
Chapter 1

Readme.doc – definitions
you need to know

Sample data

We used a sample set of data and a sample cube in order to produce the
screen shots that appear in this chapter. However, the cube was created
just to provide the screen shots and has very little merit as a real cube so we
haven’t, therefore, included it on the CD-ROM.

Italics

One of the problems inherent in writing a book like this is the need to tread
a thin line between defining terms in a readable way and ensuring that we
are as precise as possible. Sometimes we’ve tried to do this by giving a
general overview of a term and then giving a more formal definition. At
other times, we have felt that even a general description needs to be quali-
fied. In those cases we have often put the further qualifications in italics.
Anything that you find in italics can be read as an aside to the main discus-
sion and it should be possible to skip the italics on your first read through
and still get the overall picture.

� In fact, this applies as a general rule throughout the book. The comments in italics
are asides to the general information.

Introduction

We are going to use this chapter to define many of the terms that are used
in MDX. These will include:

1

�

• Dimensions
• Measures
• Members
• Cells
• Hierarchies
• Aggregations
• Levels
• Tuples
• Sets
• Member Properties

We briefly considered creating a glossary and defining each term individu-
ally, but it is difficult to maintain a sense of context in a glossary because all
of the entries have to stand alone. So instead we will describe the factors
that affect how a cube is constructed and use that to introduce the defini-
tions as we go along.

If you have been building OLAP cubes for any length of time, the defini-
tions of the first few terms are likely to be already firmly embedded into
your brain. If so, simply fast forward until you hit one that you don’t know.
If that means you end up jumping to Chapter 2, that’s fine.

What happens if you aren’t familiar with the terms? Well, the obvious answer
is to read through this entire chapter, making sure that you understand all the
terms before moving on to the actual coding. That works fine for some people
but it can work really badly for others. The ‘others’ are those who want to get
started, now! They want to feel a keyboard working under their finger tips.
They want to type code in, try it, see it fail, modify it, try it again, get it
working. If they then hit a term that they don’t understand, they are happy to
divert for a little background reading. We’ve written this chapter, therefore,
assuming that it will be read from beginning to end. But we’ve also tried to
write it in a reasonably modular way so that you can jump straight to Chapter
2 and get started and flip back when you need a definition. The terms appear
in the order listed above and there are headings to guide you, so you can scan
through the chapter until you see the one you want.

Dimensions, measures, members and cells

OLAP cubes are stores of multi-dimensional data. MDX is all about manip-
ulating OLAP cubes so in order to understand why MDX works in the way
it does, it is an excellent idea to get a firm grip on the way in which
multi-dimensional data is described, stored and defined.

2

1 Readme.doc – definitions you need to know

An OLAP cube is made up of Dimensions and Measures. In the figure
below, there are two dimensions, Time and Product. The Product dimen-
sion has four Members – Sardines, Anchovies, Herrings and Pilchards.
The Time dimension also happens to have four members (April to July).
There is one measure, UnitsSold, which is simply the number of cans of
each product sold in each month.

For this two-dimensional ‘cube’ you can think of the members of the
product dimension as being the labels for the columns of a worksheet. The
members of the time dimension then form the labels of the rows and the
values of the measure appear in the Cells.

UnitsSold
Product

Time Sardines Anchovies Herrings Pilchards

April 16 23 12 4

May 14 12 23 6

June 34 19 19 8

July 17 22 14 4

You can, of course, reverse the rows and columns without disrupting the
meaning of the data.

UnitsSold
Time

Product April May June July

Sardines 16 14 34 17

Anchovies 23 12 19 22

Herrings 12 23 19 14

Pilchards 4 6 8 4

Clearly, each cell can be described in terms of one member from each dimen-
sion – thus we can see that the number of anchovies sold in June was 19. We
could say more formally that each value for the measure UnitsSold occurs at
a unique intersection between two members from the different dimensions.

� Expressing it in this way imparts exactly the same information, you just get more
street cred. for knowing the jargon.

It is easy for humans to visualize a cube like this that consists of two dimen-
sions and a single measure. There is no reason, however, why a cube
should be limited to one measure. As well as the unit sales figures shown

3

1 Readme.doc – definitions you need to know

�

above, you might also want to store, say, profit. There are several ways in
which we can represent (and you can visualize) this. You might be happy
picturing it like this:

UnitsSold/Profit
Product

Time Sardines Anchovies Herrings Pilchards

April 16 $40.00 23 $78.20 12 $23.88 4 $8.20

May 14 $35.00 12 $40.80 23 $45.77 6 $12.30

June 34 $85.00 19 $64.60 19 $37.81 8 $16.40

July 17 $42.50 22 $74.80 14 $27.86 4 $8.20

with the UnitsSold figure occupying the left of the cell and the profit occu-
pying the right.

Alternatively, you could think of each measure represented by a single
worksheet in a spreadsheet application, so you end up with a stack of
sheets showing the same dimensions but different measures, like this:

UnitsSold
Product

Time Sardines Anchovies Herrings Pilchards

April 16 23 12 4

May 14 12 23 6

June 34 19 19 8

July 17 22 14 4

Profit
Product

Time Sardines Anchovies Herrings Pilchards

April $40.00 $78.20 $23.88 $8.20

May $35.00 $40.80 $45.77 $12.30

June $85.00 $64.60 $37.81 $16.40

July $42.50 $74.80 $27.86 $8.20

The way you choose doesn’t matter too much; the important thing is to
understand that a cube can have multiple measures – within reason as
many as you want.

� OK, so you want exact figures. A cube in Analysis Services can have up to 1,024
measures. For the record it can also have up to 128 dimensions, each with poten-
tially thousands or millions of members.

4

1 Readme.doc – definitions you need to know

�

As well as multiple measures, cubes can also have more than two dimen-
sions. Suppose that our company has multiple stores and we want to see
the UnitsSold figures broken down for individual stores. No problem, we
just add another dimension, called Store, to contain the information about
our outlets, looking like this:

(We’ve cut back to a single measure for this cube, just to keep the diagram
relatively simple.)

The cell that’s highlighted in the cube above sits at an intersection of the
cube’s three axes and each axis represents a dimension. The shaded cell
lines up with anchovies from the Product dimension (the x axis), May from
the Time dimension (the y axis) and Boston from the Store dimension (the z
axis). The value that we would find in this cell tells us the number of ancho-
vies sold in May in our Boston store.

Visualizing three dimensions is also relatively easy; we live in a
three-dimensional world and so we’re quite good at three-dimensional
concepts. However, OLAP cubes can have many more dimensions.

In our example, there could be an Employee dimension to tell us which
member of staff made the sales, and a Customer dimension indicating to
whom the sales were made. That’s five dimensions already. This is a good
time to stop trying the visualizations: mental pictures of two- and
three-dimensional data are excellent for building a basic understanding of
what OLAP cubes are all about but once we exceed three dimensions, it’s
much easier to rely on words rather than pictures.

5

1 Readme.doc – definitions you need to know

Talking about values in a five-dimensional cube turns out to be perfectly
straightforward: in May, our man Steve in the Boston store sold five cans of
anchovies to Katie for a profit of $12.50. In that simple sentence we used all
five dimensions (Time, Employee, Store, Product and Customer). We also
slipped in not one but two measures: UnitsSold (five cans of anchovies)
and Profit ($12.50).

However, as long as we keep the number of dimensions and measures
down to reasonable levels for the rest of this chapter, diagrams are still
really useful to help explain the terms used in OLAP cubes and hence in
MDX.

Cranking up the complexity

So far we have built up a set of words (Dimensions, Measures, Members,
Cells) and definitions that allow us to describe simple OLAP cubes. Do we
have to make it any more complex? Yes, because this is still too simple a
model for the sort of analysis that business users actually want to achieve.
Analysts and business people typically want to query their data in much
more complex ways and so OLAP cubes have to be capable of handling
that complexity. For instance, UnitsSold totals for each month of trading
might be required, or totals for each quarter of the current year, or even
totals for each year.

6

1 Readme.doc – definitions you need to know

Our current level of complexity can’t do this because it only caters for one
unit type of member in each dimension – for example, we can only repre-
sent months in the time dimension. In order to give users rapid access to
data totaled in this way, these quarterly and yearly totals need to be stored
in the OLAP cube as well. This in turn means that we need to handle some
of the dimensions as what are called hierarchies.

7

1 Readme.doc – definitions you need to know

Hierarchies and aggregations

While there is no obligation for all dimensions in a cube to be hierarchical,
experience suggests that many are in practice. Most cubes have a time
dimension, for example, and time is almost always hierarchical.

We can imagine the different totals – those for each year, each quarter and
each month – being held in worksheet-like grids. The total item UnitsSold
for each year for, say, the Boston store might look like this:

UnitsSold
Product

Time Sardines Anchovies Herrings Pilchards

Year 2000 242 199 196 65

2001 232 201 219 75

2002 294 214 209 86

and for quarter, like this:

UnitsSold
Product

Time Sardines Anchovies Herrings Pilchards

Quarter Q1 61 36 58 21

Q2 64 54 54 18

Q3 45 59 33 12

Q4 72 50 51 14

and like this for each month:

UnitsSold
Product

Time Sardines Anchovies Herrings Pilchards

Month April 16 23 12 4

May 14 12 23 6

June 34 19 19 8

July 17 22 14 4

8

1 Readme.doc – definitions you need to know

We could also represent these values in a rather more complex grid like
this:

Sardines Anchovies

2000 Q3 July 17 22

Aug 16 18

Sept 12 19

Q3 total 45 59

2000 Q4 Oct 27 19

Nov 24 19

Dec 21 12

Q4 total 72 50

2000
total

242 199

These representations of what is going on inside a cube are, as you can see,
storing values derived by adding up, or aggregating, the original data in
the cube. In practice, aggregations are not the only values that can be calcu-
lated from the original data – for example, a cube can also hold values
expressed as percentages. However, no matter how they are calculated,
such values are usually referred to as aggregations.

� In fact, the term aggregation is very useful when discussing cubes, but it isn’t one
that is directly used in MDX. Aggregations are just an optimization that the under-
lying storage engine uses to speed up the response of the cube. The presence or ab-
sence of aggregations doesn’t change any of the results of MDX expressions or
queries.

In order to help us discuss hierarchies, it is useful to introduce the term
Level.

9

1 Readme.doc – definitions you need to know

�

Levels

Staying with a Time dimension, its hierarchy might look like this:

(In order to keep the diagram readable, only some of the members of the
month level are shown.)

Just as ogres have layers (see Shrek), hierarchies have levels. In the example
above, the Time dimension has four levels: All, Year, Quarter and Month.
Year, Quarter and Month are just as you’d expect and All is simply a handy
way of answering questions like “what is the total number of items sold for
the period covered by data in the cube?” Most hierarchical dimensions
have an All level at the top.

The top of a hierarchy is always the level that encompasses the greatest
amount of information in the smallest number of members. Thus All is at
the top of the hierarchy and you read ‘down’ that hierarchy to Month at the
bottom. Or you can start with Month at the bottom (or ‘leaf’ level) and read
‘up’ to All at the top.

The leaf level is the level that’s at the bottom of a branch of the hierarchy,
and the term leaf node is used to mean a member of that leaf level. The leaf
analogy comes from the branching, tree-like shape of a hierarchy, albeit a
tree that’s upside-down.

Levels have members, and a member is a single item in a dimension. It will
sit at one of the levels in the dimension’s hierarchy. To continue with the
Time dimension example, at the Year level, you might have members called
2000, 2001 and 2002. At the Quarter level, there are likely to be members
called something like Q1, Q2 and so on.

10

1 Readme.doc – definitions you need to know

As we’ve said, most dimensions are hierarchical – take the Store dimen-
sion, for example. Stores could be grouped together into states so that
analysis can be performed between individual stores and also between
different states.

Naming conventions

Now we know that there are levels in a hierarchy and that each level has a
descriptive name, like All, State and Location in the diagram above. We
also know that each level contains members: Seattle and Leominster are
members of the Location level. What good does this information do us?
Well, once we start writing MDX code, we’ll need a way of identifying
precisely the specific members with which we want the code to work.

The most obvious way to identify a member is to start with the name of the
dimension and work downwards, specifying the members at each level in
the hierarchy until we reach required member. Working with the Store di-
mension shown in the diagram above, we’d indicate the Leominster mem-
ber like this:

[Store].[All].[Massachusetts].[Leominster]

This is, in fact, the method we will be using almost everywhere in this book.
It has the advantage of precision which outweighs its tendency towards
the verbose.

There is a temptation, however, to take short cuts with these long path
names. It’s clear that in our simple example above, we could use just the di-
mension name and then go straight to the name of the member we want,
like this:

[Store].[Leominster]

to point unequivocally to the Leominster member. This works here, but
such short cuts will only work with certain data and with certain naming
conventions.

11

1 Readme.doc – definitions you need to know

If you look back at the diagram that shows the hierarchy of the Time dimen-
sion, you’ll see that there will be two Octobers, one in 2000 and one in 2001.
Here we couldn’t take a short cut like:

[Time].[October]

and be sure we were pointing to exactly the right member.

With some dimensions it is relatively easy to impose a naming convention
that uses unique member names and is therefore amenable to the use of
short cuts. For example, the Time dimension could be re-structured so that
the members at the Quarter level were called 2000-Q1, 2001-Q2 and so on,
and the members at the Month level were called October-2000, May-2001
etc. The gain is that you can then reference them simply by dimension
name and unique member name:

[Time].[June-2001]

rather than:

[Time].[All].[2001].[Q2].[June].

� This works because we can control how Time is named. You can easily be caught out
by other data because there are cases where even full path names don’t help. For ex-
ample, suppose that you discover that there are two places called Leominster in the
state of Massachusetts. In that case even a full path name:

[Store].[All].[Massachusetts].[Leominster]

wouldn’t distinguish between them.

This type of duplication is all too frequent in real data. English counties (which are
far smaller than US states) are littered with duplicates: there are two places called
Ashton in Cornwall, for example.

In order to solve this problem Analysis Services provides a means of identifying
members by means of their ‘member keys’ rather than by their member names –
there’s more about this in Chapter 14.

It is worth noting that, despite appearances, client tools such as ProClarity,
Excel etc. don't themselves ever create the names of the members that they
subsequently use in the MDX expressions or queries that they generate. In
fact, these tools are explicitly warned not to do so by the OLEDB for OLAP
specification. Instead, the server generates the unique names for them, and
it has all kinds of rules about how it can do this. Sometimes the server will
generate a name of the type that we have already discussed here –
dimension.name.name.name. For example:

[Store].[All].[Washington].[Tacoma]

12

1 Readme.doc – definitions you need to know

�

However, it can also be in the form dimension.level.name, for example:

[Store].[Location].[Tacoma]

or even sometimes something completely different. As far as the tools are
concerned, they never try to make sense out of the names. Instead they let
the user click the objects they want in the interface and the tool uses the
names it has been given for those objects to generate the MDX that is then
sent back to the server as a query or an expression. Hand-written MDX, on
the other hand, can use whatever the person writing it feels like at the time.
As a general rule we recommend using fully qualified names, such as
dimension.name.name.name.name .

Tuples and sets

We need to define these terms accurately because they are of fundamental
importance to an understanding of MDX. In later chapters you are going to
meet expressions and functions that require you to give them, very specifi-
cally, a set or a tuple. However, we are quite well aware that defining the
terms ‘Tuple’ and ‘Set’ has caused problems in the past, at least with refer-
ence to MDX.

Part of the problem is that, although these terms can be defined very accu-
rately and succinctly in mathematical terms, defining them in more human
terms tends to lead to very impenetrable definitions. This is because
human language is so imprecise when compared to mathematics.

What we are going to do is to define them several times. The first defini-
tions won’t be totally accurate but will hopefully give a good feel for the
important distinctions between tuples and sets. Then we’ll add some more
information and use examples to fill in some of the finer detail.

13

1 Readme.doc – definitions you need to know

Tuples

� We’ll go back to the simple three-dimensional model with a single measure that we
used earlier.

The highlighted cell sits at an intersection of the cube’s three axes and each
axis represents a dimension. The cell lines up with Anchovies from the
Product dimension (the x axis), May from the Time dimension (the y axis)
and Boston from the Store dimension (the z axis). The value that we would
find in this cell tells us the number of anchovies sold in May in our Boston
store.

We can express this description of the cell more neatly in pseudo-MDX as:

([Product].[Anchovies],[Time].[May],[Store].[Boston])

Here we are using the names of three members to point to the cell. In fact,
the order in which we list the members is immaterial; we could equally well
point to the cell like this:

([Product].[Anchovies],[Store].[Boston],[Time].[May])

Either way, we have a precise and unequivocal description of the location
of the cell in the OLAP cube. In essence what we have done here is to iden-
tify a cell using its co-ordinates. The co-ordinates are members – one taken
from each of the three dimensions. The name for this collection of co-ordi-
nates is a tuple.

14

1 Readme.doc – definitions you need to know

�

It is important to distinguish here between the tuple and the cell contents.
One way to do so is to try to find an analogy from a more familiar system – a
spreadsheet.

In this worksheet, cell C4 contains the value 44. The value is located at the
intersection of C and 4. So 44 is the value that the cell contains and “C4” is
the spreadsheet equivalent of a tuple in an OLAP cube.

� So how are you supposed to pronounce ‘tuple’? Answer – whatever. Arguments
rumble on as to whether it rhymes with couple or pupil. It’s possible that the former
is more common in the US and the latter favored in the UK. The Brits would argue
that, if it rhymes with couple, it should be spelt tupple. The Americans would coun-
ter with “OK, but if it rhymes with pupil, why isn’t it spelt tupil?” In my opinion
the only certainty is that anyone both loud and confident about the ‘correct’ pronun-
ciation is wrong.

Since a tuple points to a single cell, it follows inexorably that each member
in the tuple has to be from a different dimension. To put that another way,
you can never have a tuple which has two or more members taken from a
single dimension. Why not? Well, if you do, it is inevitable that the ‘tuple’
that you create will end up pointing to more than one cell. For example:

(([Product].[Anchovies],[Time].[May],[Store].[Boston]),
([Product].[Sardines],[Time].[May],[Store].[Boston]))

has two members from the Product dimension and therefore can’t be a
tuple because it is pointing to more than one cell, as the following diagram
shows.

15

1 Readme.doc – definitions you need to know

�

So a first definition of a tuple could be:

A tuple is the intersection of one (and only one) member taken from each of the di-
mensions in the cube. A tuple identifies a single cell in the multi-dimensional
matrix.

Sets

Given the above definition of a tuple, a set becomes very easy to define
because a set is simply a collection of tuples which have been defined using
the same dimensions.

What do we mean by ‘defined using the same dimensions’? Well, take
these two tuples.

([Product].[Anchovies],[Time].[May],[Store].[Boston])
([Product].[Sardines],[Time].[May],[Store].[Boston])

Both have exactly one member from the Time, Store and Product dimen-
sions, so they have been defined using the same dimensions.

� In fact, we can say that they have the same ‘dimensionality’.

16

1 Readme.doc – definitions you need to know

�

So these two tuples, taken together, form a set. Although we go into the ex-
act syntax in Chapter 4, it is worth knowing at this point that in practice, the
set has to be wrapped up in curly braces like this:

{([Product].[Anchovies],[Time].[May],[Store].[Boston]),
([Product].[Sardines],[Time].[May],[Store].[Boston])}

So we can define a set like this:

A set is a collection of tuples with the same dimensionality.

In essence this definition is saying that a set is simply a collection of tuples;
nothing too complicated there. However, in the interests of accuracy we
need to extend the definition slightly because, as it stands, this definition
implies that a set always has to contain two or more tuples. While that is
often the case, it is also true that the collection of tuples in a set can also be
one tuple or even zero tuples.

This may sound weird at first. You may want to ask “But if a set contains
only a single tuple, doesn’t that make the set a tuple?” You might even
want to ask “How can a set possibly contain no tuples?” These are both fair
questions.

The answer is that one of the reasons for defining sets in the first place is
that some MDX expressions are built to expect multiple tuples. For
example, there is a function called AVG (which appears in Chapter 7) which
will work out averages for you. Clearly, you usually want to average more
than one value so the AVG function expects to be passed a set rather than a
tuple (in fact, it demands to be passed a set). However, we also want it to
work under conditions when it is passed a tuple (which will point to a
single cell) and even when it is passed an empty set. So the function is
designed to expect a set, and a set is defined as being a collection of zero,
one or more tuples. This means that our first definition can be extended to
read as follows:

A set is a collection of tuples with the same dimensionality. It may have more than
one tuple, but it can also have only one tuple, or even have zero tuples, in which case
it is an empty set.

So, to summarize so far:

• A tuple points to a single cell, and cannot include more than one member
from any particular dimension.

• A set is a collection of tuples.

17

1 Readme.doc – definitions you need to know

Exploring the differences between tuples and sets

OK, given the definitions that we currently have, and bearing in mind that
we are still using pseudo MDX, is the following a tuple or a set?

([Time].[May], [Store].[Boston], [Product].[Anchovies])

Answer – a tuple.

OK, now what about these two?

1 ([Store].[Boston], [Product].[Anchovies])

2 {([Time].[April], [Store].[Boston], [Product].[Anchovies]),
([Time].[May], [Store].[Boston], [Product].[Anchovies]),
([Time].[June], [Store].[Boston], [Product].[Anchovies]),
([Time].[July], [Store].[Boston], [Product].[Anchovies])}

Well, one big clue is that we have wrapped curly braces around the second
one, but ignoring those briefly, it is worth trying to work out in your own
mind the differences and similarities between these two.

We could argue that both are pointing to the same collection of cells in the
cube:

The first statement:

([Store].[Boston], [Product].[Anchovies])

is made up of two members, one from the Store dimension and the other
from the Product dimension. Since it doesn’t give us any information about
the third dimension, we will (for the present) assume no restriction for that
dimension.

18

1 Readme.doc – definitions you need to know

The second statement:

{([Time].[April], [Store].[Boston], [Product].[Anchovies]),
([Time].[May], [Store].[Boston], [Product].[Anchovies]),
([Time].[June], [Store].[Boston], [Product].[Anchovies]),
([Time].[July], [Store].[Boston], [Product].[Anchovies])}

actively points to the four cells shown above.

So, as we have said, the two appear to be pointing to the same set of cells.
However, the first statement is a tuple, the second is a set. How can we be
so sure?

Well, the second statement is clearly a set because even our simple defini-
tion of set tells us that “A set is a collection of tuples with the same
dimensionality”. This statement has four tuples. Each of these four tuples
has exactly one member from the Time, Store and Product dimensions, so
these tuples have the same dimensionality. Therefore it is clearly a set.

The first statement conforms to part of the definition of a tuple, the bit that
reads “A tuple is the intersection of several members each taken from a
different dimension in the cube.”

It describes the intersection of two members and each is taken from a
different dimension. However, it appears to be failing the first part of our
definition, the bit about “A tuple always identifies a single cell in the multi-
dimensional matrix.” But appearances can be deceptive!

And this is crunch time, this is where people have trouble with the defini-
tion of a tuple. So, let’s be quite clear about what we are trying to say. This:

([Store].[Boston], [Product].[Anchovies])

is a tuple. The over-riding reason that we know it is a tuple is because it
doesn’t use more than one member from the same dimension. This may
sound like a very fine distinction, but it isn’t.

19

1 Readme.doc – definitions you need to know

Think about it this way. Suppose that you have a three-dimensional cube
like this:

You then define one member from a dimension, say:

([Product].[Anchovies])

With that one statement you have trimmed the cube down to this:

20

1 Readme.doc – definitions you need to know

Adding another member from another dimension further trims the cube:

([Product].[Anchovies],[Store].[Boston])

Each time you add another member from another dimension you are
further refining what you want from the cube and, if you choose enough
members, each from a different dimension, you will inevitably end up with
a single cell.

Now suppose that we start off with this:

([Store].[Boston], [Store].[Seattle])

21

1 Readme.doc – definitions you need to know

Once again we have only used a single dimension to restrict the cells in
which we are interested, but already we are inevitably committed to
ending up with a set rather than a tuple, and the reason why that is so is
hopefully becoming clearer. No matter what members we use from the
other dimensions, and even if we use members from every available
dimension, we are going to end up with more than one cell because we
started with more than one member from a given dimension.

So even if we restrict this with one member from each of the other two
dimensions:

([Store].[Boston], [Store].[Seattle],([Time].[April],
[Product].[Anchovies])

we still end up with two cells:

So, as we said earlier, this:

([Store].[Boston], [Product].[Anchovies])

is a tuple. We know it is a tuple, not because it currently points to a single
cell, but because it doesn’t use more than one member from the same di-
mension and therefore has the potential to point to a single cell.

22

1 Readme.doc – definitions you need to know

Tuples don’t have to use a member from every
dimension

Now, in case this is making it all sound too complicated, we haven’t actu-
ally changed the original definition of tuple very much. Initially we said:

A tuple is the intersection of one (and only one) member taken from each of the di-
mensions in the cube. A tuple identifies a single cell in the multi-dimensional
matrix.

This definition assumes that we are defining a tuple using one member
from every dimension. If we do use one member from every dimension it is
inevitable that our tuple will identify just one single cell. But we don’t have
to use a member from every dimension.

So now we are refining that definition to read as:

A tuple is the intersection of one (and only one) member taken from one or several of
the dimensions in the cube. A tuple identifies (or has the potential to identify) a sin-
gle cell in the multi-dimensional matrix.

We are sticking to the original point that a tuple is always defined by a
single member from any given dimension; all we are dropping is the
requirement that you have to use each and every dimension to define the
tuple.

So the following are all tuples:

[Product].[Anchovies],[Time].[May],[Store].[Boston]
[Product].[Anchovies],[Time].[May]
[Product].[Anchovies]
[Time].[May]
[Product].[Anchovies],[Store].[Boston]

But do these tuples still point to a single cell?

Yes, because all dimensions have what can be considered to be a ‘default
member’. So if in an MDX query you don’t specify a member for a partic-
ular dimension, then the default member for that dimension is implied.

So, if this tuple were used in a query:

([Store].[Boston], [Product].[Anchovies])

a ‘default member’ will be used from each of the missing dimensions, effec-
tively turning the tuple into something like this:

([Store].[Boston], [Product].[Anchovies],[Time].[May])

to ensure that the tuple does point to a single cell.

23

1 Readme.doc – definitions you need to know

� So, where does the ‘default member’ come from? In practice, MDX will use the
so-called current member (which may also be the default member if the user has not
sliced the data). We only mention this here for completeness; when we introduce
queries and expressions in later chapters, this will hopefully make more sense.

The take-home message from all of this is that you often don’t have to use a
member from every dimension when specifying a tuple.

Tuples and hierarchies

Next, it is worth discussing how tuples work with hierarchies.

Suppose that our cube has a hierarchical structure for Time. We have levels
called Month, Quarter and Year and we have data for the years 1999, 2000
and 2001.

Is a pseudo-MDX expression like this:

([Product].[Anchovies],[Store].[Boston],[Time].[2000])

still a tuple? The acid test is “Does it still point to a single cell?” The answer
is that it does because we have an aggregation member called 2000 and so
somewhere in the cube there will be a single cell that holds the value for the
total number of anchovies sold in Boston during the year 2000.

� You may well be aware that when you create a real cube not all of the aggregations
are necessarily pre-calculated. So you might begin to think “If the aggregation has
not been pre-calculated, does this affect whether this is a tuple?” Again it is a good
question; the answer is that this is still a tuple. Think of it this way. In MDX a cell is
considered to be an intersection of a set of co-ordinates, not a physical object. There-
fore aggregated cells always exist, because the intersections of the co-ordinates al-
ways exist. Some cells will be materialized (that is they will already have been
calculated and stored) and some cells will have to be computed on the fly, but they al-
ways exist as far as MDX is concerned.

Sometimes measures behave like dimensions

What happens if we have essentially the same cube but with three
measures, say UnitsSold, Profit and Price? Well, it doesn’t make too
much difference because the measures are going to act, in this case, pretty
much like a dimension with three members.

24

1 Readme.doc – definitions you need to know

�

�

So, we can specify the measure we want in just the same way as we specify
a member from a dimension:

([Product].[Anchovies],[Store].[Boston],[Time].[May],
[Measures].[Profit])

Again, if you don’t specify the measure, the expression will use the default
measure (these are discussed at the end of Chapter 10).

So be aware that sometimes you’ll hear people talking about measures as if
they are dimensions. For example, “Try that query again, but this time use
the UnitsSold member from the measures dimension.” This is perfectly
normal and, when you think about it, makes perfect sense. In fact, it
explains why some of the GUI tools used to manipulate OLAP cubes show
the measures as just another dimension.

Tuples revisited

So, hopefully, we’ve managed to convince you that a tuple is a relatively
easy concept but just for completeness, here is a more formal definition.

A tuple is defined as an intersection of exactly a single member from each dimension
(hierarchy) in the cube. For each dimension (hierarchy) that is not explicitly refer-
enced, the current member is implicitly added to the tuple definition. A tuple always
identifies (or has the potential to identify) a single cell in the multi-dimensional ma-
trix. That could be an aggregate or a leaf level cell, but nevertheless one cell and only
one cell is ever implied by a tuple.

Sets revisited

Our earlier definition of set:

A set is a collection of tuples with the same dimensionality. It may have more than
one tuple, but it can also have only one tuple, or even have zero tuples, in which case
it is an empty set.

still stands up to reasonable scrutiny.

Measures revisited

As we said when talking about tuples, there are times when we treat
measures as if they were dimensions, and this is perfectly valid. However,

25

1 Readme.doc – definitions you need to know

in case this leaves you with the impression that there is no difference, it
seems worth stressing how measures and dimensions do differ.

For a start, measures are frequently numerical and, equally frequently,
those numbers are continuously variable (they can contain any possible
numerical value between two limits). Sales figures, prices, gross profit – all
these values come from a continuously variable range of numbers.

Measures have special properties attached to them, for example Data Type,
Format String etc.

Finally, measures are not hierarchical.

Dimensions, on the other hand, are typically character-based and the
values they contain are often discontinuously variable (the level Year can
contain 2001 and 1999 but not 1999.5).

Member properties

So, is all continuously variable data likely to end up as a measure? In the
main, the answer is ‘yes’, but keep an eye out for exceptions. There are
some pieces of data that look at first glance like just the sort of data you’d
store as a measure. Take a value such as the floor area of each store: each
value will be continuously variable and numeric, so it’s a measure, right?
Well, no.

Think about a measure – it is stored at the intersection of the members of
the dimensions in the cube. Suppose that the Boston store has a floor area
of 21,000 sq. ft. If we enter this as a measure, at the intersection of Boston, Q1
and Anchovies we’ll have a value of 21,000. At the intersection of Boston, Q2
and Anchovies we’ll find the value 21,000. And at Boston, Q3, Herrings...
we’ll find... err... 21,000 again. In other words, the value we have for floor
area doesn't depend at all on the Time dimension or on the Product dimen-
sion. But measures are supposed to depend on all of the dimensions. So the
bottom line is that a measure is not the appropriate place to store data like a
store's floor area, nor for any data that depends upon the member in only
one dimension for its value.

26

1 Readme.doc – definitions you need to know

What do we do instead? Members have Properties and the role of a prop-
erty is to hold information about a member. Our floor area data fits into this
category beautifully: it is information about one particular member. In this
case, each member is a store and each store's floor area is a piece of informa-
tion that has relevance only to that particular store.

Summary

If you are new to this whole dimensional data business, there's a great deal
of new information here so a quick summary of the main points that we've
covered may help.

Data in an OLAP cube is organized into dimensions and measures:

UnitsSold
Product

Time Sardines Anchovies Herrings Pilchards

April 16 23 12 4

May 14 12 23 6

June 34 19 19 8

July 17 22 14 4

This simple cube has two dimensions – Product and Time. Both have four
members and there is one measure – UnitsSold; so the cube has 16 cells.

The members of a dimension can be (and often are) organized into hierar-
chies; for example, time may be organized into several levels such as
months, quarters and years. A cell which was the intersection of, say,
Sardines and Quarter2 would contain the aggregated values for sardines
from April, May and June.

We need to extract subsets of data from OLAP cubes and for this we use
either tuples or sets. A tuple is the intersection of one or more members,
each of which is taken from a different dimension in a cube. A tuple always
identifies a single cell in the multi-dimensional matrix.

A set is a collection of tuples. That collection is usually composed of
multiple tuples but can be made up of one or even zero tuples. So, in prac-
tice, a set can identify zero, one or more cells in the multi-dimensional
matrix.

We sometimes want to store additional data in an OLAP cube but we find
that it can’t be stored as a measure because it cannot logically be placed at
the intersection of all the dimensions. Instead it logically relates to

27

1 Readme.doc – definitions you need to know

members of a single dimension. For example, the floor area of a store
depends simply upon which store we are considering, it doesn't depend
upon the month, nor on the product. Such information isn't stored as a
measure; it is stored as a member property of the appropriate member.

28

1 Readme.doc – definitions you need to know

