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Introduction
Bernhelm Booss-Bavnbek and Jens Høyrup*

Physicists, chemists, and biologists have a tradition of discussing meta-aspects of 
their subject – among which are the military use and misuse of the knowledge they 
produce. Concerns of the latter kind are rare among mathematicians.

No rule without exceptions. During the Vietnam war, a number of appeals were 
circulated among US mathematicians (with reverberations in particular in France 
and Japan and at the International Congress of Mathematicians in Moscow in 
1966 and Nice in 1970) not to engage in war-related work. One such appeal was 
published in the Notices of the American Mathematical Society in January 1968. 
Alexandre Grothendieck’s resigning from mathematics fell in the context of this 
debate. [Godement 1978], no longer debate but politico-economical analysis, was 
written from a mathematician’s perspective even though it did not deal with math-
ematical research in particular. [Gross 1978], also written by a mathematician, 
was shorter but concentrated on mathematics.

In the new context of the euro-missile controversy of the early 1980s, mili-
tary research came into the focus of debate at universities of Western Germany. 
[Booß & Høyrup 1984] was an offspring of this new discussion concentrating on 
mathematics; the broad discussion is reflected in [Tschirner & Göbel (eds) 1990]. 
The “Forum on Military Funding of Mathematics” published in the Mathematical 
Intelligencer 1987 no. 4 reflects problems arising for the US mathematical com-
munity from the “Strategic Defense Initiative” in the same phase.1 Some more 
publications followed, mainly with historical emphasis.

As warfare is now again becoming an all-too-obvious aspect of our world and 
a no less obvious part of “Western” policies, time seemed ripe for taking up the 
issue anew. Just after the Kosovo War, Zentralblatt für Didaktik der Mathematik 
dedicated an issue to it (vol. 98 no. 3, June 1998); August 29–31, 2002, 42 math-
ematicians, historians of mathematics, military historians and analysts, and phi-
losophers gathered in the historic Swedish military port of Karlskrona, to discuss 
a wide variety of questions, each representing its own perspective on or facet of 
the global topic “mathematics and war”. Tentatively, the themes can be grouped 
as follows:
– To what extent has the military played an active part throughout history, and in 

particular since World War II, in shaping modern mathematics and the careers 
of mathematicians?

– Are mathematical thinking, mathematical methods, and mathematically sup-
ported technology2 about to change the character and performance of modern 
warfare, and if so, how does this influence the public and the military?

 * Both Roskilde University, 4000 Roskilde, Denmark. Email: booss@ruc.dk, jensh@ruc.dk
 1 Cf. also [Davis 1989].
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2 Bernhelm Booß-Bavnbek and Jens Høyrup

– What were, in times of war, the ethical choices of outstanding individuals like 
the physicist Niels Bohr and the mathematician Alan Turing? To what extent can 
general ethical discussions provide guidance for working mathematicians?

– What was the role of mathematical thinking in shaping the modern interna-
tional law of war and peace? Can mathematical arguments support actual con-
flict solution?
The present volume does not constitute the official proceedings of this meeting, 

but most contributions were presented there. This introductory essay represents 
the editors’ personal attempt to synthesize the outcome of an inherently (and 
intentionally) very disparate exchange of information and views. Admittedly, the 
synthesis also draws on the material presented in [Booß & Høyrup 1984] and on 
the perspectives developed in that booklet. In order to balance this personal bias 
we refer in running footnotes to the contributions to the volume. Such references 
do not necessarily imply that the editors agree with all points of view expressed in 
the contribution in question, nor that the editors postulate the author’s agreement 
with their interpretation of the subject-matter. In general, no other participants 
are of course responsible in any way for what we say in this introduction or for 
what we conclude from what they said; by participating in the endeavour, all of 
us – authors as well as editors – have agreed implicitly that we find civilized dis-
agreement enlightening.

Perspectives from Mathematics

All mathematicians know the tales, reliable or not, about Archimedes and his 
defence of Syracuse. They may also have heard about early modern ballistics and 
fortification mathematics and the importance of trigonometry for navigation. All 
these cases of mathematics being entangled in conquest, warfare or preparation of 
war have one thing in common: that which was combined with technical and mili-
tary knack was almost exclusively already existing mathematics. In this respect 
such examples do not differ from the use of simple accounting mathematics in 
logistics – which after all is likely to have been much more important from the 
military point of view. Mathematics served as a toolbox, and military officers may 
have been the largest group that received some general mathematical training; but 
the involvement of mathematics as a global endeavour with the military institution 
was not very intimate, and specifically military applications had no independent 
role as a shaping force for mathematics. Tartaglia’s composition of straight lines 
and circles in ballistics was clearly inspired from gunnery and the war against 
the Turks. When Galileo introduced the parabolic law this origin was already left 
behind, and the theory was linked instead to the philosophical discussion of local 
motion – and was largely irrelevant for the firing of guns because of the influence 
of air resistance, as pointed out explicitly by Galileo.

 2 This “broad concept” of mathematics is the one that serves in the rest of this introductory 
essay; it also embraces computers and computer science.
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Even to this rule (“the involvement of mathematics as a global endeavour ...”) 
there is an exception. That part of the Sumero-Babylonian legacy which is most 
spoken of in general histories of mathematics – namely the invention and imple-
mentation of the place value system – may be a child of war. In c. 2074 BCE, king 
Shulgi organized a military reform in the Sumerian Empire, and the next year an 
administrative reform (seemingly introduced under the pretext of a state of emer-
gency but soon made permanent) enroled the larger part of the working popula-
tion in quasi-servile labour crews and made overseer scribes accountable for the 
performance of their crews, calculated in abstract units worth 1/60 of a working 
day (12 minutes) and according to fixed norms. In the ensuing bookkeeping, all 
work and output therefore had to be calculated precisely and converted into these 
abstract units, which asked for multiplications and divisions en masse. Therefore, 
a place value system with base 60 was introduced for intermediate calculations.3 
Its functioning presupposed the use of tables of multiplication, reciprocals and 

Figure 1. “Noli turbare circulos meos”: When Archimedes’s city was conquered in spite of his astound-

ing mathematical engineering, he pretended that he had only made pure mathematics – thus according 

to an anecdote that has remained popular since Roman Antiquity; the mosaic is an eighteenth-century 

forgery. [Courtesy: P. C. Bol, Städelsches Kunstinstitut, Frankfurt/M.] 
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4 Bernhelm Booß-Bavnbek and Jens Høyrup

technical constants and the training for their use in school; the implementation 
of a system whose basic idea had been “in the air” for some centuries therefore 
asked for decisions made at the level of the state and implemented with great force. 
Then as in many later situations, only war provided the opportunity for such social 
willpower.

Apart from that the conclusion stands that “the involvement of mathematics 
as a global endeavour with the military institution was not very intimate, and 
specifically military applications had no independent role as a shaping force for 
mathematics” until a century ago. Since around 1500 CE, as already mentioned, 
the employment of fortification mathematicians and the teaching of naval and 
artillery officers certainly played a social role for mathematics by providing job 
opportunities and a market for mathematics text books (copiously decorated with 
military symbols).

This we may regard as the past. The contemporary situation – the one that is our 
real interest – can be said to start around the First World War, and to reach full 
development during the Second World war.4

During World War I, two important new military technologies depended on 
mathematics in the making: sonar, and aerodynamics. They were so impressive 
that Émile Picard, in spite of his own patriotism (which non-French cannot help 
seeing as pure chauvinism), regretted the perspective that young mathematicians 
might opt in future for applied mathematics only [Proc. ... 1920: xxviii]. In general, 
however, the immediate role of the pure sciences, mathematical and otherwise, 
was that of providing manpower that could be converted into first-class creative 
engineers – not restricted to applying a set of standard rules but able to implement 
theoretical knowledge and make it function in practice; this was also the role of 
most of the mathematicians that were actually involved in the war effort (if they 
were not, as was the case in France, sent into the trenches). Nobody will claim that 
mathematics was in any way decisive for the outcome of the war, nor that WW I 
applications of mathematics left important traces in the post-war world (civil avia-
tion still belonged to the future).

Picard’s worries proved unfounded. Main-stream mathematics soon reverted to 
the pre-War model, even more swiftly than the precariously erected organization 
of planned science was dismantled. Aerodynamics of course survived, but only as 
one current among others.5

 3 Since it was a floating-point system with no indication of absolute place, it could only be used 
for intermediate calculations – just as the slide rule of engineers in quite recent times. Since 
intermediate calculations have not survived, the exact dating of the implementation can only 
be determined from indirect arguments. See, for instance, [Høyrup 2002: 314] for further ref-
erences.

 4 A broad introduction to the whole period is R. Siegmund-Schultze’s survey, this volume, 
pp. 23–82.

 5 The Polish first application of mathematics (group theory) instead of philological methods in 
code cracking constitutes another isolated current – or, in fact, an omen of what was to come. 
See E. Rakus-Andersson, this volume, pp. 83–107.
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All of this was different in World War II, both quantitatively and qualitatively: 
the organization of science intended to support the war effort was a major con-
cern of both Axis and Allied powers;6 mathematically based technologies (radar, 
sonar, the decipher computer, the bomb) can be argued to have been war-decisive; 
computers, nuclear energy, jet propulsion – all mathematically constructed and 
computed for the war – have changed our world beyond recognition after 1945. 
Admittedly, all of these build on pre-war theoretical insights;7 some of them (com-
puters, jet motors) were indeed not only “in the air” before the war but functioned 
as prototypes for the devices which reached completion during the war; but in 
all cases the war, by making available huge means without counting costs and 
benefits, made it possible to boost a development that otherwise might have taken 
decades8 – and perhaps, in cases like the proliferation of DDT and atomic reac-
tors, might have been stopped at an early moment when the problems they create 
became visible.

During the war, mathematicians in large numbers were recruited, many of them 
to teach sailors and air-crew members basic trigonometry (etc.), but many also to 
serve as best-level creative engineers.9 Afterwards, the latter have often tended to 
regard what they did dismissively (“I did not write one line that was publishable”, 
as J. Barkley Rosser [1982: 509f] summarizes one reaction to his questionnaire 
on war work in mathematics), perhaps because puzzle-solving with no further 
theoretical impact did not look important in the mathematician’s hindsight; this 
assessment notwithstanding, what was done depended critically on mathematical 
ingenuity and training. A striking example is O. R. Frisch and R. Peierls’ math-
ematical formulation of the essential questions surrounding the construction of a 
uranium bomb in March 1940 and their “back-of-an-envelope” discovery that its 
critical mass was so small that military use was feasible.10

In some cases, of course, the solving of problems defined by the war did have 
important theoretical impact – well-known examples are the emergence of com-
puter science, information theory, Monte Carlo simulation, operations research, 
and statistical quality control.

 6 See, beyond Siegmund-Schultze’s article, the contributions in this volume of S. Fukutomi 
(pp. 153–159), A. N. Shiryaev (pp. 103–107), K. B. Williams (pp. 108–125), T. H. Kjeldsen 
(pp. 126–152), A. Hodges (pp. 312–325) and T. Makino (pp. 326–335).

 7 At times fully detached from every technical application; N. Wiener and E. Hopf had calcu-
lated the radiation equilibrium at stellar surfaces, but their theory could be applied to the 
expanding surface of the exploding bomb [Wiener 1964: 142f]. A. A. Markov had investigated 
his eponymous processes as pure mathematics and illustrated the applicability of the concept 
on linguistic material [Youschkevitch 1974: 129]; in the Manhattan Project they turned out to 
be relevant for solving diffusion equations and for describing nuclear branching processes.

 8 The parallel to the invention of the place value system in Sumer is striking. In that case, par-
allel processes not furthered by a military government indeed asked for much longer time: in 
China the unfolding took more than a millennium, in India it never really took place before 
the “Indian” system was brought back from abroad.

 9 Cf. [Morse 1943].
10 See [Gowing 1964: 40–43, 389–393] and [Dalitz & Peierls 1997: 277–282]. This latter volume 

presents Peierls as a physicist, but his actual chair was in “applied mathematics”; even a “broad 
concept” of mathematics does not free us from delimitation problems.
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This time, nothing was dismantled after the war (many mathematicians, of 
course, hurried away from military research) – the Cold War was already on. 
In the slightly longer run (a decade or so), civil re-application of the new math-
ematical war techniques caused profound transformation of these and violent 
acceleration of their development: only the war effort had allowed the creation 
of the first costly computers, but only commercial use allowed mass production, 
open competition, intensive development efforts and reduction of costs (actually, 
stored-program computers like the ENIAC only reached the working stage after 
the war though at first in military contexts).11 We may add, on one hand, that only 
the freeing from the pressure of immediate applicability (“better a fairly satisfac-
tory answer now than the really good answer two years after defeat”) gave space 
for fruitful interaction between theoretical understanding and applications in for 
instance computer science.12 On the other hand we may add that the developments 
born from civil reapplication were then brought back to the military sector with 
their now immensely increased efficiency (and further, back-and-forth, back-and-
forth,...) –  a situation that has given rise to the notion of a “military-industrial” or 
“military-industrial-scientific complex”.13

When discussing mathematical research for military purposes, both during 
World War II and in recent decades, we should differentiate several situations and 
problems.
– Firstly, we must distinguish the application (sometimes creative, sometimes 

repetitive) of existing mathematical tools (ballistic computation, modelling, ...) 
from the creation of new mathematical insights and techniques (sequence analy-

Figure 2. There is no known picture of Turing 

during the wartime period, but this photo-

graph shows Alan Turing (at left) with his 

athletic club in 1946. At this point he was 

engaged in designing a first digital computer 

at the National Physical Laboratory, London. 

This design used his wartime knowledge of 

electronic technology to put his 1936 theory 

of the universal machine into a practical 

form. The codebreaking machinery at Bletch-

ley Park, although very advanced, had never 

actually used Turing’s fundamental idea of 

the universal machine and the stored pro-

gram, but as soon as the war ended Turing 

set to work to bring it to reality. [Courtesy: 

Turing Archive at King’s College, Cambridge]

11 See also T. H. Kjeldsen’s discussion of the case of operations research, this volume, pp. 126–
152.

12 Cf. Hodges (pp. 312–325) on Turing’s post-war work, and Williams (pp. 108–125) on Grace 
Hopper, both this volume.

13 Since this concerns scientifically based industry in general and mathematics only in so far as 
it enters in all scientific technology, this complex is not much discussed in the present volume 
(cf. note 18). See, however, for a very specific aspect, Davis, in this volume,  pp. 174–179). A 
broad empirical investigation of related questions is [Godement 1978].
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sis, Monte Carlo simulation, ...). As a rule, but not consistently, the former type 
is the chore of mathematicians who are paid by or connected to the military 
institution itself; new insights directed toward military goals are more likely to 
come from mathematicians who are less closely bound to the military institution 
but inspired by problems coming from this source.

– Secondly, we should remember that mathematical military research is a com-
plex activity that cannot be understood exclusively as the mere production of 
theorems of presumed military use. Several institutions (Süss’s original plan-
ning of the German Oberwolfach Institute in 1944, the American Mathematics 
Research Center in Wisconsin) exemplify an efficient model, a two-way chain 
(henceforth the “AMRC chain”), which grosso modo works as follows:14 A core 
group of highly skilled mathematicians familiar with the direct problems of the 
military employer (efficiency of bombing, controlled spread of bacteriological 
agents, better radar detection and avoidance of enemy detection, or whatever it 
may be) find out which of these can be approached mathematically, undertake 
an initial translation, and direct the translated problems to other experienced 

14 Concerning the Oberwolfach Institute, this structure follows (conventional whitewashing 
notwithstanding) from analysis of the material presented by H. Gericke [1984], cf. [Høyrup 
1986]; on the same institution, see also [Remmert 1999]. For the Wisconsin Institute, see [The 
AMRC Papers].

Figure 3. When listening to a music CD we enjoy and do not think of the military origin of the coding 

involved. Similarly, mathematicians going to the wonderful Mathematical Research Institute Oberwolfach 

enjoy the ambience and have no reason to worry about the fact that the institute originated as a military 

research institution in 1944 – apparently well planned for the purpose though too late to become effi-

cient. [Photo: H. Kastenholz]
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8 Bernhelm Booß-Bavnbek and Jens Høyrup

mathematicians who are well-informed about and centrally located within the 
whole mathematical milieu; these parcel out the questions into problems which 
colleagues may take up as mathematically interesting, perhaps even without 
knowing that they enter into a network of military relevance; once such ques-
tions have been answered, the same chain functions backwards, reassembling 
the answers and channelling the global solution to the employer.

This is only one among several models. We know that it was planned to func-
tion in World War II Germany but was implemented too late to become efficient; 
we know that it has functioned in the US. We know less about the organization of 
military mathematical research in the late Soviet Union, but it appears that here, 
as in production and research in general, the civil and military domains were more 
sharply separated than in the West.

Rounding off what can be said in “the perspective from mathematics” we may 
make some general observations.
– Mathematical war research has resulted in certain fundamental theoretical 

innovations. It is striking, however, that all of these appear to have depended 
critically on an exceptional mathematician. The names of Turing, von Neumann, 
Shannon, Wald, and Pontryagin may suffice to make the point.15

– However, the utility of mathematics for the treatment of military problems does 
not depend critically on the presence of an exceptional mathematician. Math-
ematicians in large numbers have proved themselves unexpectedly able to func-
tion as creative mathematical engineers, in the sense explained above.

– This ability has largely depended on their capacity to become familiar with 
methods and approaches of various mathematical disciplines and to synthesize 
them. The still persistent unity of mathematics is thus demonstrated ad oculos, 
if not in the mathematical journals then in technical application.

– It should not be forgotten that the traditional application of the toolbox of 
already existing mathematics goes on, now at the level created by recent math-
ematical research.

– In the wake of World War II and as a consequence of the intertwinement of 
mathematics with advanced technologies (military as well as civil), mathemat-
ics as a subject has changed: discrete mathematics and the “mathematization 
of complexity” have become increasingly important, in some views to such an 
extent that they now define the actual essence of the field.16

15 Hodges (this volume, pp. 312–325), as mentioned, analyzes Turing’s work. R. V. Gamkrelidze 
(this volume, pp. 160–173) presents Pontryagin’s discovery of the maximum principle in con-
trol theory. It may also depend on the extraordinary mathematical competence of all five that 
their theories or techniques were shaped in so mature form that their applicability outside the 
military domain resulted almost immediately.

16 This theme has not been explored in the preceding pages, but see [Booß & Høyrup 1984]. 
[Bleecker & Booss-Bavnbek 2004], to mention one publication among a thousand possibili-
ties, explores one aspect of the “mathematization of complexity”.
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Military Perspectives

At the conference, the point was strongly made by Colonel Svend Bergstein that 
actual war cannot be calculated, no more today than in Clausewitz’s times;17 
war and fighting not only involve too many unpredictable external factors but 
also those aspects of human behaviour which are most atavistic and contrary to 
reason – in Bergstein’s view mostly due to the prevalence of stress and sleep depri-
vation during combat operations.

Nevertheless, and as a matter of fact, mathematics – that is, mathematical think-
ing, mathematical methods, and mathematics-based technology – has become an 
integral and even essential part of modern warfare (though often not recognized 
as such by a general public which only sees the technology and not the underly-
ing mathematics). This does not mean that mathematics has become the major 
expense of the military apparatus – mathematics and what goes with it is a cheap 
way to use costly resources more efficiently, and mathematics is used not least for 
that reason.

Once more, we may list various aspects of this role and utility of mathematics as 
discussed at the conference and in other contexts.18

– Mathematics serves in managing the institution. Purchases of weapons systems 
are planned, war-games and logistics are calculated.19

– Weapons and weapons systems are optimized and their efficiency during action 
enhanced. This regards munitions (including missiles and bombs provided with 
guidance systems); delivery systems (including for instance aeroplanes provided 
with electronic countermeasure circuitry); the reconnaissance, control and 
communication interface (“to ensure that the right forces are at the right spot 
at the right moment, and with the right information about the enemy” – Svend 
Bergstein); and, across all of these, high-speed cryptography.20 The improve-
ment of data transmission technologies is of general importance for many of 
these questions, but the creation of data is not only an evident presupposition for 
having any data to transmit but in itself something which nowadays often asks 
for the use of even more sophisticated mathematics than the transmission.21

17 See also S. Bergstein, this volume, pp. 183–215.
18 Evidently it is difficult to find any technology that has been created during the last decades 

which is not somehow driven by mathematics. The list discusses such facets of the matter as go 
beyond what holds for any practice that involves computers or microelectronics.

19 See in this volume Kjeldsen (pp. 126–152), S. Clausen (pp. 216–238), and H. Löfstedt 
(pp. 239–256). Observe that Clausen’s title does not speak of the calculation of war, as does 
that of Bergstein, but of the calculation of warfare which includes logistics and other manag-
ing matters.

 20 Cf. U. Bernhardt and U. Rehmann (this volume, pp. 257–281).
21 Interestingly, the analysis of the damages of the intestine of a wounded soldier by magnetic 

resonance imaging (MRI) and the localization of enemy ground forces by synthetic aperture 
radar (SAR) build on the same mathematics – both, indeed, by cleverly arranged rapid rep-
etition squeeze out of a “short antenna” as much information as could be gained from an 
extended antenna without advanced mathematics [Schempp 1998: 44 and passim].
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– Similarly, the strategic planning of the possible use of weapons systems depends 
on mathematical calculation; even the dismantlement of weapons systems with-
out the risk of destabilizing disequilibrium in the SALT negotiations was ana-
lyzed mathematically.22 Fortunately, nobody implemented the strategy suggested 
by the naive versions of such planning games – to make a nuclear first strike and 
promise help to the 80%-annihilated enemy if no counterattack be made, sup-
posing that the enemy would act “rationally” and submit.

– Perhaps unexpected by civilians but emphasized by some military analysts, 
simple accounting mathematics performed by mathematically trained indepen-
dent personnel and not by the active warriors is mandatory if strategic gains and 
losses are to be assessed realistically – leading officers, like all of us, are easy vic-
tims of self-deceiving optimism and pessimism according to circumstances.24

– At the opposite end of the scale, mathematics may also be an indispensable 
tool. Thus, when the effect of fragmentation bombs on human bodies was to be 
predicted but humanitarian concerns prohibited testing on pigs, mathematical 
simulation was put into play.

Figure 4 (opposite). In World War II, the destruction of a major composite target might ask for the 

deployment of a thousand bombers. Nowadays a similar task may be effectuated by, say, 29 heavy 

bombers (lower level of the above schematized front view of an attack – heights are indicated in kilome-

tres). But these have to be supported by another set of 275 fighters and ground attack fighters (“SEAD 

package”) to suppress enemy air defence (bottom). Higher up, 24 “Intelligence-Surveillance-Reconnais-

sance” (ISR) aircrafts guide the action of the lower levels – and on top, dozens of ISR spacecrafts partici-

pate. Much more than informatics is thus involved in the support of the mission itself. So, the dramatic 

decrease of CEP (see Fig. 5, caption) has to be paid for by dramatic increase of support crafts. However, 

air raids are still the cheapest way of punitive war (forbidden by international law, but practised), inflict-

ing huge economic losses on the enemy at extremely low operational costs.

[Courtesy: B. Booß-Bavnbek, B. C. Jørgensen, R. O. Rasmussen]

Precision Bombing Acronyms:

AWACS  Airborne warning and control system for air and combat control

B-<> Long-range bomber with weapon payload of more than 10 tons

COM Military communication / signals intelligence spacecraft

E-8 Joint surveillance and targeting attack radar system JSTARS

EA-6B “Prowler” carrier-borne radar jammer

EC-130 “Compass Call” communication jammer

F-<> Fighter and fighter ground attack aircraft

GPS Global positioning system navigation satellite

IR-NRO Infra-red (US) National Reconnaissance Office spacecraft

ISR Intelligence, surveillance, reconnaissance package

LM-NRO Imaging radar (US) National Reconnaissance Office spacecraft

MET Weather satellite

RC-135 “Rivet Joint” signals intelligence gathering aircraft

SEAD Suppressing enemy air defence package

U-2 Optical spy plane

22 Cf. J. Scheffran, this volume, pp. 390–412.
23 This does not disprove the utility of game-theoretical modelling, only the belief that human 

behaviour is always adequately described by the “rational economic man”. Actually, sociobio-
logical models of the same mathematical type indicate that the survival of a species is better 
guaranteed if egoistic individual sub-optimization is punished. The fear that the enemy might 
not accept the kind offer but take “irrational” revenge was exactly what made nuclear deter-
rence work, thus saving our species during the Cold War.

24 This is the recurrent theme in [Meigs 2002]. Use of the game-theoretical “scenario bundle 
method” of [Selten 1999] is an advanced analogue.
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– Ideologically, the waging of war is made more acceptable to the public by 
the presentation of warfare as precise and hence “more rational and clean”. 
Although that aspect of the matter is not much discussed in the public sphere, 
this increased precision of weapons (which is real) depends essentially on the 
application of mathematics. Whereas Hitler preached German invincibility by 
presenting the Wehrmacht as “Fast as German greyhounds, tough as German 
Lederhosen, hard as Krupp steel”, mathematics presents modern warfare as “fast 
by avionics, precise by GPS, safe by optimized operations planning”.

– Similarly, certain mathematical representations of the task to be performed may 
serve to make the agent see it as a normal manipulation of symbols and thus to 
eliminate the need for appeals to atavistic instincts – say, seeing a village to be 
bombed as triangles similar to those of a computer game may facilitate the kill-
ing.25 (Evidently, being at a height of 5 kilometres already has much the same 
effect).

Utility is one thing, possible backfiring that should be taken into account is 
another. Firstly, seeing war as “more rational and clean” may deceive (and often 
appears to deceive) not only the public but also political planners. This is not only 
devastating for the victims but already pernicious for the planners themselves who 
may engage recklessly their armed forces in operations and wars that are less easily 
won than predicted by the machine-rational perception of the character of war.

Less dangerous for planners but just as much for victims is the relative inex-
pensiveness of present-day mathematically supported asymmetric warfare for the 
attackers – if the subjugation of Serbia in the Kosovo war cost the subjugator only 
7 billion US $, that is, 700 $ per Yugoslav capita, the temptation is great to solve all 
similar problems in a similar way.26 (In the moment such a war turns out as things 
develop to involve the use of ground forces, costs of course explode, and we are 
brought back to the situation discussed in the previous paragraph).

25 This issue is touched on by Davis (this volume, pp. 174–179) and by Bernhardt and Rehmann 
(this volume, pp. 257–281).

WW II 1100 9140

Korea 330 823

Vietnam 130 128

Gulf 70 38

Kosovo 13 2

War CEP[m] # bombs

Figure 5. The average precision of bombing and firing is commonly characterized by the Circular Error 

Probable (CEP), that is, the radius of a disc around the goal point within which (on average) 50% of the 

shots hit while 50% fall outside. (Kolmogorov’s approach was more sophisticated). The table shows 

how CEP has decreased dramatically in aerial bombing over the last 60 years and how the efficiency 

of a bomber increased correspondingly. The table gives the calculated number of bombs required for 

“destroying” (i.e., hitting once) a 20 m x 30 m object.
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Another feature of the mathematization of warfare, also contributing to the 
ongoing militarization of our world but not restricted to the field of easy asymmet-
ric wars and updated “gun boat diplomacy” – actually less important there than 
in symmetric conflict – is the transformation of the “Krupp model” into an “infi-
nite Krupp model”. War and prepared war is always between two (possibly more) 
parts – Clausewitz would speak of a Zweikampf, a duel, which has now become a 
“duel of systems”.27 In the nineteenth century, Friedrich Krupp would first develop 
nickel-steel armour that could resist existing shells, then chrome-steel shells that 
could pierce this armour, then high-carbon armour plate that resisted these, then 
cap-shot shells that could break this plate – and that was the end of it. In the duel 
between surface-air missiles and aeroplanes, no physical limit prevents an ongo-
ing sophistication and ensuing arms race. Cap-shot shells were and remained 
extremely expensive; so are stealth bombers and fighters – but such measures 
as depend solely on sophistication of computer soft- and hardware have neither 
budgetary nor intellectual definitive bounds. Processes depending on physics and 

26 As emerges from E. Schmähling’s contribution (this volume, pp. 282–296), what is really at 
stake here is first of all increased pressure on civil objects and the functioning of society. At 
least in the Kosovo War, mobile military targets were mostly not detected, and a fortiori not 
destroyed. Tactical warfare being unsuccesful in spite of massive electronic support, math-
ematics showed its serviceability in strategic bombing of civil objects (legally definable as ter-
rorism).

Figure 6. The destruction of the bridges across the important international waterway Danube, some of 

them in the North of Yugoslavia and hence far away from Kosovo where the Yugoslav (here the Varadin 

Bridge in Novi Sad) military operational capability should be hindered, was unlawful by The Geneva Pro-

tocol I. The counter-argument given is that this kind of warfare is, after all, cost-efficient in human lives, 

even for the target population – as illustrated by the undamaged blocks of flats standing near to the 

crushed bridge. The as yet mysterious health problems of Nato soldiers who participated in the Gulf and 

Kosovo wars and the dramatic increase in cancer rates in Iraq tell us that other damages that do not show 

up on photographs may turn up in medical statistics. An even greater cost of this high-precision warfare 

supported by mathematics is its very introduction of the concept of justified risk-less punitive wars with-

out bloodshed. This creates invincibility illusions, lowers the barrier against war and talks people into 

accepting war. [Source: NATO Crimes in Yugoslavia, Ministry of Foreign Affairs, Belgrade, 1999]
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chemistry may have definitive natural boundaries. Those depending solely on 
mathematics seem to have none. The ensuing virtual absence of limits enhances 
the stress on both sides, and thus the speed and instability of such a race.

Ethics

Mathematics, according to a familiar view, is a neutral tool. As once formulated 
by the statistician Jerzy Neyman, “I prove theorems, they are published, and after 
that I don’t know what happens to them”.

 This is certainly an important feature of the mathematical endeavour, 
and does not only hold for theorems and theorem production. Also the teaching 
of mathematics, the production of high-level general mathematical competence in 
the population, is a precondition not only for the waging of modern war but also 
for the functioning of our whole technological society (quite apart from the cul-
tural value we suppose it to possess).

 But the title “mathematics and war” implies ethical dilemmas. In order 
to avoid having the ethical discussion end up in non-committal “I feel...”/“but I 
feel”, we may start by looking at the actual ethical choices of some well-known 
figures.28

– Laurent Schwartz used his high academic prestige to make his resistance to the 
French and American wars in Algeria and Vietnam more efficacious; he saw no 
connection between his work in mathematics and his political commitment.29

– Niels Bohr, when becoming aware of the German nuclear bomb project, sup-
ported the competing Anglo-American project; when discovering the dangers 
that were to arise from the success of the latter, he issued warnings to responsible 
politicians (Churchill, Roosevelt) and to the public (the “Open letter”) – using 
his prestige as an originator of the underlying theory and as a collaborator in the 
project (and arguably overrating the impact his interventions might have).30

– Alan Turing, quite sceptical of British society (for political as well as personal 
reasons), put his outstanding abilities in the service of war with total loyalty 
when he felt it was needed; unlike Bohr, he did so without ever putting himself 
into focus.31

– Kinnosuke Ogura had been a strong promoter of (Marxist-inspired) democratic 
modernization of Japan, and had opposed Japanese policies as being parallel 
to German and Italian Fascism. After the beginning of the aggression against 
China in 1937, however, patriotism and the prospect of using war as a way to 

27 Cf. Löfstedt, this volume, pp. 239–256.
28 J. Ryberg (this volume, pp. 352–364) discusses the ethical problem in general terms. The reader 

may think the following examples into the framework he presents.
29 See [Schwartz 2001].
30 See F. Aaserud, this volme, pp. 299–311.
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modernization urged him to play a central role in the organization of Japanese 
mathematics in the service of the military state. After the war he regretted, with-
out specifying too directly what he had done.32

– John von Neumann, like Turing, applied his outstanding abilities in war research. 
Von Neumann did so both during World War II and in the early Cold War; 
whereas Turing had been a loyal participant about whose personal attitudes in 
the matter we know nothing, von Neumann made the creation of the H-bomb 
a personal project which (well served by Stanislaw Ulam and Edward Teller) he 
did all he could to promote – his aim being to make possible a preemptive first 
strike.33

– Lev S. Pontryagin gave up an extremely fruitful research line in algebraic topol-
ogy and created control theory. In hindsight this appears to have been caused by 
a will to serve his socialist country by solving the problems of guiding intercon-
tinental ballistic missiles – thus making impossible the same first strike.34

– Decades before, G. H. Hardy had tried to avoid that usefulness of his science 
which consists in “accentuat[ing] the existing inequalities in the distribution of 
wealth, or more directly promot[ing] the destruction of human life” by concen-
trating on supposedly useless number theory. Ironically, he repeated this phrase 
in 1940, when number theory was about to become a cryptographic resource.35

– The radical pacifist Lewis Fry Richardson published his path-breaking Weather 
Prediction by Numerical Process in 1922 after having made sure that no less 
than 64000 “computers” (human beings furnished with desk calculators) would 
be needed to predict in one day the weather one day ahead. This he saw as a 
guarantee that numerical weather prediction could not be put to military use.36

To what extent can these serve as exemplars and role models? Firstly, they 
show that two fundamentally different situations must be distinguished. One is 
that of Schwartz, Hardy and Richardson: deep scepticism towards their own soci-
ety, or toward aspects of that society as a warring power. The other is that of the 
remaining examples: they accepted their own society and its warfare or armament 
policies, either in general or under actual circumstances – certainly with different 
degrees of identification.

In the second situation, the ethical dilemmas are few. Obviously, one will see no 
objections to doing his best. Dilemmas, it is true, are not totally absent: one may 
still, like von Neumann, give an extra push; one may, like Turing, be fully loyal 
but leave the political decisions to those who are officially entitled to take them 
(whether politicians, voting citizens in general, or military men); or one may, like 
Bohr, use one’s particular standing and insight and moderate, warn, or point to 
alternative options.

31 See Hodges, this volume, pp. 312–325.
32 See T. Makino, this volume, pp. 327–336.
33 See, e.g., [Heims 1980].
34 See Gamkrelidze, this volume, pp. 160–173.
35 This repetition is found in [Hardy 1967: 120].
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The situation of the sceptic is less clear-cut. Very few of us are in a situation (the 
situation, say, of von Neumann and Pontryagin) where nobody else could do what 
we are doing; these few may influence matters directly by deciding to cooperate or 
not to cooperate, but they remain exceptions.

Most mathematicians, if they choose not to cooperate with the military in 
mathematics research and teaching, will have little effect, and little of what most 
mathematicians do in research as well as teaching is directed toward a specific 
application. Deciding to abstain from working with a particular discipline because 
it seems “corrupt” is mostly futile. Giving up mathematics is giving up not only 
military applications but anything mathematics can be used for – and whatever 
cultural value we may ascribe to mathematics.

However, the practice of the mathematician consists in more than the abstract 
production and dissemination of theorems.37 Any mathematician is in a particular 
situation, and in any particular situation there are specific conditions and a specific 
room for decisions.38 One may, for instance, widen one’s own insight and global 
understanding of the role of mathematics, and try to share it with students, col-
leagues and the public – or one may choose to remain (and leave others) as blind 
as comfortable. One may be a teacher in one or the other position, teaching within 
a highly stratified or a more egalitarian education system; one may organize the 
research of an institution, one may be a prestigious researcher, or one may be the 
newly appointed young colleague. One may be in the top of the “AMRC chain” (cf. 
above, p. 7), one may be in its periphery knowing or not knowing to belong there, 
or perhaps be wholly outside it. One may belong in a national or institutional con-
text where political choices of consequence are currently accepted by colleagues 
or in one where they are unwelcome and considered bad taste and lead to social 
isolation.39 In each situation, the scope of ethical choices is different, and no gen-
eral ethical rules or advice can be issued.40 What can be said in general is that the 
supposed neutrality of mathematics per se does not entail the neutrality of these 
ethical choices.

36 See [Ashford 1985].
37 How much more is illustrated by P. Davis’s probing (this volume, pp. 174–179) of the relations 

between mathematics, entertainment, and war. Not only mathematical algorithms but also the 
creation of mentalities and ideologies are at stake here.

38 W. Göhring (this volume, pp. 336–351) tells the story of an ethically conscious ordinary 
research mathematician in a particular real-world situation involving such specific down-to-
earth conditions as labour legislation, institutional obligations, etc. Fukutomi (this volume, 
pp. 153–159) relates how a handful of famous university mathematicians from different coun-
tries were able to organize a protest movement against the Vietnam War spreading over the 
globe in a few months of 1966.

39 As Fukutomi points out, the anti-war movement gained exceptional strength among Japanese 
mathematicians, both compared to mathematicians elsewhere and to scientists from other 
disciplines in Japan. In contrast, mathematicians of the US were much more cautious and 
conservative than US scientists in general during the same years – see [Ladd & Lipset 1972].
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An Enlightenment Perspective?

The Enlightenment believed that reason might serve general progress; Rous-
seau and Swift pointed out that too often reason is used in the service of purely 
technical rationality and for purposes of sub-optimization, with morally and 
physically disfiguring effects. According to Defoe’s Robinson Crusoe, “Reason is 
the Substance and Original of the Mathematicks”. Hugo Grotius the founder of 
international law, when referring to the method of mathematicians as his inspira-
tion, appears to have had the same identification in mind.41 Where does that leave 
mathematics with regard to disfigurement and progress today?

Much of what was said above concerning the utility of mathematics for the 
military rather points to disfigurement. Most alarming of all are probably not the 
actual uses but the ideological veil of rationality, cleanness and surgical accuracy 
which is derived from the mathematization of warfare. By generalization one 
might claim that this applies not only to the military aspects of our modern tech-
nical society but to technically rational society as a whole.

However, one of the ways in which mathematics serves the military points in 
the opposite direction: that sober-minded elimination of self-deceiving optimism 
and pessimism which can be provided by mathematical reasoning and calcula-
tion. Mathematics-based reason at its best should allow us also in larger scale to 
unlearn conventional wisdom, to undermine facile indoctrination, to distinguish 
the possible from glib promises. It might help us, if not to find any absolutely best 
way – this is too much to expect from reasoned analysis – then at least to evade 
the worst. If reason is really “the Substance and Original of the Mathematicks”, 
mathematics might serve to make clear to us that war is fundamentally irrational 
and unreasonable not only in commonplace ideological generality but in specific 
detail. If mathematics is not able to do such things, then its presumed cultural 
value might be nothing but a convenient excuse for ruthless technical sub-optimi-
zation.

Admittedly, technical rationality prevails over reason for the moment, both 
concerning the general political situation and the uses to which mathematics is 
put. Mathematical theories are ethically neutral, it has been argued. Mathematics 
as a general undertaking, instead, is ethically ambiguous: responsibility, whether 
they like to remember it or not, remains with its practitioners, disseminators, and 
users.

40 A somewhat less abstract discussion of the matter can be found, however, in [Booß & Høyrup 
1984].

41 See I. M. Jarvad, this volume, pp. 367–389. Grotius goes somewhat further and tries to reshape 
legal thought as a formal science modelled after mathematics, pointed out by him to deal with 
its objects in abstraction from their concrete physical character. Similarly, Grotius requires that 
international relations should be governed by general rules that are independent of sympathy, 
religion and of the character of states. That principle was the basis for the Peace of Westphalia of 
1648 and was mostly respected since then among states that recognized each other as “civilized”. 
The UN Charter proclaimed the universality of the principle; as these lines are being read the 
reader will know whether the principle still exists or has been reduced to a mere phrase.
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