
 

Chapter 2. Mathematical Modeling and Computer 
Simulation 

Once upon a time, man started to use models in his practical activity.  Modeling   
continues to play a very important role in studying natural phenomena and processes 
as well as helping to create modern engineering systems. Additionally, modeling is 
used in biology and medicine to find the mechanisms of function and malfunction 
concerning the organs of living organisms at both the micro and macro level. 

Generally, a model has been defined [1] as the reconstruction of something found 
or created in the real world, a simplified representation of a more complex form, 
process, or idea, which may enhance understanding and facilitate prediction. The 
object of the model is called the original, or prototype system.  

The model and the original may have the same physical nature; such models are 
called physical models. Correct physical models must satisfy the criteria of 
similarity, which include not only the conditions of geometrical similarity but also 
similarity of other characteristics (for example: temperature, strength of 
electromagnetic field, etc.). Physical models have been widely used in engineering 
and biomedicine. Examples include the testing of various civil constructions for 
seismic stability, testing the aero-dynamic characteristics of new aircraft and rockets 
in wind tunnels, and experimental studies on animals (organ, tissue, and cell) 
considered as a prototypes for human beings. 

However, in scientific research this type of modeling studies is complemented 
with another modeling approach, which is based on the development of 
mathematical descriptions of the behavior of the prototype system under 
investigation.  These descriptions are called mathematical models. The results are 
expected to be obtained by using existing mathematical methods (which give the 
solution in closed form mostly for very simplified cases) or by computer simulation 
using powerful serial or parallel supercomputers.  

In this chapter we present definitions and terminology, classification of 
mathematical models, general assumptions accepted in mathematical modeling, and 
some considerations about mathematical models of direct analogy (see also 
Appendix) and computer simulations. 

2.1. Mathematical modeling 

The place of mathematical modeling among the other methods of scientific 
investigation [2] is shown schematically in Fig. 1. 
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Fig. 1  Schematic representation of different modeling approaches 

Mathematical models represent a mathematical description of the original, based 
on known general laws of nature (First Principles) and experimental data. The well-
known fact that the systems of different physical natures have the same 
mathematical descriptions led to a special type of mathematical models: models of 
direct analogy. The tremendous advancements in computer hardware and software 
stimulated the wide use of mathematical models, especially because most of the new 
problems, particularly in physiology, are nonlinear and, thus, their solutions cannot 
be obtained analytically in closed form.  

Mathematical modeling facilitates the solution of three major problems for a 
prototype system: analysis, synthesis and control. The characteristic of these 
problems (see [3]) is given in Fig. 2 and Table 1. 
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Fig. 2  The cause-and-effect relation between excitation, E, and, response, R as they 

relate to the system S  
 
Problems can be classified according to which two of the items E, S, R are given 

and which is to be found. E represents excitations, S the system, and R the system’s 
responses. 

Table 1. General classification of the problems 

Type of Problem Given To find 

Analysis (direct) E, S R 

Synthesis (design identification) E, R S 

Instrumentation (control) S, R E 

 
The analysis problem is sometimes referred to as the direct problem, whereas the 

synthesis and control problems are termed as inverse problems. A direct problem 
generally has a unique solution. For example, if the Noble mathematical model of 
Purkinje fiber [4] is used, we obtain only one action potential shape in response to a 
specified stimulus for given cell parameters. In contrast, the inverse problem always 
gives an infinite number of solutions. To find a single solution additional conditions 
and constraints must be specified separately.  An example of this is found in the 
modeling of Ca2+ induced Ca2+ release mechanisms from the cardiac cell 
sarcoplasmic reticulum (SR). 

The spectrum of mathematical models can be constructed based on our prior 
knowledge of the prototype system (see Fig. 3 taken from [3] and reflecting the   
situation in the year 1980). The darker the color, the more restricted our knowledge 
about the system, and the more qualitative the simulation results. As our knowledge 
of prototype systems progresses, some parts of this spectrum became brighter and 
the possibility of obtaining quantitative results increases. 
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Fig. 3  Motivations for modeling [3] showing the shift from quantitative models (light end of the 
spectrum) to qualitative models (dark end) 

2.1.1. Deductive, inductive and combined mathematical models 

In cases when there is enough knowledge and insight about the system, the 
deductive approach is used for model formulation. Deduction derives knowledge 
from known principles in order to apply to them to unknown ones; it is reasoning 
from the general to the specific. The deductive models are derived analytically (from 
first principles), and experimental data is used to fill in certain gaps and for 
validation. The alternative to deduction is induction. Generally, induction starts with 
specific information in order to infer something more general. An induction 
approach in biomedicine is fully based on experimental observations and has led to 
the development of numerous phenomenological models (e.g. Wiener and 
Rosenbluth [5], Krinski [6], Moe [7] models of the cardiac cell). In most practical 
modeling situations of the heart processes, both deductive and inductive approaches 
are required. The gate variable equations introduced by Hodjkin-Huxley [8], derived 
from the cell-clamp experiments, are an example of an inductive approach, whereas 
the application of Kirchoff’s law to the current balance through the cell membrane is 
an indicator of the deductive approach used in formulating the action potential 
models for nerve and heart cells. 

Using induction, we must accept the possibility that the model might not be 
unique and its predictions will be less reliable than when the model is purely 
deductive. Consequently, such a model will have less predictive validity; defined as 
the ability of the model to predict the behavior of the original system under 
conditions (inputs) which are different from that used when the model was originally 
formulated. Most of the mathematical models in biology are semi-
phenomenological. This means that part of the model derives from first principles 
(the laws of conservation of matter and energy) and the rest represent the appropriate 
mathematical interpretation of experimental findings. 
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2.1.2. General assumptions used in mathematical modeling                      

Some simplified assumptions of general character are used in formulation of 
mathematical models. These assumptions relate to the general properties of the 
original system or phenomena under investigation: 

 

1. Separability makes it possible to divide the entire system into subsystems and 
study them independently (with the possibility of ignoring some interactions). For 
example, typically AP models do not include cardiac cell metabolic processes. 
Practically, they remain unchanged during the time course of many cardiac cycles 
(changing over different time scales). 

2. Selectivity makes it possible to select some restricted number of stimuli, which 
affect the system. The excitable membrane, for example, can be excited by 
current stimulus, changing the concentration of chemical substances inside the 
cell and changing the cell temperature. 

3. Causality makes it possible to find cause and reason relationships. It is not 
enough to observe that variable ‘y’ always appears after variable ‘x’. There is a 
possibility that they both are the result of the common reason-variable ‘u’. 

2.1.3. Mathematical Models of direct analogy 

Let us consider, as examples, the mathematical models of two prototype systems 
with different physical natures.  The first is an electrical lumped R, L, C circuit and 
the second is a mechanical mass, spring system with damping.  Both are shown in 
Fig. 4. 

The electrical circuit serves here as a mathematical model of direct analogy for 
mechanical systems and vice versa. With the development of powerful computers 
the role of direct analogy models becomes negligibly small. Nevertheless, 
historically, the FitzHugh-Nagumo simplified AP model, which is still widely used 
today [4], was derived for nerve cell study as a direct analogy for the Van der Pol 
equation of relaxation oscillation (see Chapter 5). 

 

 
Fig. 4  Schematic diagram of electrical and mechanical oscillators. 
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 We will assume that the capacitor was initially charged to the voltage Uc (0) = 
Uco and mass m was initially displaced (from the equilibrium position x = 0) by the 
value x(0) = x0 and released with ( ) 0/ 0 ==tdtdx . We also suppose that these 

perturbations are small enough to consider that the parameters of the systems remain 
constant. 

Kirhoff’s law for electrical circuits and Newton’s law for mechanical systems 
give respectively: 

a. Balance of voltages in an electrical circuit: 

   0=++ CRL UUU ;  where: 
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b. Balance of forces in a mechanical system: 
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The coefficients: R/L = 2αe in (1) and kd/m = 2αm in (2) are the damping ratios; 

coefficients 1/LC = (ω0
2)e and ks / m = (ω0

2)m  represent the squares of natural angular 
frequencies for systems (1) and (2) respectively. 

The solutions of (1) and (2) depend on the ratio αe / (ω0)e and mm )/( 0ωα  

correspondingly.  
For initial conditions: 
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Here,  ))( 22
0 eee αωω −=    and        ))( 22

0 mmm αωω −=  

 
If αe = αm and ω0e = ω0m, then Uc (t) / Uc0 = x(t) / x0 (t)  and we can study the 

behavior of a mechanical system using an electrical circuit where it is easier to 
perform the measurements and change the system parameters. 

Using this example it is possible to notice that both systems, when using the 
appropriate initial conditions, are mathematically described by the same differential 
equation: 
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with appropriate initial conditions.                                                                                          
This equation represents the mathematical model for second order linear dynamic 

systems, independently of the physical nature of state variable u. In Table 2 we 
demonstrate the predictive ability of this model. 

Table 2  The predicted behavior of a linear oscillator based on the mathematical model of direct 
analogy 

 αααα > 0 αααα < 0 αααα = 0 

α2 < ω2 Sinusoidal oscillations with 
decreasing amplitude 

Sinusoidal oscillations 
with increasing amplitude 

sinusoidal 
oscillations with 
constant 
amplitude 

α2 > ω2 Aperiodic process with 
decreasing amplitude 

Aperiodic with increasing 
amplitude 

 

2.1.4. Relaxation oscillations 

Van Der Pol [10] discovered relaxation oscillations when he investigated the 
problem of stabilization of the amplitude of a carrier signal generated to broadcast 
radio translations. For this purpose he proposed the introduction of nonlinear 
positive damping proportional to the square of oscillation amplitude in addition to 
negative damping (α<0) in the second order oscillator equation (4). The equation (4) 
with this modification attains the form: 

0)1(2 2
0

2
2

2

=+−+ u
dt

du
u

dt

ud
ωβα      (5) 

Here β is a coefficient usually chosen equal to one. 

This is the Van Der Pol equation. Its solution for 2
0

2 ωα <  and 0<α  is shown 

in Fig.5.  Each time the amplitude u becomes more or less than unity the sign of the 
damping ratio changes respectively stabilizing the amplitude of oscillation. 

 

 

Fig. 5  The solution of Van Der Pol equation for 1.0
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The relaxation oscillations were discovered as a solution of equation (5) for 
0<α  and when α2 >> ω0

2 (see Fig. 6) 
 

 

 

Fig. 6  Relaxation oscillations, 10
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of the relaxation oscillations. 

Van Der Pol proposed using the sequentially connected relaxation oscillators as a 
model of the heart pacemaker system [10]. For this purpose each relaxation 
oscillation generator in the system is adjusted to the frequency of the corresponding 
pacemaker system node. The discovery of relaxation oscillations and the 
development of the phase-plan approach in the analysis of nonlinear dynamic 
systems facilitated the development of simplified nerve and heart cells models (see 
Chapter 5 for details) 

2.1.5. Validation of mathematical models 

Mathematical model validation involves the comparison of computer simulation 
results with those obtained on a real prototype of the simulated object, assuming the 
digital computer implementation introduces negligible additional errors. Model 
identification theory and methods have been developed for most linear and quasi-
linear dynamical systems (in engineering and some in biology).  These methods can 
be used to identify the parameters [11] and even structure of the model without and 
with the presence of noise [12].  One of the possible block diagrams of mathematical 
model validation and identification is presented in Fig. 7. 
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Fig. 7  Simplified block diagram for validation and identification of a mathematical model.  E is a 
vector of chosen input excitation, R is the measured response, c is a vector of control parameters of 
the model, and {e} is a vector of mathematical model error.  F{e} is a chosen error function 
(typically, F{e}=e2).  Q[ F{e} ] is a criterion of identification quality (typically mean square) 

Unfortunately, most biological systems are significantly nonlinear dynamical 
systems (nerve, heart, vascular and skeletal muscle systems etc), which cannot be 
reduced to linear or quasi-linear models without loss of their major functions. 
Moreover, for these systems even the most advanced experimental technology 
cannot provide the necessary data not only for full verification but also for 
formulation of some phenomenological part of the mathematical model (for 
example, there is no experimental data to formulate the mathematical model of 
spontaneous Ca release from SR). In these cases, some plausible hypothesis is 
usually formulated and the model predictions are considered correct until new 
contradictory experimental data is obtained. Similar situations have been 
encountered throughout the history of studying different natural phenomena. 

2.2. Appendix: Lilly-Bonhoeffer Iron Wire Model  

William Ostwald (1900) [13] was the first to notice that iron wire in nitric acid 
exhibits an electrochemical surface phenomenon quite similar to the action potential 
in nerves. Later the iron wire model was investigated experimentally by Lillie [14] 
and theoretically by Bonhoeffer [15]. The one-dimensional iron wire model is a 
mathematical model of direct analogy for nerve pulse propagation and is shown in 
Fig. 8. 
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Fig. 8. One-dimensional iron wire model. potentialelectrical−ϕ  

The iron wire, IW, is immersed in the vessel, V, filled with nitric acid of some 
concentration (electrolyte). The iron wire is covered with a thin film of iron oxide, 
shown by the dotted line in Fig. 8. After an application of a suprathreshold current 
stimuli, the difference of potential between the iron wire and electrolyte, ϕ , rises so 

that the thin film of iron oxide is destroyed at that place. Then, this potential 
accompanied by the destruction of the thin film begins to propagate toward the two 
ends of the wire, resembling the propagation of a nerve pulse along the nerve fiber. 

 
The mathematical model can be derived from the current balance in the system: 
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Q electrical charge per unit of film surface 

IWi  iron wire current αϕ)(1kiIW =  

nai  nitric acid current;   )(][ 3 ϕkNAina =  

[NA] the concentration of nitric acid near the surface of wire 
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Ist stimuli current 
R the longitudinal specific resistance of electrolyte 
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Fig. 9  Shape of propagated potential 

A grid of iron wires (see Fig. 10a) supports propagation of 2D waves. The first 
publication of this experimental system [16] exhibited both circular waves radiating 
from a point source of excitation and spiral waves rotating loosely about one 
endpoint of the wavefront (Fig. 10b). Figure 10a shows a 26×26 grid of iron wires 
(30cm × 30cm). Figure 10b shows pencil tracing at 1/8s intervals (left to right, then 
down arrow) taken from a photo of an iron wire grid when stimuli were introduced at 
S1, S2,  S3, and S4. Spontaneous activity persisted for a while in the form of waves 
irregularly pivoting about moving points [16]. 
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(a) 

(b) 

Fig. 10.  The 2D iron wire model. a: grid of iron wires. b: circular wave propagation. 

A two dimensional closed surface (a ten-inch iron sphere) behaves in many ways 
like a human heart, even “fibrillating” when made too excitable or stimulated too 
frequently (see Smith and Guyton, [17]). This type of model was vigorously 
investigated for decades (see [18, 19] for a review). Fortunately for many in the 
West, this remarkable and thorough study published only in Japanese became known 
to English speakers thanks to a book published by the late outstanding scientist A. 
Winfree [20].   
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