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Numerical Methods for SDE

This chapter covers basic and new material on the subject of simulation of
solutions of stochastic differential equations. The chapter reviews results from
the well-known reference [142] but also covers new results such as, but not
only, exact sampling (see [29]). Other related references mentioned in this
chapter are, for example, [156] and [125].

There are two main objectives in the simulation of the trajectory of a
process solution of a stochastic differential equation: either interest is in the
whole trajectory or in the expected value of some functional of the process
(moments, distributions, etc) which usually are not available in explicit ana-
lytical form. Variance reduction techniques for stochastic differential equations
can be borrowed from standard variance reduction techniques of the Monte
Carlo method (see Section 1.4) and clearly only apply when interest is in the
functionals of the process.

Simulation methods are usually based on discrete approximations of the
continuous solution to a stochastic differential equation. The methods of ap-
proximation are classified according to their different properties. Mainly two
criteria of optimality are used in the literature: the strong and the weak (orders
of) convergence.

Strong order of convergence

A time-discretized approximation Yδ of a continuous-time process Y , with δ
the maximum time increment of the discretization, is said to be of general
strong order of convergence γ to Y if for any fixed time horizon T it holds
true that

E|Yδ(T )− Y (T )| ≤ Cδγ , ∀ δ < δ0 ,

with δ0 > 0 and C a constant not depending on δ. This kind of criterion is sim-
ilar to the one used in the approximation of the trajectories of nonstochastic
dynamical systems.

S.M. Iacus, Simulation and Inference for Stochastic Differential Equations,
doi: 10.1007/978-0-387-75839-8 2, © Springer Science+Business Media, LLC 2008
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Weak order of convergence

Along with the strong convergence, the weak convergence can be defined. Yδ

is said to converge weakly of order β to Y if for any fixed horizon T and any
2(β + 1) continuous differentiable function g of polynomial growth, it holds
true that

|Eg(Y (T ))− Eg(Yδ(T ))| ≤ Cδβ , ∀ δ < δ0 ,

with δ0 > 0 and C a constant not depending on δ.
Schemes of approximation of some order that strongly converge usually

have a higher order of weak convergence. This is the case with the Euler
scheme, which is strongly convergent of order γ = 1

2 and weakly convergent
of order β = 1 (under some smoothness conditions on the coefficients of the
stochastic differential equation). While the schemes have their own order of
convergence, it is usually the case that, for some actual specifications of the
stochastic differential equations, they behave better.

2.1 Euler approximation

One of the most used schemes of approximation is the Euler method, orig-
inally used to generate solutions to deterministic differential equations. We
implicitly used this method in Chapter 1 several times. The idea is the follow-
ing: given an Itô process {Xt, 0 ≤ t ≤ T} solution of the stochastic differential
equation

dXt = b(t,Xt)dt+ σ(t,Xt)dWt,

with initial deterministic value Xt0 = X0 and the discretization ΠN =
ΠN ([0, T ]) of the interval [0, T ], 0 = t0 < t1 < · · · < tN = T . The Euler
approximation of X is a continuous stochastic process Y satisfying the itera-
tive scheme

Yi+1 = Yi + b(ti, Yi)(ti+1 − ti) + σ(ti, Yi)(Wi+1 −Wi), (2.1)

for i = 0, 1, . . . , N − 1, with Y0 = X0. We have simplified the notation setting
Y (ti) = Yi and W (ti) = Wi. Usually the time increment ∆t = ti+1 − ti is
taken to be constant (i.e., ∆t = 1/N). In between any two time points ti
and ti+1, the process can be defined differently. One natural approach is to
consider linear interpolation so that Y (t) is defined as

Y (t) = Yi +
t− ti

ti+1 − ti
(Yi+1 − Yi), t ∈ [ti, ti+1) .

From (2.1), one can see that to simulate the process Y one only needs to
simulate the increment of the Wiener process, and we already know how to
do this from Chapter 1. As mentioned, the Euler scheme has order γ = 1

2 of
strong convergence.
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2.1.1 A note on code vectorization

Consider for example the Ornstein-Uhlenbeck process (see Section 1.13.1) so-
lution of

dXt = (θ1 − θ2Xt)dt+ θ3dWt .

For this process, b(t, x) = (θ1 − θ2x) and σ(t, x) = θ3. Suppose we fix an
initial value X0 = x and the set of parameters (θ1, θ2, θ3) = (0, 5, 3.5). The
following algorithm can be used to simulate the trajectory of the process using
the Euler algorithm instead of the simulation of the stochastic integral as in
Section 1.13.1:
> # ex 2.01.R
> set.seed (123)
> N <- 100
> T <- 1
> x <- 10
> theta <- c(0, 5, 3.5)
> Dt <- 1/N
> Y <- numeric(N+1)
> Y[1] <- x
> Z <- rnorm(N)
> for(i in 1:N)
+ Y[i+1] <- Y[i] + (theta [1] - theta [2]*Y[i])*Dt + theta [3]*sqrt(Dt)*Z[i]
> Y <- ts(Y,start=0, deltat =1/N)
> plot(Y)

At first glance, this algorithm appears not to be efficient from the R point of
view. We can try to optimize this code by replacing the for loop with some
*apply function. Indeed, noticing that

Y (2) = Y (1)(1− θ2∆t) + θ3 ∗
√
∆tZ(1)

and

Y (3) = Y (2)(1− θ2∆t) + θ3
√
∆tZ(2)

= {Y (1)(1− θ2∆t) + θ3
√
∆tZ(1)}(1− θ2∆t) + θ3

√
∆tZ(2)

= Y (1)(1− θ2∆t)2 + θ3
√
∆tZ(1)(1− θ2∆t) + θ3

√
∆tZ(2)

by iterative substitution, we get the general formula for the kth step of the
Euler scheme for the Ornstein-Uhlenbeck process,

Y (k) = Y (1) · (1− θ2∆t)k−1 +
k−1∑
j=1

(θ3 ∗
√
∆t ∗ Z(j)) ∗ (1− θ2∆t)(k−j−1),

which leads to the following algorithm that uses linear algebra instead of for
loops.
> # ex 2.02.R
> set.seed (123)
> theta <- c(0, 5, 3.5)
> N <- 100
> T <- 1
> x <- 10
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> Z <- rnorm(N)
> Dt <- 1/N
> A <- theta [3]*sqrt(Dt)*Z
> P <- (1-theta [2]*Dt )^(0:(N-1))
> X0 <- x
> X <- sapply (2:(N+1), function(x) X0*(1-theta [2]*Dt)^(x-1) +
+ A[1:(x-1)] %*% P[(x -1):1])
> Y <- ts(c(X0,X),start=0, deltat =1/N)
> plot(Y)

But, this one-line code is not at all better than the one implying the for
loop. In fact, it is even worse, as it implies more calculations than needed.
To show this, we embed the two codes into two functions OU, and OU.vec, to
measure their performance in terms of CPU time.1

> # ex 2.03.R
> OU <- function(a,b, x, N=1000){
+ Y <- numeric(N+1)
+ Y[1] <- x
+ Z <- rnorm(N)
+ Dt <- 1/N
+ for(i in 1:N)
+ Y[i+1] <- Y[i] - a*Y[i]*Dt + b*sqrt(Dt)*Z[i]
+ invisible(Y)
+ }

> OU.vec <- function(a, b, x, N=1000){
+ Dt <- 1/N
+ Z <- rnorm(N)
+ A <- b*sqrt(Dt)*Z
+ P <- (1-a*Dt )^(0:(N-1))
+ X0 <- x
+ X <- c(X0 , sapply (2:(N+1),
+ function(x) X0*(1-a*Dt)^(x-1) +
+ sum(A[1:(x-1)] * P[(x -1):1])))
+ invisible(X)
+ }

Using the system.time function, we test the two implementations
> set.seed (123)
> system.time(OU(10 ,5 ,3.5))
[1] 0.037 0.001 0.044 0.000 0.000

> set.seed (123)
> system.time(OU.vec (10 ,5 ,3.5))
[1] 0.198 0.024 0.261 0.000 0.000

which shows that the vectorized version is much slower than the naive one. The
moral of this example is that for loops in R should be replaced by vectorized
code only if the number of calculations does not increase, as the case above
shows. Vectorization can really reduce simulation/estimation time, but only
under the conditions above. As vectorization can become a nightmare for the
average R programmer, the reader has been warned.

To convince the reader that it is worth using vectorized code when it is
appropriate, we report without comments the example from Chapter 1 for
generating paths of Brownian motion with two levels of optimization in the R
code.

1 Times may vary on the reader’s machine.
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# ex 2.04.R
> BM.1 <- function(N=10000){ # brutal code
+ W <- NULL
+ for(i in 2:(N+1))
+ W <- c(W, rnorm (1) / sqrt(N))
+ }

> BM.2 <- function(N=10000){ # smarter
+ W <- numeric(N+1)
+ Z <- rnorm(N)
+ for(i in 2:(N+1))
+ W[i] <- W[i-1] + Z[i-1] / sqrt(N)
+ }

> BM.vec <- function(N=10000) # awesome !
+ W <- c(0,cumsum(rnorm(N)/sqrt(N)))

> set.seed (123)
> system.time(BM .1())
[1] 1.354 1.708 3.856 0.000 0.000

> set.seed (123)
> system.time(BM .2())
[1] 0.281 0.011 0.347 0.000 0.000

> set.seed (123)
> system.time(BM.vec ())
[1] 0.008 0.001 0.010 0.000 0.000

2.2 Milstein scheme

The Milstein scheme2 [164] makes use of Itô’s lemma to increase the accuracy
of the approximation by adding the second-order term. Denoting by σx the
partial derivative of σ(t, x) with respect to x, the Milstein approximation looks
like

Yi+1 =Yi + b(ti, Yi)(ti+1 − ti) + σ(ti, Yi)(Wi+1 −Wi)

+
1
2
σ(ti, Yi)σx(ti, Yi)

{
(Wi+1 −Wi)2 − (ti+1 − ti)

} (2.2)

or, in more symbolic form,

Yi+1 = Yi + b∆t+ σ∆Wt +
1
2
σσx

{
(∆Wt)2 −∆t

}
.

This scheme has strong and weak orders of convergence equal to one. Let us
consider once again the Ornstein-Uhlenbeck process solution of (1.39). For
this process, b(t, x) = θ1 − θ2 · x and σ(t, x) = θ3, and thus σx(t, x) = 0 and
the Euler and Milstein schemes coincide. This is one case in which the Euler
scheme is of strong order of convergence γ = 1.
2 Actually, Milstein proposed two schemes of approximation. The one presented

in this section corresponds to the one most commonly known as the “Milstein
scheme” and has the simplest form. Another Milstein scheme of higher-order
approximation, will be presented later in this chapter.
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The geometric Brownian motion

A more interesting case is that of geometric Brownian motion, presented in
Section 1.7, solving the stochastic differential equation

dXt = θ1Xtdt+ θ2XtdWt.

For this process, b(t, x) = θ1 · x, σ(t, x) = θ2 · x, and σx(t, x) = θ2. The Euler
discretization for this process looks like

Y E
i+1 = Y E

i (1 + θ1 ·∆t) + θ2Y
E
i ∆Wt,

and the Milstein scheme reads

Y M
i+1 = Y M

i + θ1 · Y M
i ∆t+ θ2Y

M
i ∆Wt +

1
2
θ22Y

M
i

{
(∆Wt)2 −∆t

}
= Y M

i

(
1 +

(
θ1 −

1
2
θ22

)
∆t

)
+ θ2Y

M
i ∆Wt +

1
2
θ22Y

M
i (∆Wt)2.

Recall that ∆Wt ∼
√
∆tZ with Z ∼ N(0, 1). Thus

Y E
i+1 = Y E

i (1 + θ1 ·∆t+ θ2
√
∆tZ)

and

Y M
i+1 = Y M

i

(
1 +

(
θ1 −

1
2
θ22

)
∆t

)
+ θ2Y

M
i

√
∆tZ +

1
2
θ22Y

M
i ∆tZ2

= Y M
i

(
1 +

(
θ1 +

1
2
θ22(Z

2 − 1)
)
∆t+ θ2

√
∆tZ

)
.

Looking at the exact solution in (1.7), the Milstein scheme makes the expan-
sion exact up to order O(∆t). Indeed, formal Taylor expansion leads to

Xt+∆t = Xt exp
{(

θ1 −
θ22
2

)
∆t+ θ2

√
∆tZ

}
= Xt

{
1 +

(
θ1 −

θ22
2

)
∆t+ θ2

√
∆tZ +

1
2
θ22∆tZ

2 +O(∆t)
}

= Y M
i+1.

2.3 Relationship between Milstein and Euler schemes

Following [125], we now show a result on transformations of stochastic dif-
ferential equations and the two schemes of approximation. Given the generic
stochastic differential equation

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, (2.3)
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the Milstein scheme for it is

∆X = Xi+1 −Xi =
(
b(ti, Xi)−

1
2
σ(ti, Xi)σx(ti, Xi)

)
∆t

+ σ(ti, Xi)
√
∆tZ +

1
2
σ(ti, Xi)σx(ti, Xi)∆tZ2

(2.4)

with Z ∼ N(0, 1). Consider now the transformation y = F (x) and its inverse
x = G(y). Then (2.3) becomes by Itô’s lemma

dYt =
(
F ′(Xt)b(t,Xt) +

1
2
F ′′(Xt)σ2(t,Xt)

)
dt+ F ′(Xt)σ(t,Xt)dWt (2.5)

with Yt = F (Xt). Now choose F as the Lamperti transform (1.34) so that

F ′(x) =
1

σ(t, x)
, F ′′(x) = −σx(t, x)

σ2(t, x)
.

We know from (1.35) that (2.5) becomes

dYt =
(
b(t,Xt)
σ(t,Xt)

− 1
2
σ2

x(t,Xt)
)

dt+ dWt .

We remark again that the Lamperti transform is such that the multiplicative
factor in front of the Wiener process no longer depends on the state of the
process. Thus the Euler scheme for Yt = F (Xt) reads

∆Y =
(
b(ti, Xi)
σ(ti, Xi)

− 1
2
σx(ti, Xi)

)
∆t+

√
∆tZ .

The next step is to calculate the Taylor expansion of the inverse transforma-
tion in order to obtain some comparable expression.

G(Yi +∆Y ) = G(Yi) +G′(Yi)∆Y +
1
2
G′′(Yi)(∆Yi)2 +O

(
∆Y 3

)
.

Notice that
G′(y) =

d
dy
F−1(y) =

1
F ′(G(y))

= σ(t, G(y))

and
G′′(y) = G′(y)σx(t, G(y)) = σ(t, G(y))σx(t, G(y)),

which finally leads to

G(Yi +∆Y )−G(Yi) =
(
b(ti, Xi)−

1
2
σ(ti, Xi)σx(ti, Xi)

)
∆t

+ σ(ti, Xi)
√
∆tZ +

1
2
σ(ti, Xi)σx(ti, Xi)∆tZ2

+O
(
∆t

3
2

)
.
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Thus the Milstein scheme on the original process (2.4) and the Euler scheme
on the transformed process are equal up to and including the order ∆t. So, in
principle, whenever possible, one should use the Euler scheme on the trans-
formed process.

In general, if F (not necessarily the Lamperti transformation) eliminates
the interactions between the state of the process and the increments of the
Wiener process, this transformation method is probably always welcome be-
cause it reduces instability in the simulation process. A detailed account on
this matter can be found in [70]. We now show a couple of applications of the
transformation method just presented.

2.3.1 Transform of the geometric Brownian motion

The first example is on the geometric Brownian motion. If we use F (x) =
log(x), then from (1.32) and Itô’s lemma, we obtain

d logXt =
(
θ1 −

1
2
θ22

)
dt+ θ2dWt.

Thus the Euler scheme for the transformed process is

∆ logX =
(
θ1 −

1
2
θ22

)
∆t+ θ2

√
∆tZ .

Now, using the Taylor expansion on the inverse transform G(y) = xy, we get
the Milstein scheme.

2.3.2 Transform of the Cox-Ingersoll-Ross process

One more interesting application of the Lamperti transform concerns the Cox-
Ingersoll-Ross process introduced in Section 1.13.3. The dynamics of the pro-
cess is

dXt = (θ1 − θ2Xt)dt+ θ3
√
XtdWt, (2.6)

and the Milstein scheme for it reads as

∆X =
(

(θ1 − θ2Xi)−
1
4
θ23

)
∆t+ θ3

√
Xi

√
∆tZ +

1
4
θ23∆tZ

2. (2.7)

Now, using the transformation y =
√
x, we obtain the transformed stochastic

differential equation

dYt =
1

2Yt

(
(θ1 − θ2Y

2
t )− 1

4
θ23

)
dt+

1
2
θ3dWt ,

for which the Euler scheme is
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∆Y =
1

2Yi

(
(θ1 − θ2Y

2
i )− 1

4
θ23

)
∆t+

1
2
θ3
√
∆tZ .

Since G(y) = x2, we obtain

G(Yi +∆Y )−G(Yi) = (Yi +∆Y )2 − Y 2
i = (∆Y )2 + 2Yi∆Y

=
1
4
θ23∆tZ

2 +O(∆t2)

+
(

(θ1 − θ2Y
2
i )− 1

4
θ23

)
∆t+ Yiθ3

√
∆tZ ,

which is exactly (2.7) given that Yi =
√
Xi.

2.4 Implementation of Euler and Milstein schemes:
the sde.sim function

We now show generic implementations of both the Euler and Milstein schemes.
sde.sim <- function(t0=0, T=1, X0=1, N=100, delta ,

drift , sigma , sigma.x,
method=c("euler","milstein")){

if(missing(drift) )
stop("please specify at least the drift coefficient of the SDE")

if(missing(sigma ))
sigma <- expression (1)

if(!is.expression(drift) | !is.expression(sigma ))
stop("coefficients must be expressions in `t' and `x'")

method <- match.arg(method)
needs.sx <- FALSE

if(method =="milstein") needs.sx <- TRUE

if(needs.sx & missing(sigma.x)){
cat("sigma.x not provided , attempting symbolic derivation .\n")
sigma.x <- D(sigma ,"x")

}

d1 <- function(t,x) eval(drift)
s1 <- function(t,x) eval(sigma)
sx <- function(t,x) eval(sigma.x)

if(t0 <0 | T<0)
stop("please use positive times!")

if(missing(delta )){
t <- seq(t0,T, length=N+1)

} else {
t <- c(t0,t0+cumsum(rep(delta ,N)))
T <- t[N+1]
warning("T set to =",T,"\n")

}

Z <- rnorm(N)
X <- numeric(N+1)
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Dt <- (T-t0)/N
sDt <- sqrt(Dt)
X[1] <- X0

if(method =="euler"){
for(i in 2:(N+1))

X[i] <- X[i-1] + d1(t[i-1],X[i-1])*Dt +
s1(t[i-1],X[i-1])*sDt*Z[i-1]

}
if(method =="milstein"){
for(i in 2:(N+1)){
X[i] <- X[i-1] + d1(t[i-1],X[i-1])*Dt +

s1(t[i-1],X[i-1])*sDt*Z[i-1] +
0.5*s1(t[i-1],X[i-1])* sx(t[i-1],X[i-1]) *
(Dt*Z[i-1]^2-Dt)

}
}
X <- ts(X,start=t0 ,deltat=Dt)
invisible(X)

}

The sde.sim function above can be used to simulate paths of solutions
to generic stochastic differential equations. The function can simulate trajec-
tories with either the “euler” or “milstein” scheme. The function accepts
the two coefficients drift and sigma and eventually the partial derivative
of the diffusion coefficient sigma.x for the Milstein scheme. If sigma.x is
not provided by the user, the function tries to provide one itself using the R
function D. Coefficients must be objects of class expression with arguments
named t and x, respectively, interpreted as time and space (i.e., the state of
the process). If the diffusion coefficient sigma is not specified, it is assumed
to be unitary (i.e., identically equal to one). The user can specify the ini-
tial value X0 (defaulted to 1), the interval [t0, T ] (defaulted to [0, 1]), the ∆
step delta, and the number N of values of the process to be generated. The
function always returns a ts (time series) object of length N + 1; i.e., the
initial value X0 and the N new simulated values of the trajectory. If ∆ is not
specified, ∆ = (T − t0)/N . If ∆ is specified, then N new observations are gen-
erated at time increments of ∆ and the time horizon is adjusted accordingly
as T = ∆ ·N . We have added the opportunity to specify the ∆ step directly
because this will be relevant in Chapter 3.

2.4.1 Example of use

The following examples use the sde.sim function for some of the processes
introduced earlier. The reader doesn’t need to write the code for the sde.sim
function because it is included in the CRAN package called sde. Moreover, this
function is going to evolve during this chapter as new methods are introduced.

The Ornstein-Uhlenbeck process

dXt = (θ1 − θ2Xt)dt+ θ3dWt, X0 = 10 ,

with (θ1, θ2, θ3) = (0, 5, 3.5).
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> # ex 2.05.R
> # Ornstein - Uhlenbeck process
> require(sde)
[1] TRUE
> set.seed (123)
> d <- expression (-5 * x)
> s <- expression (3.5)
> sde.sim(X0=10, drift=d, sigma=s) -> X
sigma.x not provided , attempting symbolic derivation.
> plot(X,main="Ornstein -Uhlenbeck")

The Cox-Ingersoll-Ross process

dXt = (θ1 − θ2Xt)dt+ θ3
√
XtdWt, X0 = 10 ,

with (θ1, θ2, θ3) = (6, 3, 2).
> # ex 2.06.R
> # Cox -Ingersoll -Ross (CIR -1)
> set.seed (123)
> d <- expression( 6-3*x )
> s <- expression( 2*sqrt(x) )
> sde.sim(X0=10, drift=d, sigma=s) -> X
sigma.x not provided , attempting symbolic derivation.
> plot(X,main="Cox -Ingersoll -Ross")

The Cox-Ingersoll-Ross process with Milstein scheme

We need the partial derivative with respect to variable x of the coefficient
σ(·, ·),

σx(t, x) =
∂

∂x
2
√
x =

1√
x
.

Therefore,
> # ex 2.07.R
> # Cox -Ingersoll -Ross (CIR -2)
> d <- expression( 6-3*x )
> s <- expression( 2*sqrt(x) )
> s.x <- expression( 1/sqrt(x) )
> set.seed (123)
> sde.sim(X0=10, drift=d, sigma=s, sigma.x=s.x,
+ method="milstein") -> X
> plot(X,main="Cox -Ingersoll -Ross")

The Cox-Ingersoll-Ross process with Euler scheme on the transformed
process Yt =

√
Xt

dYt =
1

2Yt

(
θ1 − θ2Y

2
t −

1
4
θ23

)
dt+

1
2
θ3dWt, Y0 =

√
10 ,

with (θ1, θ2, θ3) = (6, 3, 2).
> # ex 2.08.R
> # Cox -Ingersoll -Ross (CIR -3)
> set.seed (123)
> d <- expression( (6-3*x^2 - 1)/(2*x) )
> s <- expression( 1 )
> sde.sim(X0=sqrt (10), drift=d, sigma=s) -> Y
> plot(Y^2,main="Cox -Ingersoll -Ross")

The reader can verify that the Milstein scheme CIR-2 returns the same path
as CIR-3 but on a different scale (i.e., Y 2 = X).
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The geometric Brownian motion process

dXt = θ1Xtdt+ θ2XtdWt, X0 = 10 ,

with (θ1, θ2) =
(
1, 1

2

)
.

> # ex 2.09.R
> # geometric Brownian Motion
> set.seed (123)
> d <- expression( x )
> s <- expression( 0.5*x )
> sde.sim(X0=10, drift=d, sigma=s) -> X
> plot(X,main="geometric Brownian Motion")

2.5 The constant elasticity of variance process and
strange paths

The constant elasticity of variance (CEV) process introduced in finance in
option pricing (see [201] and [25]) is another particular member of the CKLS
family of models (see Section 1.13.4) and is the solution of the stochastic
differential equation

dXt = µXtdt+ σXγ
t dWt, γ ≥ 0 . (2.8)

This process is quite useful in modeling a skewed implied volatility. In particu-
lar, for γ < 1, the skewness is negative, and for γ > 1 the skewness is positive.
For γ = 1, the CEV process is a particular version of the geometric Brow-
nian motion. Even if this process is assumed to be positive, the discretized
version of it can reach negative values. To understand why this could happen
and what to do with the paths that cross zero, one should go back to the
theoretical properties of the process. For example, in [38] it is shown that for
γ < 1

2 there is a positive probability for this process to be absorbed in zero.
Hence, if in one simulation the path crosses the zero line, one should stop the
simulation and consider this path as actually absorbed in 0.

2.6 Predictor-corrector method

Both schemes of discretization consider the coefficients b and σ as not varying
during the time interval ∆t, which is of course untrue for a generic stochastic
differential equation, as b and σ can depend on both the time t and the state
of the process Xt. One way to recover the varying nature of these coefficients
is to average their values in some way. Since the coefficients depend on Xt and
we are simulating Xt, the method we present here just tries to approximate
the states of the process first. This method is of weak convergence order
1. The predictor-corrector algorithm is as follows. First consider the simple
approximation (the predictor)
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Ỹi+1 = Yi + b(ti, Yi)∆t+ σ(ti, Yi)
√
∆tZ.

Then choose two weighting coefficients α and η in [0, 1], and calculate the
corrector as

Yi+1 = Yi +
(
αb̃(ti+1, Ỹi+1) + (1− α)b̃(ti, Yi)

)
∆t

+
(
ησ(ti+1, Ỹi+1) + (1− η)σ(ti, Yi)

)√
∆tZ

with
b̃(ti, Yi) = b(ti, Yi)− ησ(ti, Yi)σx(t, Yi) .

The next code shows an implementation of the predictor-corrector method.
With a (small) loss of efficiency, the new sde.sim function can replace the old
one. Note that the predictor-corrector method falls back to the standard Euler
method for α = η = 0. The function by default implements the predictor-
corrector method with α = η = 1

2 . We only report here the modification to
previous code. As usual, the complete version of sde.sim can be found in the
sde package.
sde.sim <- function(t0=0, T=1, X0=1, N=100, delta ,

drift , sigma , sigma.x,
method=c("euler","milstein"),
alpha =0.5, eta=0.5, pred.corr=T){

# (...)

if(pred.corr==F){
alpha <- 0
eta <- 0
sigma.x <- NULL

}

# (...)

if(method =="milstein" | (method =="euler" & pred.corr==T))
needs.sx <- TRUE

d1.t <- function(t,x) d1(t,x) - eta * s1(t,x) * sx(t,x)

if(method =="euler"){
for(i in 2:(N+1)){

Y[i] <- X[i-1] + d1(t[i-1],X[i-1])*Dt +
s1(t[i-1],X[i-1])*sDt*Z[i-1]

if(pred.corr==T)
X[i] <- X[i-1] + (alpha*d1.t(t[i],Y[i]) +

(1-alpha)* d1.t(t[i],X[i -1]))*Dt +
(eta * s1(t[i],Y[i]) +
(1-eta)*s1(t[i-1],Y[i-1]))*sDt*Z[i-1]

else
X[i] <- Y[i]

}
}

# (...)
}

There are different predictor-corrector methods available that can be ap-
plied to discretization schemes of order greater than 1. The reader should
look, for example, at Section 5.3 in [142].
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2.7 Strong convergence for Euler and Milstein schemes

To show in practice how strong convergence takes place in discretization
schemes, we reproduce here nice empirical evidence from [125]. The objec-
tive of this section is to show how the Milstein scheme outperforms the Euler
scheme in convergence in the simple case of geometric Brownian motion. As
already mentioned, the theory says that convergence is in the limit of the
discretization step as ∆t→ 0. This experiment proceeds as follows:

1. We first simulate trajectories of the Brownian motion with an increased
level of refinement (i.e., with a decreasing value of ∆t). This is done iter-
atively using the Brownian bridge.

2. We then construct the trajectory of the geometric Brownian motion with
both Euler and Milstein schemes using the path of the Wiener process
available.

3. We then compare the values of the process X at time T in the two cases.

Figure 2.1 is the result of step 1, and we now explain the rationale behind it.
On the top-left corner is depicted the trajectory of a Brownian bridge starting
from 1 at time t0 = 0 and ending at 1 at time T = 1 using N = 2 intervals,
and indeed we have three points of the trajectory at times 0, 1

2 , and 1. The
top-right picture has been generated using two Brownian bridges. The first
Brownian bridge starts at 1 at time 0 and ends at B( 1

2 ) at time t = 1
2 . The

second Brownian bridge starts at B( 1
2 ) at time t = 1

2 and ends up at 1 at time
1. This trajectory has five points at times 0, 1

4 , 1
2 , 3

4 , 1. In the next step, the
procedure is iterated splitting each interval [0, 1

4 ], . . . , [ 34 , 1] into two parts up
to the final bottom-right picture, consisting of 214 +1 points of the trajectory
of the Wiener process. The figure is generated with the following code, which
we show because this dyadic algorithm is also a constructive way of building
a process with continuous but nowhere differentiable path (i.e., the Wiener
process).
> # ex 2.10.R
> set.seed (123)
> W <- vector (14,mode="list")
> W[[1]] <- BBridge (1,1,0,1,N=2)
>
> for(i in 1:13){
+ cat(paste(i,"\n"))
+ n <- length(W[[i]])
+ t <- time(W[[i]])
+ w <- as.numeric(W[[i]])
+ tmp <- w[1]
+ for(j in 1:(n-1)){
+ tmp.BB <- BBridge(w[j],w[j+1],t[j],t[j+1],N=2)
+ tmp <- c(tmp , as.numeric(tmp.BB [2:3]))
+ }
+ W[[i+1]] <- ts(tmp ,start=0,deltat =1/(2^(i+1)))
+ }
> min.w <- min(unlist(W)) -0.5
> max.w <- max(unlist(W))+0.5
> opar <- par(no.readonly = TRUE)
> par(mfrow=c(7,2),mar=c(3,0,0,0))
> for(i in 1:14){
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Fig. 2.1. A simulated path of the Wiener process for increased levels of discretiza-
tion, N being the number of subintervals of [0,1].

+ plot(W[[i]], ylim=c(min.w, max.w),axes=F)
+ if(i==1)
+ axis(1,c(0 ,0.5 ,1))
+ if(i==2)
+ axis(1,c(0 ,0.25 ,0.5 ,0.75 ,1))
+ if(i>2)
+ axis(1,c(0 ,0.1 ,0.2 ,0.3 ,0.4 ,0.5 ,0.6 ,0.7 ,0.8 ,0.9 ,1))
+ text (0.5 ,2.2 , sprintf("N = %d" ,2^i))
+ }
> par(opar)

In the R code above, we make use of the BBridge function of the sde
package (see also Listing 1.2).

The next step is to simulate the trajectory of the geometric Brownian
motion using both the Euler and Milstein schemes and calculate the value
X(T ) with the two schemes. The following script does the calculations and
plots both values against the true value X(T ) for the given Wiener process
path (i.e., the Wiener process ending in 1 at time 1, which is a sort of Brownian
bridge) X(1) = exp{θ1 − 1

2θ
2
2}. We have chosen θ1 = 1 and θ2 = 1

2 .

> # ex 2.11.R
> S0 <- 1
> theta <- c(1, 0.5)
> euler <- NULL
> milstein <- NULL
> for(i in 1:14){
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Fig. 2.2. Speed of convergence of Euler and Milstein schemes (Euler = solid line,
Milstein = dashed line) to the true value (dotted line) as a function of the discretiza-
tion step ∆t = 1/N .

+ n <- length(W[[i]])
+ Dt <- 1/n
+ sDt <- sqrt(Dt)
+ E <- numeric(n)
+ E[1] <- S0
+ M <- numeric(n)
+ M[1] <- S0
+ for(j in 2:n){
+ Z <- W[[i]][j]-W[[i]][j-1]
+ E[j] <- E[j-1] * (1 + theta [1] * Dt + theta [2] * Z)
+ M[j] <- M[j-1] * (1 + (theta [1] - 0.5* theta [2]^2) * Dt +
+ theta [2] * Z + 0.5 * theta [2]^2 * Z^2)
+ }
+ cat(paste(E[n],M[n],"\n"))
+ euler <- c(euler , E[n])
+ milstein <- c(milstein , M[n])
+ }

> plot (1:14,euler ,type="l",main="Milstein vs Euler",
+ xlab=expression(log [2](N)), ylab="S(T)")
> lines (1:14 , milstein ,lty=2)
> abline(h=exp(theta [1] -0.5*theta [2]^2) , lty=3)

Figure 2.2 shows the speed of convergence of both schemes (Euler = solid
line, Milstein = dashed line) to the true value (dotted line) as a function of
∆t = 1/N .
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2.8 KPS method of strong order γ = 1.5

By adding more terms to the Itô-Taylor expansion, one can achieve a strong
order γ higher than 1 (for a detailed review and implementation, see [142]).
In particular, the following scheme3 (see, e.g., [143]) has strong order γ = 1.5:

Yi+1 = Yi + b∆t+ σ∆Wt +
1
2
σσx

{
(∆Wt)2 −∆t

}
+ σbx∆Ut +

1
2

{
bbx +

1
2
σ2bxx

}
∆t2

+
{
bσx +

1
2
σ2σxx

}
{∆Wt∆t−∆Ut}

+
1
2
σ(σσx)x

{
1
3
(∆Wt)2 −∆t

}
∆Wt ,

where

∆Ut =
∫ ti+1

t0

∫ s

ti

dWuds

is a Gaussian random variable with zero mean and variance 1
3∆t

3 and such
that E(∆Ut∆Wt) = 1

2∆t
2. All the pairs (∆Wt,∆Ut) are mutually independent

for all ti’s. To implement this scheme, additional partial derivatives of the
drift and diffusion coefficient are required and the algorithm in sde.sim that
generates Gaussian variates must be changed to allow for bivariate Gaussian
variates for the pairs (∆Wt,∆Ut). With this aim, we use the function mvrnorm
in the MASS package, which implements the algorithm described in [195].

Note that the Euler scheme is not of strong order γ = 1.5 for the Ornstein-
Uhlenbeck process, as there is the additional term σbx∆Ut in the expansion.
The next code implements the strong order scheme above and, as usual, we
just report the additional part of the sde.sim function.

sde.sim <- function(t0=0, T=1, X0=1, N=100, delta ,
drift , sigma , drift.x, sigma.x, drift.xx, sigma.xx,
method=c("euler","milstein","KPS"),
alpha =0.5, eta=0.5, pred.corr=T){

# (...)

if(method == "KPS") {
needs.sx <- TRUE
needs.dx <- TRUE
needs.sxx <- TRUE
needs.dxx <- TRUE

}

# (...)

if(method =="euler")
X <- sde.sim.euler(X0 , t0 , Dt , N, d1 , s1 , s1.x, alpha , eta , pred.corr)

3 We name this scheme KPS after the authors who proposed it.
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if(method =="milstein")
X <- sde.sim.milstein(X0 , t0 , Dt , N, d1 , s1 , s1.x)

if(method =="KPS"){
require(MASS)
Sigma <- matrix(c(Dt , 0.5*Dt^2, 0.5*Dt^2, 1/3*Dt^3),2,2)
tmp <- mvrnorm(N, c(0,0), Sigma)
Z <- tmp[,1]
U <- tmp[,2]
X <- sde.sim.KPS(X0 , t0 , Dt , N, d1 , d1.x, d1.xx ,

s1 , s1.x, s1.xx, Z, U)
}

# (...)

}

Listing 2.1. Simulation of paths of processes governed by stochastic differential
equations.

In the code of Listing 2.1, we have separated into three functions the
different schemes of simulation: sde.sim.euler, sde.sim.milstein, and
sde.sim.KPS. The reason for this approach is twofold. On the one hand, the
sde.sim became just an interface for different schemes, hence allowing even
for generalization toward the implementation of new schemes. On the other
hand, separating functions allows for an implementation in C code to speed
up the execution (this will be appreciated in Monte Carlo experiments). The
R code corresponding to the functions above can be found in Listings 2.2, 2.3,
and 2.4. Of their C counterparts we only present the Milstein scheme, in List-
ing 2.5, while the complete source code can be found as part of the R package
sde available through the CRAN repository. The C code will be called in R
using the following lines.
sde.sim.milstein <- function(X0 , t0 , Dt , N, d1 , s1 , s1.x){

return( .Call("sde_sim_milstein", X0, t0 , Dt , as.integer(N), d1 ,
s1 , s1.x, .GlobalEnv) )

}

What is interesting from the reading of C code is the use of the feval()
function. This function, defined in Listing 2.6, evaluates an R function directly
from the C code and uses the result in the internal loops, speeding up the whole
simulation scheme. We found that these C routines are about two times faster
than their R counterparts but no more. Indeed, we are paying the cost of
flexibility by allowing the sde.sim function to accept any sort of specification
of drift and diffusion coefficients. Of course, for intensive simulation studies
on a specific model, writing the complete code in C might be worth trying.

sde.sim.euler <- function(X0, t0, Dt, N, d1 , s1 , s1.x,
alpha , eta , pred.corr){

X <- numeric(N+1)
Y <- numeric(N+1)
sDt <- sqrt(Dt)
Z <- rnorm(N, sd=sDt)
X[1] <- X0
Y[1] <- X0
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d1.t <- function(t,x) d1(t,x) - eta * s1(t,x) * s1.x(t,x)

if(pred.corr==TRUE){
for(i in 2:(N+1)){

Y[i] <- X[i-1] + d1(t[i-1],X[i-1])*Dt + s1(t[i-1],X[i-1])*Z[i-1]
X[i] <- X[i-1] + (alpha*d1.t(t[i],Y[i]) +

(1-alpha)* d1.t(t[i],X[i -1]))*Dt +
(eta * s1(t[i],Y[i]) +
(1-eta)*s1(t[i-1],Y[i-1]))*Z[i-1]

}
} else {
for(i in 2:(N+1))
X[i] <- X[i-1] + d1(t[i-1],X[i-1])*Dt + s1(t[i-1],X[i-1])*Z[i-1]

}
return(X)

}

Listing 2.2. R code for Euler simulation scheme.

sde.sim.milstein <- function(X0 , t0, Dt, N, d1 , s1 , s1.x){
X <- numeric(N+1)
Y <- numeric(N+1)
sDt <- sqrt(Dt)
Z <- rnorm(N, sd=sDt)

X[1] <- X0
Y[1] <- X0

for(i in 2:(N+1)){
X[i] <- X[i-1] + d1(t[i-1],X[i-1])*Dt +

s1(t[i-1],X[i-1])*Z[i-1] +
0.5*s1(t[i-1],X[i-1])* s1.x(t[i-1],X[i-1]) *
(Z[i-1]^2 -Dt)

}
return(X)

}

Listing 2.3. R code for Milstein simulation scheme.

sde.sim.KPS <- function(X0, t0 , Dt , N, d1, d1.x, d1.xx ,
s1 , s1.x, s1.xx , Z, U){

X <- numeric(N+1)
Y <- numeric(N+1)
Dt <- (T-t0)/N
sDt <- sqrt(Dt)
X[1] <- X0
Y[1] <- X0

for(i in 2:(N+1)){
D1 <- d1(t[i-1],X[i-1])
D1.x <- d1.x(t[i-1],X[i-1])
D1.xx <- d1.xx(t[i-1],X[i-1])
S1 <- s1(t[i-1],X[i-1])
S1.x <- s1.x(t[i-1],X[i-1])
S1.xx <- s1.xx(t[i-1],X[i-1])

X[i] <- X[i-1] + D1 * Dt + S1 * Z[i-1] +
0.5 * S1 * S1.x * (Z[i-1]^2-Dt) +

S1 * D1.x * U[i-1] +
0.5 * (D1 * D1.x + 0.5 * S1^2 * D1.xx) * Dt^2 +
(D1 * S1.x + 0.5 * S1^2 * S1.xx) * (Z[i-1] * Dt - U[i-1]) +
0.5 * S1 * (S1.x^2 + S1*S1.xx) * (1/3*Z[i-1]^2 - Dt) * Z[i-1]

}
return(X)
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}

Listing 2.4. R code for KPS simulation scheme.

SEXP sde_sim_milstein(SEXP x0 , SEXP t0 , SEXP delta , SEXP N,
SEXP d, SEXP s, SEXP sx , SEXP rho)

{
double T, DELTA;
double sdt , Z, tmp , D, S, Sx;
int i, n;
SEXP X;

if(!isNumeric(x0)) error("`x0 ' must be numeric");
if(!isNumeric(t0)) error("`t0 ' must be numeric");
if(!isNumeric(delta)) error("`delta ' must be numeric");
if(!isInteger(N)) error("`N' must be integer");
if(!isFunction(d)) error("`d' must be a function");
if(!isFunction(s)) error("`s' must be a function");
if(!isFunction(sx)) error("`sx ' must be a function");
if(!isEnvironment(rho)) error("`rho ' must be an environment");

PROTECT(x0 = AS_NUMERIC(x0));
PROTECT(delta = AS_NUMERIC(delta ));
PROTECT(t0 = AS_NUMERIC(t0));
PROTECT(N = AS_INTEGER(N));

T = *NUMERIC_POINTER(t0);
n = *INTEGER_POINTER(N);
DELTA = *NUMERIC_POINTER(delta);

PROTECT(X = NEW_NUMERIC(n+1));
REAL(X)[0] = *NUMERIC_POINTER(x0);
sdt = sqrt(DELTA );

GetRNGstate ();
for(i=1; i<= n+1; i++){
Z = rnorm(0,sdt);
T = T + DELTA;
tmp = REAL(X)[i-1];
D = feval(T,tmp ,d,rho);
S = feval(T,tmp ,s,rho);
Sx = feval(T,tmp ,sx ,rho);
REAL(X)[i] = tmp + D*DELTA + S*Z + 0.5*S*Sx*(Z*Z-DELTA );

}
PutRNGstate ();

UNPROTECT (5);
return(X);

}

Listing 2.5. C code for Milstein simulation scheme.

/*
t : time variable
x : space variable
f : a SEXP to a R function
rho : the environment `f' is going to be evaluated

on return: the value of f(t,x)
*/
double feval(double t, double x, SEXP f, SEXP rho)
{
double val= 0.0;
SEXP R_fcall , tpar , xpar;
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PROTECT(tpar = allocVector(REALSXP , 1));
PROTECT(xpar = allocVector(REALSXP , 1));
REAL(tpar )[0] = t;
REAL(xpar )[0] = x;

PROTECT(R_fcall = allocList (3));
SETCAR(R_fcall , f);
SET_TYPEOF(R_fcall , LANGSXP );
SETCADR(R_fcall , tpar);
SETCADDR(R_fcall , xpar);

val = *NUMERIC_POINTER(eval(R_fcall , rho ));
UNPROTECT (3);
return(val);

}

Listing 2.6. C code for the feval function, which allows for the calculation of R
functions directly in the C code.

2.9 Second Milstein scheme

In [164], Milstein proposed both (2.2) and the approximation

Yi+1 = Yi +
(
b− 1

2
σσx

)
∆t+ σZ

√
∆t+

1
2
σσx∆tZ

2

+∆t
3
2

(
1
2
bσx +

1
2
bxσ +

1
4
σ2σxx

)
Z

+∆t2
(

1
2
bbx +

1
4
bxxσ

2

)
.

(2.9)

This method has weak second-order convergence in contrast to the weak first-
order convergence of the Euler scheme. This method requires partial (first
and second) derivatives of both drift and diffusion coefficients. Listing 2.7
contains the code corresponding to the approximation (2.9). The function
sde.sim needs to be modified as follows.

if(method == "KPS" | method == "milstein2") { # added "milstein2 " method
needs.sx <- TRUE
needs.dx <- TRUE
needs.sxx <- TRUE
needs.dxx <- TRUE

}

# (...)

if(method =="milstein2") # added a call to the sde.sim.milstein2
X <- sde.sim.milstein2(X0, t0 , Dt , N, d1, d1.x, d1.xx , s1 , s1.x, s1.xx)

sde.sim.milstein2 <- function(X0, t0 , Dt , N, d1, d1.x, d1.xx ,
s1 , s1.x, s1.xx){

X <- numeric(N+1)
Y <- numeric(N+1)
sDt <- sqrt(Dt)
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Z <- rnorm(N, sd=sDt)
X[1] <- X0
Y[1] <- X0

for(i in 2:(N+1)){
X[i] <- X[i-1] + d1(t[i-1],X[i-1])*Dt +

s1(t[i-1],X[i-1])*Z[i-1] +
0.5*s1(t[i-1],X[i-1])* s1.x(t[i-1],X[i-1]) *(Z[i-1]^2-Dt) +

Dt^(3/2)*(0.5*d1(t[i-1],X[i-1])*s1.x(t[i-1],X[i-1]) +
0.5*d1.x(t[i-1],X[i-1])*s1(t[i-1],X[i-1])+
0.25*s1(t[i-1],X[i -1])^2 * s1.xx(t[i-1],X[i -1]))*Z[i-1] +
Dt^2*(0.5* d1(t[i-1],X[i-1])*d1.x(t[i-1],X[i -1])+
0.25*d1.xx(t[i-1],X[i-1])*s1(t[i-1],X[i -1])^2)

}
return(X)

}

Listing 2.7. R code for the second Milstein simulation scheme.

2.10 Drawing from the transition density

All the methods presented so far are based on the discretized version of the
stochastic differential equation. In the case where a transition density of Xt

given some previous value Xs, s < t, is known in explicit form, direct simu-
lation from this can be done. Unfortunately, the transition density is known
for very few processes, and these cases are the ones for which exact likelihood
inference can be done, as will be discussed in Chapter 3. In these fortunate
cases, the algorithm for simulating processes is very easy to implement. We
suppose that a random number generator is available for the transition den-
sity for the process pθ(∆, y|x) = Pr(Xt+∆ ∈ dy|Xt = x). If this generator is
not available one can always use one of the standard methods to draw from
known densities, such as the rejection method. We are not going to discuss
this approach here and assume this random number generator exists in the
form of an R function that accepts the number n of pseudo random numbers
to draw, a vector of length n of values x (this will play the role of the Xt’s),
the time lags Dt, and a vector of parameters theta. The fact that we allow for
n random numbers to be generated will be useful whenever one wants to sim-
ulate multiple trajectories of the same process in a way we discuss at the end
of the chapter. The next function generates a complete path of a stochastic
process for which the random number generator rcdist is known. We assume
that the corresponding model is parametrized through a vector of parameters
theta.
sde.sim.cdist <- function(X0=1, t0=0, Dt=0.1, N, rcdist=NULL , theta=NULL){

X <- numeric(N+1)
X[1] <- X0
for(i in 2:(N+1)){
X[i] <- rcdist(1, Dt , X[i-1], theta)

}
ts(X, start=t0, deltat=Dt)

}



2.10 Drawing from the transition density 83

The function sde.sim.cdist just iterates calls to the random number gen-
erator rcdist, assigning to X[i] the pseudo random number generated from
the law of Xt+∆t|Xt = X[i-1]. We now write the random number generators
for the processes for which the conditional distribution is known.

2.10.1 The Ornstein-Uhlenbeck or Vasicek process

Recall that the Ornstein-Uhlenbeck or Vasicek process solution to

dXt = (θ1 − θ2Xt)dt+ θ3dWt, X0 = x0,

has a known Gaussian transition density pθ(∆, y|Xt = x) with mean and
variance as in (1.41) and (1.42), respectively. Hence we can just make use of
the rnorm function to build our random number generator.
rcOU <- function(n=1, t, x0 , theta ){

Ex <- theta [1]/theta [2]+(x0 -theta [1]/theta [2])*exp(-theta [2]*t)
Vx <- theta [3]^2*sqrt((1-exp(-2*theta [2]*t))/(2*theta [2]))
rnorm(n, mean=Ex , sd = sqrt(Vx))

}

The functions [rpdq]cOU in the sde package provide interfaces to random
number generation, cumulative distribution function, density function, and
quantile calculations, respectively, for the conditional law of the Ornstein-
Uhlenbeck process. Similarly, the functions [rpdq]sOU provide the same func-
tionalities for the stationary law of the process.

2.10.2 The Black and Scholes process

The Black and Scholes or geometric Brownian motion process solution of

dXt = θ1Xtdt+ θ2XtdWt

has a log-normal transition density pθ(∆, y|x), where the log-mean and log-
variance are given in (1.43). The following code implements the random num-
ber generator from the conditional law.
rcBS <- function(n=1, Dt, x0, theta){

lmean <- log(x0) + (theta [1] -0.5*theta [2]^2)*Dt
lsd <- sqrt(Dt)*theta [2]
rlnorm(n, meanlog = lmean , sdlog = lsd)

}

The package sde provides the functions [rpdq]cBS for random number
generation, cumulative distribution function, density function, and quantile
calculations of the conditional law of Xt+∆|Xt.

2.10.3 The CIR process

The conditional density of Xt+∆|Xt = x for the Cox-Ingersoll-Ross process
solution of
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dXt = (θ1 − θ2Xt)dt+ θ3
√
XtdWt

is a noncentral chi-squared distribution (see Section 1.13.3). In particular,
we have shown in (1.48) that pθ(∆, y|x) can be rewritten in terms of the
transition density of Yt = 2cXt, which has a chi-squared distribution with
ν = 4θ1/θ23 degrees of freedom and noncentrality parameter Yse

−θ2t, where
c = 2θ2/(θ23(1− e−θ2t)). So we just need to simulate a value of y from Yt|Ys =
2cxs and return y/(2c). The following code does the job.
rcCIR <- function(n=1, Dt , x0 , theta){

c <- 2*theta [2]/((1-exp(-theta [2]*t))*theta [3]^2)
ncp <- 2*c*x0*exp(-theta [2]*Dt)
df <- 4*theta [1]/theta [3]^2
rchisq(n, df=df, ncp=ncp)/(2*c)

}

Also, for the Cox-Ingersoll-Ross process, the package sde provides the func-
tions [rpdq]cCIR and [rpdq]sCIR for random number generation, cumulative
distribution function, density function, and quantile calculations, respectively,
for the conditional and stationary laws.

2.10.4 Drawing from one model of the previous classes

Given that for the Cox-Ingersoll-Ross, Ornstein-Uhlenbeck, and geometric
Brownian motion processes the transition densities are known in explicit form,
we can add a more flexible interface in sde.sim to simulate these models. In
fact, we add the switch model, which can be one between “OU,” “BS,” and
“CIR” (with the obvious meanings) and a vector of parameter theta. So, for
example,
sde.sim(model="CIR", theta=c(3,2,1))

simulates a path of the Cox-Ingersoll-Ross process solution of dXt = (3 −
2Xt)dt +

√
XtdWt with initial value X0 = 1 (the default value in sde.sim).

Below we show the relevant code change to the sde.sim function.
sde.sim <- function (t0 = 0, T = 1, X0 = 1, N = 100, delta , drift , sigma ,

drift.x, sigma.x, drift.xx , sigma.xx , drift.t, method = c("euler",
"milstein", "KPS", "milstein2", "cdist"),

alpha = 0.5, eta = 0.5, pred.corr = T, rcdist = NULL , theta = NULL ,
model = c("CIR", "VAS", "OU", "BS"))

{
method <- match.arg(method)
if(!missing(model )){
model <- match.arg(model)
method <- "model"

}

if (missing(drift )){
if (method == "cdist" || !missing(model ))
drift <- expression(NULL)

else
stop("please specify al least the drift coefficient of the SDE")

}

# (...)
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if(method == "model"){
if(is.null(theta ))

stop("please provide a vector of parameters for the model")
if(model == "CIR")

X <- sde.sim.cdist(X0, t0, Dt, N, rcCIR , theta)
if(model == "OU")

X <- sde.sim.cdist(X0, t0, Dt, N, rcOU , theta)
if(model == "BS")

X <- sde.sim.cdist(X0, t0, Dt, N, rcBS , theta)
}

# (...)
}

2.11 Local linearization method

The local linearization method consists in approximating locally the drift
of the stochastic differential equation with a linear function. The main idea
behind this technique is that a linear approximation is better than the simple
constant approximation made by the Euler method (see, e.g., [24], [13]). The
method has been proposed in the context of stochastic differential equations
by Ozaki and developed by him and his co-authors (see [173], [174], [175],
[204], [206], [207]).

2.11.1 The Ozaki method

The first approach we present is the Ozaki method, and it works for homo-
geneous stochastic differential equations. Consider the stochastic differential
equation

dXt = b(Xt)dt+ σdWt , (2.10)

where σ is supposed to be constant. The construction of the method starts
from the corresponding deterministic dynamical system

dxt

dt
= b(xt) ,

where xt has to be a smooth function of t in the sense that it is two times
differentiable with respect to t. Then, with a little abuse of notation, we have

d2xt

dt2
= bx(xt)

dxt

dt
.

Suppose now that bx(x) is constant in the interval [t, t + ∆t), and hence
by iterated integration of both sides of the equation above, first from t to
u ∈ [t, t+∆t) and then from t to t+∆t, we obtain the difference equation

xt+∆t = xt +
b(xt)
bx(xt)

(
ebx(xt)∆t − 1

)
. (2.11)
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Now we translate the result above back to the stochastic dynamical system in
(2.10). So, suppose b(x) is approximated by the linear function Ktx, where Kt

is constant in the interval4 [t, t+∆t). The solution to the stochastic differential
equation is

Xt+∆t = Xte
Kt∆t + σ

∫ t+∆t

t

eKt(t+∆t−u)dWu .

Now what remains to be done is to determine the constant Kt. The main
assumption is that the conditional expectation of Xt+∆t given Xt,

E(Xt+∆t|Xt) = Xte
Kt∆t,

coincides with the state of the linearized dynamical system (2.11) at time
t+∆t, which means that we ask for the following equality to hold:

Xte
Kt∆t = Xt +

b(Xt)
bx(Xt)

(
ebx(Xt)∆t − 1

)
.

From the above, we obtain the constant Kt very easily:

Kt =
1
∆t

log
(

1 +
b(Xt)

Xtbx(Xt)

(
ebx(Xt)∆t − 1

))
.

Notice that Kt depends on t only through the state of the process Xt = x.
Hence we denote this constant by Kx to make the notation more consistent
throughout the book. Given that the stochastic integral is a Gaussian random
variable, it is clear that the transition density for Xt+∆t given Xt is Gaussian
as well. In particular, we have that Xt+∆t|Xt = x ∼ N(Ex, Vx), where

Ex = x+
b(x)
bx(x)

(
ebx(x)∆t − 1

)
, (2.12)

Vx = σ2 e
2Kx∆t − 1

2Kx
, (2.13)

with

Kx =
1
∆t

log
(

1 +
b(x)
xbx(x)

(
ebx(x)∆t − 1

))
.

So it is possible to use the method of drawing from the conditional law to
simulate the increments of the process as in Section 2.10, simulating X[i+1]
according to N(Ex, Vx), where x = X[i]. It is easy to implement this simula-
tion scheme, and it is presented in Listing 2.8. The function sde.sim.ozaki
will be called by sde.sim when method is equal to “ozaki.” This function
assumes that the diffusion coefficient is a constant and that the drift function
depends only on the state variable x. These assumptions are checked inside
the sde.sim interface as follows.
4 Hence the name “local linearization method.”
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if (method == "ozaki"){
vd <- all.vars(drift)
vs <- all.vars(sigma)
if(length(vd)!=1 || length(vs)>0)

stop("drift must depend on `x' and volatility must be constant")
if(( length(vd) == 1) && (vd != "x"))

stop("drift must depend on `x'")
X <- sde.sim.ozaki(X0, t0, Dt, N, d1 , d1.x, s1)

}

Please note that a constant drift is not admissible since Kx and hence Vx are
not well defined.

"sde.sim.ozaki" <-
function(X0, t0, Dt, N, d1 , d1.x, s1){

X <- numeric(N+1)
B <- function(x) d1(1,x)
Bx <- function(x) d1.x(1,x)
S <- s1(1,1)
X[1] <- X0
for(i in 2:(N+1)){
x <- X[i-1]
Kx <- log(1+B(x)*(exp(Bx(x)*Dt)-1)/(x*Bx(x)))/Dt
Ex <- x + B(x)/Bx(x)*(exp(Bx(x)*Dt)-1)
Vx <- S^2 * (exp(2*Kx*Dt) -1)/(2*Kx)
X[i] <- rnorm(1, mean=Ex , sd=sqrt(Vx))

}
X

}

Listing 2.8. R code for the Ozaki simulation scheme.

Of course, the Ozaki method coincides with the Euler method if the drift is
linear. The reader can try the following lines of code.
> # ex 2.12.R
> set.seed (123)
> X <- sde.sim(drift=expression (-3*x), method="ozaki")
> set.seed (123)
> Y <- sde.sim(drift=expression (-3*x))
> plot(X)
> lines(as.numeric(time(Y)), Y, col="red")

2.11.2 The Shoji-Ozaki method

An extension of the previous method to the more general case in which the
drift is allowed to depend on the time variable also and the diffusion coefficient
can vary is the Shoji-Ozaki method (see [204], [205], and [206]). Consider the
stochastic differential equation

dXt = b(t,Xt)dt+ σ(Xt)dWt ,

where b is two times continuously differentiable in x and continuously differen-
tiable in t and σ is continuously differentiable in x. We already know that it is
always possible to transform this equation into one with a constant diffusion
coefficient using the Lamperti transform of Section 1.11.4. So one can start
by considering the nonhomogeneous stochastic differential equation
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dXt = b(t,Xt)dt+ σdWt ,

which is different from (2.10) in that the drift function also depends on variable
t. Now the local linearization method is developed by studying the behavior
of b locally. We skip all the details, which can be found in the original works
[207] and [206], but the main point is that the equation above is approximated
locally on [s, s+∆s) with

dXt = (LsXt + tMs +Ns)dt+ σdWt, t ≥ s,

where

Ls = bx(s,Xs), Ms =
σ2

2
bxx(s,Xs) + bt(s,Xs) ,

Ns = b(s,Xs)−Xsbx(s,Xs)− sMs .

The next step is to consider the transformed process Yt = e−LstXt, which has
the explicit solution

Yt = Ys +
∫ t

s

(Msu+Ns)e−Lsudu+ σ

∫ t

s

e−LsudWu,

from which the discretization of Xt can be easily obtained and reads as

Xs+∆s = A(Xs)Xs +B(Xs)Z,

where

A(Xs) = 1 +
b(s,Xs)
XsLs

(
eLs∆s − 1

)
+

Ms

XsL2
s

(
eLs∆s − 1− Ls∆s

)
, (2.14)

B(Xs) = σ

√
e2Ls∆s − 1

2Ls
, (2.15)

and Z ∼ N(0, 1). From the above, it follows that

Xs+∆s|Xs = x ∼ N(A(x)x,B2(x)) .

This method is also quite easy to implement and is just a modification of
the previous method. For the sake of simplicity, we will call this the “shoji”
method to distinguish it in the R code. The only difference with respect to all
previous methods is that we also need to specify the partial derivative of the
drift coefficient with respect to variable t. This will be an argument of sde.sim
called drift.t and eventually calculated using R symbolic differentiation. We
skip the corresponding code and present just Listing 2.9, which implements
the simulation part.

sde.sim.shoji <- function(X0, t0, Dt, N, d1 , d1.x, d1.xx, d1.t, s1){
X <- numeric(N+1)
S <- s1(1,1)
X[1] <- X0
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for(i in 2:(N+1)){
x <- X[i-1]
Lx <- d1.x(Dt ,x)
Mx <- S^2 * d1.xx(Dt,x)/2 + d1.t(Dt ,x)
Ex <- (x + d1(Dt,x)*(exp(Lx*Dt)-1)/Lx +

Mx*(exp(Lx*Dt) -1 -Lx*Dt)/Lx^2)
Vx <- S^2*(exp(2*Lx*Dt)-1)/(2*Lx)
X[i] <- rnorm(1, mean=Ex , sd=sqrt(Vx))

}
X

}

Listing 2.9. R code for the Shoji-Ozaki simulation scheme.

Please note that in this case as well, a drift function not depending on x is
not admissible since A(Xs) is not well-defined. One more thing to note is that
the Ozaki, Shoji-Ozaki, and Euler methods draw increments from a Gaussian
law with mean Ex and variance Vx that in the case of the Euler scheme are
Ex = x+ b(x, t)dt and Vx = V = σ2dt. For the Euler method, the variance Vx

is independent from the previous state of the processXt = x, and this property
is inherited from the independence of the increments of the Brownian motion.
On the contrary, Vx for the Ozaki and Shoji-Ozaki methods depend on the
previous state of the process and differ from the value of the constants Kx

and Lx, respectively. Even in the linear case, the Shoji-Ozaki method performs
differently from the Euler and Ozaki methods. The difference is in the fact that
the Shoji-Ozaki method also takes into account the stochastic behavior of the
discretization because of the Itô formula. Of course, in the linear homogeneous
case the Euler, Shoji-Ozaki, and Ozaki methods coincide. One added value in
using the Shoji-Ozaki method over the Ozaki and Euler methods is that it is
more stable if the time ∆ is large. In fact, not surprisingly, the Euler scheme
tends to explode in non-linear cases when ∆ is large enough. The following
example shows some empirical evidence of this fact. We simulate the solution
of dXt = (5− 11Xt + 6X2

t −X3
t )dt+ dWt, X0 = 5 for ∆ = 0.1 and ∆ = 0.25.

For small values of ∆, all three methods gave similar results, but this is not the
case for ∆ = 0.25, as can be seen in Figure 2.3, produced with the following
code.
> # ex 2.13.R
> bX <- expression ((5 - 11 * x + 6 * x^2 - x^3))
> x0 <- 5
> DT <- 0.1
> par(mfrow=c(2 ,3))
> set.seed (123)
> X <- sde.sim(drift=bX , delta=DT ,X0=x0)
> plot(X,main="Euler")
> set.seed (123)
> Y <- sde.sim(drift=bX , method="ozaki",delta=DT,X0=x0)
> plot(Y,main="Ozaki")
> set.seed (123)
> Z <- sde.sim(drift=bX , method="shoji",delta=DT,X0=x0)
> plot(Z,main="Shoji -Ozaki")
>
> DT <- 0.25
> set.seed (123)
> X <- sde.sim(drift=bX , delta=DT ,X0=x0)
> plot(X, main="Euler")
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Fig. 2.3. Different performance of the Euler, Ozaki, and Shoji-Ozaki methods for
different values of ∆ (top: 0.1; bottom: 0.25). The Euler scheme explodes for high
values of ∆.

> set.seed (123)
> Y <- sde.sim(drift=bX , method="ozaki",delta=DT,X0=x0)
> plot(Y,main="Ozaki")
> set.seed (123)
> Z <- sde.sim(drift=bX , method="shoji",delta=DT,X0=x0)
> plot(Z,main="Shoji -Ozaki")

Further properties of the method

As for the properties of this method, the authors show that the Shoji-Ozaki
discretization performs well in terms of one-step-ahead error in mean abso-
lute and mean square values. In particular, the mean absolute one-step-ahead
error is of order O(∆t2) and the mean square one-step-ahead error is of order
O(∆t3) as ∆t → 0. These errors are measured in terms of the distance be-
tween the true trajectory and the approximated trajectory. In particular, the
mean square error attains the optimum rate in the sense of Rümelin [198].

Nonconstant diffusion coefficient

If the original stochastic differential equation Xt does not have a constant
diffusion coefficient, it is always possible to apply the Lamperti transform of
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Section 1.11.4 to obtain a new process Yt that has a unitary diffusion coeffi-
cient. So one can simulate the path of Yt = F (Xt) and then use the inverse
transform F−1 to get Xt’s path. So, for example, following [207], consider the
stochastic differential equation

dXt = (α0 + α1Xt + α2X
2
t + α3X

3
t )dt+ σXγ

t dWt ,

where (α0 = 6, α1 = −11, α2 = 6, α3 = −1, γ = 0.5, σ = 1). The transforma-
tion

F (x) =
1
σ

∫ x

0

1
uγ

du =
1
σ

x1−γ

1− γ

and its inverse
F−1(y) = (σy(1− γ))

1
1−γ

can be used to apply the Shoji-Ozaki method to the stochastic differential
equation above. The drift function of process Yt is then

by(t, x) =
b(t, x)
σxγ

− γσ

2
xγ−1,

which has to be calculated in F−1(y). For the particular choice of σ and γ,
we have that F−1(y) = (y/2)2. Hence the process Yt satisfies

dYt =
23− 11Y 2

t + 3
2Y

4
t − 1

24Y
6
t

2Yt
dt+ dWt, Y0 = 2

√
X0 .

Once we have the trajectory of Yt, we can get a trajectory of Xt by means
of the transformation Xt = (Yt/2)2. The following lines of code show how to
proceed.
> # ex 2.14.R
> bY <- expression( (23-11*x^2+1.5*x^4-(x^6)/(2^4))/(2*x) )
> bX <- expression( (6-11*x+6*x^2-x^3) )
> sX <- expression( sqrt(x) )
>
> set.seed (123)
> X <- sde.sim(drift=bX , sigma=sX)
> plot(X)
> set.seed (123)
> Y <- sde.sim(drift=bY , X0 = 2, method="shoji")
> plot((Y/2)^2)

2.12 Exact sampling

Very recently there appeared a new proposal for an exact sampling algorithm
that, when feasible, is also easy to implement (see [27] and [29]). This method
is a rejection sampling algorithm (see, e.g., [227], [68]) for diffusion processes.
The rejection sampling algorithm for finite-dimensional random variables is
as follows. Suppose f and g are two densities with respect to some measure
in Rd and such that f(x) ≤ εg(x) for some ε > 0. If one wants to simulate
pseudorandom numbers from f and knows how to simulate from g, then one
can use the following algorithm:
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1. Sample y from g, y ∼ g.
2. Sample u from the uniform law, u ∼ U(0, 1).
3. If u < εf(y)/g(y), retain y; otherwise iterate from 1.

Then y will be f -distributed. This algorithm needs some modifications if it
is to be applied to continuous-time processes such as diffusions because in
principle there is the need to generate a whole continuous path of the diffusion5

before accepting/rejecting it and not just a simple number. Luckily, such an
exact sampling algorithm relies on the fact that the rejection rule can be
made equivalent to the realization of some event related to point processes
and hence simpler to handle. We skip here all the details, but these and
other considerations constitute the core of the algorithm proposed in [27].
The algorithm is given for a diffusion with unit diffusion coefficient

dXt = b(Xt)dt+ dWt, 0 ≤ t ≤ T, X0 = x . (2.16)

Again, if this is not the case, the Lamperti transform in Section 1.11.4 can be
used. From now on, we discuss the algorithm for the exact simulation of the
random variable X∆ for some ∆ > 0 and initial value X0 = x. We assume that
b(·) satisfies the usual conditions for the existence of the stochastic differential
equation (2.16) and also the following assumption.

Assumption 2.1

(i) The derivative bx of b exists.
(ii) There exist k1 and k2 such that k1 ≤ 1

2b
2(x)+ 1

2bx(x) ≤ k2 for any x ∈ R.

Let us denote φ(x) = 1
2b

2(x) + 1
2bx(x) − k1. A further requirement is that

0 ≤ φ(x) ≤ M for any x ∈ R, with M = (k2 − k1), which implies also that
∆ ≤ 1/M for identifiability. Now set

A(z) =
∫ z

0

b(u)du

and

h(z) = exp
{
A(z)− (z − x)2

2∆

}
, K =

∫ ∞

−∞
h(u)du .

The function h̃(x) = h(x)/K is a density function on R whenever K < ∞.
The algorithm requires the ability to generate6 pseudo random numbers from
the density h̃. We present here a version of the exact algorithm (EA) in the
simplified form as described in [56].

1. Simulate Y∆ = y according to distribution h̃.

5 The ratio f(y)/g(y) of the algorithm should be a likelihood ratio in the case of a
diffusion, as given by the Girsanov theorem.

6 In this case, it is possible to draw from h using a reject sampling algorithm with
Gaussian proposals.
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2. Simulate τ = k from the Poisson distribution with intensity λ = ∆M .
3. Draw (Ti, Vi) = (ti, vi) according to U [(0,∆)× (0,M)], i = 1, . . . , k.
4. Generate a Brownian bridge starting at x at time 0 and ending in y at

time ∆ at time instants ti; i.e., generate Yti
= yi, i = 1, . . . , k.

5. Compute the indicator function

I =
k∏

i=1

1{φ(yi)≤vi}.

6. If I = 1, the trajectory (x, Yt1 = y1, . . . , Ytk
= yk, Y∆ = y) is accepted

and Y∆ is an exact draw of X∆. Otherwise, restart from step 1.

Two approaches are possible if one wants to simulate a process up to
an arbitrary time T : either set ∆ = T or set ∆ = T/N and iterate the
algorithm N times. As in [56], we suggest keeping only the last value of X∆

and simulating the next one X2∆ (conditionally on X∆ = y) up to the final
time T . The advantage of this approach is that we get a path of the process
on a regular grid, which makes this path compatible with the other schemes
presented in this book. The EA algorithm is implemented in Listing 2.10, and
the relevant changes to the sde.sim function are given below.
sde.sim <- function (t0 = 0, T = 1, X0 = 1, N = 100, delta , drift , sigma ,

drift.x, sigma.x, drift.xx , sigma.xx , drift.t, method = c("euler",
"milstein", "KPS", "milstein2", "cdist","ozaki","shoji","EA"),

alpha = 0.5, eta = 0.5, pred.corr = T, rcdist = NULL , theta = NULL ,
model = c("CIR", "VAS", "OU", "BS"),
k1 , k2 , phi , max.psi = 1000, rh , A){

# (...)

if(method == "ozaki" || method == "shoji" || method == "EA")
needs.dx <- TRUE

# (...)

if (method == "EA")
X <- sde.sim.ea(X0 , t0 , Dt , N, d1, d1.x, k1, k2, phi , max.psi , rh, A)

# (...)
}

Remarks on the method

The hypothesis of boundedness of φ can be too restrictive, and some relax-
ation is possible as described in [27] with some modifications of the algorithm
(known as EA2 and EA3 schemes, in contrast with the EA1 algorithm of
Listing 2.10).

It is important to mention that the probability of the event I = 1 in
the algorithm above, which is the probability of accepting a simulated path,
exponentially decreases to zero as ∆ → 0 and is at least e−1, which justifies
using this rejection algorithm from the point of view of efficiency.
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One more important remark is that approximation schemes usually affect
the statistical procedures in Monte Carlo experiments. On the contrary, the
EA method does not influence the estimators (see [27]).

"sde.sim.ea" <-
function(X0, t0, Dt, N, d1 , d1.x, k1 , k2 , phi , psi , max.psi , rh, A){

psi <- function(x) 0.5*d1(1,x)^2 + 0.5*d1.x(1,x)

if(missing(k1)){
cat("k1 missing , trying numerical minimization ...")
k1 <- optimize(psi , c(0, max.psi))$obj
cat(sprintf("(k1 =%5.3f)\n",k1))

}
if(missing(k2)){
cat("k2 missing , trying numerical maximization ...")
k2 <- optimize(psi , c(0, max.psi),max=TRUE)$obj
cat(sprintf("(k2 =%5.3f)\n",k2))

}

if(missing(phi))
phi <- function(x) 0.5*d1(1,x) + 0.5*d1.x(1,x) - k1

else
phi <- function(x) eval(phi)

M <- k2-k1
if(M==0)
stop("`k1 ' = `k2 ' probably due to numerical maximization")

if(Dt >1/M)
stop(sprintf("discretization step greater than 1/(k2_k1)"))

if(missing(A))
A <- function(x) integrate(d1 , 0, x)

if(missing(rh)){
rh <- function (){
h <- function(x) exp(A(x) - x^2/(2*Dt))
f <- function(x) h(x)/dnorm(x,sqrt(Dt))
maxF <- optimize(f,c(-3*Dt , 3*Dt),max=TRUE)$obj
while (1){
y <- rnorm (1)
if( runif (1) < f(y)/maxF )
return(y)

}
}

}

x0 <- X0
X <- numeric(N)
X[1] <- X0
rej <- 0
j <- 1
while(j <= N){
y <- x0+rh()
k <- rpois(1,M*Dt)
if(k>0){
t <- runif(k)*Dt
v <- runif(k)*M
idx <- order(t)
t <- c(0, t[idx], Dt)
v <- v[idx]

DT <- t[2:(k+2)] - t[1:(k+1)]
W <- c(0,cumsum(sqrt(DT) * rnorm(k+1)))
Y <- x0 + W -(W[k+2] -y+x0)*t/Dt
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if( prod(phi(Y[2:(k+1)]) <= v) == 1){
j <- j+1
x0 <- Y[k+2]
X[j] <- Y[k+2]

} else {
rej <- rej +1

}
}

}
cat(sprintf("rejection rate: %5.3f\n",rej/(N+rej )))
X

}

Listing 2.10. R code for the EA1 simulation algorithm.

Periodic drift example (SINE process)

Consider the following example from [27]. We have a process satisfying the
stochastic differential equation

dξt = sin(ξt)dt+ dWt, ξ0 = 0 . (2.17)

The drift b(x) = sin(x) satisfies the usual hypotheses, and is differentiable
and such that

−1
2

= k1 ≤
1
2
b(u)2 +

1
2
bx(u) =

1
2

sin(u)2 +
1
2

cos(u) ≤ k2 =
5
8
;

hence M = k2−k1 = 9/8 and A(u) = 1−cos(u). The following code simulates
an exact path of the SINE process.
> # ex 2.15.R
> set.seed (123)
> d <- expression(sin(x))
> d.x <- expression(cos(x))
> A <- function(x) 1-cos(x)
> sde.sim(method="EA", delta =1/20, X0=0, N=500, drift=d,
+ drift.x = d.x, A=A) -> X
k1 missing , trying numerical minimization ...(k1= -0.500)
k2 missing , trying numerical maximization ...(k2 =0.625)
rejection rate: 0.215
> plot(X, main="Periodic drift")

A more complicated example: the hyperbolic process

Another example taken from [56] is the following. Consider the modified Cox-
Ingersoll-Ross process (see Section 1.13.6) solution to

dXt = −θ1Xtdt+ θ2

√
1 +X2

t dWt

with θ1 + θ22/2 > 0. Using the Lamperti transform, we get the new process
Yt = F (Xt), which satisfies the stochastic differential equation

dYt = −(θ1/θ2 + θ2/2) tanh(θ2Yt)dt+ dWt
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2
(b(x)2 + bx(x)).

with Y0 = F (X0) (see Section 1.13.6 for details). Choose θ1 = 6 and θ2 = 2.
In this case,

1
2
(b2(x) + bx(x)) =

−8 + 16(sinh(2x))2

2(cosh(2x))2
,

and it is easy to show that

−4 = k1 ≤
1
2
(b(x)2 + bx(x)) ≤ k2 = 8

(see also Figure 2.4) and

A(x) =
∫ x

0

−4 tanh(2u)du = −2 log(cosh(2x)).

Hence M = k2−k1 = 12, 0 ≤ φ(x) ≤ 1/M , and the constant K =
∫

R e
A(x)− x2

2T

can be found numerically.
Once we have simulated a path of Yt using the exact algorithm, we can ob-

tain a trajectory of Xt using the inverse of F ; i.e., Xt = F−1(Yt) = sinh(θ2Yt).
The next R code performs the simulation, and both the original and the trans-
formed paths of the process are shown in Figure 2.5.
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Fig. 2.5. Simulation of the process Yt solution of (1.54) and its transformed version
Xt = sinh(2Yt) using the EA1 algorithm.

> # ex 2.16.R
> set.seed (123)
> d <- expression (-4*tanh(2*x))
> d.x <- expression (-(4 * (2/cosh(2 * x)^2)))
> A <- function(x) -(0.5+6/4)*log(cosh(2*x))
> X0 <- rt(1, df=4)/2
> F <- function(x) log(x + sqrt (1+x^2))/2
> Y0 <- F(X0)
> sde.sim(method="EA", delta =1/20, X0=Y0, N=500, drift=d,
+ drift.x=d.x, A=A, k1=-4,k2=8) -> Y
rejection rate: 0.474
> X <- sinh(Y)
> ts(cbind(X,Y),start=0,delta=1/20) -> XY
> plot(XY ,main="Original scale X vs transformed Y")

The Cox-Ingersoll-Ross and Ornstein-Uhlenbeck processes and EA algorithm

Consider the Cox-Ingersoll-Ross process

dXt = (θ1 − θ2Xt)dt+ θ3
√
XtdWt, X0 = 10 ,

for which the Lamperti transform

F (x) =
∫ x

0

1
θ3
√
u

du =
2
√
x

θ3
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gives Yt = F (Xt), satisfying

dYt =
4θ1 − θ23
2θ23Yt

dt− θ2
2
Ytdt+ dWt .

The transformed drift b(x) = 4θ1−θ2
3

2θ2
3x

− θ2
2 x is not bounded in zero from above

or below and hence the EA algorithm is not applicable to this process. The
same situation occurs for the Ornstein-Uhlenbeck process of equation (1.39).

2.13 Simulation of diffusion bridges

As we will see in the next chapter, exact likelihood inference for discretely
observed diffusion processes is not always possible because the likelihood is
not available in many cases. Section 3.3.2 describes the simulated likelihood
method, which consists in estimating the transition density between two con-
secutive observations using the Monte Carlo approach. In this situation, the
ability to simulate paths between two observations is essential. To this end
an MCMC-algorithm was proposed in [196], and the exact method of Section
2.12 can also be applied. A new simple method that applies to ergodic dif-
fusion processes has recently been introduced in [37]. This method relies on
the time-reversibility property of the ergodic diffusion process and essentially
consists in the simulation of two paths of a diffusion process, one moving for-
ward in time and another one moving backward in time. If the two trajectories
intersect, then the combined path is a realization of the bridge. Let (l, r) with
−∞ ≤ l ≤ r ≤ +∞ be the state space of the diffusion process X solution to

dXt = b(Xt)dt+ σ(Xt)dWt

and take a and b as two points in the state space of X. A solution of the
previous equation in the interval [t1, t2] such thatXt1 = a andXt2 = b is called
a (t1, x1, t2, x2)-diffusion bridge. Time reversibility of an ergodic diffusion is
assured by a mild set of conditions (see, e.g., [135]).

Let m(x) and s(x) be, respectively, the speed measure (1.22) and the scale
measure (1.21) of the diffusion X. Under Assumption 1.5, we know that the
diffusion X is also ergodic with invariant density proportional to the speed
measure up to a normalizing constant. Our interest is in the simulation of
a (0, a, 1, b)-diffusion bridge. Let W 1 and W 2 be two independent Wiener
processes and define X1 and X2 as solutions to

dXi
t = b(Xi

t)dt+ σ(Xi
t)dW

i
t

with X1
0 = a and X2

0 = b.

Fact 2.1 (Theorem 1 in [37]) Let τ = inf{0 ≤ t ≤ 1|X1
t = X2

1−t}, where
the inf over the empty set is taken to be ∞. Define
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Zt =

{
X1

t if 0 ≤ t ≤ τ,

X2
1−t if τ < t ≤ 1.

Then, the distribution of {Zt}0≤t≤1 conditional on the event {τ ≤ 1} is equal
to the conditional distribution of {Xt}0≤t≤1 given X0 = a and X1 = b; i.e.,
Z is a (0, a, 1, b)-diffusion bridge.

2.13.1 The algorithm

We now assume that our interest is in the simulation of a (0, a,∆, b)-diffusion
bridge; i.e., a bridge on the generic interval [0,∆]. The algorithm consists in
simulating two independent diffusion processes X1 and X2 using one of the
previous methods (e.g., the Euler or Milstein scheme) on the time interval
[0,∆] with discretization step δ = ∆/N and applying a rejection sampling
procedure. Let Y 1

iδ and Y 2
iδ, i = 0, 1, . . . , N , be independent simulations of X1

andX2. If either Y 1
iδ ≥ Y 2

(N−i)δ and Y 1
(i+1)δ ≤ Y 2

(N−(i+1))δ or Y 1
iδ ≤ Y 2

(N−i)δ and
Y 1

(i+1)δ ≥ Y 2
(N−(i+1))δ, a crossing has been realized. Hence, let ν = min{i ∈

(1, . . . , N)|Y 1
iδ ≤ Y 2

(N−i)δ} if Y 1
0 ≥ Y 2

∆ and ν = min{i ∈ (1, . . . , N)|Y 1
iδ ≥

Y 2
(N−i)δ} if Y 1

0 ≤ Y 2
∆, and define

Biδ =

{
Y 1

iδ for i = 0, 1, . . . , ν − 1,
Y 2

(N−i)δ for i = ν, . . . , N.

Then B is a simulation of a (0, a,∆, b)-diffusion bridge. If no crossing hap-
pened, start again by simulating Y 1

iδ and Y 2
iδ and iterate until a crossing of

the two trajectories is realized.
The nice feature of this method is that this algorithm produces trajectories

with the same order (weak or strong) of approximation as the method used
to simulate Y 1 and Y 2.

As for the exact algorithm, it is also interesting to evaluate the rejection
rate of the method. The rejection probability (i.e., the probability of no cross-
ings) depends on the drift and diffusion coefficients as well as the points a and
b and the length of the time interval ∆. Simulation experiments (see [37]) show
that if a and b are not too distant and ∆ is relatively small, which usually
occurs in inference for discretely observed diffusion processes, the rejection
rate is acceptable. Usually, when the exact algorithm is feasible, it is more
efficient. The nice property of the present approach is that the algorithm is
relatively simple and works for the class of generic time-homogeneous ergodic
diffusion processes.7

The following code illustrates how to implement the algorithm above. Al-
though a DBridge function exists in the sde package which we discuss later,

7 We recall again that version 3 of the exact sampling algorithm exists, which does
not require bounds on the coefficients but is mathematically more involved [28].
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Fig. 2.6. A simulated path of a diffusion bridge (continuous line). The bridge is
obtained by merging two paths of diffusion processes (dotted and dashed lines) at
the first crossing.

we present the algorithm in an intuitive version in what follows. The following
code creates two trajectories, Y1 and Y2, the first starting at a = 1.7 and the
second starting at b = 0.5.
> # ex2 .17.R
> drift <- expression ((3-x))
> sigma <- expression (1.2*sqrt(x))
> a <- 1.7
> b <- 0.5
> set.seed (123)
> Y1 <- sde.sim(X0=a, drift=drift , sigma=sigma , T=1, delta =0.01)
> Y2 <- sde.sim(X0=b, drift=drift , sigma=sigma , T=1, delta =0.01)
> Y3 <- ts(rev(Y2), start=start(Y2), end=end(Y2),deltat=deltat(Y2))

The second trajectory is then time-reversed into Y3.
> id1 <- Inf
> if(Y1[1]>=Y3 [1]){
+ if(!all(Y1 >Y3))
+ min(which(Y1 <= Y3))-1 -> id1
+ } else {
+ if(!all(Y1 <Y3))
+ min(which(Y1 >= Y3))-1 -> id1
+ }
> if(id1 ==0 || id1== length(Y1)) id1 <- Inf
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The code then calculates the index id1 of the first crossing time of the two
trajectories and merges Y1 and Y3 appropriately if this time (the time of
crossing) is finite.
> par(mfrow=c(2 ,1))
> plot(Y1 , ylim=c(min(Y1,Y2), max(Y1,Y2)),col="green",lty=2)
> lines(Y3,col="blue",lty=3)
>
> if(id1==Inf ){
+ cat("no crossing")
+ } else {
+ plot(Y1 , ylim=c(min(Y1 ,Y2), max(Y1 ,Y2)),col="green",lty =2)
+ lines(Y3 ,col="blue",lty =3)
+ B <- ts(c(Y1[1: id1], Y3[-(1:id1)]), start=start(Y1),end=end(Y1),
+ frequency=frequency(Y1))
+ lines(B,col="red",lwd =2)
+ }

Figure 2.6 shows the trajectory of Y1 and Y3 (top) and the simulated
path of the diffusion bridge (bottom). The following code uses the DBridge
function as an interface to the algorithm above. The function has the following
interface similar to BBridge for the simulation of the Brownian bridge:
DBridge(x = 0, y = 0, t0 = 0, T = 1, delta , drift , sigma , ...)

The variable arguments ... are passed directly to the sde.sim function, which
is called internally. This allows selection of any simulation scheme for the
diffusion, the default being the default of the sde.sim function. The code for
DBridge simulates a (t0, x, T, y)-diffusion bridge. The next code provides an
example of how it is used and the output is given in Figure 2.7.
> # ex2 .17.R (cont .)
> d <- expression ((3-x))
> s <- expression (1.2*sqrt(x))
> par(mar=c(3,3,1,1))
> par(mfrow=c(2 ,1))
> set.seed (123)
> X <- DBridge(x=1.7,y=0.5, delta =0.01 , drift=d, sigma=s)
> plot(X)
> X <- DBridge(x=1,y=5, delta =0.01 , drift=d, sigma=s)

no crossing , trying again ...
> plot(X)

2.14 Numerical considerations about the Euler scheme

Consider for example the geometric Brownian motion Xt in (1.5). If X0 > 0,
this process is always positive, being an exponential functional of the Brownian
motion. The application of the Euler approximation can lead to unexpected
results. Indeed, the Euler scheme for Xt reads as

Yi+1 = Yi(1 + θ1 ·∆t+ θ2
√
∆tZ),

and if ∆t is too small, it can happen in one or more simulations that a pseudo
random number Z is drawn from the Gaussian distribution such that
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Fig. 2.7. Two simulated paths of diffusion bridges (t1, x1, t2, x2) using the DBridge

function for the stochastic differential equation dXt = (3 − Xt)dt + 1.2
√

XtdWt:
(0, 1.7, 1, 0.5) (top) and (0, 1, 1, 5) (bottom).

Z < −1 + θ1∆t

θ2
√
∆t

and therefore Yi+1 takes negative values. In this case, this is not the same
phenomenon of absorption as in the CEV process of Section 2.5 but just a
matter of the approximation method used. In fact, the Euler scheme is guar-
anteed to converge to the mathematical description of the geometric Brownian
motion, but simulation by simulation we cannot expect this result to happen
every time. An empirical proof of the fact that this is not an absorption phe-
nomenon is that false “absorption” does not occur on the transformed process
logXt.

2.15 Variance reduction techniques

We now adapt the general concepts in Section 1.4 to the framework of stochas-
tic differential equations. In this framework, interest is in the evaluation of the
expected value of some functional ψ of the trajectory of the process solution of
some stochastic differential equation. Let us denote by Z this expected value,
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Z = ψ({Xt, 0 ≤ t ≤ T}) = ψ(X) ,

with X the solution to the stochastic differential equation

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x . (2.18)

The Monte Carlo estimator of EZ is built as follows. Let Y j
i = Y j(ti), j =

1, . . . , N , i = 1, . . . , n, be the value of the approximating process Y j at time
ti for the jth simulated path of the process X. Then, the estimator has the
form

µ̂N =
1
N

N∑
j=1

ψ(Y j) .

For example, if we are interested in the expected value of XT (i.e., EZ =
Eψ(X) = EXT ), the Monte Carlo estimator reads as

µ̂N =
1
N

N∑
j=1

Y j
n .

From the general Monte Carlo results, we know that µ̂N is unbiased and has
a variance equal to Varψ(Yn)/N , and we also know that the length of the
confidence intervals shrinks to 0 at speed N− 1

2 . Once again, if the process
itself has large a variance, the confidence interval might be too big to be used
to assess the quality of the estimator and hence the need for variance reduction
techniques.

2.15.1 Control variables

From Section 1.4.2, we know that in order to reduce the variance of EZ, one
possibility is to apply the control variable technique. In particular, we need
to rewrite EZ as E(Z−Y )+E(Y ), for which EY can be calculated explicitly.
For obvious reasons, this is easy to implement when EY = 0. When dealing
with stochastic differential equations, a good hint is clearly to build such
a random variable Y on top of Brownian motion. Indeed, we know that if
(H(t), 0 ≤ t ≤ T ) is an Itô integrable process, then

E

(∫ T

0

H(s)dW (s)

)
= 0 .

Thus, in principle, the role of Y might be taken by a properly chosen stochastic
integral. In fact, there is a general result that allows us to rewrite any square-
integrable random variable, adapted to the natural filtration of the Brownian
motion, in terms of its expected value and a stochastic integral of some process
H. This theorem, called the predicted representation theorem (see [130] or
[193]), is rather general, but unfortunately the explicit formula for the process
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H is quite difficult to find in general. In [167], one formula based on Malliavin
calculus is provided, but it is hard to implement. In general, each case study
might provide different ways to obtain control variables. A result descending
from the Feynman-Kac theorem relates the construction of such a process to
the solution of a partial differential equation. Theorem 5.4.2 in [156] assumes
that u(t, x) is a function of class C1,2 with bounded derivatives in x and
solution of {(

∂u
∂t + Lu

)
(t, x) = f(x)

u(T, x) = g(x),

where L is the infinitesimal generator (see (1.28)) of the diffusion process
solution of (2.18). Setting

Z = g(XT )−
∫ T

0

f(Xs)ds

and

Y =
∫ T

0

∂u

∂x
(s,Xs)σ(Xs)dWs,

then
EZ = Z − Y.

This theorem is the key to finding the control variable that are interests us.
But still the expression of Y involves partial derivatives of the function u,
and hence in practice the approach is to find an approximation ū of u that is
simple to handle and put it in the expression of Y . There are a lot of heuristics
behind the application of this method in concrete cases, and we show one from
[134]. Suppose we want to calculate the average price of a call option,

EZ = E

(
e−rT

(
1
T

∫ T

0

Sudu−K

)
+

)
, (2.19)

where S is the geometric Brownian motion in (1.5). If σ ' 0.5, r ' 1, and
T ' 1, then the integral

1
T

∫ T

0

Sudu

is “close” to

exp

{
1
T

∫ T

0

log(Su)du

}
.

Hence, we can set
Y = e−rT

(
eZ −K

)
+

and

Z =
1
T

∫ T

0

log(S(s))ds
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and use Y as the control variable. Moreover, Z is easy to simulate, as it is
essentially a Gaussian random variable. This approach successfully reduces
the variance of the Monte Carlo estimator. (Details on how (2.19) is related
to the previous theorem can be found in Section 5.2.6 of [156].) Here we don’t
give R code for this case (although it is quite easy to implement). as this
example is quite peculiar.

2.16 Summary of the function sde.sim

The package sde further generalizes the function sde.sim. In particular, it
is possible to generate M independent trajectories of the same process with
one single call of the function by just specifying a value for M (which is 1
by default). For M>=2, the function sde.sim returns an object of class mts
“multi-dimensional time series.” This is quite convenient in order to avoid
loops in the case of Monte Carlo replications. The function sde.sim has a
rather flexible interface, which matches the following definition:

sde.sim(t0 = 0, T = 1, X0 = 1, N = 100, delta, drift, sigma,
drift.x, sigma.x, drift.xx, sigma.xx, drift.t,
method = c("euler", "milstein", "KPS", "milstein2", "cdist",
"ozaki","shoji","EA"), alpha = 0.5, eta = 0.5, pred.corr = T,
rcdist = NULL, theta = NULL,
model = c("CIR", "VAS", "OU", "BS"),
k1, k2, phi, max.psi = 1000, rh, A, M=1)

A complete description of all of the parameters can be found on the manual
page of the sde package in the Appendix B of this book. Here we mention
that this interface allows us to simulate a stochastic differential equation by
specifying the drift and the diffusion coefficient and a simulation scheme, or by
specifying a model among them that admits well-known distributional results,
by specifying a conditional distribution density. The following code shows an
example of such flexibility.
> # ex2 .18.R
> # Ornstein - Uhlenbeck process
> set.seed (123)
> d <- expression (-5 * x)
> s <- expression (3.5)
> sde.sim(X0=10, drift=d, sigma=s) -> X
> plot(X,main="Ornstein -Uhlenbeck")
>
> # Multiple trajectories of the O-U process
> set.seed (123)
> sde.sim(X0=10, drift=d, sigma=s, M=3) -> X
> plot(X,main="Multiple trajectories of O-U")
>
> # Cox -Ingersoll -Ross process
> # dXt = (6-3*Xt)*dt + 2*sqrt(Xt)*dWt
> set.seed (123)
> d <- expression( 6-3*x )
> s <- expression( 2*sqrt(x) )
> sde.sim(X0=10, drift=d, sigma=s) -> X
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> plot(X,main="Cox -Ingersoll -Ross")
>
> # Cox -Ingersoll -Ross using the conditional distribution "rcCIR"
>
> set.seed (123)
> sde.sim(X0=10, theta=c(6, 3, 2), rcdist=rcCIR , method="cdist") -> X
> plot(X, main="Cox -Ingersoll -Ross")
>
> set.seed (123)
> sde.sim(X0=10, theta=c(6, 3, 2), model="CIR") -> X
> plot(X, main="Cox -Ingersoll -Ross")

2.17 Tips and tricks on simulation

We conclude briefly with some general remarks and things to remember before
starting Monte Carlo analysis based on simulated paths of the processes seen
so far. In general, it is recommended to apply the Lamperti transform8 to elim-
inate the dependency of the diffusion coefficient from the state of the process
during simulation. We have seen that many methods rely on this transforma-
tion without loss of generality (e.g., Ozaki, Shoji, Exact Algorithm). Also, the
Euler and Milstein methods may benefit from this preliminary transformation.

If the conditional distribution of the process is known, which is rarely the
case, then a simulation method based on this should be used. For example,
the simulation of the Cox-Ingersoll-Ross process should be done in this way
because simulations based on the discretization of the corresponding stochas-
tic differential equation may lead to unwanted results such as negative values
of the process.

In principle, if time is not a major constraint and the model satisfies the
right conditions on the drift (which we saw are not satisfied by the Cox-
Ingersoll-Ross process), then the exact algorithm must be used. It is worth
mentioning that code more efficient than what we present here can be written
so time efficiency of EA is not necessarily a concern. This will probably be
done in the next version of the sde package, and hence this comment only
applies to the current implementation.

We also mention that when there is no need to simulate the path of the
process on a regular grid of points ti = i∆/T , i = 0, 1, . . . , N , N∆ = T like we
did, then the EA algorithm is even faster. In fact, in our approach, we generate
different points in between the time instants ti and ti+1 but then keep just the
last one and iterate this simulation N times. On the contrary, the algorithm
can be used to simulate the path up to time T . In this case, the algorithm
generates a random grid of points and simulated values of the process, and
then Brownian bridges can be used between the points of the random grid.
Of course, the way we use the EA algorithm avoids any dependency of the
simulation scheme from the estimation part, as we will note in the following
chapters.
8 Of course, when the transform is well-defined and can be obtained in explicit

analytic form and not by numerical integration.
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When the interest is in the simulation of diffusion bridges, the algorithm
presented in Section 2.13 is a good candidate.

The Ozaki and Shoji-Ozaki methods can be good ways of simulating a path
when other methods do not apply (which is the case for unbounded nonlinear
drift functions).

If the grid of points is relatively small, we have seen that most discretiza-
tion methods perform equally well but the Euler method can still be unstable
in some particular situations: see the counterexample on the geometric Brow-
nian motion process in Section 2.5. Then a higher order of the approximation
is always welcome.

Antithetic sampling and variance reduction techniques might be used when
functionals of the processes are of interest. Unfortunately, the control variable
approach is always an ad hoc art.


