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Introduction

Typically, models of neural networks are divided into two categories in terms
of signal transmission manner: feed-forward neural networks and recurrent
neural networks. They are built up using different frameworks, which give rise
to different fields of applications.

1.1 Backgrounds

1.1.1 Feed-forward Neural Networks

Feed-forward neural network (FNN), also referred to as multilayer percep-
trons (MLPs), has drawn great interests over the last two decades for its
distinction as a universal function approximator (Funahashi, 1989; Scalero
and Tepedelenlioglu, 1992; Ergezinger and Thomsen, 1995; Yu et al., 2002).
As an important intelligent computation method, FNN has been applied to a
wide range of applications, including curve fitting, pattern classification and
nonlinear system identification and so on (Vemuri, 1995).

FNN features a supervised training with a highly popular algorithm known
as the error back-propagation algorithm. In the standard back-propagation
(SBP) algorithm, the learning of a FNN is composed of two passes: in the
forward pass, the input signal propagates through the network in a forward
direction, on a layer-by-layer basis with the weights fixed; in the backward
pass, the error signal is propagated in a backward manner. The weights are
adjusted based on an error-correction rule. Although it has been success-
fully used in many real world applications, SBP suffers from two infamous
shortcomings, i.e., slow learning speed and sensitivity to parameters. Many
iterations are required to train small networks, even for a simple problem.
The sensitivity to learning parameters, initial states and perturbations was
analyzed in (Yeung and Sun, 2002). Behind such drawbacks the learning rate
plays a key role in affecting the learning performance and it has to be cho-
sen carefully. If the learning rate is large, the network may exhibit chaotic
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2 1 Introduction

behavior so learning might not succeed, while a very small learning rate will
result in slow convergence, which is also not desirable. The chaotic phenom-
ena was studied from a dynamical system point of view (Bertels et al., 2001)
which reported that when the learning rate falls in some unsuitable range, it
may result in chaotic behaviors in the network learning, and for non-chaotic
learning rates the network converges faster than for chaotic ones.

Since the shortcomings of the SBP algorithm limit the practical use of
FNN, a significant amount of research has been carried out to improve the
training performance and to better select the training parameters. A modi-
fied back-propagation algorithm was derived by minimizing the mean-squared
error with respect to the inputs summation, instead of minimizing with respect
to weights like SBP, but its convergence heavily depended on the magnitude
of the initial weights. An accelerated learning algorithm OLL (Ergezinger
and Thomsen, 1995) was presented based on a linearization of the nonlinear
processing nodes and optimizing cost functions layer by layer. Slow learning
was attributed to the effect of unlearning and a localizing learning algorithm
was developed to reduce unlearning (Weaver and Polycarpou, 2001). Bear-
ing in mind that the derivative of the activation has a large value when the
outputs of the neurons in the active region, a method to determine optimal
initial weights was put forward in (Yam and Chow, 2001). This method was
able to prevent the network from getting stuck in the early stage of training,
thus increasing the training speed.

Existing approaches have improved the learning performance in terms
of the reduction of iteration numbers, however, none of them dealt with
dynamical adaption of the learning rate for different parameters and training
phases, which certainly contributes to the sensitivity of such algorithms. An
optimal learning rate for a given two layers’ neural network was derived in the
work of (Wang et al., 2001), but a two-layer neural network has very limited
generalization ability. Finding a suitable learning rate is a very experimental
technique, since for the multilayer FNN with squashing sigmoid functions, it
is difficult to deduce an optimal learning rate and even impossible to pre-
determine the value of such a parameter for different problems and different
initial parameters. Indeed, the optimal learning rate keeps changing along
with the training iterations. Finding a dynamical optimal learning algorithm
being able to reduce the sensitivity and improve learning motivate developing
a new and efficient learning algorithm for multilayer FNN.

1.1.2 Recurrent Networks with Saturating Transfer Functions

Unlike feed-forward neural networks, recurrent neural networks (RNN) are
described by a system of differential equations that define the exact evolution
of the model dynamics as a function of time. The system is characterized by a
large number of coupling constants represented by the strengths of individual
junctions, and it is believed that the computational power is the result of
the collective dynamics of the system. Two prominent computation models
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with saturating transfer functions, the Hopfield network and cellular neural
network, have stimulated a great deal of research efforts over the past two
decades because of their great potential of applications in associative memory,
optimization and intelligent computation (Hopfield, 1984; Hopfield and Tank,
1985; Tank and Hopfield, 1986; Bouzerdoum and Pattison, 1993; Maa and
Shanblatt, 1992; Zak et al., 1995b; Tan et al., 2004; Yi et al., 2004).

As a nonlinear dynamical system, intrinsically, the stability is of primary
interest in the analysis and applications of recurrent networks, where the Lya-
punov stability theory is a fundamental tool and widely used for analyzing
nonlinear systems (Grossberg, 1988; Vidyasagar, 1992; Yi et al., 1999; Qiao et
al., 2003). Based on the Lyapunov method, the conditions of global expo-
nential stability of a continuous-time RNN were established and applied
to bound-constrained nonlinear differentiable optimization problems (Liang
and Wang, 2000). A discrete-time recurrent network solving strictly convex
quadratic optimization problems with bound constraints was analyzed and
stability conditions were presented (Pérez-Ilzarbe, 1998). Compared with its
continuous-time counterpart, the discrete-time model has its advantages in
digital implementation. However, there is lack of more general stability condi-
tions for the discrete-time network in the previous work (Pérez-Ilzarbe, 1998),
which deserves further investigation.

Solving NP-hard optimization problems, especially the traveling salesman
problem (TSP) using recurrent networks has become an active topic since the
seminal work of (Hopfield and Tank, 1985) showed that the Hopfield network
could give near optimal solutions for the TSP. In the Hopfield network, the
combinatorial optimization problem is converted into a continuous optimiza-
tion problem that minimizes an energy function calculated by a weighted sum
of constraints and an objective function. The method, nevertheless, faces a
number of disadvantages. Firstly, the nature of the energy function causes
infeasible solutions to occur most of the time. Secondly, several penalty pa-
rameters need to be fixed before running the network, while it is nontrivial
to optimally set these parameters. Besides, low computational efficiency, es-
pecially for large scale problems, is also a restriction.

It has been a continuing research effort to improve the performance
of the Hopfield network (Aiyer et al., 1990; Abe, 1993; Peng et al., 1993;
Papageorgiou et al., 1998; Talaván and Yáñez, 2002a). The authors in (Aiyer
et al., 1990) analyzed the dynamic behavior of a Hopfield network based on
the eigenvalues of connection matrix and discussed the parameter settings
for TSP. By assuming a piecewise linear activation function and by virtue of
studying the energy of the vertex at a unit hypercube, a set of convergence
and suppression conditions were obtained (Abe, 1993). A local minima escape
(LME) algorithm was presented to improve the local minima by combining
the network disturbing technique with the Hopfield network’s local minima
searching property (Peng et al., 1993).

Most recently, a parameter setting rule was presented by analyzing the
dynamical stability conditions of the energy function (Talaván and Yáñez,
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2002a), which shows promising results compared with previous work, though
much effort has to be paid to suppress the invalid solutions and increase
convergence speed. To achieve such objectives, incorporating the winner-take-
all (WTA) learning mechanism (Cheng et al., 1996; Yi et al., 2000) is one of
the more promising approaches.

1.1.3 Recurrent Networks with Nonsaturating Transfer Functions

In recent years, the linear threshold (LT) network which underlies the behavior
of visual cortical neurons has attracted extensive interests of scientists as the
growing literature illustrates (Hartline and Ratliff, 1958; von der Malsburg,
1973; Douglas et al., 1995; Ben-Yishai et al., 1995; Salinas and Abbott,
1996; Adorjan et al., 1999; Bauer et al., 1999; Hahnloser, 1998; Hahnloser
et al., 2000; Wersing et al., 2001a; Yi et al., 2003). Differing from the Hopfield
type network, the LT network possesses nonsaturating transfer functions of
neurons, which is believed to be more biologically plausible and has more
profound implications in the neurodynamics. For example, the network may
exhibit multistability and chaotic phenomena, which will probably give birth
to new discoveries and insights in associative memory and sensory information
processing (Xie et al., 2002).

The LT network has been observed to exhibit one important property, i.e.,
multistability, which allows the networks to possess multiple steady states
coexisting under certain synaptic weights and external inputs. The multista-
bility endows the LT networks with distinguished application potentials in
decision, digital selection and analogue amplification (Hahnloser et al., 2000).
It was proved that local inhibition is sufficient to achieve nondivergence of LT
networks (Wersing et al., 2001b). Most recently, several aspects of LT dynam-
ics were studied and the conditions were established for boundedness, global
attractivity and complete convergence (Yi et al., 2003). Nearly all the previous
research efforts were devoted to stability analysis, thus the cyclic dynamics has
yet been elucidated in a systematic manner. In the work of (Hahnloser, 1998),
periodic oscillations were observed in a multistable WTA network when slow-
ing down the global inhibition. He reported that the epileptic network switches
endlessly between stable and unstable partitions and eventually the state tra-
jectory approaches a limit cycle (periodic oscillation) which was shown by
computer simulations. It was suggested that the appearance of periodic orbits
in linear threshold networks was related to the existence of complex conju-
gate eigenvalues with positive real parts. However, there was lack of theoretical
proof about the existence of limit cycles. It also remains unclear what factors
will affect the amplitude of the oscillations.

Studying recurrent dynamics is also of crucial concern in the realm of
modeling the visual cortex, since recurrent neural dynamics is a basic com-
putational substrate for cortical processing. Physiological and psychophysi-
cal data suggest that the visual cortex implements preattentive computations
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such as contour enchancement, texture segmentation and figure-ground seg-
regation (Kapadia et al., 1995; Gallant et al., 1995; Knierim and van Essen,
1992). Various models have addressed particular components of the corti-
cal computation (Grossberg and Mingolla, 1985; Zucker et al., 1989; Yen
and Finkel, 1998). A fully functional and dynamically well-behaved model
has been proposed to achieve the designed cortical computations (Li and
Dayan, 1999; Li, 2001). The LEGION model uses the mechanism of oscillation
to perform figure-ground segmentation (Wang and Terman, 1995; Wang and
Terman, 1997; Wang, 1999; Chen and Wang, 2002). The CLM model, formu-
lated by the LT network, realizes an energy-based approach to feature binding
and texture segmentation and has been successfully applied to segmentation
of real-world images (Ontrup and Ritter, 1998; Wersing et al., 1997; Wersing
and Ritter, 1999). Dynamic binding in a neural network is of great interest
for the vision research, a variety of models have been addressed using differ-
ent binding approaches, such as temporal coding and spatial coding (Hummel
and Biederman, 1992; Feldman and Ballard, 1982; Williamson, 1996). Un-
derstanding the complex, recurrent and nonlinear dynamics underlying the
computation is essential to explore its power as well as for computational
design.

These facts have provided substantial motivations for the extensive inves-
tigations of neural networks, both in dynamics analysis and applications.

1.2 Scopes

One focus of this book lies in the improvement of training algorithms for
feed-forward neural networks by analyzing the mean-squared error function
from the perspective of dynamical stability. The dynamical learning method
is able to adaptively and optimally set the value of learning rate, hence the
elimination of sensitivity of FNN networks with a fixed learning rate can be
expected, as well as the reduction of convergence iterations and time.

Another emphasis is on the neurodynamics. The dynamics of the recurrent
networks with saturating and nonsaturating transfer functions are analyzed
extensively. New theoretical results on the nondivergence, stability and cyclic
dynamics are established, which facilitate the applications of the recurrent
networks in optimizations and sensory information segmentation. As an im-
portant application of the attractor networks, the analog associative memory
of the LT network is also investigated. It shows that the LT network can
successfully retrieve gray level images.

A special focus is on developing a competitive network incorporating
winner-take-all mechanism. The competitive network deals with the con-
straints in optimization problems in an elegant way, so it has attractive ad-
vantages both in suppressing invalid solutions and in increasing convergence
speed. The latter is a great concern when solving large scale problems. Prob-
abilistic optimization methods, such as simulated annealing and local minima
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escape, are also applicable to the competitive network, which can further im-
prove the solution quality.

The significance of this book falls into two basic grounds. Above all, the
book will serve the purpose of exploring the computational models of neural
networks, and promoting our understanding of the functions of biological
neural systems such as computation, perception and memory. Secondly, the
theories and methods in this book can provide meaningful techniques for de-
veloping real-world applications.

1.3 Organization

The first chapter motivates the issue of dynamics analysis as a crucial step
to understand the collective computation property of neural systems and de-
scribes the scope and contributions of the book.

The second chapter describes the typical learning algorithm of feedfor-
ward networks and several prominent modified algorithms among existing
approaches. Chapter 3 presents a new dynamical optimal training algorithm
for feed-forward neural networks. The new training method aims to avoid
the serious drawback of the standard feed-forward neural network’s training
algorithm, i.e., sensitivity to initial parameters and different problems.

Chapter 4 introduces the fundamentals of mathematical analysis for linear
and nonlinear systems, which underlie the analysis of neuro-dynamics.

Chapter 5 is devoted to various computational models based on recurrent
neural networks and winner-take-all networks. Some useful applications, such
as linear and nonlinear programming, extracting eigenvalues, feature bind-
ing and segmentation are introduced. In Chapter 6, a class of discrete-time
recurrent networks is discussed and is applied to the typical nonlinear opti-
mization problems. The global exponential stability condition is established
which ensures the network globally convergent to the unique optimum.

Chapters 7 and 8 are focused on the neural networks applied to combinato-
rial optimization problems, where the issue of parameter settings of Hopfield
networks, and new competitive model is presented respectively. Subsequently,
the competitive model is extended as an algorithm for image segmentation in
Chapter 9. In Chapter 10, the model is proposed to solve the multi traveling
salesman problems. Chapter 11 is focused on studying the local minima prob-
lem of the competitive network and an improvement strategy is provided. In
Chapter 12, a new algorithm for finding the shortest path based on the pulsed
coupled networks is proposed.

The next consecutive Chapters (13-15) are devoted to a prominent biolog-
ically motivated model, i.e., the recurrent network with linear threshold (LT)
neurons. In Chapter 13 qualitative analysis is given regarding the geometrical
properties of equilibria and the global attractivity. Chapter 14 analyzes one of
important dynamic behaviors of the LT networks, periodic oscillation. Condi-
tions for the existence of periodic orbits are established. Chapter 15 presents
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new conditions which ensure roundedness and stability for nonsymmetric and
symmetric LT networks. As an important application, the analog associative
memory is exploited in terms of storing gray images. The stability results are
used to design such an associative memory network.

Chapters 16 and 17 are more focused on approaches of studying the dy-
namical properties of recurrent neural networks: delayed networks with time
varying inputs and background neural networks with uniform firing rate and
background input.


