
Chapter 2

Fundamentals of Statistics

This chapter discusses some fundamental concepts of mathematical statis-
tics. These concepts are essential for the material in later chapters.

2.1 Populations, Samples, and Models

A typical statistical problem can be described as follows. One or a series of
random experiments is performed; some data from the experiment(s) are
collected; and our task is to extract information from the data, interpret
the results, and draw some conclusions. In this book we do not consider
the problem of planning experiments and collecting data, but concentrate
on statistical analysis of the data, assuming that the data are given.

A descriptive data analysis can be performed to obtain some summary
measures of the data, such as the mean, median, range, standard devia-
tion, etc., and some graphical displays, such as the histogram and box-
and-whisker diagram, etc. (see, e.g., Hogg and Tanis (1993)). Although
this kind of analysis is simple and requires almost no assumptions, it may
not allow us to gain enough insight into the problem. We focus on more
sophisticated methods of analyzing data: statistical inference and decision
theory.

2.1.1 Populations and samples

In statistical inference and decision theory, the data set is viewed as a real-
ization or observation of a random element defined on a probability space
(Ω,F , P ) related to the random experiment. The probability measure P is
called the population. The data set or the random element that produces
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92 2. Fundamentals of Statistics

the data is called a sample from P . The size of the data set is called the
sample size. A population P is known if and only if P (A) is a known value
for every event A ∈ F . In a statistical problem, the population P is at least
partially unknown and we would like to deduce some properties of P based
on the available sample.

Example 2.1 (Measurement problems). To measure an unknown quan-
tity θ (for example, a distance, weight, or temperature), n measurements,
x1, ..., xn, are taken in an experiment of measuring θ. If θ can be measured
without errors, then xi = θ for all i; otherwise, each xi has a possible mea-
surement error. In descriptive data analysis, a few summary measures may
be calculated, for example, the sample mean

x̄ =
1

n

n∑

i=1

xi

and the sample variance

s2 =
1

n− 1

n∑

i=1

(xi − x̄)
2
.

However, what is the relationship between x̄ and θ? Are they close (if
not equal) in some sense? The sample variance s2 is clearly an average of
squared deviations of xi’s from their mean. But, what kind of information
does s2 provide? Finally, is it enough to just look at x̄ and s2 for the purpose
of measuring θ? These questions cannot be answered in descriptive data
analysis.

In statistical inference and decision theory, the data set, (x1, ..., xn), is
viewed as an outcome of the experiment whose sample space is Ω = Rn.
We usually assume that the n measurements are obtained in n indepen-
dent trials of the experiment. Hence, we can define a random n-vector
X = (X1, ..., Xn) on

∏n
i=1(R,B, P ) whose realization is (x1, ..., xn). The

population in this problem is P (note that the product probability measure
is determined by P ) and is at least partially unknown. The random vector
X is a sample and n is the sample size. Define

X̄ =
1

n

n∑

i=1

Xi (2.1)

and

S2 =
1

n− 1

n∑

i=1

(
Xi − X̄

)2
. (2.2)

Then X̄ and S2 are random variables that produce x̄ and s2, respectively.
Questions raised previously can be answered if some assumptions are im-
posed on the population P , which are discussed later.
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When the sample (X1, ..., Xn) has i.i.d. components, which is often the
case in applications, the population is determined by the marginal distri-
bution of Xi.

Example 2.2 (Life-time testing problems). Let x1, ..., xn be observed life-
times of some electronic components. Again, in statistical inference and
decision theory, x1, ..., xn are viewed as realizations of independent random
variables X1, ..., Xn. Suppose that the components are of the same type
so that it is reasonable to assume that X1, ..., Xn have a common marginal
c.d.f. F . Then the population is F , which is often unknown. A quantity of
interest in this problem is 1 − F (t) with a t > 0, which is the probability
that a component does not fail at time t. It is possible that all xi’s are
smaller (or larger) than t. Conclusions about 1− F (t) can be drawn based
on data x1, ..., xn when certain assumptions on F are imposed.

Example 2.3 (Survey problems). A survey is often conducted when one is
not able to evaluate all elements in a collection P = {y1, ..., yN} containing
N values in Rk, where k and N are finite positive integers but N may be
very large. Suppose that the quantity of interest is the population total
Y =

∑N
i=1 yi. In a survey, a subset s of n elements are selected from

{1, ..., N} and values yi, i ∈ s, are obtained. Can we draw some conclusion
about Y based on data yi, i ∈ s?

How do we define some random variables that produce the survey data?
First, we need to specify how s is selected. A commonly used probability
sampling plan can be described as follows. Assume that every element in
{1, ..., N} can be selected at most once, i.e., we consider sampling without
replacement. Let S be the collection of all subsets of n distinct elements
from {1, ..., N}, Fs be the collection of all subsets of S, and p be a probabil-
ity measure on (S,Fs). Any s ∈ S is selected with probability p(s). Note
that p(s) is a known value whenever s is given. Let X1, ..., Xn be random
variables such that

P (X1 = yi1 , ..., Xn = yin) =
p(s)

n!
, s = {i1, ..., in} ∈ S. (2.3)

Then (yi, i ∈ s) can be viewed as a realization of the sample (X1, ..., Xn).
If p(s) is constant, then the sampling plan is called the simple random
sampling (without replacement) and (X1, ..., Xn) is called a simple random
sample. Although X1, ..., Xn are identically distributed, they are not nec-
essarily independent. Thus, unlike in the previous two examples, the pop-
ulation in this problem may not be specified by the marginal distributions
of Xi’s. The population is determined by P and the known selection prob-
ability measure p. For this reason, P is often treated as the population.
Conclusions about Y and other characteristics of P can be drawn based on
data yi, i ∈ s, which are discussed later.
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2.1.2 Parametric and nonparametric models

A statistical model (a set of assumptions) on the population P in a given
problem is often postulated to make the analysis possible or easy. Although
testing the correctness of postulated models is part of statistical inference
and decision theory, postulated models are often based on knowledge of the
problem under consideration.

Definition 2.1. A set of probability measures Pθ on (Ω,F) indexed by a
parameter θ ∈ Θ is said to be a parametric family if and only if Θ ⊂ Rd for
some fixed positive integer d and each Pθ is a known probability measure
when θ is known. The set Θ is called the parameter space and d is called
its dimension.

A parametric model refers to the assumption that the population P is
in a given parametric family. A parametric family {Pθ : θ ∈ Θ} is said to
be identifiable if and only if θ1 6= θ2 and θi ∈ Θ imply Pθ1 6= Pθ2 . In most
cases an identifiable parametric family can be obtained through reparame-
terization. Hence, we assume in what follows that every parametric family
is identifiable unless otherwise stated.

Let P be a family of populations and ν be a σ-finite measure on (Ω,F).
If P ≪ ν for all P ∈ P , then P is said to be dominated by ν, in which case P
can be identified by the family of densities { dP

dν : P ∈ P} (or { dPθ

dν : θ ∈ Θ}
for a parametric family).

Many examples of parametric families can be obtained from Tables 1.1
and 1.2 in §1.3.1. All parametric families from Tables 1.1 and 1.2 are
dominated by the counting measure or the Lebesgue measure on R.

Example 2.4 (The k-dimensional normal family). Consider the normal
distribution Nk(µ,Σ) given by (1.24) for a fixed positive integer k. An im-
portant parametric family in statistics is the family of normal distributions

P = {Nk(µ,Σ) : µ ∈ Rk, Σ ∈ Mk},

where Mk is a collection of k×k symmetric positive definite matrices. This
family is dominated by the Lebesgue measure on Rk.

In the measurement problem described in Example 2.1, Xi’s are often
i.i.d. from the N(µ, σ2) distribution. Hence, we can impose a parametric
model on the population, i.e., P ∈ P = {N(µ, σ2) : µ ∈ R, σ2 > 0}.

The normal parametric model is perhaps not a good model for the life-
time testing problem described in Example 2.2, since clearly Xi ≥ 0 for
all i. In practice, the normal family {N(µ, σ2) : µ ∈ R, σ2 > 0} can
be used for a life-time testing problem if one puts some restrictions on µ
and σ so that P (Xi < 0) is negligible. Common parametric models for
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life-time testing problems are the exponential model (containing the expo-
nential distributions E(0, θ) with an unknown parameter θ; see Table 1.2
in §1.3.1), the gamma model (containing the gamma distributions Γ(α, γ)
with unknown parameters α and γ), the log-normal model (containing the
log-normal distributions LN(µ, σ2) with unknown parameters µ and σ), the
Weibull model (containing the Weibull distributionsW (α, θ) with unknown
parameters α and θ), and any subfamilies of these parametric families (e.g.,
a family containing the gamma distributions with one known parameter and
one unknown parameter).

The normal family is often not a good choice for the survey problem
discussed in Example 2.3.

In a given problem, a parametric model is not useful if the dimension
of Θ is very high. For example, the survey problem described in Example
2.3 has a natural parametric model, since the population P can be indexed
by the parameter θ = (y1, ..., yN). If there is no restriction on the y-values,
however, the dimension of the parameter space is kN , which is usually much
larger than the sample size n. If there are some restrictions on the y-values
(for example, yi’s are nonnegative integers no larger than a fixed integer
m), then the dimension of the parameter space is at most m + 1 and the
parametric model becomes useful.

A family of probability measures is said to be nonparametric if it is not
parametric according to Definition 2.1. A nonparametric model refers to the
assumption that the population P is in a given nonparametric family. There
may be almost no assumption on a nonparametric family, for example, the
family of all probability measures on (Rk,Bk). But in many applications,
we may use one or a combination of the following assumptions to form a
nonparametric family on (Rk,Bk):
(1) The joint c.d.f.’s are continuous.

(2) The joint c.d.f.’s have finite moments of order ≤ a fixed integer.

(3) The joint c.d.f.’s have p.d.f.’s (e.g., Lebesgue p.d.f.’s).

(4) k = 1 and the c.d.f.’s are symmetric.

For instance, in Example 2.1, we may assume a nonparametric model
with symmetric and continuous c.d.f.’s. The symmetry assumption may
not be suitable for the population in Example 2.2, but the continuity as-
sumption seems to be reasonable.

In statistical inference and decision theory, methods designed for para-
metric models are called parametric methods, whereas methods designed
for nonparametric models are called nonparametric methods. However,
nonparametric methods are used in a parametric model when paramet-
ric methods are not effective, such as when the dimension of the parameter
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space is too high (Example 2.3). On the other hand, parametric methods
may be applied to a semi-parametric model, which is a nonparametric model
having a parametric component. Some examples are provided in §5.1.4.

2.1.3 Exponential and location-scale families

In this section, we discuss two types of parametric families that are of
special importance in statistical inference and decision theory.

Definition 2.2 (Exponential families). A parametric family {Pθ : θ ∈ Θ}
dominated by a σ-finite measure ν on (Ω,F) is called an exponential family
if and only if

dPθ
dν

(ω) = exp
{
[η(θ)]τT (ω) − ξ(θ)

}
h(ω), ω ∈ Ω, (2.4)

where exp{x} = ex, T is a random p-vector with a fixed positive integer p,
η is a function from Θ to Rp, h is a nonnegative Borel function on (Ω,F),
and ξ(θ) = log

{∫
Ω

exp{[η(θ)]τT (ω)}h(ω)dν(ω)
}
.

In Definition 2.2, T and h are functions of ω only, whereas η and ξ
are functions of θ only. Ω is usually Rk. The representation (2.4) of an
exponential family is not unique. In fact, any transformation η̃(θ) = Dη(θ)
with a p × p nonsingular matrix D gives another representation (with T
replaced by T̃ = (Dτ )−1T ). A change of the measure that dominates the
family also changes the representation. For example, if we define λ(A) =∫
A
hdν for any A ∈ F , then we obtain an exponential family with densities

dPθ
dλ

(ω) = exp
{
[η(θ)]τT (ω) − ξ(θ)

}
. (2.5)

In an exponential family, consider the reparameterization η = η(θ) and

fη(ω) = exp
{
ητT (ω)− ζ(η)

}
h(ω), ω ∈ Ω, (2.6)

where ζ(η) = log
{∫

Ω exp{ητT (ω)}h(ω)dν(ω)
}
. This is the canonical form

for the family, which is not unique for the reasons discussed previously. The
new parameter η is called the natural parameter. The new parameter space
Ξ = {η(θ) : θ ∈ Θ}, a subset of Rp, is called the natural parameter space.
An exponential family in canonical form is called a natural exponential
family. If there is an open set contained in the natural parameter space of
an exponential family, then the family is said to be of full rank.

Example 2.5. Let Pθ be the binomial distribution Bi(θ, n) with param-
eter θ, where n is a fixed positive integer. Then {Pθ : θ ∈ (0, 1)} is an
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exponential family, since the p.d.f. of Pθ w.r.t. the counting measure is

fθ(x) = exp
{
x log θ

1−θ + n log(1 − θ)
}(n

x

)
I{0,1,...,n}(x)

(T (x)=x, η(θ)=log θ
1−θ , ξ(θ)=−n log(1− θ), and h(x)=

(
n
x

)
I{0,1,...,n}(x)).

If we let η = log θ
1−θ , then Ξ = R and the family with p.d.f.’s

fη(x) = exp {xη − n log(1 + eη)}
(
n

x

)
I{0,1,...,n}(x)

is a natural exponential family of full rank.

Example 2.6. The normal family {N(µ, σ2) : µ ∈ R, σ > 0} is an
exponential family, since the Lebesgue p.d.f. of N(µ, σ2) can be written as

1√
2π

exp

{
µ

σ2
x− 1

2σ2
x2 − µ2

2σ2
− log σ

}
.

Hence, T (x) = (x,−x2), η(θ) =
(
µ
σ2 ,

1
2σ2

)
, θ = (µ, σ2), ξ(θ) = µ2

2σ2 + log σ,

and h(x) = 1/
√

2π. Let η = (η1, η2) =
(
µ
σ2 ,

1
2σ2

)
. Then Ξ = R × (0,∞)

and we can obtain a natural exponential family of full rank with ζ(η) =
η2
1/(4η2) + log(1/

√
2η2).

A subfamily of the previous normal family, {N(µ, µ2) : µ ∈ R, µ 6= 0},
is also an exponential family with the natural parameter η =

(
1
µ ,

1
2µ2

)
and

natural parameter space Ξ = {(x, y) : y = 2x2, x ∈ R, y > 0}. This
exponential family is not of full rank.

For an exponential family, (2.5) implies that there is a nonzero measure
λ such that

dPθ
dλ

(ω) > 0 for all ω and θ. (2.7)

We can use this fact to show that a family of distributions is not an expo-
nential family. For example, consider the family of uniform distributions,
i.e., Pθ is U(0, θ) with an unknown θ ∈ (0,∞). If {Pθ : θ ∈ (0,∞)} is an
exponential family, then from the previous discussion we have a nonzero
measure λ such that (2.7) holds. For any t > 0, there is a θ < t such that
Pθ([t,∞)) = 0, which with (2.7) implies that λ([t,∞)) = 0. Also, for any
t ≤ 0, Pθ((−∞, t]) = 0, which with (2.7) implies that λ((−∞, t]) = 0. Since
t is arbitrary, λ ≡ 0. This contradiction implies that {Pθ : θ ∈ (0,∞)}
cannot be an exponential family.

The reader may verify which of the parametric families from Tables
1.1 and 1.2 are exponential families. As another example, we consider an
important exponential family containing multivariate discrete distributions.



98 2. Fundamentals of Statistics

Example 2.7 (The multinomial family). Consider an experiment having
k + 1 possible outcomes with pi as the probability for the ith outcome,
i = 0, 1, ..., k,

∑k
i=0 pi = 1. In n independent trials of this experiment, let

Xi be the number of trials resulting in the ith outcome, i = 0, 1, ..., k. Then
the joint p.d.f. (w.r.t. counting measure) of (X0, X1, ..., Xk) is

fθ(x0, x1, ..., xk) =
n!

x0!x1! · · ·xk!
px0
0 px1

1 · · · pxk

k IB(x0, x1, ..., xk),

where B = {(x0, x1, ..., xk) : xi’s are integers ≥ 0,
∑k
i=0 xi = n} and θ =

(p0, p1, ..., pk). The distribution of (X0, X1, ..., Xk) is called the multinomial
distribution, which is an extension of the binomial distribution. In fact,
the marginal c.d.f. of each Xi is the binomial distribution Bi(pi, n). Let

Θ = {θ ∈ Rk+1 : 0 < pi < 1,
∑k
i=0 pi = 1}. The parametric family

{fθ : θ ∈ Θ} is called the multinomial family. Let x = (x0, x1, ..., xk),
η = (log p0, log p1, ..., log pk), and h(x) = [n!/(x0!x1! · · ·xk!)]IB(x). Then

fθ(x0, x1, ..., xk) = exp {ητx} h(x), x ∈ Rk+1. (2.8)

Hence, the multinomial family is a natural exponential family with natural
parameter η. However, representation (2.8) does not provide an exponential
family of full rank, since there is no open set of Rk+1 contained in the
natural parameter space. A reparameterization leads to an exponential
family with full rank. Using the fact that

∑k
i=0Xi = n and

∑k
i=0 pi = 1,

we obtain that

fθ(x0, x1, ..., xk) = exp {ητ∗x∗ − ζ(η∗)}h(x), x ∈ Rk+1, (2.9)

where x∗ = (x1, ..., xk), η∗ = (log(p1/p0), ..., log(pk/p0)), and ζ(η∗) =
−n log p0. The η∗-parameter space is Rk. Hence, the family of densities
given by (2.9) is a natural exponential family of full rank.

If X1, ..., Xm are independent random vectors with p.d.f.’s in exponen-
tial families, then the p.d.f. of (X1, ..., Xm) is again in an exponential family.
The following result summarizes some other useful properties of exponential
families. Its proof can be found in Lehmann (1986).

Theorem 2.1. Let P be a natural exponential family given by (2.6).
(i) Let T = (Y, U) and η = (ϑ, ϕ), where Y and ϑ have the same dimension.
Then, Y has the p.d.f.

fη(y) = exp{ϑτy − ζ(η)}
w.r.t. a σ-finite measure depending on ϕ. In particular, T has a p.d.f. in a
natural exponential family. Furthermore, the conditional distribution of Y
given U = u has the p.d.f. (w.r.t. a σ-finite measure depending on u)

fϑ,u(y) = exp{ϑτy − ζu(ϑ)},
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which is in a natural exponential family indexed by ϑ.
(ii) If η0 is an interior point of the natural parameter space, then the m.g.f.
ψη0 of Pη0 ◦ T−1 is finite in a neighborhood of 0 and is given by

ψη0(t) = exp{ζ(η0 + t) − ζ(η0)}.

Furthermore, if f is a Borel function satisfying
∫
|f |dPη0 < ∞, then the

function ∫
f(ω) exp{ητT (ω)}h(ω)dν(ω)

is infinitely often differentiable in a neighborhood of η0, and the derivatives
may be computed by differentiation under the integral sign.

Using Theorem 2.1(ii) and the result in Example 2.5, we obtain that
the m.g.f. of the binomial distribution Bi(p, n) is

ψη(t) = exp{n log(1 + eη+t) − n log(1 + eη)}

=

(
1 + eηet

1 + eη

)n

= (1 − p+ pet)n,

since p = eη/(1 + eη).

Definition 2.3 (Location-scale families). Let P be a known probability
measure on (Rk,Bk), V ⊂ Rk, and Mk be a collection of k × k symmetric
positive definite matrices. The family

{P(µ,Σ) : µ ∈ V , Σ ∈ Mk} (2.10)

is called a location-scale family (on Rk), where

P(µ,Σ)(B) = P
(
Σ−1/2(B − µ)

)
, B ∈ Bk,

Σ−1/2(B−µ) = {Σ−1/2(x−µ) : x ∈ B} ⊂ Rk, and Σ−1/2 is the inverse of
the “square root” matrix Σ1/2 satisfying Σ1/2Σ1/2 = Σ. The parameters µ
and Σ1/2 are called the location and scale parameters, respectively.

The following are some important examples of location-scale families.
The family {P(µ,Ik) : µ ∈ Rk} is called a location family, where Ik is
the k × k identity matrix. The family {P(0,Σ) : Σ ∈ Mk} is called a
scale family. In some cases, we consider a location-scale family of the form
{P(µ,σ2Ik) : µ ∈ Rk, σ > 0}. If X1, ..., Xk are i.i.d. with a common dis-
tribution in the location-scale family {P(µ,σ2) : µ ∈ R, σ > 0}, then the
joint distribution of the vector (X1, ..., Xk) is in the location-scale family
{P(µ,σ2Ik) : µ ∈ V , σ > 0} with V = {(x, ..., x) ∈ Rk : x ∈ R}.



100 2. Fundamentals of Statistics

A location-scale family can be generated as follows. Let X be a random
k-vector having a distribution P . Then the distribution of Σ1/2X + µ is
P(µ,Σ). On the other hand, if X is a random k-vector whose distribution is
in the location-scale family (2.10), then the distribution DX + c is also in
the same family, provided that Dµ+ c ∈ V and DΣDτ ∈ Mk.

Let F be the c.d.f. of P . Then the c.d.f. of P(µ,Σ) is F
(
Σ−1/2(x − µ)

)
,

x ∈ Rk. If F has a Lebesgue p.d.f. f , then the Lebesgue p.d.f. of P(µ,Σ) is

Det(Σ−1/2)f
(
Σ−1/2(x− µ)

)
, x ∈ Rk (Proposition 1.8).

Many families of distributions in Table 1.2 (§1.3.1) are location, scale, or
location-scale families. For example, the family of exponential distributions
E(a, θ) is a location-scale family on R with location parameter a and scale
parameter θ; the family of uniform distributions U(0, θ) is a scale family on
R with a scale parameter θ. The k-dimensional normal family discussed in
Example 2.4 is a location-scale family on Rk.

2.2 Statistics, Sufficiency, and Completeness

Let us assume now that our data set is a realization of a sample X (a
random vector) from an unknown population P on a probability space.

2.2.1 Statistics and their distributions

A measurable function of X , T (X), is called a statistic if T (X) is a known
value whenever X is known, i.e., the function T is a known function. Sta-
tistical analyses are based on various statistics, for various purposes. Of
course, X itself is a statistic, but it is a trivial statistic. The range of a
nontrivial statistic T (X) is usually simpler than that of X . For example,
X may be a random n-vector and T (X) may be a random p-vector with a
p much smaller than n. This is desired since T (X) simplifies the original
data.

From a probabilistic point of view, the “information” within the statistic
T (X) concerning the unknown distribution of X is contained in the σ-
field σ(T (X)). To see this, assume that S is any other statistic for which
σ(S(X)) = σ(T (X)). Then, by Lemma 1.2, S is a measurable function of
T , and T is a measurable function of S. Thus, once the value of S (or T ) is
known, so is the value of T (or S). That is, it is not the particular values
of a statistic that contain the information, but the generated σ-field of the
statistic. Values of a statistic may be important for other reasons.

Note that σ(T (X)) ⊂ σ(X) and the two σ-fields are the same if and
only if T is one-to-one. Usually σ(T (X)) simplifies σ(X), i.e., a statistic
provides a “reduction” of the σ-field.
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Any T (X) is a random element. If the distribution of X is unknown,
then the distribution of T may also be unknown, although T is a known
function. Finding the form of the distribution of T is one of the major
problems in statistical inference and decision theory. Since T is a transfor-
mation of X , tools we learn in Chapter 1 for transformations may be useful
in finding the distribution or an approximation to the distribution of T (X).

Example 2.8. Let X1, ..., Xn be i.i.d. random variables having a common
distribution P and X = (X1, ..., Xn). The sample mean X̄ and sample
variance S2 defined in (2.1) and (2.2), respectively, are two commonly used
statistics. Can we find the joint or the marginal distributions of X̄ and S2?
It depends on how much we know about P .

First, let us consider the moments of X̄ and S2. Assume that P has a
finite mean denoted by µ. Then

EX̄ = µ.

If P is in a parametric family {Pθ : θ ∈ Θ}, then EX̄ =
∫
xdPθ = µ(θ)

for some function µ(·). Even if the form of µ is known, µ(θ) may still be
unknown when θ is unknown. Assume now that P has a finite variance
denoted by σ2. Then

Var(X̄) = σ2/n,

which equals σ2(θ)/n for some function σ2(·) if P is in a parametric family.
With a finite σ2 = Var(X1), we can also obtain that

ES2 = σ2.

With a finite E|X1|3, we can obtain E(X̄)3 and Cov(X̄, S2), and with a
finite E|X1|4, we can obtain Var(S2) (exercise).

Next, consider the distribution of X̄. If P is in a parametric family, we
can often find the distribution of X̄. See Example 1.20 and some exercises
in §1.6. For example, X̄ is N(µ, σ2/n) if P is N(µ, σ2); nX̄ has the gamma
distribution Γ(n, θ) if P is the exponential distribution E(0, θ). If P is not
in a parametric family, then it is usually hard to find the exact form of the
distribution of X̄. One can, however, use the CLT (§1.5.4) to obtain an
approximation to the distribution of X̄ . Applying Corollary 1.2 (for the
case of k = 1), we obtain that

√
n(X̄ − µ) →d N(0, σ2)

and, by (1.100), the distribution of X̄ can be approximated by N(µ, σ2/n),
where µ and σ2 are the mean and variance of P , respectively, and are
assumed to be finite.

Compared to X̄, the distribution of S2 is harder to obtain. Assuming
that P is N(µ, σ2), one can show that (n − 1)S2/σ2 has the chi-square



102 2. Fundamentals of Statistics

distribution χ2
n−1 (see Example 2.18). An approximate distribution for

S2 can be obtained from the approximate joint distribution of X̄ and S2

discussed next.

Under the assumption that P is N(µ, σ2), it can be shown that X̄
and S2 are independent (Example 2.18). Hence, the joint distribution of
(X̄, S2) is the product of the marginal distributions of X̄ and S2 given in the
previous discussion. Without the normality assumption, an approximate
joint distribution can be obtained as follows. Assume again that µ = EX1,
σ2 = Var(X1), and E|X1|4 are finite. Let Yi = (Xi − µ, (Xi − µ)2), i =
1, ..., n. Then Y1, ..., Yn are i.i.d. random 2-vectors with EY1 = (0, σ2) and
variance-covariance matrix

Σ =

(
σ2 E(X1 − µ)3

E(X1 − µ)3 E(X1 − µ)4 − σ4

)
.

Note that Ȳ = n−1
∑n

i=1 Yi = (X̄−µ, S̃2), where S̃2 = n−1
∑n

i=1(Xi−µ)2.
Applying the CLT (Corollary 1.2) to Yi’s, we obtain that

√
n(X̄ − µ, S̃2 − σ2) →d N2(0,Σ).

Since
S2 =

n

n− 1

[
S̃2 − (X̄ − µ)2

]

and X̄ →a.s. µ (the SLLN, Theorem 1.13), an application of Slutsky’s
theorem (Theorem 1.11) leads to

√
n(X̄ − µ, S2 − σ2) →d N2(0,Σ).

Example 2.9 (Order statistics). Let X = (X1, ..., Xn) with i.i.d. random
components and let X(i) be the ith smallest value of X1, ..., Xn. The statis-
tics X(1), ..., X(n) are called the order statistics, which is a set of very useful
statistics in addition to the sample mean and variance in the previous ex-
ample. Suppose that Xi has a c.d.f. F having a Lebesgue p.d.f. f . Then
the joint Lebesgue p.d.f. of X(1), ..., X(n) is

g(x1, x2, ..., xn) =

{
n!f(x1)f(x2) · · · f(xn) x1 < x2 < · · · < xn
0 otherwise.

The joint Lebesgue p.d.f. of X(i) and X(j), 1 ≤ i < j ≤ n, is

gi,j(x, y) =

{
n![F (x)]i−1[F (y)−F (x)]j−i−1[1−F (y)]n−jf(x)f(y)

(i−1)!(j−i−1)!(n−j)! x < y

0 otherwise

and the Lebesgue p.d.f. of X(i) is

gi(x) =
n!

(i− 1)!(n− i)!
[F (x)]i−1[1 − F (x)]n−if(x).
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2.2.2 Sufficiency and minimal sufficiency

Having discussed the reduction of the σ-field σ(X) by using a statistic
T (X), we now ask whether such a reduction results in any loss of infor-
mation concerning the unknown population. If a statistic T (X) is fully as
informative as the original sample X , then statistical analyses can be done
using T (X) that is simpler than X . The next concept describes what we
mean by fully informative.

Definition 2.4 (Sufficiency). Let X be a sample from an unknown pop-
ulation P ∈ P , where P is a family of populations. A statistic T (X) is
said to be sufficient for P ∈ P (or for θ ∈ Θ when P = {Pθ : θ ∈ Θ} is a
parametric family) if and only if the conditional distribution of X given T
is known (does not depend on P or θ).

Definition 2.4 can be interpreted as follows. Once we observe X and
compute a sufficient statistic T (X), the original data X do not contain any
further information concerning the unknown population P (since its con-
ditional distribution is unrelated to P ) and can be discarded. A sufficient
statistic T (X) contains all information about P contained in X (see Ex-
ercise 36 in §3.6 for an interpretation of this from another viewpoint) and
provides a reduction of the data if T is not one-to-one. Thus, one of the
questions raised in Example 2.1 can be answered as follows: it is enough to
just look at x̄ and s2 for the problem of measuring θ if (X̄, S2) is sufficient
for P (or θ when θ is the only unknown parameter).

The concept of sufficiency depends on the given family P . If T is suffi-
cient for P ∈ P , then T is also sufficient for P ∈ P0 ⊂ P but not necessarily
sufficient for P ∈ P1 ⊃ P .

Example 2.10. Suppose that X = (X1, ..., Xn) and X1, ..., Xn are i.i.d.
from the binomial distribution with the p.d.f. (w.r.t. the counting measure)

fθ(z) = θz(1 − θ)1−zI{0,1}(z), z ∈ R, θ ∈ (0, 1).

For any realization x of X , x is a sequence of n ones and zeros. Consider
the statistic T (X) =

∑n
i=1Xi, which is the number of ones in X . Before

showing that T is sufficient, we can intuitively argue that T contains all
information about θ, since θ is the probability of an occurrence of a one
in x. Given T = t (the number of ones in x), what is left in the data set
x is the redundant information about the positions of t ones. Since the
random variables are discrete, it is not difficult to compute the conditional
distribution of X given T = t. Note that

P (X = x|T = t) =
P (X = x, T = t)

P (T = t)
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and P (T = t) =
(
n
t

)
θt(1 − θ)n−tI{0,1,...,n}(t). Let xi be the ith component

of x. If t 6= ∑n
i=1 xi, then P (X = x, T = t) = 0. If t =

∑n
i=1 xi, then

P (X = x, T = t) =
n∏

i=1

P (Xi = xi) = θt(1 − θ)n−t
n∏

i=1

I{0,1}(xi).

Let Bt = {(x1, ..., xn) : xi = 0, 1,
∑n

i=1 xi = t}. Then

P (X = x|T = t) =
1(
n
t

)IBt(x)

is a known p.d.f. This shows that T (X) is sufficient for θ ∈ (0, 1), according
to Definition 2.4 with the family {fθ : θ ∈ (0, 1)}.

Finding a sufficient statistic by means of the definition is not conve-
nient since it involves guessing a statistic T that might be sufficient and
computing the conditional distribution of X given T = t. For families of
populations having p.d.f.’s, a simple way of finding sufficient statistics is to
use the factorization theorem. We first prove the following lemma.

Lemma 2.1. If a family P is dominated by a σ-finite measure, then P is
dominated by a probability measure Q =

∑∞
i=1 ciPi, where ci’s are nonneg-

ative constants with
∑∞
i=1 ci = 1 and Pi ∈ P .

Proof. Assume that P is dominated by a finite measure ν (the case of
σ-finite ν is left as an exercise). Let P0 be the family of all measures of the
form

∑∞
i=1 ciPi, where Pi ∈ P , ci ≥ 0, and

∑∞
i=1 ci = 1. Then, it suffices

to show that there is a Q ∈ P0 such that Q(A) = 0 implies P (A) = 0 for all
P ∈ P0. Let C be the class of events C for which there exists P ∈ P0 such
that P (C) > 0 and dP/dν > 0 a.e. ν on C. Then there exists a sequence
{Ci} ⊂ C such that ν(Ci) → supC∈C ν(C). Let C0 be the union of all Ci’s
and Q =

∑∞
i=1 ciPi, where Pi is the probability measure corresponding to

Ci. Then C0 ∈ C (exercise). Suppose now that Q(A) = 0. Let P ∈ P0

and B = {x : dP/dν > 0}. Since Q(A ∩ C0) = 0, ν(A ∩ C0) = 0 and
P (A ∩ C0) = 0. Then P (A) = P (A ∩ Cc0 ∩B). If P (A ∩ Cc0 ∩B) > 0, then
ν(C0∪(A∩Cc0 ∩B)) > ν(C0), which contradicts ν(C0) = supC∈C ν(C) since
A∩Cc0 ∩B and therefore C0 ∪ (A∩Cc0 ∩B) is in C. Thus, P (A) = 0 for all
P ∈ P0.

Theorem 2.2 (The factorization theorem). Suppose that X is a sample
from P ∈ P and P is a family of probability measures on (Rn,Bn) dom-
inated by a σ-finite measure ν. Then T (X) is sufficient for P ∈ P if and
only if there are nonnegative Borel functions h (which does not depend on
P ) on (Rn,Bn) and g

P
(which depends on P ) on the range of T such that

dP

dν
(x) = g

P

(
T (x)

)
h(x). (2.11)
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Proof. (i) Suppose that T is sufficient for P ∈ P . Then, for any A ∈ Bn,
P (A|T ) does not depend on P . Let Q be the probability measure in Lemma
2.1. By Fubini’s theorem and the result in Exercise 35 of §1.6,

Q(A ∩B) =

∞∑

j=1

cjPj(A ∩B)

=

∞∑

j=1

cj

∫

B

P (A|T )dPj

=

∫

B

∞∑

j=1

cjP (A|T )dPj

=

∫

B

P (A|T )dQ

for any B ∈ σ(T ). Hence, P (A|T ) = EQ(IA|T ) a.s. Q, where EQ(IA|T )
denotes the conditional expectation of IA given T w.r.t. Q. Let g

P
(T ) be

the Radon-Nikodym derivative dP/dQ on the space (Rn, σ(T ), Q). From
Propositions 1.7 and 1.10,

P (A) =

∫
P (A|T )dP

=

∫
EQ(IA|T )g

P
(T )dQ

=

∫
EQ[IAgP

(T )|T ]dQ

=

∫

A

gP (T )
dQ

dν
dν

for any A ∈ Bn. Hence, (2.11) holds with h = dQ/dν.
(ii) Suppose that (2.11) holds. Then

dP

dQ
=
dP

dν

/ ∞∑

i=1

ci
dPi
dν

= g
P
(T )

/ ∞∑

i=1

g
Pi

(T ) a.s. Q, (2.12)

where the second equality follows from the result in Exercise 35 of §1.6. Let
A ∈ σ(X) and P ∈ P . The sufficiency of T follows from

P (A|T ) = EQ(IA|T ) a.s. P , (2.13)

where EQ(IA|T ) is given in part (i) of the proof. This is because EQ(IA|T )
does not vary with P ∈ P , and result (2.13) and Theorem 1.7 imply that
the conditional distribution of X given T is determined by EQ(IA|T ), A ∈
σ(X). By the definition of conditional probability, (2.13) follows from

∫

B

IAdP =

∫

B

EQ(IA|T )dP (2.14)
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for any B ∈ σ(T ). Let B ∈ σ(T ). By (2.12), dP/dQ is a Borel function of
T . Then, by Proposition 1.7(i), Proposition 1.10(vi), and the definition of
the conditional expectation, the right-hand side of (2.14) is equal to

∫

B

EQ(IA|T )
dP

dQ
dQ =

∫

B

EQ

(
IA
dP

dQ

∣∣∣∣T
)
dQ =

∫

B

IA
dP

dQ
dQ,

which equals the left-hand side of (2.14). This proves (2.14) for any B ∈
σ(T ) and completes the proof.

If P is an exponential family with p.d.f.’s given by (2.4) and X(ω) = ω,
then we can apply Theorem 2.2 with gθ(t) = exp{[η(θ)]τ t − ξ(θ)} and
conclude that T is a sufficient statistic for θ ∈ Θ. In Example 2.10 the joint
distribution ofX is in an exponential family with T (X) =

∑n
i=1Xi. Hence,

we can conclude that T is sufficient for θ ∈ (0, 1) without computing the
conditional distribution of X given T .

Example 2.11 (Truncation families). Let φ(x) be a positive Borel function

on (R,B) such that
∫ b
a
φ(x)dx < ∞ for any a and b, −∞ < a < b < ∞.

Let θ = (a, b), Θ = {(a, b) ∈ R2 : a < b}, and

fθ(x) = c(θ)φ(x)I(a,b)(x),

where c(θ) =
[∫ b
a
φ(x)dx

]−1

. Then {fθ : θ ∈ Θ}, called a truncation

family, is a parametric family dominated by the Lebesgue measure on R.
Let X1, ..., Xn be i.i.d. random variables having the p.d.f. fθ. Then the
joint p.d.f. of X = (X1, ..., Xn) is

n∏

i=1

fθ(xi) = [c(θ)]nI(a,∞)(x(1))I(−∞,b)(x(n))

n∏

i=1

φ(xi), (2.15)

where x(i) is the ith smallest value of x1, ..., xn. Let T (X) = (X(1), X(n)),
gθ(t1, t2) = [c(θ)]nI(a,∞)(t1)I(−∞,b)(t2), and h(x) =

∏n
i=1 φ(xi). By (2.15)

and Theorem 2.2, T (X) is sufficient for θ ∈ Θ.

Example 2.12 (Order statistics). Let X = (X1, ..., Xn) and X1, ..., Xn be
i.i.d. random variables having a distribution P ∈ P , where P is the family
of distributions on R having Lebesgue p.d.f.’s. Let X(1), ..., X(n) be the
order statistics given in Example 2.9. Note that the joint p.d.f. of X is

f(x1) · · · f(xn) = f(x(1)) · · · f(x(n)).

Hence, T (X) = (X(1), ..., X(n)) is sufficient for P ∈ P . The order statistics
can be shown to be sufficient even when P is not dominated by any σ-finite
measure, but Theorem 2.2 is not applicable (see Exercise 31 in §2.6).



2.2. Statistics, Sufficiency, and Completeness 107

There are many sufficient statistics for a given family P . In fact, if
T is a sufficient statistic and T = ψ(S), where ψ is measurable and S is
another statistic, then S is sufficient. This is obvious from Theorem 2.2 if
the population has a p.d.f., but it can be proved directly from Definition
2.4 (Exercise 25). For instance, in Example 2.10, (

∑m
i=1Xi,

∑n
i=m+1Xi)

is sufficient for θ, where m is any fixed integer between 1 and n. If T
is sufficient and T = ψ(S) with a measurable ψ that is not one-to-one,
then σ(T ) ⊂ σ(S) and T is more useful than S, since T provides a further
reduction of the data (or σ-field) without loss of information. Is there a
sufficient statistic that provides “maximal” reduction of the data?

Before introducing the next concept, we need the following notation. If
a statement holds except for outcomes in an event A satisfying P (A) = 0
for all P ∈ P , then we say that the statement holds a.s. P .

Definition 2.5 (Minimal sufficiency). Let T be a sufficient statistic for
P ∈ P . T is called a minimal sufficient statistic if and only if, for any other
statistic S sufficient for P ∈ P , there is a measurable function ψ such that
T = ψ(S) a.s. P .

If both T and S are minimal sufficient statistics, then by definition there
is a one-to-one measurable function ψ such that T = ψ(S) a.s. P . Hence,
the minimal sufficient statistic is unique in the sense that two statistics
that are one-to-one measurable functions of each other can be treated as
one statistic.

Example 2.13. Let X1, ..., Xn be i.i.d. random variables from Pθ, the
uniform distribution U(θ, θ + 1), θ ∈ R. Suppose that n > 1. The joint
Lebesgue p.d.f. of (X1, ..., Xn) is

fθ(x) =

n∏

i=1

I(θ,θ+1)(xi) = I(x(n)−1,x(1))(θ), x = (x1, ..., xn) ∈ Rn,

where x(i) denotes the ith smallest value of x1, ..., xn. By Theorem 2.2,
T = (X(1), X(n)) is sufficient for θ. Note that

x(1) = sup{θ : fθ(x) > 0} and x(n) = 1 + inf{θ : fθ(x) > 0}.

If S(X) is a statistic sufficient for θ, then by Theorem 2.2, there are Borel
functions h and gθ such that fθ(x) = gθ(S(x))h(x). For x with h(x) > 0,

x(1) = sup{θ : gθ(S(x)) > 0} and x(n) = 1 + inf{θ : gθ(S(x)) > 0}.

Hence, there is a measurable function ψ such that T (x) = ψ(S(x)) when
h(x) > 0. Since h > 0 a.s. P , we conclude that T is minimal sufficient.
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Minimal sufficient statistics exist under weak assumptions, e.g., P con-
tains distributions on Rk dominated by a σ-finite measure (Bahadur, 1957).
The next theorem provides some useful tools for finding minimal sufficient
statistics.

Theorem 2.3. Let P be a family of distributions on Rk.
(i) Suppose that P0 ⊂ P and a.s. P0 implies a.s. P . If T is sufficient for
P ∈ P and minimal sufficient for P ∈ P0, then T is minimal sufficient for
P ∈ P .
(ii) Suppose that P contains p.d.f.’s f0, f1, f2, ..., w.r.t. a σ-finite mea-
sure. Let f∞(x) =

∑∞
i=0 cifi(x), where ci > 0 for all i and

∑∞
i=0 ci = 1,

and let Ti(X) = fi(x)/f∞(x) when f∞(x) > 0, i = 0, 1, 2, .... Then
T (X) = (T0, T1, T2, ...) is minimal sufficient for P ∈ P . Furthermore, if
{x : fi(x) > 0} ⊂ {x : f0(x) > 0} for all i, then we may replace f∞ by f0,
in which case T (X) = (T1, T2, ...) is minimal sufficient for P ∈ P .
(iii) Suppose that P contains p.d.f.’s fP w.r.t. a σ-finite measure and that
there exists a sufficient statistic T (X) such that, for any possible values x
and y of X , f

P
(x) = f

P
(y)φ(x, y) for all P implies T (x) = T (y), where φ

is a measurable function. Then T (X) is minimal sufficient for P ∈ P .
Proof. (i) If S is sufficient for P ∈ P , then it is also sufficient for P ∈ P0

and, therefore, T = ψ(S) a.s. P0 holds for a measurable function ψ. The
result follows from the assumption that a.s. P0 implies a.s. P .
(ii) Note that f∞ > 0 a.s. P . Let gi(T ) = Ti, i = 0, 1, 2, .... Then
fi(x) = gi(T (x))f∞(x) a.s. P . By Theorem 2.2, T is sufficient for P ∈ P .
Suppose that S(X) is another sufficient statistic. By Theorem 2.2, there
are Borel functions h and g̃i such that fi(x) = g̃i(S(x))h(x), i = 0, 1, 2, ....
Then Ti(x) = g̃i(S(x))/

∑∞
j=0 cj g̃j(S(x)) for x’s satisfying f∞(x) > 0. By

Definition 2.5, T is minimal sufficient for P ∈ P . The proof for the case
where f∞ is replaced by f0 is the same.
(iii) From Bahadur (1957), there exists a minimal sufficient statistic S(X).
The result follows if we can show that T (X) = ψ(S(X)) a.s. P for a mea-
surable function ψ. By Theorem 2.2, there are Borel functions g

P
and h

such that f
P
(x) = g

P
(S(x))h(x) for all P . Let A = {x : h(x) = 0}. Then

P (A) = 0 for all P . For x and y such that S(x) = S(y), x 6∈ A and y 6∈ A,

f
P
(x) = g

P
(S(x))h(x)

= g
P
(S(y))h(x)h(y)/h(y)

= f
P
(y)h(x)/h(y)

for all P . Hence T (x) = T (y). This shows that there is a function ψ
such that T (x) = ψ(S(x)) except for x ∈ A. It remains to show that
ψ is measurable. Since S is minimal sufficient, g(T (X)) = S(X) a.s. P
for a measurable function g. Hence g is one-to-one and ψ = g−1. The
measurability of ψ follows from Theorem 3.9 in Parthasarathy (1967).
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Example 2.14. Let P = {fθ : θ ∈ Θ} be an exponential family with
p.d.f.’s fθ given by (2.4) and X(ω) = ω. Suppose that there exists Θ0 =
{θ0, θ1, ..., θp} ⊂ Θ such that the vectors ηi = η(θi)− η(θ0), i = 1, ..., p, are
linearly independent in Rp. (This is true if the family is of full rank.) We
have shown that T (X) is sufficient for θ ∈ Θ. We now show that T is in
fact minimal sufficient for θ ∈ Θ. Let P0 = {fθ : θ ∈ Θ0}. Note that the
set {x : fθ(x) > 0} does not depend on θ. It follows from Theorem 2.3(ii)
with f∞ = fθ0 that

S(X) =
(
exp{ητ1T (x) − ξ1}, ..., exp{ητpT (x) − ξp}

)

is minimal sufficient for θ ∈ Θ0, where ξi = ξ(θi) − ξ(θ0). Since ηi’s are
linearly independent, there is a one-to-one measurable function ψ such that
T (X) = ψ(S(X)) a.s. P0. Hence, T is minimal sufficient for θ ∈ Θ0. It
is easy to see that a.s. P0 implies a.s. P . Thus, by Theorem 2.3(i), T is
minimal sufficient for θ ∈ Θ.

The results in Examples 2.13 and 2.14 can also be proved by using
Theorem 2.3(iii) (Exercise 32).

The sufficiency (and minimal sufficiency) depends on the postulated
family P of populations (statistical models). Hence, it may not be a useful
concept if the proposed statistical model is wrong or at least one has some
doubts about the correctness of the proposed model. From the examples
in this section and some exercises in §2.6, one can find that for a wide
variety of models, statistics such as X̄ in (2.1), S2 in (2.2), (X(1), X(n)) in
Example 2.11, and the order statistics in Example 2.9 are sufficient. Thus,
using these statistics for data reduction and summarization does not lose
any information when the true model is one of those models but we do not
know exactly which model is correct.

2.2.3 Complete statistics

A statistic V (X) is said to be ancillary if its distribution does not depend
on the population P and first-order ancillary if E[V (X)] is independent
of P . A trivial ancillary statistic is the constant statistic V (X) ≡ c ∈
R. If V (X) is a nontrivial ancillary statistic, then σ(V (X)) ⊂ σ(X) is a
nontrivial σ-field that does not contain any information about P . Hence,
if S(X) is a statistic and V (S(X)) is a nontrivial ancillary statistic, it
indicates that σ(S(X)) contains a nontrivial σ-field that does not contain
any information about P and, hence, the “data” S(X) may be further
reduced. A sufficient statistic T appears to be most successful in reducing
the data if no nonconstant function of T is ancillary or even first-order
ancillary. This leads to the following concept of completeness.
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Definition 2.6 (Completeness). A statistic T (X) is said to be complete
for P ∈ P if and only if, for any Borel f , E[f(T )] = 0 for all P ∈ P implies
f(T ) = 0 a.s. P . T is said to be boundedly complete if and only if the
previous statement holds for any bounded Borel f .

A complete statistic is boundedly complete. If T is complete (or bound-
edly complete) and S = ψ(T ) for a measurable ψ, then S is complete (or
boundedly complete). Intuitively, a complete and sufficient statistic should
be minimal sufficient, which was shown by Lehmann and Scheffé (1950) and
Bahadur (1957) (see Exercise 48). However, a minimal sufficient statistic
is not necessarily complete; for example, the minimal sufficient statistic
(X(1), X(n)) in Example 2.13 is not complete (Exercise 47).

Proposition 2.1. If P is in an exponential family of full rank with p.d.f.’s
given by (2.6), then T (X) is complete and sufficient for η ∈ Ξ.
Proof. We have shown that T is sufficient. Suppose that there is a function
f such that E[f(T )] = 0 for all η ∈ Ξ. By Theorem 2.1(i),

∫
f(t) exp{ητ t− ζ(η)}dλ = 0 for all η ∈ Ξ,

where λ is a measure on (Rp,Bp). Let η0 be an interior point of Ξ. Then
∫
f+(t)eη

τ tdλ =

∫
f−(t)eη

τ tdλ for all η ∈ N(η0), (2.16)

where N(η0) = {η ∈ Rp : ‖η − η0‖ < ǫ} for some ǫ > 0. In particular,
∫
f+(t)eη

τ
0 tdλ =

∫
f−(t)eη

τ
0 tdλ = c.

If c = 0, then f = 0 a.e. λ. If c > 0, then c−1f+(t)eη
τ
0 t and c−1f−(t)eη

τ
0 t

are p.d.f.’s w.r.t. λ and (2.16) implies that their m.g.f.’s are the same in a
neighborhood of 0. By Theorem 1.6(ii), c−1f+(t)eη

τ
0 t = c−1f−(t)eη

τ
0 t, i.e.,

f = f+ − f− = 0 a.e. λ. Hence T is complete.

Proposition 2.1 is useful for finding a complete and sufficient statistic
when the family of distributions is an exponential family of full rank.

Example 2.15. Suppose that X1, ..., Xn are i.i.d. random variables having
the N(µ, σ2) distribution, µ ∈ R, σ > 0. From Example 2.6, the joint p.d.f.
of X1, ..., Xn is (2π)−n/2 exp {η1T1 + η2T2 − nζ(η)}, where T1 =

∑n
i=1Xi,

T2 = −∑n
i=1X

2
i , and η = (η1, η2) =

(
µ
σ2 ,

1
2σ2

)
. Hence, the family of

distributions for X = (X1, ..., Xn) is a natural exponential family of full
rank (Ξ = R × (0,∞)). By Proposition 2.1, T (X) = (T1, T2) is complete
and sufficient for η. Since there is a one-to-one correspondence between η
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and θ = (µ, σ2), T is also complete and sufficient for θ. It can be shown that
any one-to-one measurable function of a complete and sufficient statistic
is also complete and sufficient (exercise). Thus, (X̄, S2) is complete and
sufficient for θ, where X̄ and S2 are the sample mean and variance given
by (2.1) and (2.2), respectively.

The following examples show how to find a complete statistic for a non-
exponential family.

Example 2.16. Let X1, ..., Xn be i.i.d. random variables from Pθ, the
uniform distribution U(0, θ), θ > 0. The largest order statistic, X(n), is
complete and sufficient for θ ∈ (0,∞). The sufficiency of X(n) follows from
the fact that the joint Lebesgue p.d.f. of X1, ..., Xn is θ−nI(0,θ)(x(n)). From
Example 2.9, X(n) has the Lebesgue p.d.f. (nxn−1/θn)I(0,θ)(x) on R. Let f
be a Borel function on [0,∞) such that E[f(X(n))] = 0 for all θ > 0. Then

∫ θ

0

f(x)xn−1dx = 0 for all θ > 0.

Let G(θ) be the left-hand side of the previous equation. Applying the result
of differentiation of an integral (see, e.g., Royden (1968, §5.3)), we obtain
that G′(θ) = f(θ)θn−1 a.e. m+, where m+ is the Lebesgue measure on
([0,∞),B[0,∞)). Since G(θ) = 0 for all θ > 0, f(θ)θn−1 = 0 a.e. m+ and,
hence, f(x) = 0 a.e. m+. Therefore, X(n) is complete and sufficient for
θ ∈ (0,∞).

Example 2.17. In Example 2.12, we showed that the order statistics
T (X) = (X(1), ..., X(n)) of i.i.d. random variables X1, ..., Xn is sufficient
for P ∈ P , where P is the family of distributions on R having Lebesgue
p.d.f.’s. We now show that T (X) is also complete for P ∈ P . Let P0 be
the family of Lebesgue p.d.f.’s of the form

f(x) = C(θ1, ..., θn) exp{−x2n + θ1x+ θ2x
2 + · · · + θnx

n},

where θj ∈ R and C(θ1, ..., θn) is a normalizing constant such that
∫
f(x)dx

= 1. Then P0 ⊂ P and P0 is an exponential family of full rank. Note that
the joint distribution of X = (X1, ..., Xn) is also in an exponential family of
full rank. Thus, by Proposition 2.1, U = (U1, ..., Un) is a complete statistic
for P ∈ P0, where Uj =

∑n
i=1X

j
i . Since a.s. P0 implies a.s. P , U(X) is

also complete for P ∈ P .

The result follows if we can show that there is a one-to-one correspon-
dence between T (X) and U(X). Let V1 =

∑n
i=1Xi, V2 =

∑
i<j XiXj ,

V3 =
∑

i<j<k XiXjXk,..., Vn = X1 · · ·Xn. From the identities

Uk − V1Uk−1 + V2Uk−2 − · · · + (−1)k−1Vk−1U1 + (−1)kkVk = 0,
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k = 1, ..., n, there is a one-to-one correspondence between U(X) and
V (X) = (V1, ..., Vn). From the identity

(t−X1) · · · (t−Xn) = tn − V1t
n−1 + V2t

n−2 − · · · + (−1)nVn,

there is a one-to-one correspondence between V (X) and T (X). This com-
pletes the proof and, hence, T (X) is sufficient and complete for P ∈ P . In
fact, both U(X) and V (X) are sufficient and complete for P ∈ P .

The relationship between an ancillary statistic and a complete and suf-
ficient statistic is characterized in the following result.

Theorem 2.4 (Basu’s theorem). Let V and T be two statistics of X from
a population P ∈ P . If V is ancillary and T is boundedly complete and
sufficient for P ∈ P , then V and T are independent w.r.t. any P ∈ P .
Proof. Let B be an event on the range of V . Since V is ancillary,
P (V −1(B)) is a constant. Since T is sufficient, E[IB(V )|T ] is a func-
tion of T (independent of P ). Since E{E[IB(V )|T ] − P (V −1(B))} = 0
for all P ∈ P , P (V −1(B)|T ) = E[IB(V )|T ] = P (V −1(B)) a.s. P , by the
bounded completeness of T . Let A be an event on the range of T . Then,
P (T−1(A) ∩ V −1(B)) = E{E[IA(T )IB(V )|T ]} = E{IA(T )E[IB(V )|T ]} =
E{IA(T )P (V −1(B))} = P (T−1(A))P (V −1(B)). Hence T and V are inde-
pendent w.r.t. any P ∈ P .

Basu’s theorem is useful in proving the independence of two statistics.

Example 2.18. Suppose that X1, ..., Xn are i.i.d. random variables having
the N(µ, σ2) distribution, with µ ∈ R and a known σ > 0. It can be easily
shown that the family {N(µ, σ2) : µ ∈ R} is an exponential family of full
rank with natural parameter η = µ/σ2. By Proposition 2.1, the sample
mean X̄ in (2.1) is complete and sufficient for η (and µ). Let S2 be the
sample variance given by (2.2). Since S2 = (n−1)−1

∑n
i=1(Zi− Z̄)2, where

Zi = Xi−µ isN(0, σ2) and Z̄ = n−1
∑n
i=1 Zi, S

2 is an ancillary statistic (σ2

is known). By Basu’s theorem, X̄ and S2 are independent w.r.t. N(µ, σ2)
with µ ∈ R. Since σ2 is arbitrary, X̄ and S2 are independent w.r.t.N(µ, σ2)
for any µ ∈ R and σ2 > 0.

Using the independence of X̄ and S2, we now show that (n − 1)S2/σ2

has the chi-square distribution χ2
n−1. Note that

n

(
X̄ − µ

σ

)2

+
(n− 1)S2

σ2
=

n∑

i=1

(
Xi − µ

σ

)2

.

From the properties of the normal distributions, n(X̄ −µ)2/σ2 has the chi-
square distribution χ2

1 with the m.g.f. (1 − 2t)−1/2 and
∑n
i=1(Xi − µ)2/σ2
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has the chi-square distribution χ2
n with the m.g.f. (1−2t)−n/2, t < 1/2. By

the independence of X̄ and S2, the m.g.f. of (n− 1)S2/σ2 is

(1 − 2t)−n/2/(1 − 2t)−1/2 = (1 − 2t)−(n−1)/2

for t < 1/2. This is the m.g.f. of the chi-square distribution χ2
n−1 and,

therefore, the result follows.

2.3 Statistical Decision Theory

In this section, we describe some basic elements in statistical decision the-
ory. More developments are given in later chapters.

2.3.1 Decision rules, loss functions, and risks

Let X be a sample from a population P ∈ P . A statistical decision is an
action that we take after we observe X , for example, a conclusion about P
or a characteristic of P . Throughout this section, we use A to denote the
set of allowable actions. Let FA be a σ-field on A. Then the measurable
space (A,FA) is called the action space. Let X be the range of X and FX

be a σ-field on X. A decision rule is a measurable function (a statistic) T
from (X,FX) to (A,FA). If a decision rule T is chosen, then we take the
action T (X) ∈ A whence X is observed.

The construction or selection of decision rules cannot be done without
any criterion about the performance of decision rules. In statistical decision
theory, we set a criterion using a loss function L, which is a function from
P × A to [0,∞) and is Borel on (A,FA) for each fixed P ∈ P . If X = x is
observed and our decision rule is T , then our “loss” (in making a decision)
is L(P, T (x)). The average loss for the decision rule T , which is called the
risk of T , is defined to be

RT (P ) = E[L(P, T (X))] =

∫

X

L(P, T (x))dPX(x). (2.17)

The loss and risk functions are denoted by L(θ, a) and RT (θ) if P is a
parametric family indexed by θ. A decision rule with small loss is preferred.
But it is difficult to compare L(P, T1(X)) and L(P, T2(X)) for two decision
rules, T1 and T2, since both of them are random. For this reason, the
risk function (2.17) is introduced and we compare two decision rules by
comparing their risks. A rule T1 is as good as another rule T2 if and only if

RT1(P ) ≤ RT2(P ) for any P ∈ P , (2.18)

and is better than T2 if and only if (2.18) holds and RT1(P ) < RT2(P ) for
at least one P ∈ P . Two decision rules T1 and T2 are equivalent if and only
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if RT1(P ) = RT2(P ) for all P ∈ P . If there is a decision rule T∗ that is as
good as any other rule in ℑ, a class of allowable decision rules, then T∗ is
said to be ℑ-optimal (or optimal if ℑ contains all possible rules).

Example 2.19. Consider the measurement problem in Example 2.1. Sup-
pose that we need a decision on the value of θ ∈ R, based on the sample
X = (X1, ..., Xn). If Θ is all possible values of θ, then it is reasonable to
consider the action space (A,FA) = (Θ,BΘ). An example of a decision rule
is T (X) = X̄, the sample mean defined by (2.1). A common loss function
in this problem is the squared error loss L(P, a) = (θ − a)2, a ∈ A. Then
the loss for the decision rule X̄ is the squared deviation between X̄ and θ.
Assuming that the population has mean µ and variance σ2 <∞, we obtain
the following risk function for X̄:

RX̄(P ) = E(θ − X̄)2

= (θ − EX̄)2 + E(EX̄ − X̄)2

= (θ − EX̄)2 + Var(X̄) (2.19)

= (µ− θ)2 + σ2

n , (2.20)

where result (2.20) follows from the results for the moments of X̄ in Exam-
ple 2.8. If θ is in fact the mean of the population, then the first term on
the right-hand side of (2.20) is 0 and the risk is an increasing function of
the population variance σ2 and a decreasing function of the sample size n.

Consider another decision rule T1(X) = (X(1) + X(n))/2. However,
RT1(P ) does not have an explicit form if there is no further assumption on
the population P . Suppose that P ∈ P . Then, for some P , X̄ (or T1) is
better than T1 (or X̄) (exercise), whereas for some P , neither X̄ nor T1 is
better than the other.

A different loss function may also be considered. For example, L(P, a) =
|θ−a|, which is called the absolute error loss. However, RX̄(P ) and RT1(P )
do not have explicit forms unless P is of some specific form.

The problem in Example 2.19 is a special case of a general problem called
estimation, in which the action space is the set of all possible values of a
population characteristic ϑ to be estimated. In an estimation problem, a
decision rule T is called an estimator and result (2.19) holds with θ = ϑ and
X̄ replaced by any estimator with a finite variance. The following example
describes another type of important problem called hypothesis testing.

Example 2.20. Let P be a family of distributions, P0 ⊂ P , and P1 =
{P ∈ P : P 6∈ P0}. A hypothesis testing problem can be formulated as that
of deciding which of the following two statements is true:

H0 : P ∈ P0 versus H1 : P ∈ P1. (2.21)
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Here, H0 is called the null hypothesis and H1 is called the alternative hy-
pothesis. The action space for this problem contains only two elements, i.e.,
A = {0, 1}, where 0 is the action of accepting H0 and 1 is the action of
rejecting H0. A decision rule is called a test. Since a test T (X) is a function
from X to {0, 1}, T (X) must have the form IC(X), where C ∈ FX is called
the rejection region or critical region for testing H0 versus H1.

A simple loss function for this problem is the 0-1 loss: L(P, a) = 0
if a correct decision is made and 1 if an incorrect decision is made, i.e.,
L(P, j) = 0 for P ∈ Pj and L(P, j) = 1 otherwise, j = 0, 1. Under this loss,
the risk is

RT (P ) =

{
P (T (X) = 1) = P (X ∈ C) P ∈ P0

P (T (X) = 0) = P (X 6∈ C) P ∈ P1.

See Figure 2.2 on page 127 for an example of a graph of RT (θ) for some T
and P in a parametric family.

The 0-1 loss implies that the loss for two types of incorrect decisions
(accepting H0 when P ∈ P1 and rejecting H0 when P ∈ P0) are the same.
In some cases, one might assume unequal losses: L(P, j) = 0 for P ∈ Pj ,
L(P, 0) = c0 when P ∈ P1, and L(P, 1) = c1 when P ∈ P0.

In the following example the decision problem is neither an estimation
nor a testing problem. Another example is given in Exercise 93 in §2.6.

Example 2.21. A hazardous toxic waste site requires clean-up when the
true chemical concentration θ in the contaminated soil is higher than a given
level θ0 ≥ 0. Because of the limitation in resources, we would like to spend
our money and efforts more in those areas that pose high risk to public
health. In a particular area where soil samples are obtained, we would
like to take one of these three actions: a complete clean-up (a1), a partial
clean-up (a2), and no clean-up (a3). Then A = {a1, a2, a3}. Suppose that
the cost for a complete clean-up is c1 and for a partial clean-up is c2 < c1;
the risk to public health is c3(θ − θ0) if θ > θ0 and 0 if θ ≤ θ0; a complete
clean-up can reduce the toxic concentration to an amount ≤ θ0, whereas a
partial clean-up can only reduce a fixed amount of the toxic concentration,
i.e., the chemical concentration becomes θ−t after a partial clean-up, where
t is a known constant. Then the loss function is given by

L(θ, a) a1 a2 a3

θ ≤ θ0 c1 c2 0

θ0 < θ ≤ θ0 + t c1 c2 c3(θ − θ0)

θ > θ0 + t c1 c2 + c3(θ − θ0 − t) c3(θ − θ0)

The risk function can be calculated once the decision rule is specified. We
discuss this example again in Chapter 4.
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Sometimes it is useful to consider randomized decision rules. Examples
are given in §2.3.2, Chapters 4 and 6. A randomized decision rule is a
function δ on X×FA such that, for every A ∈ FA, δ(·, A) is a Borel function
and, for every x ∈ X, δ(x, ·) is a probability measure on (A,FA). To choose
an action in A when a randomized rule δ is used, we need to simulate a
pseudorandom element of A according to δ(x, ·). Thus, an alternative way
to describe a randomized rule is to specify the method of simulating the
action from A for each x ∈ X. If A is a subset of a Euclidean space, for
example, then the result in Theorem 1.7(ii) can be applied. Also, see §7.2.3.

A nonrandomized decision rule T previously discussed can be viewed
as a special randomized decision rule with δ(x, {a}) = I{a}(T (x)), a ∈ A,
x ∈ X. Another example of a randomized rule is a discrete distribution
δ(x, ·) assigning probability pj(x) to a nonrandomized decision rule Tj(x),
j = 1, 2, ..., in which case the rule δ can be equivalently defined as a rule
taking value Tj(x) with probability pj(x). See Exercise 64 for an example.

The loss function for a randomized rule δ is defined as

L(P, δ, x) =

∫

A

L(P, a)dδ(x, a),

which reduces to the same loss function we discussed when δ is a nonran-
domized rule. The risk of a randomized rule δ is then

Rδ(P ) = E[L(P, δ,X)] =

∫

X

∫

A

L(P, a)dδ(x, a)dPX (x). (2.22)

2.3.2 Admissibility and optimality

Consider a given decision problem with a given loss L(P, a).

Definition 2.7 (Admissibility). Let ℑ be a class of decision rules (ran-
domized or nonrandomized). A decision rule T ∈ ℑ is called ℑ-admissible
(or admissible when ℑ contains all possible rules) if and only if there does
not exist any S ∈ ℑ that is better than T (in terms of the risk).

If a decision rule T is inadmissible, then there exists a rule better than T .
Thus, T should not be used in principle. However, an admissible decision
rule is not necessarily good. For example, in an estimation problem a silly
estimator T (X) ≡ a constant may be admissible (Exercise 71).

The relationship between the admissibility and the optimality defined in
§2.3.1 can be described as follows. If T∗ is ℑ-optimal, then it is ℑ-admissible;
if T∗ is ℑ-optimal and T0 is ℑ-admissible, then T0 is also ℑ-optimal and is
equivalent to T∗; if there are two ℑ-admissible rules that are not equivalent,
then there does not exist any ℑ-optimal rule.
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Suppose that we have a sufficient statistic T (X) for P ∈ P . Intuitively,
our decision rule should be a function of T , based on the discussion in
§2.2.2. This is not true in general, but the following result indicates that
this is true if randomized decision rules are allowed.

Proposition 2.2. Suppose that A is a subset of Rk. Let T (X) be a
sufficient statistic for P ∈ P and let δ0 be a decision rule. Then

δ1(t, A) = E[δ0(X,A)|T = t], (2.23)

which is a randomized decision rule depending only on T , is equivalent to
δ0 if Rδ0(P ) <∞ for any P ∈ P .
Proof. Note that δ1 defined by (2.23) is a decision rule since δ1 does not
depend on the unknown P by the sufficiency of T . From (2.22),

Rδ1(P ) = E

{∫

A

L(P, a)dδ1(X, a)

}

= E

{
E

[∫

A

L(P, a)dδ0(X, a)

∣∣∣∣T
]}

= E

{∫

A

L(P, a)dδ0(X, a)

}

= Rδ0(P ),

where the proof of the second equality is left to the reader.

Note that Proposition 2.2 does not imply that δ0 is inadmissible. Also,
if δ0 is a nonrandomized rule,

δ1(t, A) = E[IA(δ0(X))|T = t] = P (δ0(X) ∈ A|T = t)

is still a randomized rule, unless δ0(X) = h(T (X)) a.s. P for some Borel
function h (Exercise 75). Hence, Proposition 2.2 does not apply to situa-
tions where randomized rules are not allowed.

The following result tells us when nonrandomized rules are all we need
and when decision rules that are not functions of sufficient statistics are
inadmissible.

Theorem 2.5. Suppose that A is a convex subset of Rk and that for any
P ∈ P , L(P, a) is a convex function of a.
(i) Let δ be a randomized rule satisfying

∫
A
‖a‖dδ(x, a) < ∞ for any

x ∈ X and let T1(x) =
∫

A
adδ(x, a). Then L(P, T1(x)) ≤ L(P, δ, x) (or

L(P, T1(x))<L(P, δ, x) if L is strictly convex in a) for any x∈X and P ∈P .
(ii) (Rao-Blackwell theorem). Let T be a sufficient statistic for P ∈ P , T0 ∈
Rk be a nonrandomized rule satisfying E‖T0‖ <∞, and T1 = E[T0(X)|T ].
Then RT1(P ) ≤ RT0(P ) for any P ∈ P . If L is strictly convex in a and T0

is not a function of T , then T0 is inadmissible.
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The proof of Theorem 2.5 is an application of Jensen’s inequality (1.47)
and is left to the reader.

The concept of admissibility helps us to eliminate some decision rules.
However, usually there are still too many rules left after the elimination
of some rules according to admissibility and sufficiency. Although one is
typically interested in a ℑ-optimal rule, frequently it does not exist, if ℑ is
either too large or too small. The following examples are illustrations.

Example 2.22. LetX1, ..., Xn be i.i.d. random variables from a population
P ∈ P that is the family of populations having finite mean µ and variance
σ2. Consider the estimation of µ (A = R) under the squared error loss. It
can be shown that if we let ℑ be the class of all possible estimators, then
there is no ℑ-optimal rule (exercise). Next, let ℑ1 be the class of all linear
functions in X = (X1, ..., Xn), i.e., T (X) =

∑n
i=1 ciXi with known ci ∈ R,

i = 1, ..., n. It follows from (2.19) and the discussion after Example 2.19
that

RT (P ) = µ2

(
n∑

i=1

ci − 1

)2

+ σ2
n∑

i=1

c2i . (2.24)

We now show that there does not exist T∗ =
∑n

i=1 c
∗
iXi such that RT∗(P )

≤ RT (P ) for any P ∈ P and T ∈ ℑ1. If there is such a T∗, then (c∗1, ..., c
∗
n)

is a minimum of the function of (c1, ..., cn) on the right-hand side of (2.24).
Then c∗1, ..., c

∗
n must be the same and equal to µ2/(σ2+nµ2), which depends

on P . Hence T∗ is not a statistic. This shows that there is no ℑ1-optimal
rule.

Consider now a subclass ℑ2 ⊂ ℑ1 with ci’s satisfying
∑n
i=1 ci = 1. From

(2.24), RT (P ) = σ2
∑n

i=1 c
2
i if T ∈ ℑ2. Minimizing σ2

∑n
i=1 c

2
i subject to∑n

i=1 ci = 1 leads to an optimal solution of ci = n−1 for all i. Thus, the
sample mean X̄ is ℑ2-optimal.

There may not be any optimal rule if we consider a small class of decision
rules. For example, if ℑ3 contains all the rules in ℑ2 except X̄ , then one
can show that there is no ℑ3-optimal rule.

Example 2.23. Assume that the sample X has the binomial distribution
Bi(θ, n) with an unknown θ ∈ (0, 1) and a fixed integer n > 1. Consider the
hypothesis testing problem described in Example 2.20 with H0 : θ ∈ (0, θ0]
versus H1 : θ ∈ (θ0, 1), where θ0 ∈ (0, 1) is a fixed value. Suppose that we
are only interested in the following class of nonrandomized decision rules:
ℑ = {Tj : j = 0, 1, ..., n−1}, where Tj(X) = I{j+1,...,n}(X). From Example
2.20, the risk function for Tj under the 0-1 loss is

RTj (θ) = P (X > j)I(0,θ0](θ) + P (X ≤ j)I(θ0,1)(θ).
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For any integers k and j, 0 ≤ k < j ≤ n− 1,

RTj (θ) −RTk
(θ) =

{ −P (k < X ≤ j) < 0 0 < θ ≤ θ0
P (k < X ≤ j) > 0 θ0 < θ < 1.

Hence, neither Tj nor Tk is better than the other. This shows that every
Tj is ℑ-admissible and, thus, there is no ℑ-optimal rule.

In view of the fact that an optimal rule often does not exist, statisticians
adopt the following two approaches to choose a decision rule. The first
approach is to define a class ℑ of decision rules that have some desirable
properties (statistical and/or nonstatistical) and then try to find the best
rule in ℑ. In Example 2.22, for instance, any estimator T in ℑ2 has the
property that T is linear in X and E[T (X)] = µ. In a general estimation
problem, we can use the following concept.

Definition 2.8 (Unbiasedness). In an estimation problem, the bias of an
estimator T (X) of a real-valued parameter ϑ of the unknown population
is defined to be bT (P ) = E[T (X)] − ϑ (which is denoted by bT (θ) when P
is in a parametric family indexed by θ). An estimator T (X) is said to be
unbiased for ϑ if and only if bT (P ) = 0 for any P ∈ P .

Thus, ℑ2 in Example 2.22 is the class of unbiased estimators linear in
X . In Chapter 3, we discuss how to find a ℑ-optimal estimator when ℑ is
the class of unbiased estimators or unbiased estimators linear in X .

Another class of decision rules can be defined after we introduce the
concept of invariance.

Definition 2.9 Let X be a sample from P ∈ P .
(i) A class G of one-to-one transformations of X is called a group if and
only if gi ∈ G implies g1◦g2 ∈ G and g−1

i ∈ G.
(ii) We say that P is invariant under G if and only if ḡ(PX) = Pg(X) is a
one-to-one transformation from P onto P for each g ∈ G.
(iii) A decision problem is said to be invariant if and only if P is invari-
ant under G and the loss L(P, a) is invariant in the sense that, for ev-
ery g ∈ G and every a ∈ A, there exists a unique g(a) ∈ A such that
L(PX , a) = L

(
Pg(X), g(a)

)
. (Note that g(X) and g(a) are different func-

tions in general.)
(iv) A decision rule T (x) is said to be invariant if and only if, for every
g ∈ G and every x ∈ X, T (g(x)) = g(T (x)).

Invariance means that our decision is not affected by one-to-one trans-
formations of data.

In a problem where the distribution of X is in a location-scale family
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P on Rk, we often consider location-scale transformations of data X of the
form g(X) = AX + c, where c ∈ C ⊂ Rk and A ∈ T , a class of invertible
k × k matrices. Assume that if Ai ∈ T , i = 1, 2, then A−1

i ∈ T and
A1A2 ∈ T , and that if ci ∈ C, i = 1, 2, then −ci ∈ C and Ac1 + c2 ∈ C for
any A ∈ T . Then the collection of all transformations is a group. A special
case is given in the following example.

Example 2.24. Let X have i.i.d. components from a population in a
location family P = {Pµ : µ ∈ R}. Consider the location transformation
gc(X) = X+cJk, where c ∈ R and Jk is the k-vector whose components are
all equal to 1. The group of transformation is G = {gc : c ∈ R}, which is a
location-scale transformation group with T = {Ik} and C = {cJk : c ∈ R}.
P is invariant under G with ḡc(Pµ) = Pµ+c. For estimating µ under the loss
L(µ, a) = L(µ−a), where L(·) is a nonnegative Borel function, the decision
problem is invariant with gc(a) = a + c. A decision rule T is invariant if
and only if T (x+ cJk) = T (x)+ c for every x ∈ Rk and c ∈ R. An example
of an invariant decision rule is T (x) = lτx for some l ∈ Rk with lτJk = 1.
Note that T (x) = lτx with lτJk = 1 is in the class ℑ2 in Example 2.22.

In §4.2 and §6.3, we discuss the problem of finding a ℑ-optimal rule
when ℑ is a class of invariant decision rules.

The second approach to finding a good decision rule is to consider some
characteristic RT of RT (P ), for a given decision rule T , and then minimize
RT over T ∈ ℑ. The following are two popular ways to carry out this idea.
The first one is to consider an average of RT (P ) over P ∈ P :

r
T
(Π) =

∫

P
RT (P )dΠ(P ),

where Π is a known probability measure on (P ,FP) with an appropri-
ate σ-field FP . rT (Π) is called the Bayes risk of T w.r.t. Π. If T∗ ∈ ℑ
and r

T∗
(Π) ≤ r

T
(Π) for any T ∈ ℑ, then T∗ is called a ℑ-Bayes rule

(or Bayes rule when ℑ contains all possible rules) w.r.t. Π. The second
method is to consider the worst situation, i.e., supP∈P RT (P ). If T∗ ∈ ℑ
and supP∈P RT∗(P ) ≤ supP∈P RT (P ) for any T ∈ ℑ, then T∗ is called a
ℑ-minimax rule (or minimax rule when ℑ contains all possible rules). Bayes
and minimax rules are discussed in Chapter 4.

Example 2.25. We usually try to find a Bayes rule or a minimax rule in a
parametric problem where P = Pθ for a θ ∈ Rk. Consider the special case
of k = 1 and L(θ, a) = (θ − a)2, the squared error loss. Note that

r
T
(Π) =

∫

R
E[θ − T (X)]2dΠ(θ),
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which is equivalent to E[θ − T (X)]2, where θ is a random variable having
the distribution Π and, given θ = θ, the conditional distribution of X is
Pθ. Then, the problem can be viewed as a prediction problem for θ using
functions of X . Using the result in Example 1.22, the best predictor is
E(θ|X), which is the ℑ-Bayes rule w.r.t. Π with ℑ being the class of rules
T (X) satisfying E[T (X)]2 <∞ for any θ.

As a more specific example, let X = (X1, ..., Xn) with i.i.d. components
having the N(µ, σ2) distribution with an unknown µ = θ ∈ R and a known
σ2, and let Π be the N(µ0, σ

2
0) distribution with known µ0 and σ2

0 . Then
the conditional distribution of θ given X = x is N(µ∗(x), c2) with

µ∗(x) =
σ2

nσ2
0 + σ2

µ0 +
nσ2

0

nσ2
0 + σ2

x̄ and c2 =
σ2

0σ
2

nσ2
0 + σ2

(2.25)

(exercise). The Bayes rule w.r.t. Π is E(θ|X) = µ∗(X).

In this special case we can show that the sample mean X̄ is ℑ-minimax
with ℑ being the collection of all decision rules. For any decision rule T ,

sup
θ∈R

RT (θ) ≥
∫

R
RT (θ)dΠ(θ)

≥
∫

R
Rµ∗(θ)dΠ(θ)

= E
{
[θ − µ∗(X)]2

}

= E
{
E{[θ − µ∗(X)]2|X}

}

= E(c2)

= c2,

where µ∗(X) is the Bayes rule given in (2.25) and c2 is also given in (2.25).
Since this result is true for any σ2

0 > 0 and c2 → σ2/n as σ2
0 → ∞,

sup
θ∈R

RT (θ) ≥ σ2

n
= sup

θ∈R
RX̄(θ),

where the equality holds because the risk of X̄ under the squared error loss
is, by (2.20), σ2/n and independent of θ = µ. Thus, X̄ is minimax.

A minimax rule in a general case may be difficult to obtain. It can be
seen that if both µ and σ2 are unknown in the previous discussion, then

sup
θ∈R×(0,∞)

RX̄(θ) = ∞, (2.26)

where θ = (µ, σ2). Hence X̄ cannot be minimax unless (2.26) holds with
X̄ replaced by any decision rule T , in which case minimaxity becomes
meaningless.
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2.4 Statistical Inference

The loss function plays a crucial role in statistical decision theory. Loss
functions can be obtained from a utility analysis (Berger, 1985), but in
many problems they have to be determined subjectively. In statistical in-
ference, we make an inference about the unknown population based on
the sample X and inference procedures without using any loss function, al-
though any inference procedure can be cast in decision-theoretic terms as
a decision rule.

There are three main types of inference procedures: point estimators,
hypothesis tests, and confidence sets.

2.4.1 Point estimators

The problem of estimating an unknown parameter related to the unknown
population is introduced in Example 2.19 and the discussion after Example
2.19 as a special statistical decision problem. In statistical inference, how-
ever, estimators of parameters are derived based on some principle (such as
the unbiasedness, invariance, sufficiency, substitution principle, likelihood
principle, Bayesian principle, etc.), not based on a loss or risk function.
Since confidence sets are sometimes also called interval estimators or set
estimators, estimators of parameters are called point estimators.

In Chapters 3 through 5, we consider how to derive a “good” point esti-
mator based on some principle. Here we focus on how to assess performance
of point estimators.

Let ϑ ∈ Θ̃ ⊂ R be a parameter to be estimated, which is a function of
the unknown population P or θ if P is in a parametric family. An estimator
is a statistic with range Θ̃. First, one has to realize that any estimator T (X)
of ϑ is subject to an estimation error T (x) − ϑ when we observe X = x.
This is not just because T (X) is random. In some problems T (x) never
equals ϑ. A trivial example is when T (X) has a continuous c.d.f. so that
P (T (X) = ϑ) = 0. As a nontrivial example, let X1, ..., Xn be i.i.d. binary
random variables (also called Bernoulli variables) with P (Xi = 1) = p and
P (Xi = 0) = 1 − p. The sample mean X̄ is shown to be a good estimator
of ϑ = p in later chapters, but x̄ never equals ϑ if ϑ is not one of j/n,
j = 0, 1, ..., n. Thus, we cannot assess the performance of T (X) by the
values of T (x) with particular x’s and it is also not worthwhile to do so.

The bias bT (P ) and unbiasedness of a point estimator T (X) is defined
in Definition 2.8. Unbiasedness of T (X) means that the mean of T (X) is
equal to ϑ. An unbiased estimator T (X) can be viewed as an estimator
without “systematic” error, since, on the average, it does not overestimate
(i.e., bT (P ) > 0) or underestimate (i.e., bT (P ) < 0). However, an unbiased
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estimator T (X) may have large positive and negative errors T (x)−ϑ, x ∈ X,
although these errors cancel each other in the calculation of the bias, which
is the average

∫
[T (x) − ϑ]dPX(x).

Hence, for an unbiased estimator T (X), it is desired that the values of
T (x) be highly concentrated around ϑ. The variance of T (X) is commonly
used as a measure of the dispersion of T (X). The mean squared error (mse)
of T (X) as an estimator of ϑ is defined to be

mseT (P ) = E[T (X)− ϑ]2 = [bT (P )]2 + Var(T (X)), (2.27)

which is denoted by mseT (θ) if P is in a parametric family. mseT (P ) is
equal to the variance Var(T (X)) if and only if T (X) is unbiased. Note
that the mse is simply the risk of T in statistical decision theory under the
squared error loss.

In addition to the variance and the mse, the following are other measures
of dispersion that are often used in point estimation problems. The first one
is the mean absolute error of an estimator T (X) defined to be E|T (X)−ϑ|.
The second one is the probability of falling outside a stated distance of ϑ,
i.e., P (|T (X) − ϑ| ≥ ǫ) with a fixed ǫ > 0. Again, these two measures of
dispersion are risk functions in statistical decision theory with loss functions
|ϑ− a| and I(ǫ,∞)(|ϑ− a|), respectively.

For the bias, variance, mse, and mean absolute error, we have implicitly
assumed that certain moments of T (X) exist. On the other hand, the dis-
persion measure P (|T (X)−ϑ| ≥ ǫ) depends on the choice of ǫ. It is possible
that some estimators are good in terms of one measure of dispersion, but
not in terms of other measures of dispersion. The mse, which is a function
of bias and variance according to (2.27), is mathematically easy to handle
and, hence, is used the most often in the literature. In this book, we use
the mse to assess and compare point estimators unless otherwise stated.

Examples 2.19 and 2.22 provide some examples of estimators and their
biases, variances, and mse’s. The following are two more examples.

Example 2.26. Consider the life-time testing problem in Example 2.2. Let
X1, ..., Xn be i.i.d. from an unknown c.d.f. F . Suppose that the parameter
of interest is ϑ = 1 − F (t) for a fixed t > 0. If F is not in a parametric
family, then a nonparametric estimator of F (t) is the empirical c.d.f.

Fn(t) =
1

n

n∑

i=1

I(−∞,t](Xi), t ∈ R. (2.28)

Since I(−∞,t](X1), ..., I(−∞,t](Xn) are i.i.d. binary random variables with
P (I(−∞,t](Xi) = 1) = F (t), the random variable nFn(t) has the binomial
distribution Bi(F (t), n). Consequently, Fn(t) is an unbiased estimator of
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F (t) and Var(Fn(t)) = mseFn(t)(P ) = F (t)[1 − F (t)]/n. Since any linear
combination of unbiased estimators is unbiased for the same linear com-
bination of the parameters (by the linearity of expectations), an unbiased
estimator of ϑ is U(X) = 1 − Fn(t), which has the same variance and mse
as Fn(t).

The estimator U(X) = 1 − Fn(t) can be improved in terms of the
mse if there is further information about F . Suppose that F is the c.d.f.
of the exponential distribution E(0, θ) with an unknown θ > 0. Then
ϑ = e−t/θ. From §2.2.2, the sample mean X̄ is sufficient for θ > 0. Since
the squared error loss is strictly convex, an application of Theorem 2.5(ii)
(Rao-Blackwell theorem) shows that the estimator T (X) = E[1−Fn(t)|X̄ ],
which is also unbiased, is better than U(X) in terms of the mse. Figure
2.1 shows graphs of the mse’s of U(X) and T (X), as functions of θ, in the
special case of n = 10, t = 2, and F (x) = (1 − e−x/θ)I(0,∞)(x).

Example 2.27. Consider the sample survey problem in Example 2.3 with a
constant selection probability p(s) and univariate yi. Let ϑ = Y =

∑N
i=1 yi,

the population total. We now show that the estimator Ŷ = N
n

∑
i∈s yi is

an unbiased estimator of Y . Let ai = 1 if i ∈ s and ai = 0 otherwise. Thus,
Ŷ = N

n

∑N
i=1 aiyi. Since p(s) is constant, E(ai) = P (ai = 1) = n/N and

E(Ŷ ) = E

(
N

n

N∑

i=1

aiyi

)
=
N

n

N∑

i=1

yiE(ai) =

N∑

i=1

yi = Y.

Note that
Var(ai) = E(ai) − [E(ai)]

2 =
n

N

(
1 − n

N

)

and for i 6= j,

Cov(ai, aj) = P (ai = 1, aj = 1) − E(ai)E(aj) =
n(n− 1)

N(N − 1)
− n2

N2
.

Hence, the variance or the mse of Ŷ is

Var(Ŷ ) =
N2

n2
Var

(
N∑

i=1

aiyi

)

=
N2

n2



N∑

i=1

y2
iVar(ai) + 2

∑

1≤i<j≤N
yiyjCov(ai, aj)




=
N

n

(
1 − n

N

)



N∑

i=1

y2
i −

2

N − 1

∑

1≤i<j≤N
yiyj




=
N2

n(N − 1)

(
1 − n

N

) N∑

i=1

(
yi −

Y

N

)2

.
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Figure 2.1: mse’s of U(X) and T (X) in Example 2.26

2.4.2 Hypothesis tests

The basic elements of a hypothesis testing problem are described in Exam-
ple 2.20. In statistical inference, tests for a hypothesis are derived based on
some principles similar to those given in an estimation problem. Chapter
6 is devoted to deriving tests for various types of hypotheses. Several key
ideas are discussed here.

To test the hypotheses H0 versus H1 given in (2.21), there are only two
types of statistical errors we may commit: rejecting H0 when H0 is true
(called the type I error) and accepting H0 when H0 is wrong (called the
type II error). In statistical inference, a test T , which is a statistic from X

to {0, 1}, is assessed by the probabilities of making two types of errors:

αT (P ) = P (T (X) = 1) P ∈ P0 (2.29)

and

1 − αT (P ) = P (T (X) = 0) P ∈ P1, (2.30)

which are denoted by αT (θ) and 1 − αT (θ) if P is in a parametric family
indexed by θ. Note that these are risks of T under the 0-1 loss in statistical
decision theory. However, an optimal decision rule (test) does not exist even
for a very simple problem with a very simple class of tests (Example 2.23).

m
se



126 2. Fundamentals of Statistics

That is, error probabilities in (2.29) and (2.30) cannot be minimized simul-
taneously. Furthermore, these two error probabilities cannot be bounded
simultaneously by a fixed α ∈ (0, 1) when we have a sample of a fixed size.

Therefore, a common approach to finding an “optimal” test is to assign
a small bound α to one of the error probabilities, say αT (P ), P ∈ P0, and
then to attempt to minimize the other error probability 1−αT (P ), P ∈ P1,
subject to

sup
P∈P0

αT (P ) ≤ α. (2.31)

The bound α is called the level of significance. The left-hand side of (2.31)
is called the size of the test T . Note that the level of significance should
be positive, otherwise no test satisfies (2.31) except the silly test T (X) ≡ 0
a.s. P .

Example 2.28. Let X1, ..., Xn be i.i.d. from the N(µ, σ2) distribution with
an unknown µ ∈ R and a known σ2. Consider the hypotheses

H0 : µ ≤ µ0 versus H1 : µ > µ0,

where µ0 is a fixed constant. Since the sample mean X̄ is sufficient for
µ ∈ R, it is reasonable to consider the following class of tests: Tc(X) =
I(c,∞)(X̄), i.e., H0 is rejected (accepted) if X̄ > c (X̄ ≤ c), where c ∈ R is
a fixed constant. Let Φ be the c.d.f. of N(0, 1). Then, by the property of
the normal distributions,

αTc(µ) = P (Tc(X) = 1) = 1 − Φ

(√
n(c− µ)

σ

)
. (2.32)

Figure 2.2 provides an example of a graph of two types of error probabilities,
with µ0 = 0. Since Φ(t) is an increasing function of t,

sup
P∈P0

αTc(µ) = 1 − Φ

(√
n(c− µ0)

σ

)
.

In fact, it is also true that

sup
P∈P1

[1 − αTc(µ)] = Φ

(√
n(c− µ0)

σ

)
.

If we would like to use an α as the level of significance, then the most
effective way is to choose a cα (a test Tcα(X)) such that

α = sup
P∈P0

αTcα
(µ),

in which case cα must satisfy

1 − Φ

(√
n(cα − µ0)

σ

)
= α,
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Figure 2.2: Error probabilities in Example 2.28

i.e., cα = σz1−α/
√
n + µ0, where za = Φ−1(a). In Chapter 6, it is shown

that for any test T (X) satisfying (2.31),

1 − αT (µ) ≥ 1 − αTcα
(µ), µ > µ0.

The choice of a level of significance α is usually somewhat subjective.
In most applications there is no precise limit to the size of T that can be
tolerated. Standard values, such as 0.10, 0.05, or 0.01, are often used for
convenience.

For most tests satisfying (2.31), a small α leads to a “small” rejection
region. It is good practice to determine not only whether H0 is rejected or
accepted for a given α and a chosen test Tα, but also the smallest possible
level of significance at which H0 would be rejected for the computed Tα(x),
i.e., α̂ = inf{α ∈ (0, 1) : Tα(x) = 1}. Such an α̂, which depends on x and
the chosen test and is a statistic, is called the p-value for the test Tα.

Example 2.29. Consider the problem in Example 2.28. Let us calculate
the p-value for Tcα . Note that

α = 1 − Φ

(√
n(cα − µ0)

σ

)
> 1 − Φ

(√
n(x̄− µ0)

σ

)
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if and only if x̄ > cα (or Tcα(x) = 1). Hence

1 − Φ

(√
n(x̄ − µ0)

σ

)
= inf{α ∈ (0, 1) : Tcα(x) = 1} = α̂(x)

is the p-value for Tcα . It turns out that Tcα(x) = I(0,α)(α̂(x)).

With the additional information provided by p-values, using p-values is
typically more appropriate than using fixed-level tests in a scientific prob-
lem. However, a fixed level of significance is unavoidable when acceptance
or rejection of H0 implies an imminent concrete decision. For more discus-
sions about p-values, see Lehmann (1986) and Weerahandi (1995).

In Example 2.28, the equality in (2.31) can always be achieved by a
suitable choice of c. This is, however, not true in general. In Example 2.23,
for instance, it is possible to find an α such that

sup
0<θ≤θ0

P (Tj(X) = 1) 6= α

for all Tj’s. In such cases, we may consider randomized tests, which are
introduced next.

Recall that a randomized decision rule is a probability measure δ(x, ·)
on the action space for any fixed x. Since the action space contains only
two points, 0 and 1, for a hypothesis testing problem, any randomized test
δ(X,A) is equivalent to a statistic T (X) ∈ [0, 1] with T (x) = δ(x, {1}) and
1 − T (x) = δ(x, {0}). A nonrandomized test is obviously a special case
where T (x) does not take any value in (0, 1).

For any randomized test T (X), we define the type I error probability
to be αT (P ) = E[T (X)], P ∈ P0, and the type II error probability to be
1 − αT (P ) = E[1 − T (X)], P ∈ P1. For a class of randomized tests, we
would like to minimize 1 − αT (P ) subject to (2.31).

Example 2.30. Consider Example 2.23 and the following class of random-
ized tests:

Tj,q(X) =





1 X > j

q X = j

0 X < j,

where j = 0, 1, ..., n− 1 and q ∈ [0, 1]. Then

αTj,q (θ) = P (X > j) + qP (X = j) 0 < θ ≤ θ0

and

1 − αTj,q (θ) = P (X < j) + (1 − q)P (X = j) θ0 < θ < 1.

It can be shown that for any α ∈ (0, 1), there exist an integer j and q ∈ (0, 1)
such that the size of Tj,q is α (exercise).
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2.4.3 Confidence sets

Let ϑ be a k-vector of unknown parameters related to the unknown pop-
ulation P ∈ P and C(X) ∈ Bk

Θ̃
depending only on the sample X , where

Θ̃ ∈ Bk is the range of ϑ. If

inf
P∈P

P (ϑ ∈ C(X)) ≥ 1 − α, (2.33)

where α is a fixed constant in (0, 1), then C(X) is called a confidence set
for ϑ with level of significance 1 − α. The left-hand side of (2.33) is called
the confidence coefficient of C(X), which is the highest possible level of
significance for C(X). A confidence set is a random element that covers
the unknown ϑ with certain probability. If (2.33) holds, then the coverage
probability of C(X) is at least 1−α, although C(x) either covers or does not
cover ϑ whence we observe X = x. The concepts of level of significance and
confidence coefficient are very similar to the level of significance and size in
hypothesis testing. In fact, it is shown in Chapter 7 that some confidence
sets are closely related to hypothesis tests.

Consider a real-valued ϑ. If C(X) = [ϑ(X), ϑ(X)] for a pair of real-
valued statistics ϑ and ϑ, then C(X) is called a confidence interval for ϑ.
If C(X) = (−∞, ϑ(X)] (or [ϑ(X),∞)), then ϑ (or ϑ) is called an upper (or
a lower) confidence bound for ϑ.

A confidence set (or interval) is also called a set (or an interval) estimator
of ϑ, although it is very different from a point estimator (discussed in
§2.4.1).

Example 2.31. Consider Example 2.28. Suppose that a confidence inter-
val for ϑ = µ is needed. Again, we only need to consider ϑ(X̄) and ϑ(X̄),
since the sample mean X̄ is sufficient. Consider confidence intervals of the
form [X̄ − c, X̄ + c], where c ∈ (0,∞) is fixed. Note that

P
(
µ ∈ [X̄ − c, X̄ + c]

)
= P

(
|X̄ − µ| ≤ c

)
= 1 − 2Φ

(
−√

nc/σ
)
,

which is independent of µ. Hence, the confidence coefficient of [X̄−c, X̄+c]
is 1−2Φ (−√

nc/σ), which is an increasing function of c and converges to 1
as c → ∞ or 0 as c → 0. Thus, confidence coefficients are positive but less
than 1 except for silly confidence intervals [X̄, X̄] and (−∞,∞). We can
choose a confidence interval with an arbitrarily large confidence coefficient,
but the chosen confidence interval may be so wide that it is practically
useless.

If σ2 is also unknown, then [X̄ − c, X̄ + c] has confidence coefficient 0
and, therefore, is not a good inference procedure. In such a case a different
confidence interval for µ with positive confidence coefficient can be derived
(Exercise 97 in §2.6).
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This example tells us that a reasonable approach is to choose a level of
significance 1 − α ∈ (0, 1) (just like the level of significance in hypothesis
testing) and a confidence interval or set satisfying (2.33). In Example 2.31,
when σ2 is known and c is chosen to be σz1−α/2/

√
n, where za = Φ−1(a),

the confidence coefficient of the confidence interval [X̄ − c, X̄ + c] is exactly
1 − α for any fixed α ∈ (0, 1). This is desirable since, for all confidence
intervals satisfying (2.33), the one with the shortest interval length is pre-
ferred.

For a general confidence interval [ϑ(X), ϑ(X)], its length is ϑ(X)−ϑ(X),
which may be random. We may consider the expected (or average) length
E[ϑ(X)−ϑ(X)]. The confidence coefficient and expected length are a pair of
good measures of performance of confidence intervals. Like the two types
of error probabilities of a test in hypothesis testing, however, we cannot
maximize the confidence coefficient and minimize the length (or expected
length) simultaneously. A common approach is to minimize the length (or
expected length) subject to (2.33).

For an unbounded confidence interval, its length is ∞. Hence we have
to define some other measures of performance. For an upper (or a lower)
confidence bound, we may consider the distance ϑ(X)−ϑ (or ϑ−ϑ(X)) or
its expectation.

To conclude this section, we discuss an example of a confidence set for
a two-dimensional parameter. General discussions about how to construct
and assess confidence sets are given in Chapter 7.

Example 2.32. Let X1, ..., Xn be i.i.d. from the N(µ, σ2) distribution
with both µ ∈ R and σ2 > 0 unknown. Let θ = (µ, σ2) and α ∈ (0, 1) be
given. Let X̄ be the sample mean and S2 be the sample variance. Since
(X̄, S2) is sufficient (Example 2.15), we focus on C(X) that is a function of
(X̄, S2). From Example 2.18, X̄ and S2 are independent and (n− 1)S2/σ2

has the chi-square distribution χ2
n−1. Since

√
n(X̄ − µ)/σ has the N(0, 1)

distribution (Exercise 43 in §1.6),

P

(
−c̃α ≤ X̄ − µ

σ/
√
n

≤ c̃α

)
=

√
1 − α,

where c̃α = Φ−1
(

1+
√

1−α
2

)
(verify). Since the chi-square distribution χ2

n−1

is a known distribution, we can always find two constants c1α and c2α such
that

P

(
c1α ≤ (n− 1)S2

σ2
≤ c2α

)
=

√
1 − α.

Then

P

(
−c̃α ≤ X̄ − µ

σ/
√
n

≤ c̃α, c1α ≤ (n− 1)S2

σ2
≤ c2α

)
= 1 − α,
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Figure 2.3: A confidence set for θ in Example 2.32

or

P

(
n(X̄ − µ)2

c̃2α
≤ σ2,

(n− 1)S2

c2α
≤ σ2 ≤ (n− 1)S2

c1α

)
= 1 − α. (2.34)

The left-hand side of (2.34) defines a set in the range of θ = (µ, σ2) bounded
by two straight lines, σ2 = (n − 1)S2/ciα, i = 1, 2, and a curve σ2 =
n(X̄−µ)2/c̃2α (see the shadowed part of Figure 2.3). This set is a confidence
set for θ with confidence coefficient 1 − α, since (2.34) holds for any θ.

2.5 Asymptotic Criteria and Inference

We have seen that in statistical decision theory and inference, a key to
the success of finding a good decision rule or inference procedure is being
able to find some moments and/or distributions of various statistics. Al-
though many examples are presented (including those in the exercises in
§2.6), there are more cases in which we are not able to find exactly the
moments or distributions of given statistics, especially when the problem
is not parametric (see, e.g., the discussions in Example 2.8).

In practice, the sample size n is often large, which allows us to ap-
proximate the moments and distributions of statistics that are impossible

va
ria

nc
e

mean
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to derive, using the asymptotic tools discussed in §1.5. In an asymptotic
analysis, we consider a sample X = (X1, ..., Xn) not for fixed n, but as a
member of a sequence corresponding to n = n0, n0 + 1, ..., and obtain the
limit of the distribution of an appropriately normalized statistic or variable
Tn(X) as n → ∞. The limiting distribution and its moments are used as
approximations to the distribution and moments of Tn(X) in the situation
with a large but actually finite n. This leads to some asymptotic statistical
procedures and asymptotic criteria for assessing their performances, which
are introduced in this section.

The asymptotic approach is not only applied to the situation where no
exact method is available, but also used to provide an inference procedure
simpler (e.g., in terms of computation) than that produced by the exact
approach (the approach considering a fixed n). Some examples are given
in later chapters.

In addition to providing more theoretical results and/or simpler infer-
ence procedures, the asymptotic approach requires less stringent mathemat-
ical assumptions than does the exact approach. The mathematical precision
of the optimality results obtained in statistical decision theory, for example,
tends to obscure the fact that these results are approximations in view of
the approximate nature of the assumed models and loss functions. As the
sample size increases, the statistical properties become less dependent on
the loss functions and models. However, a major weakness of the asymp-
totic approach is that typically no good estimates for the precision of the
approximations are available and, therefore, we cannot determine whether
a particular n in a problem is large enough to safely apply the asymptotic
results. To overcome this difficulty, asymptotic results are frequently used
in combination with some numerical/empirical studies for selected values
of n to examine the finite sample performance of asymptotic procedures.

2.5.1 Consistency

A reasonable point estimator is expected to perform better, at least on
the average, if more information about the unknown population is avail-
able. With a fixed model assumption and sampling plan, more data (larger
sample size n) provide more information about the unknown population.
Thus, it is distasteful to use a point estimator Tn which, if sampling were
to continue indefinitely, could possibly have a nonzero estimation error, al-
though the estimation error of Tn for a fixed n may never equal 0 (see the
discussion in §2.4.1).

Definition 2.10 (Consistency of point estimators). Let X = (X1, ..., Xn)
be a sample from P ∈ P and Tn(X) be a point estimator of ϑ for every n.
(i) Tn(X) is called consistent for ϑ if and only if Tn(X) →p ϑ w.r.t. any
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P ∈ P .
(ii) Let {an} be a sequence of positive constants diverging to ∞. Tn(X) is
called an-consistent for ϑ if and only if an[Tn(X) − ϑ] = Op(1) w.r.t. any
P ∈ P .
(iii) Tn(X) is called strongly consistent for ϑ if and only if Tn(X) →a.s. ϑ
w.r.t. any P ∈ P .
(iv) Tn(X) is called Lr-consistent for ϑ if and only if Tn(X) →Lr ϑ w.r.t.
any P ∈ P for some fixed r > 0.

Consistency is actually a concept relating to a sequence of estimators,
{Tn, n = n0, n0 + 1, ...}, but we usually just say “consistency of Tn” for
simplicity. Each of the four types of consistency in Definition 2.10 describes
the convergence of Tn(X) to ϑ in some sense, as n → ∞. In statistics,
consistency according to Definition 2.10(i), which is sometimes called weak
consistency since it is implied by any of the other three types of consistency,
is the most useful concept of convergence of Tn to ϑ. L2-consistency is also
called consistency in mse, which is the most useful type of Lr-consistency.

Example 2.33. Let X1, ..., Xn be i.i.d. from P ∈ P . If ϑ = µ, which is
the mean of P and is assumed to be finite, then by the SLLN (Theorem
1.13), the sample mean X̄ is strongly consistent for µ and, therefore, is
also consistent for µ. If we further assume that the variance of P is finite,
then by (2.20), X̄ is consistent in mse and is

√
n-consistent. With the finite

variance assumption, the sample variance S2 is strongly consistent for the
variance of P , according to the SLLN.

Consider estimators of the form Tn =
∑n

i=1 cniXi, where {cni} is a
double array of constants. If P has a finite variance, then by (2.24), Tn
is consistent in mse if and only if

∑n
i=1 cni → 1 and

∑n
i=1 c

2
ni → 0. If we

only assume the existence of the mean of P , then Tn with cni = ci/n sat-
isfying n−1

∑n
i=1 ci → 1 and supi |ci| <∞ is strongly consistent (Theorem

1.13(ii)).

One or a combination of the law of large numbers, the CLT, Slutsky’s
theorem (Theorem 1.11), and the continuous mapping theorem (Theorems
1.10 and 1.12) are typically applied to establish consistency of point estima-
tors. In particular, Theorem 1.10 implies that if Tn is (strongly) consistent
for ϑ and g is a continuous function of ϑ, then g(Tn) is (strongly) consistent
for g(ϑ). For example, in Example 2.33 the point estimator X̄2 is strongly
consistent for µ2. To show that X̄2 is

√
n-consistent under the assumption

that P has a finite variance σ2, we can use the identity

√
n(X̄2 − µ2) =

√
n(X̄ − µ)(X̄ + µ)

and the fact that X̄ is
√
n-consistent for µ and X̄ +µ = Op(1). (Note that
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X̄2 may not be consistent in mse since we do not assume that P has a finite
fourth moment.) Alternatively, we can use the fact that

√
n(X̄2 − µ2) →d

N(0, 4µ2σ2) (by the CLT and Theorem 1.12) to show the
√
n-consistency

of X̄2.

The following example shows another way to establish consistency of
some point estimators.

Example 2.34. Let X1, ..., Xn be i.i.d. from an unknown P with a con-
tinuous c.d.f. F satisfying F (θ) = 1 for some θ ∈ R and F (x) < 1 for any
x < θ. Consider the largest order statistic X(n). For any ǫ > 0, F (θ−ǫ) < 1
and

P (|X(n) − θ| ≥ ǫ) = P (X(n) ≤ θ − ǫ) = [F (θ − ǫ)]
n
,

which imply (according to Theorem 1.8(v)) X(n) →a.s. θ, i.e., X(n) is

strongly consistent for θ. If we assume that F (i)(θ−), the ith-order left-
hand derivative of F at θ, exists and vanishes for any i ≤ m and that
F (m+1)(θ−) exists and is nonzero, where m is a nonnegative integer, then

1 − F (X(n)) =
(−1)mF (m+1)(θ−)

(m+ 1)!
(θ −X(n))

m+1 + o
(
|θ −X(n)|m+1

)
a.s.

This result and the fact that P
(
n[1 − F (X(n))] ≥ s

)
= (1 − s/n)n imply

that (θ −X(n))
m+1 = Op(n

−1), i.e., X(n) is n(m+1)−1

-consistent. If m = 0,
then X(n) is n-consistent, which is the most common situation. If m = 1,

then X(n) is
√
n-consistent. The limiting distribution of n(m+1)−1

(X(n)−θ)
can be derived as follows. Let

hn(θ) =

[
(−1)m(m+ 1)!

nF (m+1)(θ−)

](m+1)−1

.

For t ≤ 0, by Slutsky’s theorem,

lim
n→∞

P

(
X(n) − θ

hn(θ)
≤ t

)
= lim

n→∞
P

([
θ −X(n)

hn(θ)

]m+1

≥ (−t)m+1

)

= lim
n→∞

P
(
n[1 − F (X(n))] ≥ (−t)m+1

)

= lim
n→∞

[
1 − (−t)m+1/n

]n

= e−(−t)m+1

.

It can be seen from the previous examples that there are many consistent
estimators. Like the admissibility in statistical decision theory, consistency
is a very essential requirement in the sense that any inconsistent estimators
should not be used, but a consistent estimator is not necessarily good.
Thus, consistency should be used together with one or a few more criteria.
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We now discuss a situation in which finding a consistent estimator is
crucial. Suppose that an estimator Tn of ϑ satisfies

cn[Tn(X) − ϑ] →d σY, (2.35)

where Y is a random variable with a known distribution, σ > 0 is an
unknown parameter, and {cn} is a sequence of constants; for example, in
Example 2.33,

√
n(X̄ − µ) →d N(0, σ2); in Example 2.34, (2.35) holds

with cn = n(m+1)−1

and σ = [(−1)m(m + 1)!/F (m+1)(θ−)](m+1)−1

. If a
consistent estimator σ̂n of σ can be found, then, by Slutsky’s theorem,

cn[Tn(X) − ϑ]/σ̂n →d Y

and, thus, we may approximate the distribution of cn[Tn(X) − ϑ]/σ̂n by
the known distribution of Y .

2.5.2 Asymptotic bias, variance, and mse

Unbiasedness as a criterion for point estimators is discussed in §2.3.2 and
§2.4.1. In some cases, however, there is no unbiased estimator (Exercise 84
in §2.6). Furthermore, having a “slight” bias in some cases may not be a
bad idea (see Exercise 63 in §2.6). Let Tn(X) be a point estimator of ϑ
for every n. If ETn exists for every n and limn→∞E(Tn − ϑ) = 0 for any
P ∈ P , then Tn is said to be approximately unbiased.

There are many reasonable point estimators whose expectations are
not well defined. For example, consider i.i.d. (X1, Y1), ..., (Xn, Yn) from a
bivariate normal distribution with µx = EX1 and µy = EY1 6= 0. Let
ϑ = µx/µy and Tn = X̄/Ȳ , the ratio of two sample means. Then ETn is
not defined for any n. It is then desirable to define a concept of asymptotic
bias for point estimators whose expectations are not well defined.

Definition 2.11. (i) Let ξ, ξ1, ξ2, ... be random variables and {an} be
a sequence of positive numbers satisfying an → ∞ or an → a > 0. If
anξn →d ξ and E|ξ| < ∞, then Eξ/an is called an asymptotic expectation
of ξn.
(ii) Let Tn be a point estimator of ϑ for every n. An asymptotic expectation
of Tn − ϑ, if it exists, is called an asymptotic bias of Tn and denoted by
b̃Tn(P ) (or b̃Tn(θ) if P is in a parametric family). If limn→∞ b̃Tn(P ) = 0 for
any P ∈ P , then Tn is said to be asymptotically unbiased.

Like the consistency, the asymptotic expectation (or bias) is a concept
relating to sequences {ξn} and {Eξ/an} (or {Tn} and {b̃Tn(P )}). Note
that the exact bias bTn(P ) is not necessarily the same as b̃Tn(P ) when both
of them exist (Exercise 115 in §2.6). The following result shows that the
asymptotic expectation defined in Definition 2.11 is essentially unique.
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Proposition 2.3. Let {ξn} be a sequence of random variables. Suppose
that both Eξ/an and Eη/bn are asymptotic expectations of ξn defined
according to Definition 2.11(i). Then, one of the following three must hold:
(a) Eξ = Eη = 0; (b) Eξ 6= 0, Eη = 0, and bn/an → 0; or Eξ = 0, Eη 6= 0,
and an/bn → 0; (c) Eξ 6= 0, Eη 6= 0, and (Eξ/an)/(Eη/bn) → 1.
Proof. According to Definition 2.11(i), anξn →d ξ and bnξn →d η.
(i) If both ξ and η have nondegenerate c.d.f.’s, then the result follows from
Exercise 129 of §1.6.
(ii) Suppose that ξ has a nondegenerate c.d.f. but η is a constant. If η 6= 0,
then by Theorem 1.11(iii), an/bn → ξ/η, which is impossible since ξ has a
nondegenerate c.d.f. If η = 0, then by Theorem 1.11(ii), bn/an → 0.
(iii) Suppose that both ξ and η are constants. If ξ = η = 0, the result
follows. If ξ 6= 0 and η = 0, then bn/an → 0. If ξ 6= 0 and η 6= 0, then
bn/an → η/ξ.

If Tn is a consistent estimator of ϑ, then Tn = ϑ + op(1) and, by Defi-
nition 2.11(ii), Tn is asymptotically unbiased, although Tn may not be ap-
proximately unbiased; in fact, g(Tn) is asymptotically unbiased for g(ϑ) for
any continuous function g. For the example of Tn = X̄/Ȳ , Tn →a.s. µx/µy
by the SLLN and Theorem 1.10. Hence Tn is asymptotically unbiased, al-
though ETn may not be defined. In Example 2.34, X(n) has the asymptotic

bias b̃X(n)
(P ) = hn(θ)EY , which is of order n−(m+1)−1

.

When an(Tn − ϑ) →d Y with EY = 0 (e.g., Tn = X̄2 and ϑ = µ2 in
Example 2.33), a more precise order of the asymptotic bias of Tn may be
obtained (for comparing different estimators in terms of their asymptotic
biases). Suppose that there is a sequence of random variables {ηn} such
that

anηn →d Y and a2
n(Tn − ϑ− ηn) →d W, (2.36)

where Y and W are random variables with finite means, EY = 0 and
EW 6= 0. Then we may define a−2

n to be the order of b̃Tn(P ) or define
EW/a2

n to be the a−2
n order asymptotic bias of Tn. However, ηn in (2.36)

may not be unique. Some regularity conditions have to be imposed so that
the order of asymptotic bias of Tn can be uniquely defined. In the following
we focus on the case where X1, ..., Xn are i.i.d. random k-vectors. Suppose
that Tn has the following expansion:

Tn − ϑ =
1

n

n∑

i=1

φ(Xi) +
1

n2

n∑

i=1

n∑

j=1

ψ(Xi, Xj) + op

(
1

n

)
, (2.37)

where φ and ψ are functions that may depend on P , Eφ(X1) = 0, E[φ(X1)]
2

<∞, ψ(x, y) = ψ(y, x), Eψ(x,X1) = 0 for all x, E[ψ(Xi, Xj)]
2 <∞, i ≤ j,

and Eψ(X1, X1) 6= 0. From the result for V-statistics in §3.5.3 (Theorem
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3.16 and Exercise 113 in §3.6),

1

n

n∑

i=1

n∑

j=1

ψ(Xi, Xj) →d W,

where W is a random variable with EW = Eψ(X1, X1). Hence (2.36)
holds with an =

√
n and ηn = n−1

∑n
i=1 φ(Xi). Consequently, we can

define Eψ(X1, X1)/n to be the n−1 order asymptotic bias of Tn. Examples
of estimators that have expansion (2.37) are provided in §3.5.3 and §5.2.1.
In the following we consider the special case of functions of sample means.

Let X1, ..., Xn be i.i.d. random k-vectors with finite Σ = Var(X1), X̄ =
n−1

∑n
i=1Xi, and Tn = g(X̄), where g is a function on Rk that is second-

order differentiable at µ = EX1 ∈ Rk. Consider Tn as an estimator of ϑ =
g(µ). Using Taylor’s expansion, we obtain expansion (2.37) with φ(x) =
[∇g(µ)]τ (x−µ) and ψ(x, y) = (x−µ)τ∇2g(µ)(y−µ)/2, where ∇g is the k-
vector of partial derivatives of g and ∇2g is the k×k matrix of second-order
partial derivatives of g. By the CLT and Theorem 1.10(iii),

1

n

n∑

i=1

n∑

j=1

ψ(Xi, Xj) =
n

2
(X̄ − µ)τ∇2g(µ)(X̄ − µ) →d

ZτΣ∇2g(µ)ZΣ

2
,

where ZΣ = Nk(0,Σ). Thus,

E[ZτΣ∇2g(µ)ZΣ]

2n
=

tr
(
∇2g(µ)Σ

)

2n
(2.38)

is the n−1 order asymptotic bias of Tn = g(X̄), where tr(A) denotes the
trace of the matrix A. Note that the quantity in (2.38) is the same as the
leading term in the exact bias of Tn = g(X̄) obtained under a much more
stringent condition on the derivatives of g (Lehmann, 1983, Theorem 2.5.1).

Example 2.35. Let X1, ..., Xn be i.i.d. binary random variables with
P (Xi = 1) = p, where p ∈ (0, 1) is unknown. Consider first the estimation
of ϑ = p(1−p). Since Var(X̄) = p(1−p)/n, the n−1 order asymptotic bias of
Tn = X̄(1−X̄) according to (2.38) with g(x) = x(1−x) is −p(1−p)/n. On
the other hand, a direct computation shows E[X̄(1 − X̄)] = EX̄ −EX̄2 =
p− (EX̄)2 − Var(X̄) = p(1 − p) − p(1 − p)/n. Hence, the exact bias of Tn
is the same as the n−1 order asymptotic bias.

Consider next the estimation of ϑ = p−1. In this case, there is no
unbiased estimator of p−1 (Exercise 84 in §2.6). Let Tn = X̄−1. Then, an
n−1 order asymptotic bias of Tn according to (2.38) with g(x) = x−1 is
(1 − p)/(p2n). On the other hand, ETn = ∞ for every n.

Like the bias, the mse of an estimator Tn of ϑ, mseTn(P ) = E(Tn−ϑ)2,
is not well defined if the second moment of Tn does not exist. We now
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define a version of asymptotic mean squared error (amse) and a measure of
assessing different point estimators of a common parameter.

Definition 2.12. Let Tn be an estimator of ϑ for every n and {an} be a
sequence of positive numbers satisfying an → ∞ or an → a > 0. Assume
that an(Tn − ϑ) →d Y with 0 < EY 2 <∞.
(i) The asymptotic mean squared error of Tn, denoted by amseTn(P ) or
amseTn(θ) if P is in a parametric family indexed by θ, is defined to be
the asymptotic expectation of (Tn − ϑ)2, i.e., amseTn(P ) = EY 2/a2

n. The
asymptotic variance of Tn is defined to be σ2

Tn
(P ) = Var(Y )/a2

n.
(ii) Let T ′

n be another estimator of ϑ. The asymptotic relative efficiency of
T ′
n w.t.r. Tn is defined to be eT ′

n,Tn(P ) = amseTn(P )/amseT ′
n
(P ).

(iii) Tn is said to be asymptotically more efficient than T ′
n if and only if

lim supn eT ′
n,Tn(P ) ≤ 1 for any P and < 1 for some P .

The amse and asymptotic variance are the same if and only if EY = 0.
By Proposition 2.3, the amse or the asymptotic variance of Tn is essen-
tially unique and, therefore, the concept of asymptotic relative efficiency in
Definition 2.12(ii)-(iii) is well defined.

In Example 2.33, amseX̄2(P ) = σ2
X̄2(P ) = 4µ2σ2/n. In Example 2.34,

σ2
X(n)

(P ) = [hn(θ)]
2Var(Y ) and amseX(n)

(P ) = [hn(θ)]2EY 2.

When both mseTn(P ) and mseT ′
n
(P ) exist, one may compare Tn and

T ′
n by evaluating the relative efficiency mseTn(P )/mseT ′

n
(P ). However, this

comparison may be different from the one using the asymptotic relative
efficiency in Definition 2.12(ii), since the mse and amse of an estimator
may be different (Exercise 115 in §2.6). The following result shows that
when the exact mse of Tn exists, it is no smaller than the amse of Tn. It
also provides a condition under which the exact mse and the amse are the
same.

Proposition 2.4. Let Tn be an estimator of ϑ for every n and {an} be a
sequence of positive numbers satisfying an → ∞ or an → a > 0. Suppose
that an(Tn − ϑ) →d Y with 0 < EY 2 <∞. Then
(i) EY 2 ≤ lim infnE[a2

n(Tn − ϑ)2] and
(ii) EY 2 = limn→∞E[a2

n(Tn−ϑ)2] if and only if {a2
n(Tn−ϑ)2} is uniformly

integrable.
Proof. (i) By Theorem 1.10(iii),

min{a2
n(Tn − ϑ)2, t} →d min{Y 2, t}

for any t > 0. Since min{a2
n(Tn − ϑ)2, t} is bounded by t,

lim
n→∞

E(min{a2
n(Tn − ϑ)2, t}) = E(min{Y 2, t})
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(Theorem 1.8(viii)). Then

EY 2 = lim
t→∞

E(min{Y 2, t})

= lim
t→∞

lim
n→∞

E(min{a2
n(Tn − ϑ)2, t})

= lim inf
t,n

E(min{a2
n(Tn − ϑ)2, t})

≤ lim inf
n

E[a2
n(Tn − ϑ)2],

where the third equality follows from the fact that E(min{a2
n(Tn − ϑ)2, t})

is nondecreasing in t for any fixed n.
(ii) The result follows from Theorem 1.8(viii).

Example 2.36. Let X1, ..., Xn be i.i.d. from the Poisson distribution P (θ)
with an unknown θ > 0. Consider the estimation of ϑ = P (Xi = 0) = e−θ.
Let T1n = Fn(0), where Fn is the empirical c.d.f. defined in (2.28). Then
T1n is unbiased and has mseT1n(θ) = e−θ(1−e−θ)/n. Also,

√
n(T1n−ϑ) →d

N(0, e−θ(1−e−θ)) by the CLT. Thus, in this case amseT1n(θ) = mseT1n(θ).

Next, consider T2n = e−X̄ . Note that ET2n = enθ(e
−1/n−1). Hence

nbT2n(θ) → θe−θ/2. Using Theorem 1.12 and the CLT, we can show that√
n(T2n−ϑ) →d N(0, e−2θθ). By Definition 2.12(i), amseT2n(θ) = e−2θθ/n.

Thus, the asymptotic relative efficiency of T1n w.r.t. T2n is

eT1n,T2n(θ) = θ/(eθ − 1),

which is always less than 1. This shows that T2n is asymptotically more
efficient than T1n.

The result for T2n in Example 2.36 is a special case (with Un = X̄) of
the following general result.

Theorem 2.6. Let g be a function on Rk that is differentiable at θ ∈ Rk

and let Un be a k-vector of statistics satisfying an(Un − θ) →d Y for a
random k-vector Y with 0 < E‖Y ‖2 < ∞ and a sequence of positive
numbers {an} satisfying an → ∞. Let Tn = g(Un) be an estimator of
ϑ = g(θ). Then, the amse and asymptotic variance of Tn are, respectively,
E{[∇g(θ)]τY }2/a2

n and [∇g(θ)]τVar(Y )∇g(θ)/a2
n.

2.5.3 Asymptotic inference

Statistical inference based on asymptotic criteria and approximations is
called asymptotic statistical inference or simply asymptotic inference. We
have previously considered asymptotic estimation. We now focus on asymp-
totic hypothesis tests and confidence sets.
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Definition 2.13. Let X = (X1, ..., Xn) be a sample from P ∈ P and
Tn(X) be a test for H0 : P ∈ P0 versus H1 : P ∈ P1.
(i) If lim supn αTn(P ) ≤ α for any P ∈ P0, then α is an asymptotic signifi-
cance level of Tn.
(ii) If limn→∞ supP∈P0

αTn(P ) exists, then it is called the limiting size of
Tn.
(iii) Tn is called consistent if and only if the type II error probability con-
verges to 0, i.e., limn→∞[1 − αTn(P )] = 0, for any P ∈ P1.
(iv) Tn is called Chernoff-consistent if and only if Tn is consistent and the
type I error probability converges to 0, i.e., limn→∞ αTn(P ) = 0, for any
P ∈ P0. Tn is called strongly Chernoff-consistent if and only if Tn is con-
sistent and the limiting size of Tn is 0.

Obviously if Tn has size (or significance level) α for all n, then its limiting
size (or asymptotic significance level) is α. If the limiting size of Tn is
α ∈ (0, 1), then for any ǫ > 0, Tn has size α+ ǫ for all n ≥ n0, where n0 is
independent of P . Hence Tn has level of significance α+ ǫ for any n ≥ n0.
However, if P0 is not a parametric family, it is likely that the limiting size
of Tn is 1 (see, e.g., Example 2.37). This is the reason why we consider the
weaker requirement in Definition 2.13(i). If Tn has asymptotic significance
level α, then for any ǫ > 0, αTn(P ) < α + ǫ for all n ≥ n0(P ) but n0(P )
depends on P ∈ P0; and there is no guarantee that Tn has significance level
α+ ǫ for any n.

The consistency in Definition 2.13(iii) only requires that the type II er-
ror probability converge to 0. We may define uniform consistency to be
limn→∞ supP∈P1

[1 − αTn(P )] = 0, but it is not satisfied in most problems.
If α ∈ (0, 1) is a pre-assigned level of significance for the problem, then a
consistent test Tn having asymptotic significance level α is called asymptot-
ically correct, and a consistent test having limiting size α is called strongly
asymptotically correct.

The Chernoff-consistency (or strong Chernoff-consistency) in Definition
2.13(iv) requires that both types of error probabilities converge to 0. Math-
ematically, Chernoff-consistency (or strong Chernoff-consistency) is better
than asymptotic correctness (or strongly asymptotic correctness). After
all, both types of error probabilities should decrease to 0 if sampling can be
continued indefinitely. However, if α is chosen to be small enough so that
error probabilities smaller than α can be practically treated as 0, then the
asymptotic correctness (or strongly asymptotic correctness) is enough, and
is probably preferred, since requiring an unnecessarily small type I error
probability usually results in an unnecessary increase in the type II error
probability, as the following example illustrates.

Example 2.37. Consider the testing problem H0 : µ ≤ µ0 versus H1 :
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µ > µ0 based on i.i.d. X1, ..., Xn with EX1 = µ ∈ R. If each Xi has the
N(µ, σ2) distribution with a known σ2, then the test Tcα given in Example
2.28 with cα = σz1−α/

√
n + µ0 and α ∈ (0, 1) has size α (and, therefore,

limiting size α). It also follows from (2.32) that for any µ > µ0,

1 − αTcα
(µ) = Φ

(
z1−α +

√
n(µ0 − µ)

σ

)
→ 0 (2.39)

as n → ∞. This shows that Tcα is consistent and, hence, is strongly
asymptotically correct. Note that the convergence in (2.39) is not uniform
in µ > µ0, but is uniform in µ > µ1 for any fixed µ1 > µ0.

Since the size of Tcα is α for all n, Tcα is not Chernoff-consistent. A
strongly Chernoff-consistent test can be obtained as follows. Let

αn = 1 − Φ(
√
nan), (2.40)

where an’s are positive numbers satisfying an → 0 and
√
nan → ∞. Let

Tn be Tcα with α = αn for each n. Then, Tn has size αn. Since αn → 0,
The limiting size of Tn is 0. On the other hand, (2.39) still holds with α
replaced by αn. This follows from the fact that

z1−αn +

√
n(µ0 − µ)

σ
=

√
n

(
an +

µ0 − µ

σ

)
→ −∞

for any µ > µ0. Hence Tn is strongly Chernoff-consistent. However, if
αn < α, then, from the left-hand side of (2.39), 1 − αTcα

(µ) < 1 − αTn(µ)
for any µ > µ0.

We now consider the case where the population P is not in a parametric
family. We still assume that σ2 = Var(Xi) is known. Using the CLT, we
can show that for µ > µ0,

lim
n→∞

[1 − αTcα
(µ)] = lim

n→∞
Φ

(
z1−α +

√
n(µ0 − µ)

σ

)
= 0,

i.e., Tcα is still consistent. For µ ≤ µ0,

lim
n→∞

αTcα
(µ) = 1 − lim

n→∞
Φ

(
z1−α +

√
n(µ0 − µ)

σ

)
,

which equals α if µ = µ0 and 0 if µ < µ0. Thus, the asymptotic significance
level of Tcα is α. Combining these two results, we know that Tcα is asymp-
totically correct. However, if P contains all possible populations on R with
finite second moments, then one can show that the limiting size of Tcα is
1 (exercise). For αn defined by (2.40), we can show that Tn = Tcα with
α = αn is Chernoff-consistent (exercise). But Tn is not strongly Chernoff-
consistent if P contains all possible populations on R with finite second
moments.



142 2. Fundamentals of Statistics

Definition 2.14. Let X = (X1, ..., Xn) be a sample from P ∈ P , ϑ be a
k-vector of parameters related to P , and C(X) be a confidence set for ϑ.
(i) If lim infn P (ϑ ∈ C(X)) ≥ 1 − α for any P ∈ P , then 1 − α is an
asymptotic significance level of C(X).
(ii) If limn→∞ infP∈P P (ϑ ∈ C(X)) exists, then it is called the limiting
confidence coefficient of C(X).

Note that the asymptotic significance level and limiting confidence co-
efficient of a confidence set are very similar to the asymptotic significance
level and limiting size of a test, respectively. Some conclusions are also sim-
ilar. For example, in a parametric problem one can often find a confidence
set having limiting confidence coefficient 1 − α ∈ (0, 1), which implies that
for any ǫ > 0, the confidence coefficient of C(X) is 1−α− ǫ for all n ≥ n0,
where n0 is independent of P ; in a nonparametric problem the limiting
confidence coefficient of C(X) might be 0, whereas C(X) may have asymp-
totic significance level 1 − α ∈ (0, 1), but for any fixed n, the confidence
coefficient of C(X) might be 0.

The confidence interval in Example 2.31 with c = σz1−α/2/
√
n and the

confidence set in Example 2.32 have confidence coefficient 1 − α for any n
and, therefore, have limiting confidence coefficient 1 − α. If we drop the
normality assumption and assume EX4

i < ∞, then these confidence sets
have asymptotic significance level 1−α; their limiting confidence coefficients
may be 0 (exercise).

2.6 Exercises

1. Consider Example 2.3. Suppose that p(s) is constant. Show that Xi

and Xj, i 6= j, are not uncorrelated and, hence, X1, ..., Xn are not
independent. Furthermore, when yi’s are either 0 or 1, show that
Z =

∑n
i=1Xi has a hypergeometric distribution and compute the

mean of Z.

2. Consider Example 2.3. Suppose that we do not require that the ele-
ments in s be distinct, i.e., we consider sampling with replacement.
Define a probability measure p and a sample (X1, ..., Xn) such that
(2.3) holds. If p(s) is constant, are X1, ..., Xn independent? If p(s)
is constant and yi’s are either 0 or 1, what are the distribution and
mean of Z =

∑n
i=1Xi?

3. Show that {Pθ : θ ∈ Θ} is an exponential family and find its canonical
form and natural parameter space, when
(a) Pθ is the Poisson distribution P (θ), θ ∈ Θ = (0,∞);
(b) Pθ is the negative binomial distribution NB(θ, r) with a fixed r,
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θ ∈ Θ = (0, 1);
(c) Pθ is the exponential distribution E(a, θ) with a fixed a, θ ∈ Θ =
(0,∞);
(d) Pθ is the gamma distribution Γ(α, γ), θ = (α, γ) ∈ Θ = (0,∞) ×
(0,∞);
(e) Pθ is the beta distribution B(α, β), θ = (α, β) ∈ Θ = (0, 1)×(0, 1);
(f) Pθ is the Weibull distribution W (α, θ) with a fixed α > 0, θ ∈ Θ =
(0,∞).

4. Show that the family of exponential distributions E(a, θ) with two
unknown parameters a and θ is not an exponential family.

5. Show that the family of negative binomial distributionsNB(p, r) with
two unknown parameters p and r is not an exponential family.

6. Show that the family of Cauchy distributions C(µ, σ) with two un-
known parameters µ and σ is not an exponential family.

7. Show that the family of Weibull distributions W (α, θ) with two un-
known parameters α and θ is not an exponential family.

8. Is the family of log-normal distributions LN(µ, σ2) with two unknown
parameters µ and σ2 an exponential family?

9. Show that the family of double exponential distributions DE(µ, θ)
with two unknown parameters µ and θ is not an exponential family,
but the family of double exponential distributions DE(µ, θ) with a
fixed µ and an unknown parameter θ is an exponential family.

10. Show that the k-dimensional normal family discussed in Example 2.4
is an exponential family. Identify the functions T , η, ξ, and h.

11. Obtain the variance-covariance matrix for (X1, ..., Xk) in Example
2.7, using (a) Theorem 2.1(ii) and (b) direct computation.

12. Show that the m.g.f. of the gamma distribution Γ(α, γ) is (1− γt)−α,
t < γ−1, using Theorem 2.1(ii).

13. A discrete random variable X with

P (X = x) = γ(x)θx/c(θ), x = 0, 1, 2, ...,

where γ(x) ≥ 0, θ > 0, and c(θ) =
∑∞

x=0 γ(x)θx, is called a random
variable with a power series distribution.
(a) Show that {γ(x)θx/c(θ) : θ > 0} is an exponential family.
(b) Suppose that X1, ..., Xn are i.i.d. with a power series distribution
γ(x)θx/c(θ). Show that

∑n
i=1Xi has the power series distribution

γn(x)θ
x/[c(θ)]n, where γn(x) is the coefficient of θx in the power series

expansion of [c(θ)]n.
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14. Let X be a random variable with a p.d.f. fθ in an exponential family
{Pθ : θ ∈ Θ} and let A be a Borel set. Show that the distribution
of X truncated on A (i.e., the conditional distribution of X given
X ∈ A) has a p.d.f. fθIA/Pθ(A) that is in an exponential family.

15. Let {P(µ,Σ) : µ ∈ Rk,Σ ∈ Mk} be a location-scale family on Rk.
Suppose that P(0,Ik) has a Lebesgue p.d.f. that is always positive and
that the mean and variance-covariance matrix of P(0,Ik) are 0 and Ik,
respectively. Show that the mean and variance-covariance matrix of
P(µ,Σ) are µ and Σ, respectively.

16. Show that if the distribution of a positive random variable X is in a
scale family, then the distribution of logX is in a location family.

17. Let X be a random variable having the gamma distribution Γ(α, γ)
with a known α and an unknown γ > 0 and let Y = σ logX .
(a) Show that if σ > 0 is unknown, then the distribution of Y is in a
location-scale family.
(b) Show that if σ > 0 is known, then the distribution of Y is in an
exponential family.

18. Let X1, ..., Xn be i.i.d. random variables having a finite E|X1|4 and
let X̄ and S2 be the sample mean and variance defined by (2.1) and
(2.2). Express E(X̄3), Cov(X̄, S2), and Var(S2) in terms of µk =
EXk

1 , k = 1, 2, 3, 4. Find a condition under which X̄ and S2 are
uncorrelated.

19. Let X1, ..., Xn be i.i.d. random variables having the gamma distri-
bution Γ(α, γx) and Y1, ..., Yn be i.i.d. random variables having the
gamma distribution Γ(α, γy), where α > 0, γx > 0, and γy > 0. As-
sume that Xi’s and Yi’s are independent. Derive the distribution of
the statistic X̄/Ȳ , where X̄ and Ȳ are the sample means based on
Xi’s and Yi’s, respectively.

20. Let X1, ..., Xn be i.i.d. random variables having the exponential dis-
tribution E(a, θ), a ∈ R, and θ > 0. Show that the smallest order
statistic, X(1), has the exponential distribution E(a, θ/n) and that
2
∑n
i=1(Xi −X(1))/θ has the chi-square distribution χ2

2n−2.

21. Let (X1, Y1), ..., (Xn, Yn) be i.i.d. random 2-vectors. Suppose that
X1 has the Cauchy distribution C(0, 1) and given X1 = x, Y1 has
the Cauchy distribution C(βx, 1), where β ∈ R. Let X̄ and Ȳ be
the sample means based on Xi’s and Yi’s, respectively. Obtain the
marginal distributions of Ȳ , Ȳ − βX̄ , and Ȳ /X̄.
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22. Let Xi = (Yi, Zi), i = 1, ..., n, be i.i.d. random 2-vectors. The sample
correlation coefficient is defined to be

T (X) =
1

(n− 1)
√
S2
Y S

2
Z

n∑

i=1

(Yi − Ȳ )(Zi − Z̄),

where Ȳ =n−1
∑n
i=1 Yi, Z̄=n−1

∑n
i=1 Zi, S

2
Y =(n−1)−1

∑n
i=1(Yi−Ȳ )2,

and S2
Z=(n−1)−1

∑n
i=1(Zi−Z̄)2.

(a) Assume that E|Yi|4 <∞ and E|Zi|4 <∞. Show that

√
n[T (X)− ρ] →d N(0, c2),

where ρ is the correlation coefficient between Y1 and Z1 and c is a
constant depending on some unknown parameters.
(b) Assume that Yi and Zi are independently distributed as N(µ1, σ

2
1)

and N(µ2, σ
2
2), respectively. Show that T has the Lebesgue p.d.f.

f(t) =
Γ
(
n−1

2

)
√
πΓ
(
n−2

2

) (1 − t2)(n−4)/2I(−1,1)(t).

(c) Assume the conditions in (b). Obtain the result in (a) using
Scheffé’s theorem (Proposition 1.18).

23. Let X1, ..., Xn be i.i.d. random variables with EX4
1 <∞, T = (Y, Z),

and T1 = Y/
√
Z, where Y = n−1

∑n
i=1 |Xi| and Z = n−1

∑n
i=1X

2
i .

(a) Show that
√
n(T − θ) →d N2(0,Σ) and

√
n(T1 − ϑ) →d N(0, c2).

Identify θ, Σ, ϑ, and c2 in terms of moments of X1.
(b) Repeat (a) when X1 has the normal distribution N(0, σ2).
(c) Repeat (a) when X1 has the double exponential distribution
D(0, σ).

24. Prove the claims in Example 2.9 for the distributions related to order
statistics.

25. Show that if T is a sufficient statistic and T = ψ(S), where ψ is
measurable and S is another statistic, then S is sufficient.

26. In the proof of Lemma 2.1, show that C0 ∈ C. Also, prove Lemma
2.1 when P is dominated by a σ-finite measure.

27. Let X1, ..., Xn be i.i.d. random variables from Pθ ∈ {Pθ : θ ∈ Θ}. In
the following cases, find a sufficient statistic for θ ∈ Θ that has the
same dimension as θ.
(a) Pθ is the Poisson distribution P (θ), θ ∈ (0,∞).
(b) Pθ is the negative binomial distribution NB(θ, r) with a known
r, θ ∈ (0, 1).
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(c) Pθ is the exponential distribution E(0, θ), θ ∈ (0,∞).
(d) Pθ is the gamma distribution Γ(α, γ), θ = (α, γ) ∈ (0,∞)×(0,∞).
(e) Pθ is the beta distribution B(α, β), θ = (α, β) ∈ (0, 1) × (0, 1).
(f) Pθ is the log-normal distribution LN(µ, σ2), θ = (µ, σ2) ∈ R ×
(0,∞).
(g) Pθ is the Weibull distribution W (α, θ) with a known α > 0, θ ∈
(0,∞).

28. LetX1, ..., Xn be i.i.d. random variables from P(a,θ), where (a, θ) ∈ R2

is a parameter. Find a two-dimensional sufficient statistic for (a, θ)
in the following cases.
(a) P(a,θ) is the exponential distribution E(a, θ), a ∈ R, θ ∈ (0,∞).
(b) P(a,θ) is the Pareto distribution Pa(a, θ), a ∈ (0,∞), θ ∈ (0,∞).

29. In Example 2.11, show that X(1) (or X(n)) is sufficient for a (or b) if
we consider a subfamily {f(a,b) : a < b} with a fixed b (or a).

30. Let X and Y be two random variables such that Y has the binomial
distribution Bi(π,N) and, given Y = y, X has the binomial distri-
bution Bi(p, y).
(a) Suppose that p ∈ (0, 1) and π ∈ (0, 1) are unknown and N is
known. Show that (X,Y ) is minimal sufficient for (p, π).
(b) Suppose that π and N are known and p ∈ (0, 1) is unknown. Show
whether X is sufficient for p and whether Y is sufficient for p.

31. Let X1, ..., Xn be i.i.d. random variables having a distribution P ∈
P , where P is the family of distributions on R having continuous
c.d.f.’s. Let T = (X(1), ..., X(n)) be the vector of order statistics. Show
that, given T , the conditional distribution of X = (X1, ..., Xn) is a
discrete distribution putting probability 1/n! on each of the n! points
(Xi1 , ..., Xin) ∈ Rn, where {i1, ..., in} is a permutation of {1, ..., n};
hence, T is sufficient for P ∈ P .

32. In Example 2.13 and Example 2.14, show that T is minimal sufficient
for θ by using Theorem 2.3(iii).

33. A coin has probability p of coming up heads and 1 − p of coming
up tails, where p ∈ (0, 1). The first stage of an experiment consists
of tossing this coin a known total of M times and recording X , the
number of heads. In the second stage, the coin is tossed until a total
of X + 1 tails have come up. The number Y of heads observed in
the second stage along the way to getting the X + 1 tails is then
recorded. This experiment is repeated independently a total of n
times and the two counts (Xi, Yi) for the ith experiment are recorded,
i = 1, ..., n. Obtain a statistic that is minimal sufficient for p and
derive its distribution.
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34. Let X1, ..., Xn be i.i.d. random variables having the Lebesgue p.d.f.

fθ(x) = exp
{
−
(
x−µ
σ

)4 − ξ(θ)
}
,

where θ = (µ, σ) ∈ Θ = R× (0,∞). Show that P = {Pθ : θ ∈ Θ} is
an exponential family, where Pθ is the joint distribution of X1, ..., Xn,
and that the statistic T =

(∑n
i=1Xi,

∑n
i=1X

2
i ,
∑n
i=1X

3
i ,
∑n

i=1X
4
i

)

is minimal sufficient for θ ∈ Θ.

35. Let X1, ..., Xn be i.i.d. random variables having the Lebesgue p.d.f.

fθ(x) = (2θ)−1
[
I(0,θ)(x) + I(2θ,3θ)(x)

]
.

Find a minimal sufficient statistic for θ ∈ (0,∞).

36. Let X1, ..., Xn be i.i.d. random variables having the Cauchy distribu-
tion C(µ, σ) with unknown µ ∈ R and σ > 0. Show that the vector
of order statistics is minimal sufficient for (µ, σ).

37. Let X1, ..., Xn be i.i.d. random variables having the double exponen-
tial distribution DE(µ, θ) with unknown µ ∈ R and θ > 0. Show that
the vector of order statistics is minimal sufficient for (µ, θ).

38. Let X1, ..., Xn be i.i.d. random variables having the Weibull distribu-
tion W (α, θ) with unknown α > 0 and θ > 0. Show that the vector
of order statistics is minimal sufficient for (α, θ).

39. Let X1, ..., Xn be i.i.d. random variables having the beta distribution
B(β, β) with an unknown β > 0. Find a minimal sufficient statistic
for β.

40. Let X1, ..., Xn be i.i.d. random variables having a population P in
a parametric family indexed by (θ, j), where θ > 0, j = 1, 2, and
n ≥ 2. When j = 1, P is the N(0, θ2) distribution. When j = 2,
P is the double exponential distribution DE(0, θ). Show that T =
(
∑n
i=1X

2
i ,
∑n
i=1 |Xi|) is minimal sufficient for (θ, j).

41. Let X1, ..., Xn be i.i.d. random variables having a population P in a
parametric family indexed by (θ, j), where θ ∈ (0, 1), j = 1, 2, and
n ≥ 2. When j = 1, P is the Poisson distribution P (θ). When j = 2,
P is the binomial distribution Bi(θ, 1).
(a) Show that T =

∑n
i=1Xi is not sufficient for (θ, j).

(b) Find a two-dimensional minimal sufficient statistic for (θ, j).

42. Let X be a sample from P ∈ P = {fθ,j : θ ∈ Θ, j = 1, ..., k}, where
fθ,j’s are p.d.f.’s w.r.t. a common σ-finite measure and Θ is a set of
parameters. Assume that {x : fθ,j(x) > 0} ⊂ {x : fθ,k(x) > 0} for all
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θ and j = 1, ..., k − 1. Suppose that for each fixed j, T = T (X) is a
statistic sufficient for θ.
(a) Obtain a k-dimensional statistic that is sufficient for (θ, j).
(b) Derive a sufficient condition under which T is minimal sufficient
for (θ, j).

43. A box has an unknown odd number of balls labeled consecutively as
−θ,−(θ − 1), ...,−2,−1, 0, 1, 2, ..., (θ − 1), θ, where θ is an unknown
nonnegative integer. A simple random sample X1, ..., Xn is taken
without replacement, where Xi is the label on the ith ball selected
and n < 2θ + 1.
(a) Find a statistic that is minimal sufficient for θ and derive its
distribution.
(b) Show that the minimal sufficient statistic in (a) is also complete.

44. Let X1, ..., Xn be i.i.d. random variables having the Lebesgue p.d.f.
θ−1e−(x−θ)/θI(θ,∞)(x), where θ > 0 is an unknown parameter.
(a) Find a statistic that is minimal sufficient for θ.
(b) Show whether the minimal sufficient statistic in (a) is complete.

45. Let X1, ..., Xn (n ≥ 2) be i.i.d. random variables having the normal
distribution N(θ, 2) when θ = 0 and the normal distribution N(θ, 1)
when θ ∈ R and θ 6= 0. Show that the sample mean X̄ is a complete
statistic for θ but it is not a sufficient statistic for θ.

46. Let X be a random variable with a distribution Pθ in {Pθ : θ ∈ Θ},
fθ be the p.d.f. of Pθ w.r.t. a measure ν, A be an event, and PA =
{fθIA/Pθ(A) : θ ∈ Θ}.
(a) Show that if T (X) is sufficient for Pθ ∈ P , then it is sufficient for
Pθ ∈ PA.
(b) Show that if T is sufficient and complete for Pθ ∈ P , then it is
complete for Pθ ∈ PA.

47. Show that (X(1), X(n)) in Example 2.13 is not complete.

48. Let T be a complete (or boundedly complete) and sufficient statistic.
Suppose that there is a minimal sufficient statistic S. Show that T is
minimal sufficient and S is complete (or boundedly complete).

49. Let T and S be two statistics such that S = ψ(T ) for a measurable
ψ. Show that
(a) if T is complete, then S is complete;
(b) if T is complete and sufficient and ψ is one-to-one, then S is
complete and sufficient;
(c) the results in (a) and (b) still hold if the completeness is replaced
by the bounded completeness.
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50. Find complete and sufficient statistics for the families in Exercises 27
and 28.

51. Show that (X(1), X(n)) in Example 2.11 is complete.

52. Let (X1, Y1), ..., (Xn, Yn) be i.i.d. random 2-vectors having the follow-
ing Lebesgue p.d.f.

fθ(x, y) = (2πγ2)−1I(0,γ)

(√
(x − a)2 + (y − b)2

)
, (x, y) ∈ R2,

where θ = (a, b, γ) ∈ R2 × (0,∞).
(a) If a = 0 and b = 0, find a complete and sufficient statistic for γ.
(b) If all parameters are unknown, show that the convex hull of the
sample points is a sufficient statistic for θ.

53. Let X be a discrete random variable with p.d.f.

fθ(x) =





θ x = 0

(1 − θ)2θx−1 x = 1, 2, ...

0 otherwise,

where θ ∈ (0, 1). Show that X is boundedly complete, but not com-
plete.

54. Show that the sufficient statistic T in Example 2.10 is also complete
without using Proposition 2.1.

55. Let Y1, ..., Yn be i.i.d. random variables having the Lebesgue p.d.f.
λxλ−1I(0,1)(x) with an unknown λ > 0 and let Z1, ..., Zn be i.i.d.
discrete random variables having the power series distribution given
in Exercise 13 with an unknown θ > 0. Assume that Yi’s and Zj’s
are independent. Let Xi = Yi + Zi, i = 1, ..., n. Find a complete
and sufficient statistic for the unknown parameter (θ, λ) based on the
sample X = (X1, ..., Xn).

56. Suppose that (X1, Y1), ..., (Xn, Yn) are i.i.d. random 2-vectors and
Xi and Yi are independently distributed as N(µ, σ2

X) and N(µ, σ2
Y ),

respectively, with θ = (µ, σ2
X , σ

2
Y ) ∈ R× (0,∞) × (0,∞). Let X̄ and

S2
X be the sample mean and variance given by (2.1) and (2.2) for Xi’s

and Ȳ and S2
Y be the sample mean and variance for Yi’s. Show that

T = (X̄, Ȳ , S2
X , S

2
Y ) is minimal sufficient for θ but T is not boundedly

complete.

57. Let X1, ..., Xn be i.i.d. from the N(θ, θ2) distribution, where θ > 0
is a parameter. Find a minimal sufficient statistic for θ and show
whether it is complete.
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58. Suppose that (X1, Y1), ..., (Xn, Yn) are i.i.d. random 2-vectors having
the normal distribution with EX1 = EY1 = 0, Var(X1) = Var(Y1) =
1, and Cov(X1, Y1) = θ ∈ (−1, 1).
(a) Find a minimal sufficient statistic for θ.
(b) Show whether the minimal sufficient statistic in (a) is complete
or not.
(c) Prove that T1 =

∑n
i=1X

2
i and T2 =

∑n
i=1 Y

2
i are both ancillary

but (T1, T2) is not ancillary.

59. Let X1, ..., Xn be i.i.d. random variables having the exponential dis-
tribution E(a, θ).
(a) Show that

∑n
i=1(Xi − X(1)) and X(1) are independent for any

(a, θ).
(b) Show that Zi = (X(n) − X(i))/(X(n) − X(n−1)), i = 1, ..., n − 2,
are independent of (X(1),

∑n
i=1(Xi −X(1))).

60. Let X1, ..., Xn be i.i.d. random variables having the gamma distri-
bution Γ(α, γ). Show that

∑n
i=1Xi and

∑n
i=1[logXi − logX(1)] are

independent for any (α, γ).

61. Let X1, ..., Xn be i.i.d. random variables having the uniform distri-
bution on the interval (a, b), where −∞ < a < b < ∞. Show
that (X(i) − X(1))/(X(n) − X(1)), i = 2, ..., n − 1, are independent
of (X(1), X(n)) for any a and b.

62. Consider Example 2.19. Assume that n > 2.
(a) Show that X̄ is better than T1 if P = N(θ, σ2), θ ∈ R, σ > 0.
(b) Show that T1 is better than X̄ if P is the uniform distribution on
the interval (θ − 1

2 , θ + 1
2 ), θ ∈ R.

(c) Find a family P for which neither X̄ nor T1 is better than the
other.

63. Let X1, ..., Xn be i.i.d. from the N(µ, σ2) distribution, where µ ∈ R
and σ > 0. Consider the estimation of σ2 with the squared error loss.
Show that n−1

n S2 is better than S2, the sample variance. Can you
find an estimator of the form cS2 with a nonrandom c such that it is
better than n−1

n S2?

64. LetX1, ..., Xn be i.i.d. binary random variables with P (Xi = 1) = θ ∈
(0, 1). Consider estimating θ with the squared error loss. Calculate
the risks of the following estimators:
(a) the nonrandomized estimators X̄ (the sample mean) and

T0(X) =





0 if more than half of Xi’s are 0

1 if more than half of Xi’s are 1
1
2 if exactly half of Xi’s are 0;
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(b) the randomized estimators

T1(X) =

{
X̄ with probability 1

2

T0 with probability 1
2

and

T2(X) =

{
X̄ with probability X̄
1
2 with probability 1 − X̄ .

65. Let X1, ..., Xn be i.i.d. random variables having the exponential dis-
tribution E(0, θ), θ ∈ (0,∞). Consider estimating θ with the squared
error loss. Calculate the risks of the sample mean X̄ and cX(1), where
c is a positive constant. Is X̄ better than cX(1) for some c?

66. Consider the estimation of an unknown parameter θ ≥ 0 under the
squared error loss. Show that if T and U are two estimators such that
T ≤ U and RT (P ) < RU (P ), then RT+(P ) < RU+(P ), where RT (P )
is the risk of an estimator T and T+ denotes the positive part of T .

67. Let X1, ..., Xn be i.i.d. random variables having the exponential dis-
tribution E(0, θ), θ ∈ (0,∞). Consider the hypotheses

H0 : θ ≤ θ0 versus H1 : θ > θ0,

where θ0 > 0 is a fixed constant. Obtain the risk function (in terms
of θ) of the test rule Tc(X) = I(c,∞)(X̄), under the 0-1 loss.

68. Let X1, ..., Xn be i.i.d. random variables having the Cauchy distribu-
tionC(µ, σ) with unknown µ ∈ R and σ > 0. Consider the hypotheses

H0 : µ ≤ µ0 versus H1 : µ > µ0,

where µ0 is a fixed constant. Obtain the risk function of the test rule
Tc(X) = I(c,∞)(X̄), under the 0-1 loss.

69. Let X1, ..., Xn be i.i.d. binary random variables with P (Xi = 1) = θ,
where θ ∈ (0, 1) is unknown and n is an even integer. Consider the
problem of testing H0 : θ ≤ 0.5 versus H1 : θ > 0.5 with action space
{0, 1} (0 means H0 is accepted and 1 means H1 is accepted). Let
the loss function be L(θ, a) = 0 if Hj is true and a = j, j = 0, 1;
L(θ, 0) = C0 when θ > 0.5; and L(θ, 1) = C1 when θ ≤ 0.5, where
C0 > C1 > 0 are some constants. Calculate the risk function of the
following randomized test (decision rule):

T =





0 if more than half of Xi’s are 0

1 if more than half of Xi’s are 1
1
2 if exactly half of Xi’s are 0.
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70. Consider Example 2.21. Suppose that our decision rule, based on
a sample X = (X1, ..., Xn) with i.i.d. components from the N(θ, 1)
distribution with an unknown θ > 0, is

T (X) =





a1 b1 < X̄

a2 b0 < X̄ ≤ b1
a3 X̄ ≤ b0.

Express the risk of T in terms of θ.

71. Consider an estimation problem with P = {Pθ : θ ∈ Θ} (a parametric
family), A = Θ, and the squared error loss. If θ0 ∈ Θ satisfies that
Pθ ≪ Pθ0 for any θ ∈ Θ, show that the estimator T ≡ θ0 is admissible.

72. Let ℑ be a class of decision rules. A subclass ℑ0 ⊂ ℑ is called ℑ-
complete if and only if, for any T ∈ ℑ and T 6∈ ℑ0, there is a T0 ∈ ℑ0

that is better than T , and ℑ0 is called ℑ-minimal complete if and
only if ℑ0 is ℑ-complete and no proper subclass of ℑ0 is ℑ-complete.
Show that if a ℑ-minimal complete class exists, then it is exactly the
class of ℑ-admissible rules.

73. Let X1, ..., Xn be i.i.d. random variables having a distribution P ∈ P .
Assume that EX2

1 < ∞. Consider estimating µ = EX1 under the
squared error loss.
(a) Show that any estimator of the form aX̄+b is inadmissible, where
X̄ is the sample mean, a and b are constants, and a > 1.
(b) Show that any estimator of the form X̄ + b is inadmissible, where
b 6= 0 is a constant.

74. Consider an estimation problem with ϑ ∈ [c, d] ⊂ R, where c and d
are known. Suppose that the action space is A ⊃ [c, d] and the loss
function is L(|ϑ− a|), where L(·) is an increasing function on [0,∞).
Show that any decision rule T with P (T (X) 6∈ [c, d]) > 0 for some
P ∈ P is inadmissible.

75. Suppose that the action space is (Ω,BkΩ), where Ω ∈ Bk. Let X
be a sample from P ∈ P , δ0(X) be a nonrandomized rule, and T
be a sufficient statistic for P ∈ P . Show that if E[IA(δ0(X))|T ] is a
nonrandomized rule, i.e., E[IA(δ0(X))|T ] = IA(h(T )) for any A ∈ BkΩ,
where h is a Borel function, then δ0(X) = h(T (X)) a.s. P .

76. Let T , δ0, and δ1 be as given in the statement of Proposition 2.2.
Show that

∫

A

L(P, a)dδ1(X, a) = E

[∫

A

L(P, a)dδ0(X, a)

∣∣∣∣T
]

a.s. P .
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77. Prove Theorem 2.5.

78. In Exercise 64, use Theorem 2.5 to find decision rules that are better
than Tj , j = 0, 1, 2.

79. In Exercise 65, use Theorem 2.5 to find a decision rule better than
cX(1).

80. Consider Example 2.22.
(a) Show that there is no optimal rule if ℑ contains all possible esti-
mators. (Hint: consider constant estimators.)
(b) Find a ℑ2-optimal rule if X1, ..., Xn are independent random vari-
ables having a common mean µ and Var(Xi) = σ2/ai with known ai,
i = 1, ..., n.
(c) Find a ℑ2-optimal rule if X1, ..., Xn are identically distributed but
are correlated with a common correlation coefficient ρ.

81. Let Xij = µ + ai + ǫij , i = 1, ...,m, j = 1, ..., n, where ai’s and ǫij ’s
are independent random variables, ai is N(0, σ2

a), ǫij is N(0, σ2
e), and

µ, σ2
a, and σ2

e are unknown parameters. Define X̄i = n−1
∑n

j=1Xij ,

X̄ = m−1
∑m

i=1 X̄i, MSA = n(m − 1)−1
∑m
i=1(X̄i − X̄)2, and MSE

= m−1(n− 1)−1
∑m
i=1

∑n
j=1(Xij − X̄i)

2. Assume that m(n− 1) > 4.

Consider the following class of estimators of θ = σ2
a/σ

2
e :

{
θ̂(δ) =

1

n

[
(1 − δ)

MSA

MSE
− 1

]
: δ ∈ R

}
.

(a) Show that MSA and MSE are independent.

(b) Obtain a δ ∈ R such that θ̂(δ) is unbiased for θ.

(c) Show that the risk of θ̂(δ) under the squared error loss is a func-
tion of (δ, θ).
(d) Show that there is a constant δ∗ such that for any fixed θ, the risk

of θ̂(δ) is strictly decreasing in δ for δ < δ∗ and strictly increasing for
δ > δ∗.
(e) Show that the unbiased estimator of θ derived in (b) is inadmis-
sible.

82. Let T0(X) be an unbiased estimator of ϑ in an estimation problem.
Show that any unbiased estimator of ϑ is of the form T (X) = T0(X)−
U(X), where U(X) is an “unbiased estimator” of 0.

83. Let X be a discrete random variable with

P (X = −1) = p, P (X = k) = (1 − p)2pk, k = 0, 1, 2, ...,

where p ∈ (0, 1) is unknown.
(a) Show that U(X) is an unbiased estimator of 0 if and only if U(k) =
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ak for all k = −1, 0, 1, 2, ... and some a.
(b) Show that T0(X) = I{0}(X) is unbiased for ϑ = (1−p)2 and that,
under the squared error loss, T0 is a ℑ-optimal rule, where ℑ is the
class of all unbiased estimators of ϑ.
(c) Show that T0(X) = I{−1}(X) is unbiased for ϑ = p and that,
under the squared error loss, there is no ℑ-optimal rule, where ℑ is
the class of all unbiased estimators of ϑ.

84. (Nonexistence of an unbiased estimator). Let X be a random variable
having the binomial distribution Bi(p, n) with an unknown p ∈ (0, 1)
and a known n. Consider the problem of estimating ϑ = p−1. Show
that there is no unbiased estimator of ϑ.

85. Let X1, ..., Xn be i.i.d. random variables having the normal distribu-
tion N(θ, 1), where θ = 0 or 1. Consider the estimation of θ.
(a) Let ℑ be the class of nonrandomized rules (estimators), i.e., esti-
mators that take values 0 and 1 only. Show that there does not exist
any unbiased estimator of θ in ℑ.
(b) Find an estimator in ℑ that is approximately unbiased.

86. Let X1, ..., Xn be i.i.d. from the Poisson distribution P (θ) with an
unknown θ > 0. Find the bias and mse of Tn = (1 − a/n)nX̄ as an
estimator of ϑ = e−aθ, where a 6= 0 is a known constant.

87. Let X1, ..., Xn be i.i.d. (n ≥ 3) from N(µ, σ2), where µ > 0 and σ > 0
are unknown parameters. Let T1 = X̄/S be an estimator of µ/σ and
T2 = X̄2 be an estimator of µ2, where X̄ and S2 are the sample mean
and variance, respectively. Calculate the mse’s of T1 and T2.

88. Consider a location family {Pµ : µ ∈ Rk} on Rk, where Pµ = P(µ,Ik)

is given in (2.10). Let l0 ∈ Rk be a fixed vector and L(P, a) =
L(‖µ − a‖), where a ∈ A = Rk and L(·) is a nonnegative Borel
function on [0,∞). Show that the family is invariant and the decision
problem is invariant under the transformation g(X) = X+cl0, c ∈ R.
Find an invariant decision rule.

89. Let X1, ..., Xn be i.i.d. from the N(µ, σ2) distribution with unknown
µ ∈ R and σ2 > 0. Consider the scale transformation aX , a ∈ (0,∞).
(a) For estimating σ2 under the loss function L(P, a) = (1 − a/σ2)2,
show that the problem is invariant and that the sample variance S2

is invariant.
(b) For testing H0 : µ ≤ 0 versus H1 : µ > 0 under the loss

L(P, 0) =
µ

σ
I(0,∞)(µ) and L(P, 1) =

|µ|
σ
I(−∞,0](µ),

show that the problem is invariant and any test that is a function of
X̄/
√
S2/n is invariant.
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90. Let X1, ..., Xn be i.i.d. random variables having the c.d.f. F (x − θ),
where F is symmetric about 0 and θ ∈ R is unknown.
(a) Show that the c.d.f. of

∑n
i=1 wiX(i) − θ is symmetric about 0,

where X(i) is the ith order statistic and wi’s are constants satisfying
wi = wn−i+1 and

∑n
i=1 wi = 1.

(b) Show that
∑n

i=1 wiX(i) in (a) is unbiased for θ if the mean of F
exists.
(c) Show that

∑n
i=1 wiX(i) is location invariant when

∑n
i=1 wi = 1.

91. In Example 2.25, show that the conditional distribution of θ given
X = x is N(µ∗(x), c2) with µ∗(x) and c2 given by (2.25).

92. A median of a random variable Y (or its distribution) is any value m
such that P (Y ≤ m) ≥ 1

2 and P (Y ≥ m) ≥ 1
2 .

(a) Show that the set of medians is a closed interval [m0,m1].
(b) Suppose that E|Y | < ∞. If c is not a median of Y , show that
E|Y − c| ≥ E|Y −m| for any median m of Y .
(c) Let X be a sample from Pθ, where θ ∈ Θ ⊂ R. Consider the
estimation of θ under the absolute error loss function |a− θ|. Let Π
be a given distribution on Θ with finite mean. Find the ℑ-Bayes rule
w.r.t. Π, where ℑ is the class of all rules.

93. (Classification). Let X be a sample having a p.d.f. fj(x) w.r.t. a σ-
finite measure ν, where j is unknown and j ∈ {1, ..., J} with a known
integer J ≥ 2. Consider a decision problem in which the action space
A = {1, ..., J} and the loss function is

L(j, a) =

{
0 if a = j

1 if a 6= j.

(a) Let ℑ be the class of all nonrandomized decision rules. Obtain
the risk of a δ ∈ ℑ.
(b) Let Π be a probability measure on {1, ..., J} with Π({j}) = πj ,
j = 1, ..., J . Obtain the Bayes risk of δ ∈ ℑ w.r.t. Π.
(c) Obtain a ℑ-Bayes rule w.r.t. Π in (b).
(d) Assume that J = 2, π1 = π2 = 0.5, and fj(x) = φ(x− µj), where
φ(x) is the p.d.f. of the standard normal distribution and µj , j = 1, 2,
are known constants. Obtain the Bayes rule in (c) and compute the
Bayes risk.
(e) Obtain the risk and the Bayes risk (w.r.t. Π in (b)) of a randomized
decision rule.
(f) Obtain a Bayes rule w.r.t. Π.
(g) Obtain a minimax rule.

94. Let θ̂ be an unbiased estimator of an unknown θ ∈ R.
(a) Under the squared error loss, show that the estimator θ̂+ c is not
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minimax unless supθ RT (θ) = ∞ for any estimator T , where c 6= 0 is
a known constant.
(b) Under the squared error loss, show that the estimator cθ̂ is not
minimax unless supθ RT (θ) = ∞ for any estimator T , where c ∈ (0, 1)
is a known constant.
(c) Consider the loss function L(θ, a) = (a−θ)2/θ2 (assuming θ 6= 0).

Show that θ̂ is not minimax unless supθ RT (θ) = ∞ for any T .

95. Let X be a binary observation with P (X = 1) = θ1 or θ2, where
0 < θ1 < θ2 < 1 are known values. Consider the estimation of θ
with action space {a1, a2} and loss function L(θi, aj) = lij , where
l21 ≥ l12 > l11 = l22 = 0. For a decision rule δ(X), the vector
(Rδ(θ1), Rδ(θ2)) is defined to be its risk point.
(a) Show that the set of risk points of all decision rules is the convex
hull of the set of risk points of all nonrandomized rules.
(b) Find a minimax rule.
(c) Let Π be a distribution on {θ1, θ2}. Obtain the class of all Bayes
rules w.r.t. Π. Discuss when there is a unique Bayes rule.

96. Consider the decision problem in Example 2.23.
(a) Let Π be the uniform distribution on (0, 1). Show that a ℑ-Bayes
rule w.r.t. Π is Tj∗(X), where j∗ is the largest integer in {0, 1, ..., n−1}
such thatBj+1,n−j+1(θ0) ≥ 1

2 andBa,b(·) denotes the c.d.f. of the beta
distribution B(a, b).
(b) Derive a ℑ-minimax rule.

97. Let X1, ..., Xn be i.i.d. from the N(µ, σ2) distribution with unknown
µ ∈ R and σ2 > 0. To test the hypotheses

H0 : µ ≤ µ0 versus H1 : µ > µ0,

where µ0 is a fixed constant, consider a test of the form Tc(X) =
I(c,∞)(Tµ0), where Tµ0 = (X̄ − µ0)/

√
S2/n and c is a fixed constant.

(a) Find the size of Tc. (Hint: Tµ0 has the t-distribution tn−1.)
(b) If α is a given level of significance, find a cα such that Tcα has
size α.
(c) Compute the p-value for Tcα derived in (b).
(d) Find a cα such that [X̄−cα

√
S2/n, X̄+cα

√
S2/n] is a confidence

interval for µ with confidence coefficient 1−α. What is the expected
interval length?

98. In Exercise 67, calculate the size of Tc(X); find a cα such that Tcα

has size α, a given level of significance; and find the p-value for Tcα .

99. In Exercise 68, assume that σ is known. Calculate the size of Tc(X);
find a cα such that Tcα has size α, a given level of significance; and
find the p-value for Tcα .
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100. Let α ∈ (0, 1) be given and Tj,q(X) be the test given in Example 2.30.
Show that there exist integer j and q ∈ (0, 1) such that the size of
Tj,q is α.

101. Let X1, ..., Xn be i.i.d. from the exponential distribution E(a, θ) with
unknown a ∈ R and θ > 0. Let α ∈ (0, 1) be given.
(a) Using T1(X) =

∑n
i=1(Xi −X(1)), construct a confidence interval

for θ with confidence coefficient 1 − α and find the expected interval
length.
(b) Using T1(X) and T2(X) = X(1), construct a confidence interval
for a with confidence coefficient 1 − α and find the expected interval
length.
(c) Using the method in Example 2.32, construct a confidence set for
the two-dimensional parameter (a, θ) with confidence coefficient 1−α.

102. Suppose that X is a sample and a statistic T (X) has a distribution
in a location family {Pµ : µ ∈ R}. Using T (X), derive a confidence
interval for µ with level of significance 1−α and obtain the expected
interval length. Show that if the c.d.f. of T (X) is continuous, then we
can always find a confidence interval for µ with confidence coefficient
1 − α for any α ∈ (0, 1).

103. Let X = (X1, ..., Xn) be a sample from Pθ, where θ ∈ {θ1, ..., θk}
with a fixed integer k. Let Tn(X) be an estimator of θ with range
{θ1, ..., θk}.
(a) Show that Tn(X) is consistent if and only if Pθ(Tn(X) = θ) → 1.
(b) Show that if Tn(X) is consistent, then it is an-consistent for any
{an}.

104. Let X1, ..., Xn be i.i.d. from the uniform distribution on (θ− 1
2 , θ+ 1

2 ),
where θ ∈ R is unknown. Show that (X(1) + X(n))/2 is strongly
consistent for θ and also consistent in mse.

105. Let X1, ..., Xn be i.i.d. from a population with the Lebesgue p.d.f.
fθ(x) = 2−1(1 + θx)I(−1,1)(x), where θ ∈ (−1, 1) is an unknown pa-
rameter. Find a consistent estimator of θ. Is your estimator

√
n-

consistent?

106. Let X1, ..., Xn be i.i.d. observations. Suppose that Tn is an unbiased
estimator of ϑ based on X1, ..., Xn such that for any n, Var(Tn) <∞
and Var(Tn) ≤ Var(Un) for any other unbiased estimator Un of ϑ
based on X1, ..., Xn. Show that Tn is consistent in mse.

107. Consider the Bayes rule µ∗(X) in Example 2.25. Show that µ∗(X) is
a strongly consistent,

√
n-consistent, and L2-consistent estimator of

µ. What is the order of the bias of µ∗(X) as an estimator of µ?
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108. In Exercise 21, show that
(a) Ȳ /X̄ is an inconsistent estimator of β;

(b) β̂ = Z(m) is a consistent estimator of β, where m = n/2 when n
is even, m = (n + 1)/2 when n is odd, and Z(i) is the ith smallest
value of Yi/Xi, i = 1, ..., n.

109. Show that the estimator T0 of θ in Exercise 64 is inconsistent.

110. Let g1, g2,... be continuous functions on (a, b) ⊂ R such that gn(x) →
g(x) uniformly for x in any closed subinterval of (a, b). Let Tn be a
consistent estimator of θ ∈ (a, b). Show that gn(Tn) is consistent for
ϑ = g(θ).

111. Let X1, ..., Xn be i.i.d. from P with unknown mean µ ∈ R and vari-
ance σ2 > 0, and let g(µ) = 0 if µ 6= 0 and g(0) = 1. Find a consistent
estimator of ϑ = g(µ).

112. Establish results for the smallest order statistic X(1) (based on i.i.d.
random variables X1, ..., Xn) similar to those in Example 2.34.

113. (Consistency for finite population). In Example 2.27, show that Ŷ →p

Y as n → N for any fixed N and population. Is Ŷ still consistent if
sampling is with replacement?

114. Assume that Xi = θti + ei, i = 1, ..., n, where θ ∈ Θ is an unknown
parameter, Θ is a closed subset of R, ei’s are i.i.d. on the interval
[−τ, τ ] with some unknown τ > 0 and Eei = 0, and ti’s are fixed
constants. Let

Tn = Sn(θ̃n) = min
γ∈Θ

Sn(γ),

where
Sn(γ) = 2 max

i≤n
|Xi − γti|/

√
1 + γ2.

(a) Assume that supi |ti| < ∞ and supi ti − infi ti > 2τ . Show that
the sequence {θ̃n, n = 1, 2, ...} is bounded a.s.
(b) Let θn ∈ Θ, n = 1, 2, .... If θn → θ, show that

Sn(θn) − Sn(θ) = O(|θn − θ|) a.s.

(c) Under the conditions in (a), show that Tn is a strongly consistent
estimator of ϑ = minγ∈Θ S(γ), where S(γ) = limn→∞ Sn(γ) a.s.

115. Let X1, ..., Xn be i.i.d. random variables with EX2
1 < ∞ and X̄ be

the sample mean. Consider the estimation of µ = EX1.
(a) Let Tn = X̄ + ξn/

√
n, where ξn is a random variable satisfying

ξn = 0 with probability 1− n−1 and ξn = n3/2 with probability n−1.
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Show that bTn(P ) 6= b̃Tn(P ) for any P .
(b) Let Tn = X̄ + ηn/

√
n, where ηn is a random variable that is

independent of X1, ..., Xn and equals 0 with probability 1−2n−1 and
±√

n with probability n−1. Show that amseTn(P ) = amseX̄(P ) =
mseX̄(P ) and mseTn(P ) > amseTn(P ) for any P .

116. Let X1, ..., Xn be i.i.d. random variables with finite θ = EX1 and
Var(X1) = θ, where θ > 0 is unknown. Consider the estimation of

ϑ =
√
θ. Let T1n =

√
X̄ and T2n = X̄/S, where X̄ and S2 are the

sample mean and sample variance.
(a) Obtain the n−1 order asymptotic biases of T1n and T2n according
to (2.38).
(b) Obtain the asymptotic relative efficiency of T1n w.r.t. T2n.

117. Let X1, ..., Xn be i.i.d. according to N(µ, 1) with an unknown µ ∈ R.
Let ϑ = P (X1 ≤ c) for a fixed constant c. Consider the following
estimators of ϑ: T1n = Fn(c), where Fn is the empirical c.d.f. defined
in (2.28), and T2n = Φ(c− X̄), where Φ is the c.d.f. of N(0, 1).
(a) Find the n−1 order asymptotic bias of T2n according to (2.38).
(b) Find the asymptotic relative efficiency of T1n w.r.t. T2n.

118. Let X1, ..., Xn be i.i.d. from the N(0, σ2) distribution with an un-
known σ > 0. Consider the estimation of ϑ = σ. Find the asymptotic
relative efficiency of

√
π/2

∑n
i=1 |Xi|/n w.r.t. (

∑n
i=1X

2
i /n)1/2.

119. Let X1, ..., Xn be i.i.d. from P with EX4
1 < ∞ and unknown mean

µ ∈ R and variance σ2 > 0. Consider the estimation of ϑ = µ2 and
the following three estimators: T1n = X̄2, T2n = X̄2 − S2/n, T3n =
max{0, T2n}, where X̄ and S2 are the sample mean and variance.
Show that the amse’s of Tjn, j = 1, 2, 3, are the same when µ 6= 0 but
may be different when µ = 0. Which estimator is the best in terms
of the asymptotic relative efficiency when µ = 0?

120. Prove Theorem 2.6.

121. Let X1, ..., Xn be i.i.d. with EXi = µ, Var(Xi) = 1, and EX4
i < ∞.

Let T1n = n−1
∑n

i=1X
2
i − 1 and T2n = X̄2 − n−1 be estimators of

ϑ = µ2.
(a) Find the asymptotic relative efficiency of T1n w.r.t. T2n.
(b) Show that eT1n,T2n(P ) ≤ 1 if the c.d.f. of Xi − µ is symmetric
about 0 and µ 6= 0.
(c) Find a distribution P for which eT1n,T2n(P ) > 1.

122. Let X1, ..., Xn be i.i.d. binary random variables with unknown p =
P (Xi = 1) ∈ (0, 1). Consider the estimation of p. Let a and b be
two positive constants. Find the asymptotic relative efficiency of the
estimator (a+ nX̄)/(a+ b+ n) w.r.t. X̄.
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123. Let X1, ..., Xn be i.i.d. from N(µ, σ2) with an unknown µ ∈ R and a
known σ2. Let T1 = X̄ be the sample mean and T2 = µ∗(X) be the
Bayes estimator given in (2.25). Assume that EX4

1 <∞.
(a) Calculate the exact mse of both estimators. Can you conclude
that one estimator is better than the other in terms of the mse?
(b) Find the asymptotic relative efficiency of T1 w.r.t. T2.

124. In Example 2.37, show that
(a) the limiting size of Tcα is 1 if P contains all possible populations
on R with finite second moments;
(b) Tn = Tcα with α = αn (given by (2.40)) is Chernoff-consistent;
(c) Tn in (b) is not strongly Chernoff-consistent if P contains all
possible populations on R with finite second moments.

125. Let X1, ..., Xn be i.i.d. with unknown mean µ ∈ R and variance
σ2 > 0. For testing H0 : µ ≤ µ0 versus H1 : µ > µ0, consider
the test Tcα obtained in Exercise 97(b).
(a) Show that Tcα has asymptotic significance level α and is consis-
tent.
(b) Find a test that is Chernoff-consistent.

126. Consider the test Tj in Example 2.23. For each n, find a j = jn such
that Tjn has asymptotic significance level α ∈ (0, 1).

127. Show that the test Tcα in Exercise 98 is consistent, but Tcα in Exercise
99 is not consistent.

128. In Example 2.31, suppose that we drop the normality assumption but
assume that µ = EXi and σ2 = Var(Xi) are finite.
(a) Show that when σ2 is known, the asymptotic significance level
of the confidence interval [X̄ − cα, X̄ + cα] is 1 − α, where cα =
σz1−α/2/

√
n and za = Φ−1(a).

(b) Show that when σ2 is known, the limiting confidence coefficient
of the interval in (a) might be 0 if P contains all possible populations
on R.
(c) Show that the confidence interval in Exercise 97(d) has asymptotic
significance level 1 − α.

129. Let X1, ..., Xn be i.i.d. with unknown mean µ ∈ R and variance σ2 >
0. Assume that EX4

1 <∞. Using the sample variance S2, construct a
confidence interval for σ2 that has asymptotic significance level 1−α.

130. Consider the sample correlation coefficient T defined in Exercise 22.
Construct a confidence interval for ρ that has asymptotic significance
level 1 − α, assuming that (Yi, Zi) is normally distributed. (Hint:
show that the asymptotic variance of T is (1 − ρ2)2.)
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