
Chapter 2

A CLASSIFICATION SCHEME
FOR ROBOTIC CELLS AND NOTATION

In this chapter, we discuss a classification scheme for sequencing and
scheduling problems in robotic cells and provide notation. As in the clas-
sification scheme for classical scheduling problems (Graham et al. [69]),
we distinguish problems based on three characteristics: machine envi-
ronment (α), processing characteristics (β), and objective function (γ).
A problem is then represented by the form α|β|γ. Following the discus-
sion of these characteristics, we detail the classification in Section 2.4
and provide a pictorial representation in Figure 2.2. Finally, we discuss
relevant cell data whose values influence a cell’s performance and define
some basic notation for subsequent use.

2.1 Machine Environment
We start by describing characteristics that are represented in the first

field of the classification scheme.

2.1.1 Number of Machines
If each processing stage has only one machine, the robotic cell is called

a simple robotic cell or a robotic flowshop. Such a cell contrasts with a
robotic cell with parallel machines, in which at least one processing stage
has two or more identical machines. Cells with parallel machines are
discussed in Chapter 5.

A typical simple robotic cell contains m processing machines: M1, M2,
. . . , Mm. Let M = {1, 2, . . . ,m} be the set of indices of these machines.

15

16 THROUGHPUT OPTIMIZATION IN ROBOTIC CELLS

machine M1

machine M2

machine M3

� �IO

Robot

Figure 2.1. A Three-Machine Simple Robotic Cell.

The robot obtains a part from the input device (I, also denoted as M0),
carries the part to the first machine (M1), and loads the part. After
M1 completes its processing on the part, the robot unloads the part
from M1 and transports it to M2, on which it loads the part. This
pattern continues for machines M3,M4, . . . ,Mm. After the last machine
Mm has completed its processing on the part, the robot unloads the
part and carries it to the output device (O, also denoted as Mm+1). In
some implementations, the input device and the output device are at
the same location, and this unit is called a load lock. A three-machine
simple robotic cell is depicted in Figure 2.1.

This description should not be misconstrued as implying that the
robot remains with each part throughout its processing by each machine.
Often, after loading a part onto a machine, the robot moves to another
machine or to the input device to collect another part to transport to its
next destination. Determining which sequence of such moves maximizes
the throughput of the cell has been the focus of the majority of research
on robotic cell sequencing and scheduling.

2.1.2 Number of Robots
Manufacturers employ additional robots in a cell in order to increase

throughput by increasing the material handling capacity. Cells with one
(resp., more than one) robot are called single-robot (resp., multiple-robot)

A Classification Scheme for Robotic Cells and Notation 17

cells. Most studies in the literature analyze single-robot cells. Multiple-
robot cells are discussed in Chapter 8.

2.1.3 Types of Robots
A single-gripper robot can hold only one part at a time. In contrast,

a dual-gripper robot can hold two parts simultaneously. In a typical
use of this capability, the robot holds one part while the other gripper
is empty; the empty gripper unloads a machine, the robot repositions
the second gripper, and it loads that machine. Dual-gripper robots are
discussed in Chapter 4.

In a single-gripper simple robotic cell, the robot cannot unload a part
from machine Mi, i = 0, ...,m−1, unless the next machine Mi+1 is empty.
This condition is commonly referred to as a blocking condition.

2.1.4 Cell Layout
The layout refers to the arrangement of machines within the cell.

Most robotic cell models assume one of two layouts: linear or circular.
A semicircular arrangement of machines has also been referred to in the
literature. However, all our results for a linear layout (Figure 1.3) remain
valid for a semicircular layout (Figure 1.1). Unless specified otherwise,
we assume a linear/semicircular layout. Cells employing a circular layout
(Figure 1.5) are discussed in Chapters 4 and 7.

2.2 Processing Characteristics
Four different processing characteristics are specified in the second

field. We describe three in this section. The fourth, called the production
strategy, is detailed in Section 2.4.

2.2.1 Pickup Criterion
Most of the discussion in this book concerns robotic cells with no

buffers for intermediate storage. For such cells, all parts must be either
in the input device, on one of the machines, in the output device, or
with the robot.

Robotic cells can be partitioned into three types − free pickup, no-
wait, and interval − based on the pickup criterion. For all three types, a
part that has completed processing on Mi cannot be loaded onto Mi+1

18 THROUGHPUT OPTIMIZATION IN ROBOTIC CELLS

for its next processing unless Mi+1 is unoccupied, i = 0, . . . ,m. In free-
pickup cells, this is the only pickup restriction; there is no limit on the
amount of time a part that has completed processing on a machine can
remain on that machine.

For the more restrictive no-wait cells, a part must be removed from
machine Mi, i ∈ M , and transferred to machine Mi+1 as soon as Mi com-
pletes processing that part. Such conditions are commonly seen in steel
manufacturing or plastic molding, where the raw material must maintain
a certain temperature, or in food canning to ensure freshness (Hall and
Sriskandarajah [77]). Results for no-wait cells are discussed in Chapter 9.

In interval robotic cells, each stage has a specific interval of time –
a processing time window – for which a part can be processed at that
stage. Thus, if [ai, bi] is the processing time window at stage i, i ∈ M ,
then a part must be processed for ai time units on stage i, and must be
transferred to stage (i+1) within (bi−ai) time units after its completion
of processing on stage i. This is applicable, for example, for the hoist
scheduling problem on an electroplating line (Che et al. [30], Chen et al.
[33], Lei and Wang [108]): printed circuit boards are placed in a series
of tanks with different solvents. Each tank has a specific interval of time
for which a card can remain immersed. Interval cells are discussed in
Chapter 9.

Unless specified otherwise, the cells we discuss in the chapters that
follow have the free-pickup criterion.

2.2.2 Travel-Time Metric
The robot’s travel time between machines greatly influences a cell’s

performance. One common model often applies when the machines are
arranged in numeric order in a line (Figure 1.3) or semicircle (Figure 1.1).
The robot’s travel time between adjacent machines Mi−1 and Mi, de-
noted d(Mi−1,Mi), equals δ, for i = 1, . . . ,m + 1, and is additive. That
is, the travel time between any two machines Mi,Mj , 0 ≤ i, j ≤ m + 1
is d(Mi,Mj) = |i − j|δ. This scheme is easily generalized to the case
of unequal travel times between adjacent machines (Brauner and Finke
[20]): d(Mi−1,Mi) = δi, i = 1, . . . ,m + 1, and d(Mi,Mj) =

∑j
k=i+1 δk,

for i < j. If d(Mi−1,Mi) = δ, i = 1, . . . ,m + 1, then we call the travel-

A Classification Scheme for Robotic Cells and Notation 19

time metric regular additive. If d(Mi−1,Mi) = δi, i = 1, . . . ,m + 1, then
the cell has general additive travel times.

There are also additive travel-time cells in which the machines are
arranged in a circle so that I and O are adjacent or in the same loca-
tion (Drobouchevitch et al. [50], Geismar et al. [61], Sethi et al. [143],
Sriskandarajah et al. [146]). In these cells, the robot may travel in ei-
ther direction to move from one machine to another; e.g., to move from
M1 to Mm−1, it may be faster to go via I, O, and Mm, than to go via
M2,M3, . . . ,Mm−2. For circular cells with regular additive travel times,
d(Mi,Mj) = min{|i− j|δ, (m+2−|i− j|)δ}. For general additive travel-
time cells, d(Mi,Mj) = min{

∑j
k=i+1 δk,

∑i
k=1 δk + δ0,m+1 +

∑m+1
k=j+1 δk}

for i < j. Most studies assume that the travel times are symmetric,
i.e., d(Mi,Mj) = d(Mj ,Mi), 0 ≤ i, j ≤ m + 1, and that the travel time
between any two machines does not depend on whether or not the robot
is carrying a part.

To make this model better represent reality, it can be enhanced to
account for the robot’s acceleration and deceleration (Logendran and
Sriskandarajah [116]). The travel times between adjacent machines do
not change. However, the travel time between nonadjacent machines is
reduced. For each intervening machine, the robot is assumed to save η

units of time. Therefore, for 0 ≤ i, j ≤ m + 1, if d(Mi−1,Mi) = δi, then

d(Mi,Mj) =
max(i,j)∑

k=min(i,j)+1

δk − (|i − j| − 1)η.

We use this model in our discussions in Chapter 6.

For certain cells, additive travel times are not appropriate. Dawande
et al. [47] discuss a type of cell for which the robot travel time between
any pair of machines is a constant δ, i.e., d(Mi,Mj) = δ, 0 ≤ i, j ≤ m+1,
i �= j. This arises because these cells are compact and the robots move
with varying acceleration and deceleration between pairs of machines.

The most general model, one that can represent all the travel-time
metrics typically encountered in practice, assigns a value δij for the
robot travel time between machines Mi and Mj , 0 ≤ i, j ≤ m+1. These
travel times are, in general, neither additive nor constant. Brauner et
al. [24] address this problem by making three assumptions that conform
to basic properties of Euclidean space:

20 THROUGHPUT OPTIMIZATION IN ROBOTIC CELLS

1. The travel time from a machine to itself is zero, that is, δii = 0,∀i.

2. The travel times satisfy the triangle inequality, that is, δij + δjk ≥
δik,∀i, j, k.

3. The travel times are symmetric, that is, δij = δji,∀i, j.

A robotic cell that satisfies Assumptions 1 and 2 is called a Euclidean
robotic cell, and one that satisfies Assumptions 1, 2, and 3 is called
a Euclidean symmetric robotic cell. As we shall discuss in Chapter 3,
the robot move sequencing problem for either case is strongly NP-hard
(Brauner et al. [24]). This is also why most studies approximate reality
with additive or constant travel-time models, depending on which of the
two is a better fit.

To summarize, three different robot travel-time metrics have been
addressed in the literature: additive, constant, and Euclidean. Most
studies assume one of these. Therefore, many results in the field have
been proven only for one travel-time metric rather than for all three.

2.2.3 Number of Part-Types
A cell producing identical parts is referred to as a single-part-type

cell. In contrast, a multiple-part-type cell processes lots that contain
different types of parts. Generally, these different part types require dif-
ferent processing times on a given machine. Multiple-part-type cells are
discussed in Chapters 6 and 7. Throughout the rest of the book, un-
less specified otherwise, the cell under consideration processes identical
parts.

2.3 Objective Function
From an optimization aspect, the objective that is predominantly ad-

dressed in the literature is that of maximizing the throughput − the
long-term average number of completed parts placed into the output
buffer per unit time. This will be our objective throughout the book. A
precise definition of throughput is provided in Chapter 3.

2.4 An α|β|γ Classification for Robotic Cells
Figure 2.2 is a pictorial representation of the classification discussed

in the preceding text. A problem is represented using the form α|β|γ,
where

A Classification Scheme for Robotic Cells and Notation 21

(a) α = RF g,l

m,r,b̄
(m1, ...,mm). Here, RF stands for “Robotic Flow-

shop,” m is the number of processing stages, and the vector (m1,

m2, ...,mm) indicates the number of identical machines at each stage.
When this vector is not specified, mi = 1, i = 1, ...,m, and the cell
is a simple cell. The second subscript r denotes the number of ro-
bots; when not specified, r = 1. For cells with output buffers at the
various stages of the cell, the vector b̄ = (b1, ..., bm) denotes the sizes
of the buffers. At stage i, the size of the output buffer is denoted
by bi, i = 1, ...,m; this notation is omitted for cells without buffers.
The first superscript g denotes the type of robot used. For example,
g = 1 (resp., g = 2) denotes a single-gripper (resp., dual-gripper)
cell. If g is not specified, then g = 1. The second superscript l in-
dicates the layout of the cell; a linear/semicircular (resp., circular)
layout is indicated by � (resp., ◦). Most of our discussion is for lin-
ear or semicircular layouts; unless specified otherwise, such a layout
is assumed, and the notation is omitted.

(b) β =(pickup, travel-metric, part-type, prod-strategy), where

pickup ∈ {free, no-wait, interval} specifies the pickup criterion.

travel-metric ∈ {A, C, E} specifies the travel-time metric, where
A, C, and E denote the additive, the constant, and the Euclidean
travel-time metric, respectively.

If part-type is not specified, the cell produces a single part-type.
Otherwise, part-type = MP denotes a cell producing multiple
part-types.

prod-strategy ∈ {cyclic-k, LCM, all, CRM} denotes the spe-
cific production strategy employed. The detailed descriptions
of these strategies appear in later chapters, so we limit our de-
scription here and refer the reader to the corresponding chapter.

(i) In a cell producing either a single part-type or multiple part-
types, cyclic-k refers to a cyclic production strategy wherein
exactly k units are produced per cycle (Chapter 3). When
the integer k is not specified, the production strategy in-
cludes all k-unit cycles, k ≥ 1. LCM cycles form a subclass
of cyclic solutions, and are discussed in Chapters 5 and 8.

22 THROUGHPUT OPTIMIZATION IN ROBOTIC CELLS

(ii) In a cell producing either a single part-type or multiple part-
types, all refers to a production environment where all pro-
duction strategies (i.e., cyclic as well as noncyclic) are con-
sidered (Chapters 3 and 10).

(iii) In robotic cells producing multiple part-types (Chapters 6
and 7), CRM refers to the concatenated robot-move sequence
strategy.

(c) γ = μ denotes the objective function of maximizing the through-
put. Although this is the only objective function addressed in our
discussion, we use a separate field to allow for future work involving
different objective functions.

We now illustrate our classification with a few examples.

1. RF4|(free,A,cyclic-1)|μ represents a four-machine simple robotic cell
with one single-gripper robot, a free-pickup criterion, and additive
travel-time metric. It produces a single part-type and operates a
cyclic production strategy wherein one unit is produced per cycle.
The objective function is that of maximizing the throughput.

2. RF5(1, 4, 2, 3, 2)|(no-wait,E,cyclic-2)|μ refers to the problem of max-
imizing throughput for a five-stage robotic cell with parallel ma-
chines that has one, four, two, three, and two machines, respectively,
in stages 1, 2, 3, 4, and 5. The cell produces a single part-type, has
one single-gripper robot, employs a no-wait pickup criterion and a
Euclidean travel-time metric, and produces two units per cycle.

3. RF 2
m,3|(interval,C,MP,CRM)|μ considers the problem of through-

put maximization in an m-machine simple robotic cell with three
dual-gripper robots, an interval pickup criterion, constant travel-
time metric, and multiple-part-type production using a CRM pro-
duction strategy.

4. RF 2,◦
m,1̄

|(free,A,cyclic-k)|μ is the problem of maximizing the through-
put over all cyclic schedules in an m-machine dual-gripper cell with
an output buffer of size one at each machine. The travel-time metric
is additive, and the layout of the cell is circular.

In the chapters that follow, we use this classification to specify the prob-
lem under consideration.

A Classification Scheme for Robotic Cells and Notation 23

Robotic Cells

Simple Robotic Cells Robotic Cells with Parallel Machines

Single-Robot Cells Multiple-Robot Cells

Single-Gripper Robot Dual-Gripper Robot

Free-Pickup No-Wait Interval

A C E A C E A C E

Single Part-Type Multiple Part-Type

Production Strategy
∈ {cyclic-k, LCM, all}

Production Strategy
∈ {cyclic-k, CRM, all}

Throughput Throughput

α

β

γ

A, C, E denote Additive, Constant, Euclidean Travel Time, respectively

Figure 2.2. A Classification of Robotic Cells

24 THROUGHPUT OPTIMIZATION IN ROBOTIC CELLS

2.5 Cell Data
In addition to the robot’s travel-time metric, the processing times at

the various stages and the times required for loading and unloading a
machine influence the cell’s throughput. We now discuss these charac-
teristics and the notation for representing the actions of the robot and
the states of the cell. First, we list the basic assumptions throughout
most studies:

All data and events are deterministic.

All processing is nonpreemptive.

Parts to be processed are always available at the cell’s input device.

There is always space for completed parts at the output device.

All data are rational.

2.5.1 Processing Times
Since each of the m stages performs a different function, each, in

general, has a different processing time for a given part. For cells with
free pickup or no-wait pickup, the processing time of a machine in stage j

is denoted by pj , j ∈ M . If a cell processes k different types of parts, the
processing time of part i at stage j is denoted by pij , i = 1, . . . , k; j ∈ M .
In interval robotic cells, the processing time of machine Mj is specified
by a lower bound lj and an upper bound uj ≥ lj . For example, the time
that a printed circuit board spends in tank j must be in the interval
[lj , uj]. If multiple part-types are processed in an interval robotic cell,
the processing interval for part-type i is denoted by [lij , uij].

2.5.2 Loading and Unloading Times
Another factor that influences the processing duration for a part is the

time required for loading and unloading at each machine. For uniformity,
picking a part from I is referred to as unloading I, and dropping a part
at O is referred to as loading O. Typically, models assume that the
loading and unloading times are equal (ε) for all machines. This will be
our assumption as well for most of the discussion. More sophisticated
models have different values for loading and unloading at each machine:

A Classification Scheme for Robotic Cells and Notation 25

the loading (resp., unloading) time for Mi is ε2i (resp., ε2i+1), i = 1, ...,m;
the unloading (resp., loading) time at I (resp., O) is ε1 (resp., ε2(m+1)).
We use this more general notation in Chapter 6.

2.5.3 Notations for Cell States and Robot Actions
By the state of the robotic cell at any given instant of time, we mean a

sufficient description of the cell required for the purpose of our analysis.
To keep the notation simple, our discussion in this section is limited to
simple robotic cells with the free-pickup criterion; appropriate enhance-
ments can be made for other classes of cells.

Ideally, a precise mathematical description of the state of the cell
would include the following.

The occupancy state of each machine. That is, whether a machine
contains a part or it is empty.

If a machine contains a part, then the time remaining on its current
processing.

The location of the robot.

The occupancy state of the robot, that is, whether the robot arm has
a part or not.

Before we formalize the state space, note that since we are interested
in maximizing the throughput of the cell, it is not necessary to consider
“wasteful” robot actions such as unnecessary waiting at a location or
moving to a location without performing at least one of the loading or
unloading operations. Also, since this is a deterministic problem, it is
sufficient to define decisions regarding the robot’s moves only at those
epochs when the robot has just finished loading or unloading a part at
a machine. It follows that it is sufficient to consider the state when the
robot’s position is at these epochs.1

Our focus in this book is on a steady-state analysis of a certain class
of solutions referred to as cyclic solutions (discussed in Chapter 3). Typ-

1In the stochastic setting, say when the processing times are random variables, a throughput

maximizing operation may require the robot arm to change its traversal path while the robot

is in transition, at a time when some new information becomes available. To allow for this,

a continuous state space and continuous decision making over time are required.

26 THROUGHPUT OPTIMIZATION IN ROBOTIC CELLS

ically, this analysis does not require a detailed state description since the
definition of cyclic solutions involves a requirement that completes the
missing information. In view of this, all that is needed is a specifica-
tion of each machine in terms of whether it is occupied or not. Such a
simplified description can be presented as an (m + 1)-dimensional vec-
tor (e1, . . . , em+1) (Sethi et al. [142]). Each of the first m dimensions
corresponds to a machine: ei = ∅ if Mi is unoccupied; ei = Ω if Mi

is occupied, i = 1, . . . ,m. The last dimension represents the robot;
em+1 = M−

i indicates that the robot has just completed loading a part
onto Mi, i = 1, . . . ,m + 1, and em+1 = M+

i indicates that the robot has
just completed unloading a part from Mi, i = 0, . . . ,m.

Example 2.1 For m = 4, consider the state (∅,Ω, ∅,Ω,M−
2): M1 and

M3 are unoccupied, M2 and M4 are occupied, and the robot has just
completed loading M2. Suppose that the robot’s next actions were to
travel to I, unload a part from I, travel to M1, and load that part onto
M1. The states corresponding to these actions are (∅,Ω, ∅,Ω,M+

0) and
(Ω,Ω, ∅,Ω,M−

1). Note that listing the state (∅,Ω, ∅,Ω,M+
0) is superflu-

ous. To transition from (∅,Ω, ∅,Ω,M−
2) into (Ω,Ω, ∅,Ω,M−

1), the robot
must have first traveled to I.

In general, a series of robot actions can be completely represented
by a string of M−

i symbols. For example, M−
2 M−

4 M−
5 means that the

robot unloads a part from M1, travels to M2, and loads the part onto
M2. The robot next travels to M3, waits for M3 to finish processing (if
required), unloads a part from M3, travels to M4, and loads the part
onto M4. The robot waits at M4 while the part is being processed. The
robot then unloads the part from M4, carries it to M5, and loads M5.

A different notation has largely supplanted the M−
i notation in the

literature. This more popular notation is based on the concept of an
activity. Activity Ai consists of the following sequence of actions:

The robot unloads a part from Mi.

The robot travels from Mi to Mi+1.

The robot loads this part onto Mi+1.

A Classification Scheme for Robotic Cells and Notation 27

The sequence of actions discussed above (M−
2 M−

4 M−
5) would be repre-

sented by A1A3A4. Since a part must be processed on all m machines
and then placed into the output buffer, one instance of each of the m+1
activities A0, A1, . . . , Am, is required to produce a part.

It is easy to use the activity-based notation to represent the cell’s
current status. Let em+1 = Ai indicate that the robot has just completed
activity Ai; ei, i = 1, 2, . . . ,m, will have the same meaning as before.

Example 2.2 For m = 4, an example state is (Ω, ∅, ∅,Ω, A3): M2 and
M3 are unoccupied, M1 and M4 are occupied, and the robot has just
completed loading M4. From this point, let us now consider what hap-
pens if the robot executes activity sequence A1A2A4: the robot moves
to M1, waits (if required) for M1 to finish processing, unloads a part
from M1, travels to M2, and loads the part onto M2. At this instant,
the state of the cell is (∅,Ω, ∅,Ω, A1). The robot waits at M2 for the
entirety of the part’s processing. The robot then unloads the part from
M2, carries it to M3, and loads the part onto M3. The cell’s state is now
(∅, ∅,Ω,Ω, A2). The robot next travels to M4, waits (if required) for
M4 to finish processing, unloads a part from M4, travels to the output
buffer, and loads the part onto the output buffer, so the cell’s state is
(∅, ∅,Ω, ∅, A4).

For most of the discussion in this book, we will represent robot actions
by using the activity notation: Ai, i = 0, 1, ...,m. The discussion for
robotic cells producing multiple part-types, however, is easier with the
M−

i notation; we will use it in Chapters 4 and 6. The M−
i notation

is also convenient for describing moves in a dual-gripper robotic cell
(Chapter 4).

The simplified state description above omits information represent-
ing the extent of the processing completed on the parts on the various
machines. A more precise representation of a state is an (m + 1)-tuple
Γ = (s1, . . . , sm+1), where si ∈ {−1, ri}, i ∈ M . If si = −1, machine Mi

has no part on it; otherwise ri is the time remaining in the processing
of the current part on Mi. As before, sm+1 ∈ {Ai, i = 0, ...,m} denotes
that the robot has just completed activity Ai (i.e., loaded a part onto
machine Mi+1).

28 THROUGHPUT OPTIMIZATION IN ROBOTIC CELLS

Example 2.3 For m = 4, the state vector Γ = (5, 0,−1, p4, A3) indi-
cates that the part on M1 has five time units of processing remaining,
M2 has completed processing a part and that part still resides on M2,
and M3 is empty. The robot has unloaded a part from M3, carried it to
M4, and just completed loading it onto M4.

There is another important observation to be made here. Note that
even with integer data, the remaining processing times are in general
real numbers. However, since we need to consider the system state only
at the epochs mentioned above, the state description will be integral pro-
vided the initial state of the system is restricted to be in integer terms.
This restriction can be imposed without loss of generality since some
initial adjustments can be made at the beginning to bring the state to
integral terms, and the time taken to make these adjustments is of no
consequence in the context of the long-term average throughput crite-
rion. Thus, in any state description Γ = (s1, . . . , sm+1), si ∈ {−1, ri}
with ri ∈ {k ∈ Z : 0 ≤ k ≤ pi}, i ∈ M . We thus have a finite-state
dynamic system.

