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Abstract The standard L2-norm support vector machine (SVM) is a widely used
tool for the classification problem. The L1-norm SVM is a variant of
the standard L2-norm SVM, that constrains the L1-norm of the fit-
ted coefficients. Due to the nature of the L1-norm, the L1-norm SVM
has the property of automatically selecting variables, not shared by the
standard L2-norm SVM. It has been argued that the L1-norm SVM
may have some advantage over the L2-norm SVM, especially with high
dimensional problems and when there are redundant noise variables.
On the other hand, the L1-norm SVM has two drawbacks: (1) when
there are several highly correlated variables, the L1-norm SVM tends
to pick only a few of them, and remove the rest; (2) the number of
selected variables is upper bounded by the size of the training data. In
this chapter, we propose a doubly regularized support vector machine
(DrSVM). The DrSVM uses the elastic-net penalty, a mixture of the
L2-norm and the L1-norm penalties. By doing so, the DrSVM performs
automatic variable selection in a way similar to the L1-norm SVM. In
addition, the DrSVM encourages highly correlated variables to be se-
lected (or removed) together. We also develop efficient algorithms to
compute the whole solution paths of the DrSVM.

Keywords: SVM; Variable Selection; Quadratic Programming

J. Zhu and H. Zou: Variable Selection for the Linear Support Vector Machine, Studies in

www.springerlink.com c
Computational Intelligence (SCI) 35, 35–59 (2007 )

© Springer-Verlag Berlin Heidelberg 2007



36 J. Zhu, and H. Zou

1. Introduction
In a standard two-class classification problem, we are given a set of

training data (x1, y1), (x2, y2), . . . (xn, yn), where the input (predictor
variable) xi ∈ R

p is a p-dimensional vector and the output (response
variable) yi ∈ {1,−1} is a binary categorical variable. The aim is to find
a classification rule from the training data, so that when given a new
input x, we can assign a class label, either 1 or −1, to it.

The support vector machine (SVM) has been a popular tool for the
two-class classification problem in the machine learning field. Recently,
it has also gained increasing attention from the statistics community.
Below we briefly review the SVM from these two perspectives. We refer
the readers to [2], [6], [11] and [21] for details.

Let us first consider the case when the training data can be perfectly
separated by a hyperplane in R

p. Define the hyperplane by

{x : f(x) = β0 + xT β = 0},

where β is a unit vector: ‖β‖2 = 1, then f(x) gives the signed distance
from a point x to the hyperplane. Since the training data are linearly
separable, we are able to find a hyperplane such that

yif(xi) > 0, ∀i. (2.1)

Indeed, there are infinitely many such hyperplanes. Among the hy-
perplanes satisfying (2.1), the SVM looks for the one that maximizes the
margin, where the margin is defined as the smallest distance from the
training data to the hyperplane. Hence we can write the SVM problem
as:

max
β,β0,‖β‖2=1

C,

subject to yi(β0 + xT
i β) ≥ C, i = 1, . . . , n,

where C is the margin.
When the training data are not linearly separable, we allow some

training data to be on the wrong side of the edges of the margin and
introduce slack variables ξi, ξi ≥ 0. The SVM problem then becomes

max
β,β0,‖β‖2=1

C, (2.2)

subject to yi(β0 + xT
i β) ≥ C(1 − ξi), i = 1, . . . , n, (2.3)

ξi ≥ 0,
∑

ξi ≤ B, (2.4)

where B is a pre-specified positive number, which can be regarded as
a tuning parameter. Figure (2.1) illustrates both the linearly separable
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Figure 2.1. Linear support vector machine classifiers.

and non-separable cases. This presents the geometric view of the linear
SVM, i.e., a hyperplane that maximizes the margin of the training data.

It turns out that the SVM is also equivalent to a regularized func-
tion fitting problem. With f(x) = β0 + xT β, consider the optimization
problem:

min
β0,β

n∑

i=1

[1 − yif(xi)]+ + λ‖β‖2
2, (2.5)

where the subscript “+” indicates the positive part and λ is a tuning
parameter. One can show that the solutions to (2.5) have one-to-one
correspondence to those of the SVM (2.2) – (2.4).

Notice that (2.5) has the form loss + penalty, which is a familiar
paradigm to statisticians in function estimation. The loss function (1−
yf)+ is called the hinge loss (Figure 2.2). [13] shows that:

arg min
f

EY [(1 − Y f(x))+] = sign
(

p1(x) − 1
2

)
,

where p1(x) = P (Y = 1|X = x) is the conditional probability of a
point being in class 1 given X = x. Hence the SVM can be interpreted
as trying to implement the optimal Bayes classification rule without
estimating the actual conditional probability p1(x). The penalty is the
L2-norm of the coefficient vector, the same as that used in the ridge
regression [12]. The idea of penalizing by the sum of squares of the
parameters is also used in neural networks, where it is known as weight
decay. The ridge penalty shrinks the fitted coefficients towards zero. It is
well known that this shrinkage has the effect of controlling the variance of
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Figure 2.2. The hinge loss of the SVM. Elbow indicates the point 1 − yf = 0, Left
indicates the region to the left of the elbow, and Right indicates the region to the
right of the elbow.

fitted coefficients, hence possibly improving the fitted model’s prediction
accuracy via the bias-variance trade-off, especially when there are many
highly correlated variables.

The L2-norm penalty shrinks the fitted coefficients towards zero, but
never exactly equal to zero. All predictor variables are kept in the fitted
model, thus there is no variable selection. Instead of using the L2-norm
penalty, in this chapter, we will consider using other forms of the penalty
for the linear SVM. Our goal is to remove trivial variables that are not
helpful in classification. The rest of the chapter are organized as follows:
in Section 2, we introduce the L1-norm SVM and the doubly regularized
SVM; in Section 3, we describe efficient algorithms that compute entire
solution paths of the doubly regularized SVM; numerical results are
presented in Section 4, and we conclude the chapter with a discussion
section.

2. Variable Selection for the Linear SVM

The L1-norm SVM
We first consider an L1-norm SVM model ([1], [19], [23]):

min
β0,β

n∑

i=1

[
1 − yi(β0 + xT

i β)
]
+

+ λ‖β‖1, (2.6)

where we use the L1-norm of the coefficient vector to replace the L2-
norm. A canonical example that uses the L1-norm penalty is the Lasso
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[20] for the regression problem, where the response y is continuous rather
than categorical:

min
β0,β

n∑

i=1

(yi − β0 − xT
i β)2 + λ‖β‖1.

[14] and [3] also apply the idea to signal processing, where the bases
functions are orthogonal to each other.

Similar to the L2-norm penalty, the L1-norm penalty also shrinks the
fitted coefficients toward zero, hence (2.6) also benefits from the reduc-
tion in the fitted coefficients’ variance. Another important property of
the L1-norm penalty is that because of the L1 nature of the penalty, with
sufficiently large λ, some of the fitted coefficients will be exactly zero,
i.e., sparse solution. Therefore, the L1-norm penalty has an inherent
variable selection property, while this is not the case for the L2-norm
penalty. Furthermore, as λ varies, different fitted coefficients will be set
to zero, hence the L1-norm penalty also performs a kind of continuous
variable selection.

We illustrate the concept of sparsity of β with a simple example. We
generate 30 training data in each of two classes. Each input xi is a p = 30
dimensional vector. For the “+” class, xi has a normal distribution with
mean and covariance matrix

µ+ = (1, . . . , 1︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
25

)T ,

Σ =
(

Σ∗
5×5 05×25

025×5 I25×25

)
,

where the diagonal elements of Σ∗ are 1 and the off-diagonal elements
are all equal to ρ = 0.8. The “−” class has a similar distribution, except
that

µ− = (−1, . . . ,−1︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
25

)T .

So the Bayes optimal classification boundary is given by

x1 + · · · + x5 = 0,

and it only depends on the first five inputs x1, . . . , x5. We compare the
fitted coefficient paths for the L1-norm SVM and the standard L2-norm
SVM as λ varies. In the upper panels of Figure 2.3, the five solid paths
are for x1, . . . , x5 (or β1, . . . , β5), which are the relevant variables; the
dashed lines are for x6, . . . , x30, which are the irrelevant noise variables.
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Figure 2.3. Comparison of different SVMs on a simple simulation data. The solid
curves correspond to relevant variables, and the dashed curves correspond to irrelevant
variables. The relevant variables are highly correlated. The upper left panel is for
the L2-norm SVM, the upper right panel is for the L1-norm SVM, the bottom panels
are for the DrSVM. The bottom left panel fixes λ1 = 15, and changes λ2; the bottom
right panel fixed λ2 = 160, and changes λ1. We can see the DrSVM identified all
(correlated) relevant variables, and shrunk their coefficients close to each other.

As we can see in the upper right panel, when ‖β‖1 ≤ 0.8, only the rele-
vant variables have non-zero fitted coefficients, while the noise variables
have zero coefficients. Thus when the regularization parameter varies,
the L1-norm penalty does a kind of continuous variable selection. This is
not the case for the standard L2-norm penalty (upper left panel): none
of the βj is equal to zero.

It is interesting to note that the L2-norm penalty corresponds to a
Gaussian prior for the βj ’s, while the L1-norm penalty corresponds to
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Figure 2.4. Two dimensional contour plots of the penalty function. The L2-norm
‖β‖2

2 = 1, the L1-norm ‖β‖1 = 1, and the elastic-net 0.5‖β‖2
2 + 0.5‖β‖1 = 1.

a double exponential prior. The double exponential density has heavier
tails than the Gaussian density. This reflects the greater tendency of the
L1-norm penalty to produce some large fitted coefficients and leave oth-
ers at 0, especially in high dimensional problems. Another way to look
at these two penalties is that the equal penalty contours for the double
exponential density in the p-dimensional Euclidean space spanned by the
coefficients are hyper-diamonds, as illustrated in Figure 2.4, compared to
hyper-spheres for the Gaussian density. Observing that a hyper-diamond
has the vast majority of its volume in the corners gives us an intuitive
sense of why we may expect the L1-norm penalty to give sparse models.

The Doubly Regularized SVM
It has been argued that the L1-norm penalty has advantages over the

L2-norm penalty under certain scenarios ([4], [7], [16]) such as when
there are redundant noise variables. However, the L1-norm penalty also
suffers from two serious limitations [24]:

1 When there are several highly correlated input variables in the data
set, and they are all relevant to the output variable, the L1-norm
penalty tends to pick only one or few of them and shrinks the rest to
0. For example, in microarray analysis, expression levels for genes
that share one biological pathway are usually highly correlated,
and these genes all contribute to the biological process, but the
L1-norm penalty usually selects only one gene from the group,
and does not care which one is selected. The ideal method should
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be able to eliminate trivial genes, and automatically include the
whole group of relevant genes.

2 In the p > n case, as shown in [18], the L1-norm penalty can
keep at most n input variables. Again, we use microarray as an
example: the sample size n is usually on the order of 10 or 100,
while the dimension of the input p is typically on the order of 1, 000
or even 10, 000. Using the L1-norm penalty can, at most, identify
n non-zero fitted coefficients, but it is unlikely that only 10 genes
are involved in a complicated biological process.

[24] proposed the elastic-net penalty to fix these two limitations. The
elastic-net penalty is a mixture of the L1-norm penalty and the L2-
norm penalty, combining good features of the two. Similar to the L1-
norm penalty, the elastic-net penalty simultaneously performs automatic
variable selection and continuous shrinkage; the new advantages are that
groups of correlated variables now can be selected together, and the
number of selected variables is no longer limited by n.

We apply the elastic-net penalty to the SVM. Specifically, we consider
the following doubly regularized SVM, which we call the DrSVM:

min
β0,β

n∑

i=1

[
1 − yi(β0 + xT

i β)
]
+

+
λ2

2
‖β‖2

2 + λ1‖β‖1, (2.7)

where both λ1 and λ2 are tuning parameters. The role of the L1-norm
penalty is to allow variable selection, and the role of the L2-norm penalty
is to help groups of correlated variables get selected together. Figure 2.4
compares contours of the L2-norm, the L1-norm, and the elastic-net
penalty.

Grouping Effect
In this subsection, we show that the DrSVM tends to make highly

correlated input variables have similar fitted coefficients, which we re-
fer to as the grouping effect. The result holds not only for the hinge
loss function of the SVM, but also for general Lipschitz continuous loss
functions.

Consider the following more general optimization problem:

min
β0,β

n∑

i=1

φ(yi, f(xi)) +
λ2

2
‖β‖2

2 + λ1‖β‖1, (2.8)

where f(x) = β0 +xT
i β, φ(y, f) = φ(yf) is a function of the margin. We

further assume that φ(t) is Lipschitz continuous, i.e.

|φ(t1) − φ(t2)| ≤ M |t1 − t2| for some positive finite M.
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It is simple to verify that this condition holds for many commonly used
loss functions for classification, for example, the hinge loss function
(SVM) and the binomial deviance (logistic regression). Then we have
the following theorem:

Theorem 2.1 Denote the solution to (2.8) as β. Assume the loss func-
tion φ is Lipschitz continuous, then for any pair (j, �), we have

|βj − β�| ≤
M

λ2
‖xj − x�‖1 =

M

λ2

n∑

i=1

|xij − xi�|. (2.9)

Furthermore, if the input variable xj , x� are centered and normalized,
then

|βj − β�| ≤
√

nM

λ2

√
2(1 − ρ), (2.10)

where ρ = cor(xj , x�) is the sample correlation between xj and x�.

For lack of space, we omit the proof of the theorem, and illustrate the
grouping effect with a simple example. This is the same example used
earlier to compare the L1-norm SVM and the L2-norm SVM. The re-
sults of the DrSVM are shown in the lower panels of Figure 2.3. Notice
that the relevant variables x1, . . . , x5 are highly correlated. As we can
see, although the L1-norm SVM did variable selection and were able to
remove the noise variables, but it failed to identify the group of corre-
lated variables, while the DrSVM successfully selected all five relevant
variables, and shrunk their coefficients close to each other.

3. Piecewise Linear Solution Paths
Since the L2-norm SVM and the L1-norm SVM are special cases of

the DrSVM, we only focus on the DrSVM in this section. To get a good
classification rule that performs well on future data, it is important to
select appropriate tuning parameters λ1 and λ2. In practice, people can
pre-specify a finite grid of values for λ1 and λ2 that covers a wide range,
then use either a separate validation dataset or cross-validation to do
a grid search, and find values for the (λ1, λ2) pair that give the best
performance among the given grid. In this section, we show that the
solution path for a fixed value of λ2, denoted as βλ2(λ1), is piece-wise
linear as a function of λ1 (in the R

p space); and for a fixed value of λ1,
the solution path, denoted as βλ1(λ2), is piece-wise linear as a function
of 1/λ2. A canonical example for piecewise linear solution path is the
Lasso [5]. The piecewise linearity property allows us to design efficient
algorithms to compute the exact whole solution paths; furthermore, it
helps us understand how the solution changes with the tuning parameter
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Figure 2.5. The simulation setup is the same as in Section 2, except the size of
the training data is n = 8 + 8, the number of input variables is p = 5, and only
the first variable x1 is relevant to the optimal classification boundary. The solid line
corresponds to β1, the dashed lines correspond to β2, . . . , β5. The left panel is for
βλ2(λ1) (with λ2 = 30), and the right panel is for βλ1(λ2) (with λ1 = 6).

and facilitates the adaptive selection of the tuning parameter. Figure
2.5 illustrates the piecewise linearity property; any segment between two
adjacent vertical lines is linear.

Theorem 2.2 When λ2 is fixed, the solution βλ2(λ1) for (2.7) is a piece-
wise linear function of λ1.

Theorem 2.3 When λ1 is fixed, the solution βλ1(λ2) for (2.7) is a piece-
wise linear function of 1/λ2.

Proof of Theorem 2.2
The optimization problem (2.7) for the DrSVM is equivalent to a

quadratic programming problem:

min
β0,β

n∑

i=1

εi +
λ2

2
‖β‖2

2, (2.11)

subject to 1 − yifi ≤ εi, (2.12)
εi ≥ 0, i = 1, . . . , n, (2.13)
‖β‖1 = |β1| + · · · + |βp| ≤ s, (2.14)

where fi = β0 +
∑p

j=1 βjxij . Notice the hinge loss is replaced by a linear
constraint, the L1-norm penalty is replaced by an L1-norm constraint,
and the tuning parameter λ1 is replaced by s. The optimization problem
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(2.7) and this quadratic programming problem are equivalent in the
sense that for any value of λ1, there exists a value of s, such that the
solution to (2.7) and the solution to the quadratic programming problem
are identical. To solve for the quadratic programming problem, we write
the Lagrange:

n∑

i=1

εi +
λ2

2
‖β‖2

2 +
n∑

i=1

αi(1 − yifi − εi) −
n∑

i=1

γiεi + η(
p∑

j=1

|βj | − s),

where αi ≥ 0, γi ≥ 0 and η ≥ 0 are Lagrange multipliers. Taking
derivative of the Lagrange with respect to β0, β and εi, we have

∑n
i=1 αiyi = 0

λ2βj −
∑n

i=1 αiyixij + ηsign(βj) = 0, for j ∈ V

1 − αi − γi = 0, i = 1, . . . , n

where V contains the indices of non-zero coefficients, i.e. V = {j : βj �=
0}. Notice the value of βj is fully determined by the values of αi and
η. We also have the Karush-Kuhn-Tucker (KKT) conditions from the
quadratic programming:

αi(1 − yifi − εi) = 0, i = 1, . . . , n

γiεi = 0, i = 1, . . . , n

η(
∑p

i=1 |βj | − s) = 0

We use L (Left) to denote the set of data points for which 1 − yifi > 0,
R (Right) for 1 − yifi < 0, and E (Elbow) for 1 − yifi = 0 (See Figure
2.2). Inspecting the KKT conditions, we find

i ∈ L =⇒ γi = 0, αi = 1

i ∈ R =⇒ γi = 1, αi = 0

i ∈ E =⇒ 0 ≤ γi, αi ≤ 1 and γi + αi = 1

So, for data points in L and R, their αi are determined. To solve for βj ,
we also need αi values for data points in E , especially how these values
change (between 0 and 1) when s increases.

When s is small enough, the constraint (2.14) is active, i.e. ‖β‖1 = s.
When s increases to a certain value, say s∗, this constraint will become
inactive, and the solution will not change beyond the value of s∗. This
corresponds to λ1 = 0 in (2.7). Suppose for a value s < s∗, the solution is
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(β0, β), hence V,L,R and E are also known. Then (β0, β) have to satisfy
the following equations derived from the Lagrange and KKT conditions:

λ2βj −
n∑

i=1

αiyixij + ηsign(βj) = 0, j ∈ V, (2.15)

n∑

i=1

αiyi = 0, (2.16)

yi(β0 +
∑

j∈V
βjxij) = 1, i ∈ E , (2.17)

‖β‖1 =
∑

j∈V
sign(βj)βj = s. (2.18)

This linear system consists of |E| + |V| + 2 equations and |E| + |V| + 2
unknowns: αi’s, βj ’s, β0 and η. They can be further reduced to |E| +
2 equations and |E| + 2 unknowns by plugging (2.15) into (2.17) and
(2.18). If the system is nonsingular, the solution is unique. In the case
of singularity, the optimal solution is not unique, but the optimal region
can still be determined.

When s increases by a small enough amount, by continuity, the sets
V,L,R and E will not change, such that the structure of the above linear
system will not change. Taking right derivatives with respect to s, we
have

λ2
∆βj

∆s
−

∑

i∈E

∆αi

∆s
yixij + sign(βj)

∆η

∆s
= 0, j ∈ V, (2.19)

∑

i∈E

∆αi

∆s
yi = 0, (2.20)

∆β0

∆s
+

∑

j∈V

∆βj

∆s
xij = 0, i ∈ E , (2.21)

∑

j∈V
sign(βj)

∆βj

∆s
= 1, (2.22)

which does not depend on the value of s. This implies that the solution,
αi’s, βj ’s, β0 and η, will change linearly in s. When the increase in s is
big enough, one of the V,L,R and E sets will change, so the structure
of the linear system will change, which corresponds to a different linear
piece on the solution path. Hence, the solution path is piecewise linear
in s. Notice that η is equivalent to λ1; therefore β0, β and αi are also
piecewise linear in λ1, and Theorem 2.2 holds.
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To identify changes in the structure of the linear system (or the aster-
isk points in Figure 2.5), we define four types of events, corresponding
to the changes in V,L,R and E :

1 A data point leaves E to L or R. This happens when an αi changes
from within the region (0, 1) to the boundary 1 or 0.

2 A data point reaches E from L or R. This happens when a residual
(1 − yifi) reaches 0.

3 An active variable in V becomes inactive. This happens when a
non-zero coefficient βj �= 0 becomes 0.

4 An inactive variable joins the active variable set V. To identify
this event, we define the generalized correlation for variable j as:

cj = λ2βj −
n∑

i=1

αiyixij . (2.23)

From (2.15), we can see that all active variables in V have the same
absolute generalized correlation value, which is η. Therefore, an
inactive variable will join the active variable set when its absolute
generalized correlation reaches η.

Proof of Theorem 2.3
When λ1 is fixed and λ2 changes, the solution has to satisfy (2.15) –

(2.17), which are derived from the Lagrange and KKT conditions. Let
D = 1/λ2 and α∗

i = Dαi, (2.15) – (2.17) become:

βj −
n∑

i=1

α∗
i yixij = −λ1Dsign(βj), j ∈ V,

n∑

i=1

α∗
i yi = 0,

yi

⎛

⎝β0 +
∑

j∈V
xijβj

⎞

⎠ = 1, i ∈ E .

This system consists of |E|+ |V|+1 equations and |E|+ |V|+1 unknowns:
β0, βj (j ∈ V), α∗

i (i ∈ E). Therefore, using the same argument as in
the proof of Theorem 2.2, one can show the solution (β0, β) is piecewise
linear in D (or 1/λ2).
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For lack of space, we omit the details of the algorithms that compute
the whole solution paths βλ2(λ1) (when λ2 is fixed) and βλ1(λ2) (when
λ1 is fixed) of the DrSVM. We refer the readers to [22]. When λ2 is fixed,
the basic idea of our algorithm is to start with s = 0 (or equivalently
λ1 = ∞), find the right derivatives of β0 and βj with respect to s,
increase s and move the solution along the right derivative direction
until an event happens (the asterisk points in Figure 2.5), then adjust
the linear system (2.19) – (2.22), and find out the new right derivatives.
The algorithm stops when no further event will happen. The algorithm
when λ1 is fixed functions in a similar manner (the right panel of Figure
2.5).

Computational Complexity
The major computational cost is associated with solving the linear

system (2.19) – (2.22) at each step, which involves |E| + 2 equations
and unknowns (after plugging (2.19) in (2.21) and (2.22)). Solving such
a system involves O(|E|3) computations. However, for any two consec-
utive steps, the two linear systems usually differ by only one row or
one column (corresponding to one of the four types of events); there-
fore, the computational cost can be reduced to O(|E|2) via the inverse
updating/downdating. The computation of ∆βj/∆s in (2.19) requires
O(|E|·|V|) computations after getting ∆αi/∆s. Notice due to the nature
of (2.19) – (2.22), |E| is always less than or equal to min(n, p), and since
|V| ≤ p, the computational cost at each step can be estimated (bounded)
as O(min2(n, p) + p min(n, p)).

It is difficult to predict the number of steps on the solution path
for any arbitrary data. Our experience so far suggests that the total
number of steps is O(min(n, p)). This can be heuristically understood
in the following way: if n < p, the training data are perfectly separable
by a linear model, then it takes O(n) steps for every data point to
pass through the elbow to achieve the zero loss; if n > p, then it takes
O(p) steps to include every variable into the fitted model. Overall, this
suggests the total computational cost is O(p min2(n, p) + min3(n, p)).

4. Numerical Results
In this section, we use both simulation data and real world data to

illustrate the L1-norm SVM and the DrSVM. In particular, we want
to show that with high dimensional data, the DrSVM is able to re-
move irrelevant variables, and identify relevant (sometimes correlated)
variables.
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Simulation
We first consider the scenario when all input variables are indepen-

dent. The “+” class has a normal distribution with mean and covariance

µ+ = (0.5, . . . , 0.5︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
p−5

)T ,

Σ = Ip×p.

The “−” class has a similar distribution except that

µ− = (−0.5, . . . ,−0.5︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
p−5

)T .

So the Bayes optimal classification rule only depends on x1, . . . , x5, and
the Bayes error is 0.132, independent of the dimension p.

We consider both the n > p case and the n 
 p case. In the n > p
case, we generate 100 = 50 + 50 training data, each input xi is a p = 10
dimensional vector; in the n 
 p case, we generate 50 = 25+25 training
data, each input xi is a p = 300 dimensional vector. We compare the L2-
norm SVM, the L1-norm SVM, and the DrSVM. We use 200 validation
data to select the tuning parameters for each method, then apply the
selected models to a separate 20, 000 testing data set. Each experiment
is repeated for 30 times. The means of the prediction errors and the
corresponding standard errors (in parentheses) are summarized in Table
2.1. As we can see, the prediction errors of the L1-norm SVM and the
DrSVM are similar: both are close to the optimal Bayes error when
n > p, and degrade a little bit when n 
 p. This is not the case for the
L2-norm SVM: in the n > p case, the prediction error is only slightly
worse than that of the L1-norm SVM and the DrSVM, but it degrades
dramatically in the n 
 p case. This is due to the fact that the L2-norm
SVM uses all input variables, and its prediction accuracy is polluted by
the noise variables.

Besides the prediction error, we also compare the selected variables of
the L1-norm SVM and the DrSVM (The L2-norm SVM keeps all input
variables). In particular, we consider

qsignal = number of selected relevant variables

qnoise = number of selected noise variables

The results are in Table 2.2. Again, we see that the L1-norm SVM
and the DrSVM perform similarly; both are able to identify the relevant
variables (the L1-norm SVM missed 1 on average) and remove most of
the irrelevant variables.
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Table 2.1. Comparison of the prediction performance when all input variables are
independent. p0 is the number of relevant variables.

n p p0 Test Error

L2 SVM 0.145 (0.007)
L1 SVM 100 10 5 0.142 (0.008)
DrSVM 0.139 (0.005)

L2 SVM 0.323 (0.018)
L1 SVM 50 300 5 0.199 (0.031)
DrSVM 0.178 (0.021)

Table 2.2. Comparison of variable selection when all input variables are independent.
p0 is the number of relevant variables. qsignal is the number of selected relevant
variables. qnoise is the number of selected noise variables.

n p p0 qsignal qnoise

L1 SVM 100 10 5 5.00 (0.00) 2.43 (1.52)
DrSVM 5.00 (0.00) 1.80 (1.30)

L1 SVM 50 300 5 3.87 (0.82) 4.33 (4.86)
DrSVM 4.53 (0.57) 6.37 (4.35)

Now we consider the scenario when the relevant variables are corre-
lated. Similar as the independent scenario, the “+” class has a normal
distribution, with mean and covariance

µ+ = (1, . . . , 1︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
p−5

)T ,

Σ =
(

Σ∗
5×5 05×(p−5)

0(p−5)×5 I(p−5)×(p−5)

)
,

where the diagonal elements of Σ∗ are 1 and the off-diagonal elements
are all equal to ρ = 0.8. The “−” class has a similar distribution except
that

µ− = (−1, . . . ,−1︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
p−5

)T .
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So the Bayes optimal classification rule depends on x1, . . . , x5, which
are highly correlated. The Bayes error is 0.138, independent of the
dimension p.

Again, we consider both the n > p case and the n 
 p case. In the
n > p case, n = 50 + 50 and p = 10. In the n 
 p case, n = 25 + 25 and
p = 300. Each experiment is repeated for 30 times. The result for the
prediction errors are shown in Table 2.3. Now when changing from the
n > p case to the n 
 p case, the performance of the L1-norm SVM, as
well as the L2-norm SVM, degrades, but the DrSVM performs about the
same. Table 2.4 compares the variables selected by the L1-norm SVM
and the DrSVM, which sheds some light on what happened. Both the
L1-norm SVM and the DrSVM are able to identify relevant variables.
However, when the relevant variables are highly correlated, the L1-norm
SVM tends to keep only a small subset of the relevant variables, and
overlook the others, while the DrSVM tends to identify all of them, due
to the grouping effect. Both methods seem to work well in removing
irrelevant variables.

Table 2.3. Comparison of the prediction performance when the relevant variables are
highly correlated. p0 is the number of relevant variables.

n p p0 Test Error

L2 SVM 0.142 (0.003)
L1 SVM 100 10 5 0.144 (0.003)
DrSVM 0.140 (0.001)

L2 SVM 0.186 (0.012)
L1 SVM 50 300 5 0.151 (0.007)
DrSVM 0.139 (0.004)

In the last, we consider a scenario where the relevant variables have
different contributions to the classification, and the pairwise correlations
are not all equal. The basic setup is similar to the above two scenarios,
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Table 2.4. Comparison of variable selection when the relevant variables are highly
correlated. p0 is the number of relevant variables. qsignal is the number of selected
relevant variables. qnoise is the number of selected noise variables.

n p p0 qsignal qnoise

L1 SVM 100 10 5 3.73 (0.69) 0.30 (0.53)
DrSVM 5.00 (0.00) 0.10 (0.31)

L1 SVM 50 300 5 2.17 (0.83) 0.30 (0.60)
DrSVM 4.90 (0.40) 0.97 (2.03)

except that

µ+ = (1, . . . , 1︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
p−5

)T ,

µ− = (−1, . . . ,−1︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
p−5

)T ,

Σ∗ =

⎛

⎜⎜⎜⎜⎝

1 0.8 0.82 0.83 0.84

0.8 1 0.8 0.82 0.83

0.82 0.8 1 0.8 0.82

0.83 0.82 0.8 1 0.8
0.84 0.83 0.82 0.8 1

⎞

⎟⎟⎟⎟⎠
.

The Bayes optimal classification boundary is given by

1.11x1 + 0.22x2 + 0.22x3 + 0.22x4 + 1.11x5 = 0,

and the Bayes error is 0.115. Notice that the true coefficients β2, β3 and
β4 are small compared with β1 and β5. To test our algorithm for the
unbalanced case, we let n = 60 + 40 when p = 10, and n = 30 + 20
when p = 300. Each experiment is repeated for 30 times. The results
are summarized in Table 2.5 and 2.6. As we can see, the DrSVM still
dominates the L1-norm SVM in terms of identifying relevant variables.

Microarray Analysis
In this section, we apply the L1-norm SVM and the DrSVM to clas-

sification of gene microarrays. Classification of patient samples is an
important aspect of cancer diagnosis and treatment. The L2-norm SVM
has been successfully applied to microarray cancer diagnosis problems
([9], [15]). However, one weakness of the L2-norm SVM is that it only
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Table 2.5. Comparison of the prediction performance when the relevant variables
have different class means and the pairwise correlations are not all equal. p0 is the
number of relevant variables.

n p p0 Test Error

L2 SVM 0.128 (0.008)
L1 SVM 100 10 5 0.117 (0.004)
DrSVM 0.115 (0.003)

L2 SVM 0.212 (0.022)
L1 SVM 50 300 5 0.125 (0.010)
DrSVM 0.120 (0.006)

Table 2.6. Comparison of variable selection when the relevant variables have different
class means and the pairwise correlations are not all equal. p0 is the number of relevant
variables. qsignal is the number of selected relevant variables. qnoise is the number of
selected noise variables.

n p p0 qsignal qnoise

L1 SVM 100 10 5 3.70 (0.84) 1.48 (0.67)
DrSVM 4.53 (0.57) 0.53 (1.04)

L1 SVM 50 300 5 3.03 (0.72) 1.23 (1.87)
DrSVM 4.23 (0.94) 2.93 (4.72)

predicts a cancer class label but does not automatically select relevant
genes for the classification. Often a primary goal in microarray cancer
diagnosis is to identify the genes responsible for the classification, rather
than class prediction. The L1-norm SVM has an inherent gene (variable)
selection property due to the L1-norm penalty, but the maximum num-
ber of genes that the L1-norm SVM can select is upper bounded by n,
which is typically much smaller than p in microarray problems. Another
drawback of the L1-norm SVM, as seen in the simulation study, is that
it usually fails to identify group of genes that share the same biological
pathway, which have correlated expression levels. The DrSVM natu-
rally overcomes these difficulties, and achieves the goals of classification
of patients and (group) selection of genes simultaneously.

We use a leukemia dataset [8] to illustrate the point. This dataset con-
sists of 38 training data and 34 test data of two types of acute leukemia,
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acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL).
Each datum is a vector of p = 2, 308 genes. The tuning parameters are
chosen according to 10-fold cross-validation, then the final model is fitted
on all the training data and evaluated on the test data. The results are
summarized in Table 2.7. As we can see, the DrSVM seems to have the
best prediction performance. However, notice this is a very small (and
“easy”) dataset, so the difference may not be significant. It is also worth
noting that the 22 genes selected by the L1-norm SVM is a subset of the
78 genes selected by the DrSVM. Figure 2.6 shows the heatmap of the
selected 78 genes. We have ordered the genes by hierarchical clustering,
and similarly for all 38+34 samples (based on the selected genes). Clear
separation of the two classes is evident. Roughly speaking, the top set
of genes over-express for ALL and under-express for AML; vice versa for
the bottom set of genes.

Table 2.7. Results on the Leukemia Dataset

CV Error Test Error # of Genes

Golub et al. 3/38 4/34 50
L2-norm SVM 0/38 1/34 2, 308
L1-norm SVM 3/38 1/34 22
DrSVM 0/38 0/34 78

5. Conclusion
We have applied the L1-norm penalty and the elastic-net penalty to

the hinge loss, and proposed the L1-norm SVM and the DrSVM methods
for classification problems. These methods are especially useful with
high dimensional data, with respect to effectively removing irrelevant
variables and identifying relevant variables. Compared with the L1-
norm SVM, the DrSVM is able to select groups of variables that are
correlated, and the number of selected variables is no longer bounded
by the size of the training data, thus being able to deal with the p � n
problem. We also proposed efficient algorithms that can compute the
whole solution paths of the DrSVM, which facilitate selection of the
tuning parameters.

There are other interesting directions in which the SVM can be ex-
tended:

Huberized SVMs The algorithm proposed in Section 3 is effi-
cient. However, when both n and p are large, the initial derivative
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Figure 2.6. Heatmap of the selected 78 genes. We have ordered the genes by hierar-
chical clustering, and similarly for all 38 + 34 samples.
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of the path may require substantial computational efforts. This is
due the fact that the hinge loss function is not differentiable at the
point yf = 1. So the question is how one can modify the hinge loss
to improve the computational efficiency? We consider to replace
the hinge loss with the Huberized hinge loss [17]. The Huberized
hinge loss is defined as

φ(yf) =

⎧
⎨

⎩

(1 − δ)/2 + (δ − yf), if yf ≤ δ,
(1 − yf)2/(2(1 − δ)), if δ < yf ≤ 1,
0, otherwise,

where δ < 1. Figure 2.7 compares the Huberized hinge loss and
the hinge loss. As we can see, the Huberized hinge loss is differ-
entiable everywhere. The Huberized hinge loss also has a similar
shape as the hinge loss; therefore, one can expect the prediction
performance of the Huberized hinge loss would be similar to the
hinge loss.

−3 −2 −1 0 1 2 3

0
1

2
3

4

yf

Lo
ss

Huberized Hinge
Hinge Loss

Figure 2.7. The hinge loss and the Huberized hinge loss (with δ = −1). The Hu-
berized hinge loss is differentiable everywhere, and has a similar shape as the hinge
loss.

Factor selection in the SVM In some problems, the input fea-
tures are generated by factors, and the model is best interpreted
in terms of significant factors. For example, a categorical factor
is often represented by a set of dummy variables. Another famil-
iar example is the use of a set of basis functions of a continuous
variable in function estimation, e.g., univariate splines in general-
ized additive models [10]. As one can see, variable selection results
can be directly translated to factor selection. On the other hand,
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with the presence of the factor-feature hierarchy, a factor is con-
sidered as irrelevant unless its child features are all excluded from
the fitted model, which we call simultaneous elimination.

To enforce the simultaneous elimination, [25] propose the F∞-norm
SVM which penalizes the empirical hinge loss by the sum of the
L∞ norm of factors. Here is how it works. Suppose that the p
input variables can be further segmented into G groups without
overlap, and the variables in the gth group are generated by factor
Fg. Let Sg = {j : xj ∈ group g}. Then {1, . . . , p} = ∪G

g=1Sg

and Sg ∩ Sg′ = ∅, ∀g �= g′. We denote x(g) = (· · ·xj · · · )T
j∈Sg

and β(g) = (· · ·βj · · · )T
j∈Sg

, where β is the coefficient vector in the
classifier (β0 + xT β) for separating class “1” and class “−1”. For
convenience, we write

β0 + xT β = β0 +
G∑

g=1

xT
(g)β(g),

and we define the infinity norm of Fg as follows

‖Fg‖∞ = ‖β(g)‖∞ = max
j∈Sg

{|βj |} .

Now given the training samples (x1, y1), . . . , (xn, yn), we can write
the F∞-norm SVM as the following

min
β0,β

n∑

i=1

⎡

⎣1 − yi

⎛

⎝β0 +
G∑

g=1

xT
i,(g)β(g)

⎞

⎠

⎤

⎦

+

+ λ
G∑

g=1

‖β(g)‖∞ .

Notice that if ‖β(g)‖∞ is equal to zero, the whole factor Fg is
removed from the fitted model.
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