti solution. The account of the above statements enables
the boundary integral equations of the spatial problem of theory of elasticity for a
flat rigid punch, contacting an elastic half-space on its surface, to be written in the
following form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ ∫

F

[
p1(N)U(1)(K, N) + p2(N)V(1)(K, N) + p3(N)W(1)(K, N)

]
ds = �1 + η · ψ3,

∫ ∫

F

[
p1(N)U(2)(K, N) + p2(N)V(2)(K, N) + p3(N)W(2)(K, N)

]
ds = �2 − ξ · ψ3,

∫ ∫

F

[
p1(N)U(3)(K, N) + p2(N)V(3)(K, N) + p3(N)W(3)(K, N)

]
ds =�3 − η · ψ1 + ξ · ψ2.

(2.47)

To make the system (2.47) closed we take into account six static equilibrium
equations whose form is more simple than in Eqs. (2.10):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫ ∫

F

p1(N)ds = P1,
∫ ∫

F

p2(N)ds = P2,
∫ ∫

F

p3(N)ds = P3

∫ ∫

F

p3(N)x2ds = M1,
∫ ∫

F

p3(N)x1ds= − M2,
∫ ∫

F

[
p2(N)x1 − p1(N)x2

]
ds = M3.

(2.48)

In Eqs. (2.47), (2.48) the following notations are assumed: p1(N) = px(x, y),
p2(N) = py(x, y), p3(N) = pz(x, y) are the sought contact stress functions, acting
in a flat domain F; U(k), V(k), and W(k) (k = 1, 2, 3) are the components of the
combined Boussinesq-Cerruti solution for the displacements of the half-space sur-
face due to unit concentrated forces, acting in the direction of the coordinate axes
xk(k = 1, 2, 3).
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In comparison with the initial system of Eqs. (2.9), (2.10) for the general spa-
tial contact problem for a deepened punch, the integral equation system (2.47) and
(2.48) is simpler. First, the contact pressure functions have to be determined in a flat
domain and, hence, both the discretization of the contact domain and the interpola-
tion of the discrete numerical results at the analysis of the contact problem solution
will be easier than for a curved surface. Second, the integration procedure at the
formation of the influence matrix of the resolving system of algebraic equations
of the boundary-element method will require less time than in the case of the full
Mindlin’s solution. Nevertheless, the total computation time for the solution of the
spatial contact problem for a non-deepened punch will be of the same order as for
the solution of the contact problem in the most general spatial formulation.

Then we consider two important special cases of spatial loading of non-deepened
punches, for which the integral equation system (2.47), (2.48) is essentially simpli-
fied, following separately the force balance at contact deformation in the vertical
and horizontal planes, respectively. The first case corresponds to the punch inden-
tation by a vertical force and pull-out torques, acting with respect to the coordinate
axes in the punch base plane; in the contact domain only vertical (normal) stress
exists. In the second case, the punch, linked to the half-space, undergoes a torque;
only horizontal (tangential) stresses act on the contact surface.

2.5.1 Indentation of a Punch with a Flat Smooth Base
into an Elastic Half-Space

Let the punch base be smooth, i.e. in the contact domain F tangential stress is zero.
In this case the external load system will not include horizontal forces P1, P2 and
torque M3 leading to the tangential stress in the contact domain. The punch will
be indented into the base by a vertical force P3 and torques M1, M2, rotating the
punch around the axes Ox1 and Ox2. Besides, since no friction between the punch
bottom and the base surface is assumed, then only one of the three displacement vec-
tor components will be varied, namely the vertical one. Thus, in the system (2.47),
(2.48) one should imply �1 = �2 = 0, ψ3 = 0, P1 = P2 = M3 = 0, p1 =
p2 = 0. Then the interaction of the punch with the base will be characterized by
the function of vertical stress (contact pressure) p3 = p(x, y) and vertical displace-
ment of the points of the flat punch bottom W = �3−η�ψ1 + ξ�ψ2. The above
assumptions will reduce the integral equation system of the spatial contact problem
for a smooth punch with a flat base to a single equation

∫ ∫

F

p3(N)W(3)(K, N) = �3 − η · ψ1 + ξ · ψ2. (2.49)

In the equilibrium equation system (2.48) three conditions, corresponding to the
horizontal force balance, are fulfilled identically, and the other three are given by
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫ ∫

F

p3(N)ds = P3,

∫ ∫

F

p3(N)x2ds = M1, −
∫ ∫

F

p3(N)x1ds = M2.

(2.50)

The system (2.49), (2.50) can be written in the form, corresponding to the nota-
tions, established in the literature

∫ ∫

p

(ξ , η)ω(x, y, ξ , η)dξdη = Wc + ψx · (x − xc) + ψy · (y − yc), (2.51)

∫ ∫

F

p(x, y)dxdy = P,
∫ ∫

F

p(x, y)ydxdy = P · yc − Mx,

∫ ∫

F

p(x, y)xdxdy = P · xc + My

(2.52)

where

F is the domain of the punch contact with the elastic base;
p(x, y) = p3(x, y, 0) is the sought contact pressure function,
W(x,y) = Wc + ψx · (x − xc) + ψy · (y − yc) is the displacement of the point

N(x,y) of the contact surface of the punch and the elastic base,
Wc is the vertical displacement of the punch centre (xc, yc) (point of application

of the external forces and torques),
ψx and ψy are the punch slopes with respect to the coordinate axes,
ω(x, y, ξ , η) = W(3)(K, N) = (1−ν2)/πE

√
(x − ξ )2 + (y − η)2 is the influence

function (Boussinesq solution),
P, Mx, My are the external vertical force and tilting moments.

Equation (2.51) expresses the fact that the punch displacement W(N) is numeri-
cally equal to the sum of works from the contact forces p (x, y) in the basic state on
the vertical displacements of the base surface

ω (x, y, ξ , η) = (1 − ν2)

πE
· 1

R
, R =

√
(x − ξ )2 + (y − η)2

of the auxiliary state, resulting from the action of a unit vertical concentrated force.
Thus, the spatial contact problem on the indentation of a rigid punch with a

smooth flat bottom into an elastic half-space is reduced to the finding from a 2-D
integral equation (2.51) of the parameters Wc, ψx and ψy, determining the punch
position, and the contact pressure function p(ξ ,η) over its bottom, satisfying the
equilibrium conditions (2.52).
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While characterizing the integral equation (2.51), note that, in spite of its simple
form, the general studies of the corresponding mixed problem of theory of elastic-
ity are far from being finished [4, 15, 30]. A closed solution of the integral equa-
tion (2.51), except for its axisymmetric case, has been found only for elliptical and
ring-shaped contact domains. Construction of approximate solutions of the integral
equation (2.51) for contact domains of a rather general shape is a serious computa-
tional problem. Our overview of the main solution methods for the spatial contact
problem for flat complex-shaped punches, interacting with elastic, spatially nonho-
mogeneous bases, is presented in Sect. 4.1.

We obtain a finite-measure algebraic analogue of the integral equation system
(2.51), (2.52) of the contact problem under consideration using the boundary ele-
ment method. For this purpose first we approximate the contact surface by boundary
elements of, in general, polygonal shape. This can be done using practically any of
the known considerable amount of mesh generators for arbitrary flat domains, used
in finite-difference, finite- and boundary-element methods and having their own spe-
cific features. The proposed and applied here algorithms of automatic mesh of flat
surfaces of a rather general shape are considered in Sect. 3.3. They are rather eco-
nomical (require small computation time in comparison with the numerical solution
of the problem, for which the mesh is built) and are capable of controlling the mesh
geometry using easily treated “free” parameters (condensation degree, maximal and
minimal boundary element size etc.).

In the simplest version of the boundary-element method the points of appli-
cation of the unit concentrated forces are located in the gravity centres of the
boundary elements and a piecewise contact approximation of the contact pres-
sures p(ξ , η) = const within each boundary element is assumed. Then, instead of
Eqs. (2.51) and (2.52), a linear algebraic equation system with (m + 3) unknowns is
obtained:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p1δi1 + p2δi2 + ... + pmδim − Wc − ψx · (xc − xi) − ψy · (yc − yi) = 0, i = 1, m,

p1�s1 + p2�s2 + ... + pm�sm = P,

p1�s1x1 + p2�s2x2 + ... + pm�smxm = P · xc + My,

p1�s1y1 + p2�s2y2 + ... + pm�smym = P · yc − Mx,
(2.53)

Here pi(ξ i, ηi) are the sought contact stresses for the boundary elements
(i= 1, . . ., m),

δij =
∫ ∫

Fj

ω (x, y, ξ , η) dξdη (2.54)

is the vertical displacement of the base surface in the point (xi, yi) coinciding with
the gravity centre of the i-th element, due to a unit load, uniformly distributed over
the domain Fj of the j-th element,�Si (i = 1, 2,. . .m) are the areas of the flat bound-
ary elements whose combination approximates the contact domain F.
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For numerical solution of the system (2.53) one can take the advantage of its
matrix form

A·Z = B (2.55)

where

A =
(

Dm×m Cm×3

T3×m 0

)
– is a block matrix of the size (m+3)×(m+3),

D = ∥∥δij∥∥ is the influence matrix, i, j = 1,. . .m; C and T are rectangular
matrices

C = −

⎛
⎜⎜⎜⎜⎝

1 x1 − xc y1 − yc

1 x2 − xc y2 − yc

... ... ...

1 xm − xc ym − yc

⎞
⎟⎟⎟⎟⎠ , T =

⎛
⎜⎜⎝

�s1 �s2 ... �sm

�s1 · x1 �s2 · x2 ... �sm · xm

�s1 · y1 �s2 · y2 ... �sm · ym

⎞
⎟⎟⎠ ;

Z and B are column matrices of the size (m+3):
Z = (

p1, p2...pm; Wc,ψx,ψy
)T , B = (

0,0,...0; P; P · xc − My;P · yc + Mx
)T .

The discretization of the contact domain (the punch bottom) will result in the
location of all the boundary elements in the same plane (the half-space surface
z = 0). Therefore, in order to increase the computation algorithm efficiency and
accuracy we use in Eq. (2.54) the same procedure of analytical calculation of both
singular (i = j) and regular (i �= j) surface integrals over an arbitrary boundary ele-
ment with a polygonal contour. This is achieved on the base of algebraic assembling
(according to the choice of sign while moving along a closed circuit) of singu-
lar integrals over triangles with a singularity in the concentrated force application
point. For example, for a triangular boundary element with the apices A, B, and C
and an arbitrary point K(ξ , η), located outside (Fig. 2.9a) and inside (Fig. 2.9b) the
integration domain the same sum

(a) (b)

Fig. 2.9 Geometrical scheme
of the integration domain in
case the point K of
application of a unit
concentrated force being
located (a) outside and (b)
inside the boundary element
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∫

ABC

=
∫

KAB

+
∫

KBC

+
∫

KCA

.

is used, corresponding to the positive (anti-clockwise) direction of moving along the
circuit.

The exact calculation of integrals of the form

∫ ∫
ω(x, y, ξ , η)dξdη,

over a triangular domain �F = M1M2M3, when the integrand has a singularity in
the first apex, is reduced to the above obtained integral I1 (Sect. 2.3). According to
Eq. (2.23), in a general case, when the triangle is arbitrarily oriented in the elastic
half-space, the latter integral can be found by a combination of logarithmic and
trigonometric functions. In our case, when the punch is located on the half-space
surface (Z1 = Z2 = Z3 = 0), Eq. (2.23) remains unchanged, and the expressions for
its parameters are considerably simplified, having the form

D = √
(X∗ − X1)2 + (Y∗ − Y1)2, R̂ = √

(X3 − X2)2 + (Y3 − Y2)2,

X∗ = X2 − (X3 − X2) · p, Y∗ = Y2 − (Y3 − Y2) · p,

p = ((X2 − X1)(X3 − X2) + (Y2 − Y1)(Y3 − Y2)) /R̂2.

The simplest form of the system (2.53) is achieved for a circular punch at central
(xc = 0, yc = 0) loading (axisymmetric contact problem). Due to the axial symmetry
(Mx = My = 0), (ψx =ψy = 0), hence instead of Eq. (2.53) one obtains

{
p1δi1 + p2δi2 + ... + pmδim − Wc = 0, i = 1, m,

p1�s1 + p2�s2 + ... + pm�sm = P.
(2.56)

The reduction of the system (2.56) is performed similarly to the case of the
axisymmetric problem of a deepened punch indentation (Sect. 2.4.1), assuming
cyclic discretization of the circular (or the ring-shaped) contact domain. A typ-
ical example of such discretization by means of a regular (�ϕ = const) grid of
boundary elements whose nodes are obtained by intersection of rays and concentric
circles in a polar coordinate system, is shown in Fig. 2.10. Afterwards the system
(2.56) is transformed in the following way. In each line of this system there are
several terms which, due to the cyclic symmetry, contain the same contact force val-
ues, corresponding to the same boundary element number along the radius (or the
number of the ring-shaped layer). Combine all such terms in the line, correspond-
ing to each ring-shaped layer. If L is the number of the boundary elements along
the punch radius, then the algebraic analogue of the integral equation system on the
contact problem for central indentation of a circular (or ring-shaped) punch with a
flat smooth bottom takes its most simple form
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(a) (b)

Fig. 2.10 Cyclically symmetrical discretization of circular (a) and ring-shaped (b) contact
domains

L∑
j=1

Aij · pj − Wc = 0, i = 1,L,
L∑

j=1

pj ·�sj = P · L

m
(2.57)

Here the values Aij are found using the influence coefficients δij (i = 1,. . ., L;
j = 1,. . ., m) from the formula

Aij =
m/L∑
k=1

δi,j+L(k−1).

It is evident that the system (2.57) can be also easily obtained from the system
(2.37) as a degenerate case of a deepened punch with a smooth bottom W(3)(K, N) =
ω(x, y, ξ , η),ρτ = 0.

2.5.2 Torsion of an Elastic Half-Space by a Rigid Punch

Let the system of the external load on the punch include only a torque M3, resulting
in the formation of tangential stresses in the contact domain. Neither other torques
M1, M2, nor both vertical P3 and horizontal P1, P2 external forces are assumed. In
this case the punch will rotate with the elastic base, and its position is characterized
only by the rotation angle ψ3 around the Oz axis. In the system (2.47) let �1 =
�2 = �3 = 0, (P1 = P2 = M1 = M2 = 0). Due to the absence of vertical loads
and tilting moments it can be reasonably assumed that the torsion does not affect
the pressure distribution below the punch bottom, hence p3 = 0 [19]. Contrary to
the above case of the punch indentation (Sect. 2.5.1), now the contact interaction of
the punch with the base will be characterized by two functions of contact tangential
stress p1 = px(x, y) and p2 = py(x, y). The integral equations (2.47) of the spatial
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contact problem of torsion for the case of a flat-bottom punch are reduced to the
following system:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫ ∫

F

[
p1(N)U(1)(K, N) + p2(N)V (1)(K, N)

]
ds = η · ψ3,

∫ ∫

F

[
p1(N)U(2)(K, N) + p2(N)V (2)(K, N)

]
ds = −ξ · ψ3.

(2.58)

As follows from Eq. (2.48), the system (2.58) is made closed by a single (the
others are fulfilled identically) equilibrium equation, given by

∫ ∫

�

[
p2(N)x1 − p1(N)x2

]
ds = M3. (2.59)

In Eqs. (2.58) and (2.59) p1(N) = px(x, y) and p2(N) = py(x, y) are the sought
functions of tangential stresses acting in the contact domain F;U(k) and V(k) (k =
1, 2) are the components of the Cerruti solution for the half-space surface displace-
ments under unit concentrated horizontal forces in the direction of the Ox and Oy
axes, respectively.

Having introduced commonly used notations, we present the system (2.58),
(2.59) in a more convenient form for the subsequent analysis:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫ ∫

F

[
p1(ξ ,η) 1(x,y,ξ ,η) + p2(ξ ,η) 2(x,y,ξ ,η)

]
dξdη = y · ψ ,

∫ ∫

F

[
p1(ξ ,η) 2(x,y,ξ ,η) + p2(ξ ,η) 3(x,y,ξ ,η)

]
dξdη = −x · ψ ,

(2.60)

∫ ∫

�

[
p2(x,y)x − p1(x,y)y

]
dxdy = M (2.61)

where p1(x, y) and p2(x, y) are the sought contact tangential stress functions,  i(x,
y, ξ , η), (i = 1, 2, 3) are the Cerruti displacement functions:

 1(x,y,ξ ,η) = U(1)(K, N) = 1 + ν
πE

[
ν

x2
1

R3
+ (1 − ν)

1

R

]
,

 2(x,y,ξ ,η) = U(2)(K, N) = V (1)(K, N) = ν(1 + ν)

πE

x1y1

R3
,

 3(x,y,ξ ,η) = V (2)(K, N) = 1 + ν
πE

[
ν

y2
1

R3
+ (1 − ν)

1

R

]
;
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x1 = x – ξ , y1= y – η, R =
√

x2
1 + x2

2; M is the external torque rotating the punch
in the horizontal plane by an angle ψ.

Thus, the spatial contact problem on surface torsion of an elastic base by a rigid
flat-bottomed punch at full coupling is reduced to the following: from the two-
dimensional integral equation system (2.60) one should find the angle ψ and two
functions p1(x, y) and p2(x, y), satisfying the integral equilibrium condition (2.61).

The exact solutions of the mixed problem of theory of elasticity (2.60) and (2.61)
are known only for circular and elliptical punches [19]. Approximate solutions of
contact problems on torsion of elastic bases of various types have been obtained
by a number of authors [2, 8, 11, 13, 23, 25, 27, 28, 33], but in most cases for cir-
cular and ring-shaped punches. For a rectangular domain, the punch rotation angle
due to a given torque was determined by Mozhevitinov [22]; however, the con-
tact problem was not solved, but a linear distribution of tangential stresses, depend-
ing on the contact point distance from the rotation axis, was suggested. As will be
shown below, the numerical solution of the integral equation system (2.60), (2.61)
for punches with complex-shaped bottom can be efficiently performed using the
boundary-element method in its direct formulation.

If the discretization of the contact domain F is performed by any of the available
methods, then a finite-measure algebraic analogue of the system (2.60), (2.61) can
be readily obtained in the approximation of piecewise constant functions of contact
tangential stresses on the boundary elements similarly to how it has been made in
Sect. 2.4.2. We write the resolving solutions of the torsion contact problem under
consideration in a discrete form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M∑
q=1

[p1(Qq)
∫ ∫

�Fn

 1(Pi, Q)dF + p2(Qq)
∫ ∫

�Fn

 2(Pi, Q)dF] = yi · ψ ,

M∑
q=1

[p1(Qq)
∫ ∫

�Fn

 2(Pi, Q)dF + p2(Qq)
∫ ∫

�Fn

 3(Pi, Q)dF] = −xi · ψ ,

M∑
q=1

[
p2(Pq)xq − p1(Pq)yq

]
�sq = M, q = 1,2,...,m.

(2.62)

Here the following notations are used: p1(Qq), p2(Qq) are the averaged values
of the corresponding radial and vertical contact stress within the q-th boundary ele-
ment, Pi are the collocation points (the boundary element gravity centres), �Sq is
the q-th boundary element area, m is the total number of the boundary elements.

In the matrix notation the algebraic analogue Eq. (2.62) of the integral equation
system is given by

A·Z = B (2.63)
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where A =
(

F2m×2m G2m×1

H1×2m 0

)
is a square block matrix of the order (2m + 1),

G2m×1 = − (y1, − x1,y2, − x2,...,ym, − xm)
T ,

ψ = πq0/(4G), τ (r) = q0r(a2 − r2)−1/2 , (q0 = 3 M/4πa3).

Z and B are column vectors of the size (2M+1):

Z = (p1 (P1) ,p2 (P1) ;p1 (P2) ,p2 (P2) ;...p1 (Pm) ,p2 (Pm) ;ψ)T ,

B = (0,0;0,0;...;M)T ;

fiq =
∫ ∫

�Fq

 1(Pi, Q)dF =
∫ ∫

�Fq

 1(xi, yi, ξ , η)dξdη,

giq =
∫ ∫

�Fq

 2(Pi, Q)dF =
∫ ∫

�Fq

 2(xi, yi, ξ , η)dξdη,

hiq =
∫ ∫

�Fq

 3(Pi, Q)dF = f 3(xi, yi, ξ , η)dξdη

are the coefficients of the influence matrix F2m×2m, i, q = 1, 2,. . ., m.
It is evident that the structure of the given matrix representation of the algebraic

analogue of the boundary contact problem with respect to the values of ψ3 and
p1(Pq), p2(Pq) (q = 1, 2,. . .m) is similar to the case of the half-space torsion by a
deepened punch in the shape of a rotation body considered above in Sect. 2.4.2
with the only difference that the blocks in the influence matrix F2m×2m for a flat-
bottomed punch are symmetrical. The coefficients fiq, giq, hiq of the influence matrix
for the Cerruti solution used here are determined analytically using the primitives
for the integrals I1, I4, I5, I7, obtained in Sect. 2.3 in a closed form. Here, similarly
to the case of the punch indentation (Sect. 2.5.1), for the calculation of both singular
and regular integrals the same method is used, based on the algebraic assembling of
integrals over triangles, resting on the sides of flat polygon-type boundary elements.
The formulae of the primitives (2.26) for I1, I4, I5, I7 remain unchanged, and their
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parameters are determined from simplified 2-D formulae due to the zero values of
the node z-coordinates for all the boundary elements.

We finish the consideration of a half-space torsion by a rigid flat-bottomed punch
by a boundary-element formulation of the problem for the circular (or ring-shaped)
contact domain.

First we perform cyclic discretization into boundary elements (Fig. 2.10). Then
we take into account the axial symmetry of the problem, for which only tangential
stresses are possible. Similarly to the above case, we locate the points of applica-
tion of unit concentrated forces in the boundary-element gravity centres and assume
tangential forces pt = τ, acting in the direction, normal to the radius, to be con-
stant within each boundary element. The algebraic analogue of the integral equation
system of the contact problem of a rigid rotation under the torque of a circular
(or ring-shaped) punch, bound to the half-space, will be obtained from the system
(2.45) as a limiting case of the deepened punch in the shape of a rotation body
(U(1)

t (P, Q) =  ̃(x, y, ξ , η) pr = pz = 0) in the form

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L∑
j=1

Bij · τj − yi · ψ = 0, i = 1, L

L∑
j=1
τj · rj ·�sj = M·L

m

(2.64)

where

Bij =
m/L∑
k=1
λi, j+L(k−1); λqn =

∫ ∫

�Fn

 ̃(Pq, Q)dF =
∫ ∫

�Fn

 ̃(xq, yq, ξ , η)dξdη;

 ̃(x, y, ξ , η) = − 1(x, y, ξ , η) · cosϕ + 2(x, y, ξ , η) · sinϕ;

n = 1,. . .,m; m is the total number of boundary elements in the contact domain,
q = 1,. . ., L; L is the number of boundary elements along the radial direction.

Note that the problem of torsion of an elastic half-space by a round punch of the
radius a has an exact solution [19], enabling the rigid rotation ψ of the punch and
the distribution of tangential forces τ(r) below the punch to be obtained:

ψ = πq0/(4G), τ (r) = q0r(a2 − r2)−1/2(q0 = 3 M/4πa3).

An approximate analytical solution of the problem of an elastic half-space torsion
due to a ring-shaped punch rotation was obtained in [8].

In the algebraic analogues (2.53), (2.62), and (2.64) the influence matrix coeffi-
cients are presented for the classic contact model of an elastic homogeneous half-
space. However, all the formulations of spatial contact problems for flat-bottomed
punches considered remain valid also for non-classic bases, for which the influ-
ence functions exist or can be obtained. The algorithm of solution of such contact
problems remains the same, except for the calculation of the influence matrix coeffi-
cients. The literature analysis shows that the great majority of the influence functions
for non-classic elastic bases can be given by
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�i(x,y,ξ ,η) = �0(x,y,ξ ,η) +�∗(x,y,ξ ,η)

where �0(x, y, ξ , η) is the influence function for a homogeneous elastic half-space
(a combined Boussinesq-Cerruti solution), and �∗(x, y, ξ , η) is an additional (non-
classic) component, taking into account nonhomogeneity, anisotropy, lamination
and other mechanical characteristics of the bases. The additional components of
the influence functions �∗(x, y, ξ , η) are regular and do not introduce any princi-
pal difficulties in numerical integration. Here, similarly to the case of the Mindlin’s
solution integration, a numerical-and-analytical procedure, described in Sect. 2.3
and consisting in analytical integration of the components of the influence functions
�0 for the elastic half-space and numerical integration of the non-classic component
�∗, appears to be efficient.

Concerning the above boundary-element formulations of contact problems for a
round (or ring-shaped) punch (2.57) and (2.64), it should be noted that in spite of
the existing corresponding exact solutions, these algebraic analogues are of great
importance for the general development of the proposed version of the numerical
boundary-element method. First, they serve as a convenient tool for numerical algo-
rithm testing. Second, these formulations remain unchanged (except for the tech-
nical procedure of the influence matrix determination) for various spatial contact
models being used and, hence, are a universal tool for the studies of spatial con-
tact interaction of the simplest type (a centrally loaded round punch). The latter
case is important for the identification of the parameters of the existing and con-
stantly elaborated influence functions. The formulations of Eqs. (2.57) are (2.64) are
undoubtedly helpful as well due to the fact they are valid for practically any impor-
tant contact problem with axial symmetry, namely for a flat ring-shaped punch. The
numerical solution of this problem using the proposed boundary-element algorithms
requires, in comparison with the round punch problem, only an obvious slight mod-
ification at the contact domain discretization under the condition of the cyclic sym-
metry being preserved (Fig. 2.10b). Not so many solutions have been obtained for
the ring-shaped punch problem (much less than for the round punch, see Sect. 4.1);
however, the practical interest to it is rather high [18, 32].

In spite of the simplicity and convenience of the given boundary-element for-
mulation of the contact problems with axial symmetry (2.57) and (2.64), one should
take into account that they remain valid only for the base models, for which the influ-
ence functions are symmetrically-differential, i.e. when�(x,y,ξ ,η) = �(x−ξ ,y−η).
Otherwise, for the numerical solution of contact problems for round and ring-shaped
punches the general boundary-element algorithms of Eqs. (2.53) and (2.62) should
be used.
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