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2.1.  INTRODUCTION TO MOLECULAR DYNAMICS 

Computer Simulations have become an important complementary technique to experiment and 
analytical theory for scientific discoveries. Molecular Dynamics (MD) is one of the most abun-
dant techniques of computer modeling, and is frequently used simulation methods in bio-
molecular applications. Its popularity may stem from its simplicity and versatile applicability. 
The fundamental underlying assumption of MD is that the system consists of particles that in-
teract via the classical equations of motion, i.e., both quantum mechanical and relativistic ef-
fects are neglected. The exclusion of these effects, however, does not generally have a signifi-
cant impact on the biomolecular questions being studied. 

The simplest equation of motion is Newton’s equation, which states that the force acting on 
a particle is the product of its mass and its acceleration: 

F ma . (2.1) 

Assuming furthermore that we have only conservative forces in our system, i.e., we neglect fric-
tion and any velocity dependent forces, we can write the force as the negative gradient of a po-
tential function that now depends only on the particle positions 

({ })i i jF V r . (2.2) 
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The gradient here is taken with respect to the position of particle i. Since the acceleration is the 
second time derivative of particle position, a combination of Eqs. (2.1) and (2.2) leads to a sec-
ond-order partial differential equation: 

2 ({ })
it i r jm r V r . (2.3) 

Even though Newton’s equations are not linked to statistical or thermodynamical properties and 
cannot be extended to include quantum mechanical variables like Hamilton’s equations, for the 
systems that we will discuss here Hamilton’s equations reduce to the same Eq. (2.3), and so we 
will not go through the more complex derivation. Through the use of an integrator, MD solves 
the second-order PDE in Eq. (2.3) iteratively, where the positions and velocities (or momenta) 
of all the particles at one time point are used as the initial conditions. 

An integrator is an algorithm that solves the PDE by iterative integration, and there are sev-
eral varieties commonly used in MD. Here we will discuss the Verlet integrator [1] as a proto-
typical example. The Verlet algorithm has several advantages: it is time inversion symmetric as 
well as symplectic. These characteristics are required for the correct statistical mechanical be-
havior of the ensuing ensemble, and the interested reader is referred to several excellent books 
for a more detailed discussion of MD [2–4]. 

Most integrators are based on a Taylor expansion of the positions in time: 
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For the Verlet integrator, this expansion is performed to the third order, and the first derivative 
of position is velocity and the second derivative of position is acceleration. For symmetry rea-
sons, the expansion is performed in positive and negative time. If 0t t t , the forward and 
backward expansions are 
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If the forward and the backward expansions are combined, the position Verlet algorithm (Eq. 
(2.6)) is obtained, and it is exact to the 4th order in the timestep t. The position Verlet algo-
rithm predicts the atomic positions at the next timestep given that the atomic positions at the 
current and previous timesteps are known: 

2 4

0 0 0 0( ) 2 ( ) ( ) ( ) ( )r t t r t r t t a t t O t . (2.6) 

Here the velocity is not explicitly represented but rather computed as a difference between posi-
tions.
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2.2.  SPECIFICS OF THE MOLECULAR MODELING OF BIOMEMBRANES 

We now focus on biomembrane simulation specifics, where biological systems that span a vari-
ety of length scales have been commonly studied using MD over the last two decades [5–13]. 
Even so, simulation details must still be carefully selected, as it has been found that unfortunate 
choices in conditions or parameters can lead to unsuccessful simulations [14–16]. 

In an all-atom simulation, every atom is represented in the model by one interaction center. 
All atom simulations are very abundant and give the highest possible degree of detail (except 
for quantum chemical calculations). However, one downfall to a simulation having this degree 
of accuracy is that they are limited in both the length of simulation time as well as the system 
size. In biomembrane simulations, this is especially apparent for fully hydrated phospholipid 
bilayers. Even though the system of interest is the lipid bilayer, a considerable amount of com-
putational effort is spent on simulating the water molecules, which are needed to accurately rep-
resent a cellular bilayer. In order to minimize the computational resources that are spent on wa-
ter molecules, several approaches, such as solvent free bilayer models that use special 
interactions to mimic water [11,17] and coarse-grained models [18–20], have been devised that 
allow for the use of larger timescales. Most biomembrane simulations have been performed on 
free-standing bilayers in water, although a few freestanding monolayers [21–23] and supported 
bilayers [24,25] have been examined as well. 

Biomembranes are inherently anisotropic, and this property needs to be reproduced in the 
model. Most simulations are performed with periodic boundary conditions, i.e., the simulation 
box is surrounded by replicas of itself in all directions, which leads to an infinitely extended 
periodic system. In order to maintain a constant pressure, the simulation volume size needs to 
fluctuate since pressure and volume are conjugate thermodynamic variables. However, because 
Newton’s equations of motion conserve volume, the pressure has to be controlled via a barostat. 
Similar in spirit to barostats are thermostats, which modify the system temperature, and further 
discussion of temperature-controlling techniques can be found elsewhere. A commonly used 
barostat is the Berendsen, or weak-coupling, barostat [26]. This technique compares an instan-
taneous pressure with a predefined target pressure, and if the values differ (and they generally 
do), the box volume and all particle positions are rescaled according to 

new

old target

1
V t p

V p
. (2.7) 

The parameter represents the correlation time and should be chosen judiciously. A large cor-
relation time will lead to weaker coupling than a short correlation time. Typical values are on 
the order of a few ps, with 1 fs being a common choice of timestep for atomistic simulations. 
The timestep has to be an order of magnitude shorter than the smallest characteristic time found 
in the system, which typically corresponds to bond or angle vibrations (on the order of 10 fs). If 
both a thermostat and a barostat are used, their respective correlation times should differ by an 
order of magnitude as well, with the pressure correlation time having a larger value. If the baro-
stat results in box volume fluctuations, the thickness and area of a membrane become coupled. 
To avoid this, we independently couple the three axes to the external pressure to reproduce a 
tension-free bilayer. Of course, the axes (normal and lateral to the membrane) can be coupled 
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separately to different values, which would produce an overall surface tension. For this situation 
we have to measure the instantaneous pressure tensor rather than the isotropic pressure. 

The overall charge of a simulated system has to be zero. However, biomembrane simula-
tions usually contain charged atoms, and electrostatic interactions differ from most other mod-
eled interactions in that they are long ranged. A long-ranged interaction means that the integral 
of the potential (which we for simplicity assume to be spherically symmetric) over all space 
diverges:

2

0

( )V r r dr . (2.8) 

In contrast to this, the integral for the Lennard-Jones and other short-range interactions con-
verges. A problem with long-ranged interactions stems now from periodic boundary conditions. 
We cannot neglect charges outside the box. A number of ways to address this have been devel-
oped. One of the most successful is the Particle Mesh Ewald [27] technique. The main idea be-
hind this method is that every charged interaction below a certain cutoff is calculated directly. 
For interactions that do not fall within this cutoff, the interactions are calculated in Fourier 
space. For the exact implementation we again refer to specialized literature. A second method is 
the reaction field technique. In this case, a charge interacts with all neighboring charges that fall 
within a cutoff radius at full strength. However, the charge will only feel an effective dielectric 
medium for electrostatic interactions whose distance separations exceed the cutoff radius. This 
may not be the most accurate method, however, since the variety of atom types present in 
biomembrane simulations leads to a wide range of dielectric values. For example, water has a 
dielectric constant of ~80 and the inner part of a membrane around 2-4. Hence, it is generally 
advisable for atomistic simulations to use PME for electrostatic calculations. 

2.3.  FORCE FIELDS: SIMULATION MODELS 

Here we discuss some frequently used lipid bilayer models. Many simulations that retain atom-
istic level detail consist of 128 fully hydrated lipids, with 64 lipids per leaflet. A few studies 
also examine lipid bilayer structural changes that accompany a reduced level of hydration 
[28,29]. DPPC (dipalmitoylphosphatidylcholine) is the most abundantly studied lipid [30], and 
lipids that differ in the saturation or number of carbons in the acyl chains have also been well 
studied [30–32]. One of the most commonly used phosphatidylcholine (PC) force fields was 
developed by Berger et al. [33]. Force fields for non-PC lipids, such as phosphatidylserine [34], 
sphingomyelin [35,36], phosphatidylglycerol [31,32,37], phosphatidylethanolamine [37,38], 
dimyristoyltrimethylammonium propane [39], and phosphatidic acid [32], have also been pub-
lished. Sterols, mainly cholesterol [36,40–42] and ergosterol [42,43] but also lanosterol [42], 
have been modeled. Several websites offer downloadable lipid configurations and topologies to 
users, and these models contain intra- and intermolecular interactions. The intramolecular bond 
and angle terms are typically modeled via a harmonic potential. Bonds may also be constrained 
using algorithms such as LINCS [44] and SHAKE [45]. The torsional degrees of freedom are 
most often represented by a Fourier series in order to satisfy the required 360  symmetry. Tor-
sions are the most important part of the intramolecular potential, and they are often based on 
quantum chemical calculations. In some cases, such as for double bonds, special potentials, 
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such as harmonic dihedrals, are used to help avoid unphysical local conformers. The in-
tramolecular interactions serve a twofold purpose, where they define both the molecule geome-
try as well as energy differences between different local conformations. 

The non-bonded Lennard-Jones interactions are modeled for atom pairs that belong to dif-
ferent molecules as well as for atom pairs that belong to the same molecule but are located a 
few bonds apart (e.g., at least 3). The Lennard-Jones potential contains two parts. A long-range 
attractive r–6 term comes from the fluctuating dipole London interactions and a short-range re-
pulsive r–12 term models the Pauli repulsion. As there is no analytical form for the repulsive seg-
ment, the potential is chosen for computational convenience as r–12 is just the square of r–6 and 
computing the square is computationally cheap. 

We would like to include here a brief discussion on the use of water models. Water is not 
only important in biomembrane simulations because it is an important constituent of cellular 
environments, but it is also a unique and interesting compound that has chemical and physical 
characteristics that lead to complex phase behavior. Most models are adjusted to represent liq-
uid water at ambient conditions and do not necessarily reproduce accurate descriptions of the 
solid phases. This can be problematic in studies involving low temperatures where freezing be-
comes important. There is therefore no single “best” water model. The most commonly used 
water model that is employed in conjunction with standard lipid force fields is the SPC model 
[46,47]. In this model only the oxygen has a Lennard-Jones interaction site and the two hydro-
gen atoms only serve as charge sites. In general, one has to be careful to choose a water model 
that “matches” the chosen lipid model. 

2.4.  DEGREE OF DETAIL: ATOMISTIC VERSUS COARSE-GRAINED 

A number of computational techniques and models have been developed to study a variety of 
systems of interest. Atomistic models accurately describe not only the molecular structure but 
also the chemical bonding, electrostatic, and van der Waals interactions. Because of the interac-
tion scale, atomistic models employ a time step that can be as short as a tenth of the period of 
the fastest mode in the system [48], which often corresponds to a covalent bond or angle stretch. 
Atomistic models include at least every non-hydrogen atom into the system, and with the short 
time step atomistic simulations can model membranes that are a few tens of nanometers in size. 
These simulations often consist of tens of nanoseconds of data and the simulation jobs can be 
submitted to large-scale computing facilities. Atomistic simulations are widely used in the study 
of the local structure and dynamics of membranes [49–51]. They can also be used to determine 
how a particular component, such as sterols, affects membrane structure [52,53]. In most atom-
istic simulations, nonpolar hydrogens are neglected, i.e., they are subsumed into neighboring 
heavy atoms, which leads to a united atom description. 

Since events such as self-assembly, phase transitions and phase separations occur on length 
and timescales beyond atomistic capabilities, coarse-grained (CG) or mesoscale models have to 
be applied to reach the relevant size and time periods. Reducing the degrees of freedom by 
combining several atoms into one effective particle and eliminating short-range dynamics are 
two techniques included in CG models that speed up simulations and allow access to collective 
phenomena [54–60]. One widely used coarse-grained model for lipids is the MARTINI model 
[18,61], and we refer the reader to the original literature for the exact interaction parameters 
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between the lipids and the water molecules. We mention here only that 4–6 heavy atoms are 
represented by one interaction sites and that the coarse-grained parameters are chosen to repro-
duce important properties of lipid membranes. This model has been effectively used in the study 
of phase behavior [8,62] and supported membranes [25]. Vesicle fusion and formation [63], as 
well as hexagonal phase formation [59], have been captured at the molecular level and the phase 
behavior of several lipid mixtures has been semiquantitatively reproduced [58,64,65]. It has 
been noted that the increase in dynamics in the CG models is due to the CG molecules being 
“smoother” than the atomistic molecules, i.e., they exhibit less friction. In the Martini model, 
the dynamics are a factor of 4 faster than those of atomistic simulations and experiments, where 
the speed-up was determined through diffusion coefficient comparisons [18]. The phase behav-
ior and pressure–area isotherms are reproduced semiquantitatively, i.e., within 20–30 K [66], 
and the model uses a reaction field for electrostatics with a dielectric constant of 20. The CG 
model allows the use of a time step of 40 fs and one CG-water represents 4 real waters. 

Less detailed models than the Martini model exist, where water is not explicitly taken into 
account [11,17,67,68]. The motivation for using such models is to avoid the use of significant 
amounts of computational time on simulating water molecules. When examining phenomena 
that occur on large time and length scales, the behavior of the water molecules is usually not a 
primary interest of the study. To obtain the self-assembly of lipids into a fluid bilayer, the nor-
mal Lennard-Jones interaction model needs to be modified, and as an example we briefly dis-
cuss a model proposed by Cooke et. al. [11,69,70], where interactions between tail beads are 
represented as 

att ( ) ,    cV r r r , (2.9a) 
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att ( ) 0,    c cV r r r w . (2.9c) 

The interactions between the head beads as well as between the head and tail beads follows a 
purely repulsive version of Lennard-Jones that we obtain by cutting off the potential in its 
minimum and shifting it to zero at that point (WCA potential) [71]. 

The model uses a tunable long-range weakly varying attractive potential that reproduces a 
fluid bilayer with properties that are commensurate with experimentally measured values [11]. 

Further coarse-graining leads to the realm of two-dimensional models, where, for example, 
one leaflet of a membrane is modeled using hard disks with the sole parameter being the ex-
cluded volume (or, more precisely, area). This type of model has been used to study a dipalmi-
toyl phosphatidylethanolamine (DPPE) and ganglioside GM1 mixture [72]. A circular excluded 
area of 45 Å2 was used for DPPE and an area of 65 Å2 was used for GM1 and these values were 
based on experimental pressure–area isotherms for each lipid [73]. GM1 however, in low to in-
termediate density mixtures with DPPE does not strongly change the overall area per molecule. 
Hence, a minimum packing area of 40 Å2 per molecule was used for GM1 in conjunction with 
DPPE molecules, which leads to the peculiar situation of a binary hard-disk fluid having a 
cross-interaction radius that is not the average of the self-interaction radii. 
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2.5.  VISUALIZATIONS 

It is always a good idea to visualize a simulation system, from either output that is generated 
during a run or once the simulation has completed. Most simulation packages can write atom 
coordinates into a protein databank file that can be easily visualized with a number of software 
packages [74,75]. Visualizing a simulation system, especially in the initial equilibration phase, 
can serve as a check that the membrane configuration remains intact. The images also provide a 
convenient method for closely examining the interactions between molecules in a particular re-
gion of the system. Figure 2.1 shows images from different regions of a POPA (palmitoyl oleyl 
phosphatidic acid) lipid bilayer [32]. 

Figure 2.1. Visualization of a POPA lipid bilayer [32]. Left: The system contains 128 lipids with 5443 wa-
ter molecules. Middle: The POPA lipids without the water molecules. Right: Only the POPA headgroups 

tration. 

2.6. AREA PER MOLECULE AND THICKNESS, COMPARISON 
 TO X-RAY DATA 

In homogeneous simulations, the simplest thermodynamic property to calculate is the overall 
density since we know both the mass and volume of the simulation box for all time steps. The 
area per molecule and bilayer thickness are two often-calculated membrane quantities, and their 
values can be extracted from the simulation box volume. In our simulations the area per mole-
cule is determined by dividing the product of the x and y dimensions of a simulation cell by the 
number of lipids per leaflet. One can also determine the area per molecule by measuring the 
membrane thickness under the assumption of constant volume per lipid [76]. 

To determine the membrane thickness, the density profile along the bilayer normal (usually 
the z-axis), must first be calculated. The density profile can be tabulated by dividing the bilayer 
into equidistant slabs along the bilayer normal. Each atom is assigned to a slab, and this ensures 

are shown. Please visit http://extras.springer.com/ to view a high-resolution full-color version of this illus-
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that we know again both the mass and the volume of each slab. Density profiles are useful in 
determining how the locations of different groups (water molecules, lipid headgroups, etc.) vary 
along the bilayer normal. Because of the short simulation timescales, lipid flip-flop is a rarely 
witnessed event [77] and hence the density profiles for the top and bottom leaflets of a bilayer 
can be calculated separately. By looking at the individual leaflet density profiles, one can exam-
ine interdigitation, which occurs when lipids from separate leaflets intertwine. This phenome-
non has been studied extensively in the context of membrane–alcohol interactions [43,78,79]. 

The electron density profile can also be determined, and it is a useful simulation measure-
ment because it can be related to X-ray scattering or X-ray reflectivity data since the X-ray pro-
file is essentially a one-dimensional Fourier transform of the electron density [80]. An example 
of an electron density profile for a POPA lipid bilayer is shown in Figure 2.2. To compare simu-
lation data with that of neutron scattering, an atomic scattering length for all atoms needs to be 
known so that a scattering length density profile can be assembled. 

Figure 2.2. Electron density profiles of the POPA lipid bilayer from Figure 2.1. The bilayer center corre-

version of this illustration. 

2.7.  ORDER PARAMETERS AND OTHER SINGLE-LIPID PROPERTIES 

Another experimentally relevant parameter is the chain order parameter. This parameter con-
nects the degree of chain ordering to the bilayer normal and, in contrast to the properties previ-
ously discussed, the order parameters can be defined for a single lipid. The order parameter is a 
useful measurement because it can be compared with the experimental deuterium order parame-
ter, which can be determined using nuclear magnetic resonance spectroscopy. Since most atom-
istic simulations use a united atom representation to model the hydrocarbon chains (even less 
description is included in coarse-grained systems), hydrogen atoms are not explicitly repre-

sponds to a value of z = 0 nm. Please visit http://extras.springer.com/ to view a high-resolution full-color 
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sented and the C–H bonds have to be reconstructed assuming a tetrahedral geometry of the CH2

groups. The order parameter is defined as 

2

CD CD0.5 3cos 1S , (2.10) 

where CD is the angle between the CD-bond and the bilayer normal in experiments, and in 
simulations the CD-bond is replaced by the CH-bond. This quantity cannot be measured directly 
in experiments; however, there is a recurrent formulation that allows the calculation of SCC from 
SCD order parameters. For the Cn groups, the deuterium order parameter for the nth carbon in 
computer simulations can be calculated by 

CD

2 1

3 3
n n n

xx yyS S S .

Here cos cosJJ j j jjS  and (j = x, y, z) with cos j zj u u , ju  is the unit vector for the 

jth molecular axis in the bilayer, and zu  is the unit vector in the z direction (average bilayer nor-
mal). The order parameters are normally defined for all saturated carbons that have two 
neighboring carbon atoms. For DPPC the order parameters can therefore be calculated for atoms 
C2 through C15 (see Fig. 2.3 for numbering). The order parameters for the two hydrocarbon 
chains are normally analyzed separately, even for DPPC, whose tails each have 16 carbon at-
oms, because the distance between the two hydrocarbon chains and the water/bilayer interface 
are not equivalent, For saturated bonds the order parameter is a measure of the spatial restriction 
of the motion of the C–H vector [81] and is proportional to the deuterium quadrupolar splittings 
[82] in NMR measurements. For unsaturated bonds (i.e., a double bond) the chain kinks and, 
although the order parameter can in principle be calculated (nothing in the formula is unde-
fined), it is not usually performed because the local geometry of the atom is not tetrahedral 
anymore and the values are typically significantly lower than for saturated carbons. 

Figure 2.3. An example of how the lipid acyl chains are numbered in calculating the order parameter. The 
POPA lipid shown here differs from the more commonly studied DPPC lipid in that the DPPC choline 
group is replaced with a hydrogen atom and the sn-2 tail contains a double bond and 18 atoms. Please visit 
http://extras.springer.com/ to view a high-resolution full-color version of this illustration. 
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There are a number of other properties that describe the intra- and intermolecular conforma-
tions of individual lipids. One property is the tilt of the molecule or of the headgroup. To calcu-
late the tilt of the overall molecule, one can define a unit vector that spans from the glycerol 
group to a specified atom in one of the hydrocarbon chains. To calculate the tilt of the 
headgroup one can define a unit vector that spans from the choline group to the phosphate 
group. We can calculate the tilt of the headgroup by measuring the angle of this vector with that 
of the bilayer normal. The scalar product of the unit vectors (the bilayer normal and the vector 
of interest) is the cosine of the tilt angle [83]. Another simple way to characterize the structure 
of a lipid is to calculate its end-to-end distance, i.e., the distance from the headgroup to the end 
of the tails. This gives a crude estimation of the overall order and phase. For example, the gel 
phase lipids are normally more ordered than liquid phase lipids and hence have a longer length. 

2.8.  RADIAL DISTRIBUTION FUNCTIONS 

One parameter that can be used to characterize the structure of a molecular modeling system in 
detail is a radial distribution function (RDF). An RDF provides additional information about the 
membrane morphology and the structure that is complementary to the density profiles. The RDF 
(gAB(r)) between particles of type A and B is defined as 

,

2

local local
,

( )( ) 1 1

4
i jB

AB

B B A A B
i j

r rr
g

N N N r
, (2.11) 

with ( )B r  being the particle density of type B at a distance r around particle A, and 
localB

the particle density of type B averaged over all spheres around particles A with radius r. Radial 
distribution functions have two appealing properties. First, they quantitatively describe how 
many neighbors of a certain type are found around a given atom, and thus they characterize the 
local neighborhood. Second, the RDFs are a three-dimensional Fourier transform of the static 
structure factor, which can be measured using either X-rays or neutrons. 

For membranes we often only calculate a two-dimensional RDF in order to characterize the 
in-plane lipid neighborhood. An illustration of an RDF for the POPA example system is shown 
in Figure 2.4. 

2.9.  HYDROGEN BONDING AND ADVANCED STATIC ANALYSIS 

Since we know the positions and the momenta of all particles at all times in an MD simulation, 
we have access to all system information. This becomes useful when we want to calculate prop-
erties that cannot (or only very indirectly) be determined using experiments. One such example 
is a study of the hydrogen bonds that exist within a system. A caveat here is that the analysis 
and the properties are only as good as the model. Hence, for hydrogen bonding studies in atom-
istic simulations, this means that the hydrogen bond definitions are based on geometry rather 
than explicit bonding between hydrogen atoms and neighboring polar atoms since that would 
require the use of quantum degrees of freedom. A typical criterion that we use for hydrogen 
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Figure 2.4. The RDF between the water oxygen atoms and the phosphate atom in a POPA lipid bilayer. 
The figure shows that there are two particularly favorable positions for the water molecules about the phos-
phate atom. The first location is represented by the sharp peak, which occurs when the water oxygen atom 
and the phosphate atom are located 0.35 nm apart. The second favorable location occurs at a distance of 
0.42 nm and this peak has a smaller g

AB
 value and is much broader than the first peak, indicating that the in-

teraction between the water and the phosphate atom at r = 0.42 nm is not as strong as at r = 0.35 nm. 

bond existence is that the distance between the hydrogen atom and the hydrogen bond acceptor 
be less than 3.5 Å and the angle between the hydrogen atom, hydrogen bond donor, and hydro-
gen bond acceptor be less than 30  [84]. In order to determine the hydrogen bond donor and 
acceptor pairs, one can assume that an OH or NH group is a good donor and a bare oxygen or 
nitrogen atom is a good acceptor [77]. Thus, in phospholipid membranes common examples of 
hydrogen bond acceptors are the oxygen atoms in the phosphate group or the ester groups. To 
determine the lifetime of a hydrogen bond, one can define a function A that is equal to 1 if a 
hydrogen bond (in one defined pair) exists and 0 if it does not exist. Based on these values, the 
hydrogen bond lifetime can be calculated using the function 

( ) (0)
( )

( ) ( )

A t A
C t

A t A t
, (2.12) 

as defined by Luzar and Chandler [85]. Even if a bond does not exist continuously between time 
0 and time t, the bond will still be included in the correlation function for the time periods 
where the bond does exist. In order to calculate the correlation time, we integrate this correla-
tion function: 

0

( )C t dt . (2.13) 



46 ALLISON N. DICKEY and ROLAND FALLER 

2.10.   PRESSURE AND PRESSURE PROFILES 

An important thermodynamic property is pressure, which, as discussed earlier, can be kept con-
stant in the three Cartesian directions through the use of a barostat. In an anisotropic medium 
pressure is not a scalar but a second-rank tensor that is defined in terms of forces, velocities, and 
positions. When only pair forces exist, the overall pressure is defined as 

pairs

1

2
P F r mv v . (2.14) 

If we cannot define all forces based on pair interactions, then we have to be careful about how 
the origin of the coordinate system is defined when using periodic boundary conditions as the 
pressure can depend explicitly on this choice. For many applications, the overall pressure calcu-
lation, even as a tensor, is not accurate enough, and hence a more localized pressure calculation 
via formulations such as the Irving-Kirkwood equation are necessary [86]. We do not discuss 
these methods here but note that one can obtain pressure as a function of position or more often 
as a function of the position along only the bilayer normal. This is mainly for statistical reasons 
since pressure can have significantly fluctuating values and good statistics are needed to obtain 
reliable data. The surface tension can be incorporated into the coupling scheme [77,87] as 
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with pref being the chosen reference pressure. An example of a lateral pressure profile is shown 
in Figure 2.8 for a phosphatidylglycerol system [32]. 

2.11.  TWO-DIMENSIONAL DIFFUSION 

Previously, we discussed static and thermodynamic properties of membrane lipids. Since MD 
gives the user access to particle momenta, we can monitor dynamical properties as well. The 
lipid mobility is generally examined through the lateral diffusion coefficient, which can be cal-
culated from the slope of the mean-square displacement (MSD) via the Einstein equation: 

2( ( ) (0))

2lim
t

r t r
D

dt
, (2.16) 

where d is the dimensionality of the system (i.e., d = 2 for lateral diffusion in the membrane 
plane) and r(t) and r(0) are the coordinates of the lipid molecules at times t and 0. An average is 
calculated for all particles of interest, and over time as a “running-time average” such that an 
interval of length t can be realized from t = 0 to t = t, or from t = t0 to t = t0 + t. Hence, 
every interval that corresponds to a particular t is included in the average. Therefore, after 
equilibration, all time points are equivalent as reference points. If we have 1000 time steps, this 
leads to 999 datapoints per particle for a t = 1 versus the existence of only 1 datapoint having a 

t of 999. Thus, the accuracy of the MSD decreases with increasing t. As the diffusion coeffi-
cient should be calculated from the long time limit of the MSD slope, the accuracy of datapoints 
from regions corresponding to long t values may be questionable. For very short t values, the 
MSD will increase with the square of time according to the equations of motion 2r t .
Sometimes at intermediate t values the dynamical regimes may be subdiffusive, resulting in 
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only long t values for calculating diffusive behavior. However, as mentioned above, at long t
values the MSD may deviate from linearity due to the deteriorated statistical quality. MSDs are 
regularly plotted double logarithmically in order to easily distinguish the different dynamical 
regimes; any dynamic regime with algebraic time dependence r t will then appear as a 
line with the exponent   equal to the slope. In the case of lipid flip-flop, undulations, or protru-
sions, one-dimensional MSDs along the bilayer normal are mainly of interest, whereas for water 
the 3D MSD is usually generated. Figure 2.5 shows how a POPA two-dimensional diffusional 
coefficient can be derived from the MSD. 

Figure 2.5. A) The lateral mean-squared displacement MSD (in x and y) for POPA. The curve is quadratic 
for region 1 (R1) since there are no collisions between molecules for small t values. The diffusion coeffi-
cient can be calculated from the slope of the curve in region 2 (R2) using equation (2.16). The data from 
region 3 (R3) is not used in calculating the diffusion coefficient because of poor statistics. B) The same 
data in a log-log plot of the MSD. 
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Figure 2.6. An example of a rotational correlation function for the POPA headgroup. Because POPA has 
such a small headgroup, the vector for this figure spanned only across the phosphate group, from oxygen 
atom O1 to atom O2 (see Fig. 2.3). For statistical reasons, the correlation function is only calculated for the 
first 5 ns of a 10 ns trajectory and we can see from the figure that a significantly longer simulation time is 
required for a complete POPA headgroup relaxation. 

2.12.  REORIENTATIONS AND NMR 

The reorientation of a molecule (e.g., water) and the lipid rotational correlation are also dy-
namical properties that can be obtained from MD simulations. These parameters require that we 
either define a plane or a unit vector with which to calculate the reorientation. Since a plane is 
represented by its normal vector, here we discuss only vector reorientation. The rotational corre-
lation function is calculated using the autocorrelation function for the unit vector V. Figure 2.6 
shows an example of a function, the reorientation of the vector

( ) ( ) (0)C t V t V . (2.17) 

Other definitions based on higher polynomials can be used as well. The rotational relaxation 
time   can again be calculated from the integral of the autocorrelation function (see Eq. (2.13)). 
This correlation time is related to the T1 time in NMR experiments [88] as 

2 2 2

2

1 CH

1
[ ( ) 3 ( ) 6 ( )]

10
C H

H C C H CJ J J
T r

. (2.18) 

We restrict ourselves here to CH vectors, but others are equivalent; are gyromagnetic ratios of 
the respective nuclei and  are the Larmor frequencies. while r is the distance between the nu-
clei and the J functions are the Fourier transforms of the correlation functions: 

( ) ( ) i tJ C t e dt . (2.19) 
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We can e.g., use a vector that connects the two tails that measures the in-plane rotation of the 
lipids since this vector is roughly perpendicular to the long axis of the lipid. Since this vector is 
nearly perpendicular to the bilayer normal, it decays at long times to a value close to zero. It 
cannot de-correlate completely since we do not find transbilayer flip-flop on timescales reach-
able in atomistic simulations. Thus, the correlation function gets stuck at a small nonzero value. 
The reorientation of the lipid headgroups can be determined by defining a vector that for exam-
ple spans from the phosphate atom to an atom in the amine or choline groups. This rotation is 
typically much faster [8] than the rotation of the lipid tails. The rotational correlation vectors of 
the POPA lipid headgroups are shown in Figure 2.6. 

2.13. DYNAMICS OF INDIVIDUAL MOLECULES: 
 CORRELATIONS OF DISTRIBUTION FUNCTIONS 

One additional benefit of computer simulations is that the static and dynamical properties of 
individual molecules can be captured. This selectivity cannot be matched using experiments 
where typically only average distributions are determined. In studying individual dynamical 
properties, we essentially do exactly the same calculations that we would perform for an aver-
age property, but we restrict ourselves to a small subset. The extreme case of this is a subset 
with only one member. Another possibility is that we compare spatially or temporally differen-
tiated regions of the bilayer. Far from a phase transition, one typically finds that the average 
molecule behavior is a reasonable approximation for the individual molecule behavior, i.e., the 
molecules behave in an essentially identical manner. However, heterogeneities in the system 
that stem from domain or density differences may be misleading when interpreting individual 
molecule dynamics, especially when the distribution of lipid behaviors is non-Gaussian and 
there are qualitative differences between classes. An example is shown in Figure 2.7, where we 
calculate the rotational correlation function for a simulation of POPA lipids around a protein 
[89,90]. Each curve displays a set of lipids that is located a different distance from the protein. 
This is an example of how different observables can be correlated, where the POPA lipid 
headgroup rotational correlation function value is dependent upon a two-dimensional RDF. An-
other example could involve classifying lipids into groups of more and less highly ordered lip-
ids based on the individual order parameter values. This lipid separation would then allow addi-
tional dynamical properties to be analyzed for each class separately [91]. One word of caution 
here is that if we investigate the correlation function or the mean-squared displacements of indi-
vidual lipids, the statistics are very weak and noisy. Thus, an integration of an orientation corre-
lation function to determine a reorientation time or the differentiation of a mean-squared dis-
placement to determine a diffusion coefficient is unreliable. 

2.14.  INTERACTIONS WITH SMALL MOLECULES 

Here, as an example application, we discuss how small molecules modify the behavior of a 
phospholipid bilayer. Understanding how membranes interact with small molecules is of tre-
mendous biological importance as the cell membrane serves as a barrier between the extracellu-
lar environment and the intracellular contents. Therefore, a number of molecular simulations 
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Figure 2.7. This figure shows the rotational correlation function of the POPA lipid head group (vector O7 – 
O10) for three groups of lipids, where the lipids are sorted into groups based on their lateral root mean 
squared distance (RMSD) from a transmembrane protein. Group RMSD specifications: Group 1 (<1.0 nm),  
Group 2 (1.0 nm  2.0 nm) , and Group 3 (>2.0 nm) [89]. 

have been performed on systems that contain lipid bilayers and small molecules [7,9,43,77,78, 
92,93]. Among the small molecules that have been studied are sugars and alcohols. Sugar mole-
cules are nutrients for living organisms; under the proper conditions they can serve as cryo-
protectants [94–96]. In particular, trehalose, which is a disaccharide of glucose, has been found 
to be very effective in this respect. Recently, it has been shown that the molecular mechanism 
underlying this cryoprotective effect is a result of hydrogen bonding between the trehalose 
molecules and the bilayer headgroups [7]. The sugar can replace some of the hydrogen bonds 
that normally form between the water molecules and the bilayer headgroups and thereby stabi-
lize the fragile bilayer structure. Stabilization here means that the bilayer is able to withstand 
harsher environmental conditions in the presence of small molecules when compared with a 
single-lipid bilayer in water. Experimentally, it has been shown that trehalose prevents lip-
ids from undergoing a phase transition under cooling, i.e., it shifts the main-phase transition 
temperature significantly [97]. Simulations have in general been able to corroborate these ef-
fects [92,98]. 

It has been found experimentally that alcohol molecules have the opposite effect of treha-
lose and destabilize model membranes [99,100]. It has been observed that upon the addition of 
alcohol molecules the lipid bilayer becomes thinner and the area per molecule increases. One 
application for alcohol/membrane experiments is that of stuck fermentations in the wine indus-
try [101,102]. In a stuck fermentation, the yeast cells do not convert all available sugar mole-
cules into alcohol but stop at an incomplete stage. It has been proposed that the underlying 
mechanism of stuck fermentations is an alcohol-triggered structural transition in the membrane 
that results in conformational changes to transmembrane proteins that render them dysfunc-
tional [101,103]. Aside from wine production, increased sugar conversion would also be benefi-
cial in the production of ethanol as a component in biofuels. Furthermore, alcohols have been 
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used as model anesthetic molecules where it is has been proposed that anesthetic molecules may 
alter the lateral pressure profile of lipids, again resulting in conformational changes to trans-
membrane proteins [104,105]. An example of a lateral pressure profile is shown in Figure 2.8 
for a phosphatidylglycerol system. 

Figure 2.8. Lateral Pressure Profile for a 128 lipid POPG bilayer32. The asymmetry of the figure is due to 
statistical sampling deficiencies. We can clearly identify the headgroup water interfaces by the large peaks. 

2.15.  SUMMARY 

It is clear that biomolecular modeling in general and molecular dynamics of biomembranes in 
particular is an efficient and useful tool to understand lipid bilayer systems. No other technique 
allows us to access all atom positions directly and offers in that way an unprecedented and unri-
valled degree of detail. The question of modeling biomolecules is therefore no longer a “Why” 
or “If” but a “How.” In this chapter we could only give a brief overview of the fundamentals of 
the technique. We could not discuss the statistical mechanical fundamentals of molecular dy-
namics. There are, however, many excellent books on that. We rather wanted to deliver a brief 
introduction that can be rapidly implemented by the non-expert user as molecular modeling 
starts to become a tool that is not only used by experts who devote their full time and often 
whole career to it. But due to the abundance and reliability of modern software packages, it can 
often be used as a tool for a short side project without going into all the depths. 

Nonetheless, as with any other technique there are several traps that need to be avoided. It is 
a danger of modern software packages that they provide default values for almost all switches 
and numbers to be chosen in a simulation such that the user is tempted not to think about set-
tings at all. We wanted therefore to explain the meaning of the most important of these often 
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elusive settings that can fail simulations. The failure of a simulation is often not very obvious; if 
it crashes and the software aborts we know we did something wrong. But often simulations do 
not crash but are completely meaningless because the software is used in an inadequate manner; 
and for computers we must keep one thing in mind: they do exactly what they are programmed 
to do, not what we think we programmed them to do. So the two main ideas we wanted to con-
vey here are that nobody should be dissuaded from using molecular modeling because of a fear 
of its complexity and that there are a few points about which one really has to be careful. 

In general, simulations in many cases offer a very good visual understanding of a system 
where other techniques may be more precise. The strength of a simulation is most often in its 
interplay with other, mainly experimental, techniques. Simulations complement experiments by 
providing access to the mechanisms on a molecular level that give rise to experimental observ-
ables. The numbers themselves may often be only qualitative, but a mechanistic understanding 
is an invaluable asset. 
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PROBLEMS 

Simulations are a useful method for studying how molecule location and orientation are influ-
enced by the positions of neighboring molecules and the local environment. If you happen to 
have access to a Unix/Linux computer and can download the MD simulation program Gro-

and analyze the resulting water molecule orientations. If you do not have such access, use the 

tion of the problem. 

Preparing the Simulation Program 

Download Gromacs. In this exercise, the syntax for the input will correspond to Gromacs ver-
sion 3.3.1. 

We are interested in comparing the molecular ordering between water molecules that are lo-
cated close to a lipid bilayer surface and bulk-like water molecules. 

Follow the steps below to generate a hydrated lipid bilayer 
 a. Make a new directory and name it lipid 
 

and download the dppc128.pdb file. Save this file in your lipid directory 
 c. Download the dppc.itp and lipid.itp files into your directory 
 d. Download the example2.top file and rename it topol.top 
 e. Copy the grompp.mdp file from /share/tutor/water into your directory 

macs (http://www.gromacs.org/), complete Exercise 2.1 to simulate a solvated lipid bilayer 

resulting simulation data from Exercise 2.1 (available for download at http://www. 
chms.ucdavis.edu/research/web/faller/downloads.html) and proceed with the data analysis por-

b. Go to http://moose.bio.ucalgary.ca/index.php?page=Structures_and_Topologies 
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 f. Use the command editconf –f dppc128.pdb –o conf.gro to convert your configu-
ration file into a .gro file format 

 g. Change the number of time steps in the grompp.mdp file from 10,000 to 250,000 
 h. Run the grompp and mdrun commands. This will generate a trajectory that is 0.5 

ns in length since the time step in the grompp.mdp file is 2 fs. 
 i. When the simulation is complete you will see a confout.gro file, 
 j. An index file needs to be created to specify which atom in the water molecule is 

of interest. We will choose the oxygen atom, which is labeled OW. 
 k. Type the command make_ndx –f conf.gro –o index.ndx. A prompt will open and 

ask you to specify the atom of interest. Type 2 & a OW to specify the oxygen 
atom in water. Then enter q to exit. 

 l. Calculate the radial distribution function with g_rdf –n index.ndx. You will be 
asked to specify two groups. Since we are interested in the water oxygen atoms, 
choose “3” twice. The results are in rdf.xvg. 

Water Box 

 a. Make a new folder and name it waterbox 
 b. Copy the topol.top and grompp.mdp files from the lipid directory into the water-

box directory. 
 c. We need to make a new configuration file that contains only water molecules. 

Type genbox -cs -box 6.41840 6.44350 2.67 –o conf.gro. This creates a box of 
3652 water molecules, where the x and the y box lengths are the same as those in 
the lipid simulation conf.gro file. 

 d. In the topol.top file, delete the line that says “DPPC 128” and change the number 
of water molecules to 3652. 

 e. Run the grompp and mdrun commands. 
 f. Make a new index file with make_ndx –f conf.gro –o index.ndx. A prompt will 

open and ask you to specify the atom of interest. Type 1 & a OW to specify the 
oxygen atom in water. Then enter q to exit. 

 g. Calculate the radial distribution function with g_rdf –n index.ndx. You will be 
asked to specify two groups. Since we are interested in the water oxygen atoms, 
choose “2” twice. 

Exercise 2.1 

Plot the resulting radial distribution functions (RDFs) on the same graph. Discuss the differ-
ences between the resulting RDFs from the two systems. Are the water molecules more or less 
ordered near the surface? How would the RDF differ if we simulated water molecules near a 
smooth surface rather than a bilayer? Based on the definition of an RDF, why do the RDF val-
ues approach 1 with an increase in molecular distance? 

You can now repeat the steps for the POPA layer discussed in this chapter in detail. The 
necessary configuration/topology files can be found at: 

<http://www.chms.ucdavis.edu/research/web/faller/downloads.html>.
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FURTHER STUDY 

Molecular Dynamics and Other Modeling Techniques in General 

Allen MP, Tildesley DJ. 1987. Computer simulation of liquids. Oxford: Clarendon Press. 
Frenkel D, Smit B. 1996. Understanding molecular simulation: from basic algorithms to applications. San Diego: 

Academic Press. 
Leach A. 1997. Molecular modelling: principles and applications. Essex: Addison Wesley. 

Specific Software Packages and Force Fields 

Gromos/Gromacs

van Gunsteren WF, Billeter SR, Eising AA, Hünenberger P, Krüger AE, Mark WRP, Scott AE, Tironi IG. 1996. 
Biomolecular simulation: the GROMOS manual and user guide. Zürich: Vdf. 

Lindahl E, Hess B, van der Spoel D. 2001. GROMACS 3.0: a package for molecular simulation and trajectory analy-
sis. J Mol Model 7(8):306–317.

Hess B, Kutzner C, van der Spoel D, Lindahl E. 2008. GROMACS 4: algorithms for highly efficient, load-balanced, 
and scalable molecular simulation. J Chem Theor Comput 4(3):435–447. 

Charmm

Brooks BR, Bruccoleri RE, Olafson DJ, States DJ, Swaminathan S, Karplus M. 1983. CHARMM: a program for 
macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217.

MacKerel Jr AD, Brooks III CL, Nilsson L, Roux B, Won Y, Karplus M. 1998. CHARMM: the energy function and 
its parameterization with an overview of the program. In The Encyclopedia of Computational Chemistry, Vol. 
1, pp. 271–277. Ed. PvR Schleyer. Chichester: John Wiley & Sons. 

Amber

Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Koll-
man PA. 1995. A second generation force field for the simulation of proteins, nucleic acids, and organic mole-
cules. J Am Chem Soc 117(19):5179–5197.
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