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1

Space Charges in Insulators

Summary. The space charges in insulators directly determine the built-in field and
electron energy distribution, as long as carrier transport can be neglected.

In this chapter we present a few arbitrarily introduced space-charge profiles
and point out some of the basic resulting field and band edge distributions
with consequences to device applications.

1.1 Basic Electrostatic Relations

The basic electrostatic relations connect charges, forces, fields and potential
with each other under static (as opposed to dynamic) conditions.

We start from the Coulomb relation describing the force between two fixed
point charges, e1 and e2.

F = cu
e1e2
r20

(1.1)

with r0 as the distance between the two charges. The units-related constant
cu (in vacuo) is set, in the rational four-parameter system used in this
book, to cu = 1/(4πε0) with the vacuum permittivity ε0 = 8.8543 ×
10−14

(
AsV−1cm−1 = Farad cm−1

)
. For e1 = e2 = e one obtains1

F =
e2

4πε0r20
=

{
2.3× 10−16 dyn for r0 = 1 cm
1 dyn for r0 � 1.5 Å;

(1.2)

1 Since the force is measured in dyn = g cm s−2 (1 dyn is equivalent to the force
exerted by 1.0197 mg on its supporting surface), it is convenient to express the
mass in Ws3cm−2 with 1 Ws3cm−2= 10−7g.
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e is the elementary charge2
(
= 1.6022× 10−19As

)
. This force3 can be related

to an electric field, F , via4

F = eF ; (1.4)

hence one has
F =

e

4πε0r20
(1.5)

as the (constant) field on the intersecting line between the two point charges
at distance r0 between these charges.

1.1.1 The Poisson Equation

When applying Gauss’ law, we can relate a region containing many charged
particles (i.e., a space-charge region, neglecting the microscopic position of
each individual particle), with � = ne, to the field on a closed surface (of any
shape) surrounding this space charge, and one obtains:

∮
FdS =

∫
�

ε0
dV (1.6)

where V is the volume containing thespace charge ne with n the density of
charged particles, and dS is an element of the enclosing surface. For a sphere
of the radius r0 one can easily solve the closed surface integral

∮
dS = 4πr20 ;

hence the field normal to such a sphere at its surface is

F =
�V

4πε0r20
= 1.44× 10−7 n (cm−3)

r20 (cm2)

( V
cm

)
(1.7)

which, for a sphere of 1 cm radius results is a field5 of � 1.44×10−7n Vcm−1.
The electric field is a vector that points from a positive to a negative

charge, i.e., it points inward, normal to the surface of this sphere when its
charge is negative. It decreases with increasing distance from the center of
the sphere ∝ 1/r2. An electrostatic potential difference ψ1,2, which describes

2 The charge of an electron is (−e).
3 It is interesting to recognize that the electrostatic force between two ions at a

distance of 1.5 Å is ≈1 dyn, i.e., on an order of magnitude that is well within the
means of macroscopic sensors. This permits one to manipulate single atoms in an
atomic force microscope.

4 The correct way to introduce the field–force relation is via a test charge in the
limit of zero charge:

F = lim
e→0

�F/e. (1.3)

5 It should be recognized that these fields are exceedingly large for uncompensated
charges. For instance, when charging a sphere of 1 cm radius with only 1013 cm−3

electrons, one approaches already breakdown fields of the best insulators (a few
times 106 Vcm−1).
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the work required to move a positive test charge in this electric field from a
position r1 to r2 is defined as

ψ1,2 = −
∫ r2

r1

Fdr. (1.8)

Since this work is defined to be negative when a positive test charge moves in
direction of the field, 1.8 requires the (−) sign for r2 > r1.

When an electron is moved from r2 = ∞ to r1, one obtains the absolute
electrostatic electron potential, which for the above given example is

ψn = −
∫ ∞

r1

�V
4πε0r2

dr = +
�V

4πε0r1
, (1.9)

or, for a sphere of 1 cm radius, is ψ � 0.1 μV for every excess electron on the
sphere.

In general one has
∮

FdS =
∫

div FdV =
∫

�

ε0
dV , (1.10)

or,
div F =

�

ε0
, (1.11)

which is referred to as the Poisson equation. The relation between electric
field and electrostatic potential can be written in general form as

F = −gradψ = −∇ψ; (1.12)

hence, Poisson’s equation is often also given as

div gradψ = ∇2ψ = − �

ε0
. (1.13)

This equation holds when the distance r to a probing charge is sufficiently
large compared to the distance between individual charges of the space-charge
ensemble, so that a homogeneous, smeared-out collective of charges acts on
the probing charge. The granular texture of the space charge can then be
neglected.6

6 Modern devices become progressively smaller and represent typically a volume
on the order of 10−4 cm in diameter. With a carrier density of 1016 cm−3 they
contain a total of only 104 carriers in the bulk. In addition, the actual space-charge
region has only a typical thickness of 10−5 cm and therefore contains less than
1,000 charged defects with an average distance between these charges of 1/30 of
the device dimension. Statistical fluctuations (∝ √

N/N) then become large. For
smaller device dimensions, or lower space-charge densities, the granular texture
of the charges can no longer be neglected. Here the continuum model is expected
to approach its limits, and must be replaced by an atomistic picture, the carrier
transport by a ballistic rather then diffuse transport.
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In a semiconductor or insulator the force between two charges is reduced
because of the shielding influence of the atoms between these charges. Such a
shielding is described by the dielectric constant ε (more precisely by the static
dielectric constant εst here):

F =
e2

4πεε0r2
; (1.14)

hence, the relation between field and space charge within a semiconductor is
given by

div F =
�

εε0
, (1.15)

and between electrostatic potential and space charge by

∇2ψ = − �

εε0
. (1.16)

In the following chapters we will only use one relevant space coordinate
between these charges. The relationship between space charge and field is then
given by the one-dimensional Poisson equation

dF
dx

=
�

εε0
. (1.17)

Such a field distribution determines the electrostatic potential distribution
for electrons via

dψ(x)
dx

= − [F (x)− F (x = 0)] = −
∫ x

0

�(ξ)
εε0

dξ, (1.18)

with

ψ(x) =
∫ x

d1

F (ξ)dξ. (1.19)

and for ξ = d1, the corresponding ψ(d1) serves as reference point for the
electrostatic potential.

In summary, we have shown that space-charge regions result in field inho-
mogeneities. The importance of such field inhomogeneities lies in their ability
to influence the current through a semiconductor. With the ability to change
space charges by changing a bias, as we will see later, they provide the basis
for designing semiconducting devices.

Since a wide variety of space-charge distributions are found in semicon-
ductors, many of which are of technical interest, we will first enumerate some
of the basic types of these distributions and start with a catalogue of the in-
terrelationships of various given �(x), resulting in corresponding distributions
of electric field F (x) and electrostatic potential ψ(x).
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Because of the common practice to plot the distribution of the band edges
for devices, we will follow this habit throughout the following sections. The
band edge follows the electron potential ψn(x) and this relates to the electro-
static potential as

Ec(x) = eψn(x) + c = −eψ(x) + const. (1.20)

1.2 Fixed Space-Charge Distributions

In the examples given in this section, the space-charge profiles are arbitrar-
ily introduced as fixed, explicit functions of the independent coordinate (x).
The space charge can be kept constant in an insulator that does not contain
free carriers. Here all charges are assumed to be trapped in now charged lattice
defects.

1.2.1 Sinusoidal Continuous Space-Charge Distribution

A simple sinusoidal space-charge double layer can be described by

�(x) =

{
ea sin [2πx/d] for − d/2 ≤ x ≤ d/2
0 elsewhere

(1.21)

with d = d1 +d2 the width of the space charge layer; d1 and d2 are the widths
of the negative and positive regions of the space charge double layer (here,
d1 = d2). The space charge profile is shown in Fig. 1.1a.

The corresponding field distribution is obtained by integration of (1.21),
and assuming F (x = ±∞) = 0 as boundary conditions:

F (x) =

{
−(ead) cos[2πx/d] for − d/2 ≤ x ≤ d/2
0 elsewhere;

(1.22)

it is shown in Fig. 1.1b, and presents a negative field with a symmetrical
peak; its maximum value lies at the position where the space charge changes
its sign. The maximum field increases with increasing space-charge density ea
and width d.

The corresponding electron energy (band edge) distribution is obtained by
a second integration of 1.21, yielding with an assumed Ec(∞) = 0 as boundary
condition:

Ec(x) =

⎧
⎪⎨

⎪⎩

e2ad2/(4εε0) for x < −d/2
−e2ad2 sin [2πx/d] /(4εε0) for − d/2 ≤ x ≤ d/2
0 for x > d/2,

(1.23)

that is, a band edge step down of height ead2/(4εε0), as shown in Fig. 1.1c.
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Fig. 1.1. Sinusoidal space charge, and resulting electric field and electron energy
distributions. Computed for a maximum charge density, a = 1016 cm−3, a width
d = 3 · 10−5 cm, and for a relative dielectric constant, ε = 10

Such behavior is typical: a space-charge double layer produces a field
spike and a band edge step. For a (−+) sequence of the space charge with
increasing x (from left to right), the step is downward and the field spike is
negative. The reversed space charge sequence (+−) produces a positive field
spike and a band edge step upward as shown in Fig. 1.2.

1.2.2 Abruptly Changing Space-Charge Distribution

All distributions of F and ψ are smooth when caused by the integration of
a smooth space-charge distribution. As will be shown in Sect. 2.1, however,
the charge distributions change abruptly from one sign to the other in many
solids. A sinusoidal distribution with an abrupt change at x = 0 is therefore
presented as an example in Fig. 1.3, curve set a:

� =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 for x < −d/2
−ea cos

(
2πx

d

)
for − d/2 ≤ x <0

ea cos
(

2πx
d

)
for 0 ≤ x <d/2

0 for d/2 ≤ bx.

(1.24)

As a result, the field distribution is now given by a triangle and has a
sharp peak (i.e., an abrupt change in slope) at x = 0 with equal values of
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Fig. 1.2. Field extrema and band edge step signs depending on space-charge double
layer sequence (computed as in Fig. 1.1)

the slope on either side. However, the potential distribution is still a smooth
distribution and its shape is rather similar to the one produced by a smooth
rather than abrupt change of the space charge.

Another often observed form of the space-charge distribution can be ap-
proximated by two step-functions:

� =

⎧
⎪⎪⎨

⎪⎪⎩

0 for x < −d/2
−ea for −d/2 ≤ x < 0
ea for 0 ≤ x < d/2
0 for d/2 ≤ x.

(1.25)

We assume again d1 = d2 for a symmetrical distribution, as shown in Fig. 1.3a,
curve b. Here the value of the field increases linearly in the range of constant
space-charge according to

F (x) = Fc − ea

εεo
x for− d/2 ≤ x < 0 (1.26)

F (x) = Fc +
ea

εεo
x for 0 ≤ x < d/2 (1.27)

with the maximum value of the field Fc given by

Fc = −ead1

εεo
, (1.28)
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Fig. 1.3. (a) Space charge with an abrupt change of sign, resulting in corresponding
(b) field and (c) band edge distributions: shown for (a) sinusoidal; and (b) step-like
space charge distribution

shown in Fig. 1.3b, curve b. The band edge potential distribution, obtained by
integration of (1.28) [using Ec(x = ∞) = 0 as boundary condition], changes
parabolical:

Ec(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

e2ad2
1

εεo
for x < −d1

e2ad2
1

εεo
+ Fcx− ea

2εεo
x2 for −d1 ≤ x < 0

e2ad2
2

εεo
+ Fcx+

ea

2εεo
x2 for 0 ≤ x < d2

0 for d2 ≤ x;

(1.29)

the total height of the band edge step for a symmetrical distribution with
d1 = d2 is given by:

Ec(x = −d1)− Ec(x = d2) =
e2ad2

1

4εεo
. (1.30)

This simple shape evaluation of the field distribution within, and the potential
drop across a step-like space-charge distribution is helpful in the evaluation
of potential barriers and many junctions (see Sect. 3.1).
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From (1.30) it is evident that a large potential drop (supporting a large
applied voltage) can be obtained by either a large space-charge density ea or
a wide space-charge width d. However, both quantities also cause a similar
increase in the maximum field Fc (1.28), which may become too large and
consequently could lead to an electrical breakdown of the device. An increase
of the potential step without the increase in Fc can be obtained by inserting a
neutral layer between the two space-charge regions, as will be discussed below.

1.2.3 Space-Charge Double Layer with Neutral Interlayer

Under certain conditions (e.g., via appropriate doping profiles or through field
quenching, described in Sect. 3.3), the two space-charge regions can be sepa-
rated by an extended range of vanishing space charges (see Fig. 1.4a). In this
charge-neutral region the field remains constant (Fig. 1.4b), and the band edge
step increases linearly (Fig. 1.4c). Large potential drops can be achieved by
simply increasing the distance (x2−x1) between the two space-charge regions,

E(2)
c − E(1)

c = Fc

[x2 − x1

2
+
d1

2
+
d2

2

]
, (1.31)

Fig. 1.4. (a) Step-like space-charge double layer with a neutral interlayer, resulting
(b) a field distribution with constant center region and (c) a band edge change with
a linear range in the middle distributions
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d1 and d2 are the widths of each of the space-charge regions (see Sect. 3.3.3.1).
The maximum field remains the same (for d1 = d2 = d) as given in (1.28):

Fc = −ead
εεo

. (1.32)

This is an important means to increase the reverse blocking voltage of certain
semiconducting devices.

1.2.4 Asymmetric Space Charge Double Layer

In all of the previous examples, a symmetrical charge double layer was as-
sumed. With an asymmetrical space charge profile, the resulting field spike
also becomes asymmetric and the band edge distribution becomes skewed (see
Fig. 1.5, curve set a.)

In cases of highly asymmetrical profiles, the contribution of the high den-
sity part of the space-charge double layer can be neglected with respect to the
band edge drop, as seen in Fig. 1.5, curve set b. In the region with a =
1015 cm−3, this band edge drop is 0.24 V; in the adjacent region with
a = 2 · 1016 cm−3, the additional band edge drop is only 1% of that and
is barely visible in Fig. 1.5c, curve set b.

Fig. 1.5. (a) Asymmetric space-charge double layer and resulting (b) field and (c)
band edge distributions with minor (a) and major (b) asymmetry, the latter results
in a steeper change of the band edge distribution



1.2 Fixed Space-Charge Distributions 11

In actual semiconductor junctions the doping of p- and n-type parts of the
junction is usually asymmetric and the resulting space charge profile is simi-
lar to such highly asymmetrical double layers. The results shown in Fig. 1.5,
curve set b, with resulting field and band edge distributions in the low charge
density region only, are often used as a reasonable approximation to describe
asymmetrical junctions.

1.2.5 Single Space-Charge Layer

In all previous examples we have assumed total charge neutrality within the
given solid, i.e., ∫ l2

−l1

�(x) dx = 0,

with l1 and l2 as the distance form the space-charge interface to the left or right
semiconductor boundary (e.g., to its electrodes). If this neutrality condition
is not fulfilled within one solid (e.g., some of the compensating charges of
a semiconductor are located on the surface of the adjacent metal electrode),
then the effective (net) space charge can be represented by a single layer within
the bulk of the semiconductor.

Such a single space charge layer (Fig. 1.6a) causes a field-ramp as shown
in Fig. 1.6b. Depending on the distance of this layer from the metal electrode

Fig. 1.6. (a) Single space-charge layer in the bulk with corresponding surface charge
on the left electrode and resulting in a (b) field ramp and a (c) linear band edge
slope in the field ramp region
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where the compensating charges7 are located, the band edge drop increases
in a manner similar to the example of an ordinary double layer with charge
separations (1.31). In other words, the band edge increases parabolical (to
the left) in the region of the field-ramp and then linearly in the adjacent
space charge-free region toward the (left) electrode as shown in Fig. 1.6c. The
field collapses at the surface of the left electrode due to the fact that it is a
surface charge rather than a distributed space charge which would result in a
more gradual decrease of F (x). This collapse is indicated by the dashed line
in Fig. 1.6b.

For reasons of maintaining a constant field in the homogeneous part of
an actual semiconductor, a corresponding space charge separation with net
charges sitting on both electrodes, is always present for nonvanishing net
currents (see Sect. 2.1.1).

1.2.6 Space-Charge Double Layer, Nonvanishing Net Charge

We now extend the previous example to a nonsymmetrical double layer with
a remaining net charge. The net charge is compensated by surface charges on
the two electrodes. We assume that these surface charges are different in the
two electrodes, resulting in a field distribution as shown in Fig. 1.7.

Fig. 1.7. (a) Asymmetrical space-charge double layer with asymmetric compensa-
tion on the two electrode surfaces and corresponding (b) field distribution showing
the constant field range near the right electrode and (c) the band edge distribution
with the linear range again corresponding to the constant field range distributions

7 It is assumed that such charges are at the surface of the left electrode in this
example and indicated by the “−” sign in Fig. 1.6a.
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Such a space-charge distribution is quite common for asymmetrical
junctions with different conductivities in the adjacent bulk regions, hence
causing different, but constant, fields in these regions when a bias voltage is
applied. The major band edge drop usually occurs within the space-charge
double layer, and the band edge drop8 in the adjacent bulk regions is consid-
ered a series-resistance perturbation.

Summary and Emphasis

Eight arbitrarily introduced space charge profiles are discussed as idealized
examples to demonstrate the typical behavior that can be observed in various
types of semiconductor devices. Though somewhat modified through the influ-
ence of mobile carriers, the principal trend remains the same and determines
a number of device properties.

For instance, the field distribution in space charge double layers has usually
a triangular shape with its maximum value at the double layer interface. The
band edge shows a step.

If a diode is to be used at high bias conditions, a neutral interlayer between
the positive and negative space-charge layers is necessary to achieve a sufficient
voltage drop without running into breakdown fields.

Highly asymmetrical field and band edge distributions are common in
asymmetrically doped pn-junctions. The potential drop in the highly doped
(high space charge) region is usually negligible.

Series resistance effects, though undesired, are often a by-product of yet
un-optimized solar cells or in some high-speed devices, e.g., in the base of
bipolar transistors.

A clear understanding of the interrelation between space-charge distribu-
tion, the resulting field, and electron potential, corresponding to the band
edge distribution assists in the task of designing devices with improved
characteristics.

Exercise Problems

1.(e) Design an Si-diode with an n-type region, doped with 1016 cm−3 donors
and a p-type region with 1017 cm−3 acceptors with an appropriate in-
terlayer in which the field cannot exceed 105 V cm−1 and which can
support a reverse bias of 103 V. Assume an ideal step-like space charge.
(a) How wide are the space charge layers in the n-type and p-type

regions?
(b) How large are the voltage drops in both space charge regions?

8 Here enlarged for better clarity.



14 1 Space Charges in Insulators

(c) How thick must the neutral layer be?
(d) How large is the voltage drop in the interlayer?

2.(r) List a number of semiconductor devices and classify them according to
the examples given in this chapter. Explain the idealization in respect
to the actual device.

3.(e) Relate the electrostatic potential distribution, electrostatic electron
potential distribution, and band edge distribution for a given homo-
junction; identify an external bias (applied voltage). Watch for proper
sign, and energy vs. potential denotation.

4. Design an idealized space-charge distribution of your own that repre-
sents a typical semiconductor device. Insert typical space charge den-
sity values and layer thickness. Give field distribution and voltage drop
quantitatively.

5. Derive the equivalence of the mass in units of Ws3cm−2.


