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Discovery of the Maximum Principle in 
Optimal Control
Revaz V. Gamkrelidze* 

Discovery of the Maximum Principle for the needs of optimal control and 
its subsequent development give a classical example of a theory, which initially 
emerged as an effective device for solving a purely engineering problem not ame-
nable by existing methods, and eventually developed into a mathematical theory 
of major significance. 

I present a short history of the discovery of the Maximum Principle in Optimal 
Control by L. S. Pontryagin and his associates. 

1  Formulation of the Time–Optimal Problem

In 1970, at the World Congress in Nice, Prof. Pontryagin gave a plenary talk on 
differential games, which was motivated by pursuit-evasion strategies of aircrafts 
for a very simplified model of behavior. During the after-talk discussions, A. 
Grothendieck put a rhetorical question to Pontryagin. He said that though the 
listeners witnessed a beautiful piece of mathematics, still he would like to know 
whether the speaker feels himself morally responsible for supporting military 
trends in the society. Pontryagin’s answer was quite definite and blunt. He was 
convinced, he said, that, on an intellectual level, any intellectual problems could 
be discussed openly in a developed society, and if we would follow to the logical 
end Prof. Grothendieck’s recommendation, we should be prohibited from speak-
ing openly about some topics of abstract Algebra, since Cryptography, which has 
much deeper correlations with military problems than the differential game con-
siderations he spoke about, is completely based on the theory of finite fields. 

Lev Semenovich Pontryagin was one of the leading figures in 20th century alge-
braic topology and topological algebra, but in mid-1950s he abandoned topology, 
never to return to it, and completely devoted himself to purely engineering prob-
lems of mathematics. He organized at the Steklov Mathematical Institute a semi-
nar on applied problems of mathematics, often inviting theoretical engineers as 
speakers, since he considered a professional command over the engineering part 
of the problem under investigation to be mandatory for an adequate mathematical 
development.

 * Member of the Russian Academy of Sciences and Member of the Steklov Mathematical Insti-
tute, Moscow. Email: gam@ipsun.ras.ru
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Discovery of the Maximum Principle in Optimal Control 161

The activity in the seminar culminated very soon in the formulation of two 
major mathematical problems. One of them developed into the general theory 
of singularly perturbed systems of ordinary differential equations. The second 
problem brought the discovery of the Maximum Principle and the emergence of 
optimal control theory. 

Pontryagin was led to the formulation of the general time-optimal problem by 
an attempt to solve a concrete fifth-order system of ordinary differential equations 
with three control parameters related to optimal maneuvers of an aircraft, which 
was proposed to him by two Air Force colonels during their visit to the Steklov 
Institute in the early spring of 1955. Two of the control parameters entered the 
equations linearly and were bounded, hence from the beginning it was clear that 
they could not be found by classical methods, as solutions of the Euler equations. 
The problem was highly specific, and very soon Pontryagin realized that some 
general guidelines were needed in order to tackle the problem. I remember he even 
said half-jokingly, “we must invent a new calculus of variations.” As a result, the 
following general time-optimal problem was formulated. 

Consider a controlled object represented in the n-dimensional state space Rn of 
points 

by a system of n autonomous differential equations with r control parameters 

                                                                               ,

                                                                                  . (1)

Initially it was supposed that the control vector u attains its values from an 
open set U ⊂ Rr. Necessity of a closed U , the most important case for applied prob-
lems, was evident from the very beginning, though could be handled only later. To 
denote control parameters, the letter “u” was chosen, as the first letter of the Rus-
sian word “control” – “������e��e”. 

Formulation of the problem

Given initial and terminal states x0, x1 ∈ Rn , find a control function u(t) ∈ U ∀t 
∈ [t0, t1] , such that it minimizes the transition time of the state point x, moving 

x

x

xn

=



















1

�

u

u

u

U

r

r=


















∈ ⊂

1

� �

d
d
x
t

f x u f

f

fn

= =



















( , ),

1

�

Gut-zu-Druck: 29.7.2003



162 Revaz V. Gamkrelidze

from x0 to x1 according to the non autonomous equation

                                                                          .

Thus, we come to the time--optimal control u(t) and the corresponding time-
optimal trajectory x(t), t0 ≤ t ≤ t1 , which satisfies the boundary value problem

and minimizes the transition time,

It should be noticed that the general optimal problem with an arbitrary integral-
type functional is easily reduced to the formulated time-optimal problem, so that 
by solving the time-optimal problem with fixed boundary conditions we actually 
overcome all essential difficulties inherent in the general case. 

The first and the most important step toward the final solution was made by 
Pontryagin right after the formulation of the problem, during three days, or better 
to say, during three consecutive sleepless nights. He suffered from severe insomnia 
and very often used to do math in bed all night long. As a result, he completely 
disrupted his sleep in his later years and systematically took barbiturates in great 
quantities. 

Thanks to his wonderful geometric insight, he derived from very simple dual-
ity considerations about the first order variational equation the initial version of 
necessary conditions, introducing an auxiliary covector-function j(t) = (j1(t), ... ,
 jn (t)) subject to the adjoint system of differential equations, 

 (2)

This was the first appearance in optimal control theory of the adjoint system, 
which turned out to be of crucial importance for the whole subject. Actually, Pon-
tryagin constructed for the first time, for the needs of optimization, what is usually 
called the Hamiltonian lift of the initial family of vector fields on the state space of 
the problem into its cotangent bundle, the phase space of the problem, cf. n° 5.
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2  Initial Formulation of Necessary Conditions

Initial formulation of necessary conditions, reported by Pontryagin at the seminar 
right after they were derived, is expressed in formulas

 (3)

They assert that if x(t), u(t), t0 ≤ t ≤ t1 , is an optimal solution, then there exists 
a nonzero covector-function j(t) such that j(t), x(t), u(t), t0 ≤ t ≤ t1 , is a solution 
of the system of differential equations (3.1)–(3.2), and along the solution, for every 
t, j = 1,... , r, “finite” equations (3.3) are satisfied. 

This formulation supposes that the set U of admissible values of control is open, 
though, as I already mentioned above, from the very beginning it was clear that the 
ultimate result should be applicable to closed sets as well. 

I shall describe now Pontryagin’s very simple and straightforward geometric 
arguments which directly lead to equations (3). 

Consider an arbitrary admissible variation of the optimal control u(t),

                                                                                              .

If we ignore quadratic and higher order terms with respect to du in the Taylor 
expansion of the corresponding trajectory variation, we obtain the first (linear) 
variation 

                                                                                  ,

of the optimal trajectory, which satisfies the standard linear variational equation
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164 Revaz V. Gamkrelidze

 (4)

The mapping { ( ), } ( )δ δu t t t t x t0 1 1≤ ≤ �  is a linear operator from the space of 
variations δu t t t t( ), 0 1≤ ≤  into the state space Rn . Since the set of admissible 
values of u is assumed open, the admissible variations du(t) are arbitrary (piece-
wise continuous) functions. Hence the set 

 (5)

is a plane through x(t1) in Rn, G is the corresponding subspace of Rn. Since x(t), 
t0 ≤ t ≤ t1 ,is optimal, we obtain the relation 

                                                                                  ,

which is easily derived from the implicit function theorem. Hence, there exists a 
(nonzero) covector χ χ χ= ( , , )1 … n  orthogonal to G, 

                                                                                              .

This is the geometric condition, from which the equations (3) follow immedi-
ately, if we express dx(t1) through du(t), i.e., integrate the variational equation (4). 
For this purpose we introduce the fundamental matrix Φ(t) of the corresponding 
homogeneous equation, 

and the inverse Ψ Φ( ) ( )t t= −1 . They satisfy matrix differential equations

 (6)

Solution of the nonhomogeneous equation (4) with the initial condition dx(t0) = 0 
is represented as

hence

                                                                                                            . (7)
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Discovery of the Maximum Principle in Optimal Control 165

The n-dimensional covector

is nonzero and satisfies, according to (6), the differential equation 

which coincides with the adjoint system (3.2). Finally, the equation (7) attains the 
form

Since the control variation δu t t t t( ), 0 1≤ ≤ , is an arbitrary vector function, we 
obtain equations (3.3) and come to the optimality conditions (3) formulated above. 
They easily imply the Euler-Lagrange equations for the Lagrange problem of the 
classical calculus of variations.

3  The Second Variation

As soon as the equations (3) were obtained, Pontryagin recognized the decisive 
role of the covector-function j(t) and the adjoint system (2) for the whole problem. 
He considered, in the generic case, r finite equations (3.3) as conditions, which 
eliminate r control parameters u1, ... , ur from system (3), thus making it possible 
to solve uniquely the 2n-th order system of differential equations (3.1)–(3.2) with 
a given initial condition x(t0) = x0 and an arbitrary (nonzero) initial condition for 
j. All such solutions were declared as extremals of the problem, from which the 
optimal solutions were to be derived. 

Pontryagin’s idea about a universal procedure of elimination of control param-
eters, which reduces the problem of determining extremals to solving ordinary dif-
ferential equations with given boundary conditions, found its ultimate realization 
in the maximum principle, which was formulated by him several months later after 
his first report at the seminar and was supported by the subsequent advancements 
obtained meanwhile at the seminar. 

After his talk in the seminar, Pontryagin suggested to V. Boltyanski and me, his 
former students and close collaborators at that time, to join him in his investiga-
tions of the problem. V. Boltyanski held a formal position at the Steklov Institute 
as Pontryagin’s assistant, helping him in everyday computations and manuscript 
editing; I was a young member of the department of the Steklov Institute headed 
by Pontryagin. 

Pontryagin’s vision of the problem at this early stage of development could be 
described as follows. 
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166 Revaz V. Gamkrelidze

Instead of considering the boundary value problem with fixed endpoints for the 
controlled system (3.1), we should only fix the initial point x0, take an arbitrary 
initial value ψ ψ( )t0 0 0= ≠ , and solve the system of 2n + r equations (3.1)–(3.3) 
with 2n + r unknowns xi, jj , u

k , proceeding along an arbitrary extremal through 
x0. This should be possible, since the r control parameters uk are, “in general”, 
successfully eliminated by r conditions (3.3), hence only 2n unknown parameters 
are left, xi, jj , subject to the system of 2n differential equations (3.1)–(3.2) and the 
initial conditions x t x t( ) , ( )0 0 0 0= =ψ ψ . Since the adjoint system (3.2) is linear in 
j, the function j(t) is defined up to a nonzero constant factor, hence we can nor-
malize the initial value j(t0), obtaining thus the (n – 1)-dimensional sphere of the 
initial values of j, which should generate an (n – 1)-parametric family of extremal 
trajectories of the problem emanating from the point x0 . 

According to this initial picture, the final goal of the program consisted in 
the study of extremals ψ( ), ( ), ( )t x t x t x0 0= , as solutions of the system (3.1)–(3.3), 
parametrized by the initial value ψ0 0≠ . Today we recognize in the given formu-
lation the problem of controllability in its most rudimentary setting. Certainly at 
that stage, before the maximum principle was not even formulated, it was practi-
cally impossible to obtain in this direction any nontrivial results. 

I was fascinated by Pontryagin’s geometric approach and got an idea how to 
apply this picture to investigate the problem up to the second-order approximation. 
So, we decided to split our further advancements in two directions. Pontryagin, 
together with Boltyanski, pursued the problem in the controllability direction, I 
started to investigate the second variation of the problem. As it turned out, this 
latter direction led to the final formulation of the maximum principle.

Necessary conditions of optimality, expressed by equations (3), are derived 
from purely first-order approximation. They are independent of “general position” 
considerations. My second-order considerations demanded from the very begin-
ning general position assumptions, which were overcome only in the final version 
of the proof by Boltyansky. The set of admissible values of the control parameters 
U was still assumed to be open. 

Very briefly, the idea of the second-order approximation could be described in 
the following way. 

Take an arbitrary “generic” solution of the optimal problem, x t u t t t t( ), ( ), 0 1≤ ≤ , 
which means that the plane L in (5) is of maximal possible dimension, 

                                                                              ,

and the trajectory x(t) intersects L at x(t1) transversally (is not tangent to L). 
Hence L divides Rn in distinguishable half-spaces, �−

n  – before x(t) intersects 
L, �+

n  – after the intersection. Every variation du(t) displaces the endpoint x(t1) 
in the first order into the hyperplane L x t x t L, ( ) ( )1 1+ ∈δ . The real displacement 
∆x t( )1  is certainly nonlinear in du and, generally, stays off the hyperplane,

                                                                 or                              . 

dim dimL n= = −Γ 1

x t x t n( ) ( )1 1+ ∈ −∆ � x t x t n( ) ( )1 1+ ∈ +∆ �
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Denote from now on the first variation dx(t) by d1 x(t), and let K be the kernel 
of the linear operator from the space of control variations into the space of first 
variations of x(t) for t = t1; the operator is given by

                                                                                                                  .

Define the second variation δ2 0 1x t t t t( ), ≤ ≤ , of x(t) as the solution of the linear 
nonhomogeneous equation

where Q is a vector-valued integral quadratic expression in δu t t t t( ), ,0 1≤ ≤  which 
is easily computed if we take in the Taylor expansion of ∆x t( )  only quadratic terms 
with respect to du(t). The obtained equation differs from (4) only by the nonho-
mogeneous part. The displacement of the endpoint x(t1) up to the second order is 
given by the vector δ δ1 1 2 1x t x t( ) ( )+ . 

The key geometric fact for a generic optimal trajectory x t t t t( ), ,0 1≤ ≤  consists 
in the assertion that the second order displacement of its endpoint, considered on 
the kernel K , belongs to the half-space �−

n , 

Hence we come to the conclusion that, additionally to the system (3.1)–(3.3), the 
following integral quadratic form in du is nonpositive, provided the covector j(t1), 
which is transversal to L, is correctly normalized (directed toward the half-space 
�+

n), 

After some elaborate investigation of this integral quadratic form, I came to the 
conclusion that from its nonpositivity on K follows the nonpositivity of its singular 
part on K, which easily implies the final form of the second order optimality condi-
tion, the pointwise (in t t t∈[ , ]0 1 ) nonpositivity of the quadratic form in v r∈�

 (8)
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168 Revaz V. Gamkrelidze

4  Final Form of the Maximum Principle 

Collecting all necessary conditions (3.1)–(3.3), (8) together, we immediately rec-
ognize that a certain stable combination of symbols reappears in all of them, the 
scalar function of three arguments j, x, u, 

 (9)

It enables us to rewrite the system (3.1)–(3.2) as a Hamiltonian system (10.1) 
with the Hamiltonian function (9), together with additional conditions (3.3), (8), 
written as (10.2)–(10.3):

 (10.1)

 (10.2)

 (10.3)

They assert that generic extremals are solutions of the Hamiltonian system (10.1), 
and, according to (10.2), their points are stationary points of the Hamiltonian (9) 
with respect to the control parameter u; furthermore, according to (10.3), along 
regular extremals, for which the form (10.3) is definite, the function H attains its 
local maximum with respect to u. 

We can unite two independent conditions (10.2)–(10.3) into one condition and 
write 
 (10.4)

where Ot is a neighborhood of u(t). Furthermore, the equations (10.1)–(10.2) 
imply, 

It is also easy to show that H(j(t), x(t), u(t)), as a function of t, is continuous, even 
if the control function u(t) has jumps. Hence, taking into account the generic char-
acter of the solution – the trajectory x(t) is transversal to L at x(t1) – we obtain
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Discovery of the Maximum Principle in Optimal Control 169

 After the equations (10.1)–(10.3) were written, Pontryagin realized that the uni-
versal elimination method of the control parameters he was searching for, was 
found. He replaced the local maximum condition (10.4) by the global maximum 
over the whole set U , the “Pontryagin maximum condition” (12), which made any 
restrictive assumptions about the admissible set U superfluous, 

 (12)

Thus, he came to the final formulation of the maximum principle, combining the 
Hamiltonian system (10.1) with the maximum condition (12) and dropping off any 
assumptions about genericity of the solutions or the nature of the admissible set U.

The Maximum Principle. Suppose a controlled equation is given, 

where the admissible set U is arbitrary. We introduce the Hamiltonian function 
of the problem
 (13.1)

which depends on three arguments – the covector ψ ψ ψ= ( , , )1 … n  and the vectors 
x, u. If u t t t t( ), ,0 1≤ ≤  is a time-optimal control, x t t t t( ), ,0 1≤ ≤  the corresponding 
time-optimal trajectory, 

then there exists a nonzero covector function j(t) such that the triple 

is a solution of the Hamiltonian system (13.2), and the maximum condition (13.3) 
holds, 
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170 Revaz V. Gamkrelidze

In this formulation, the maximum condition (13.3) could be viewed not only as 
a universal elimination method, but also as a generalization of the Legendre trans-
formation from the state-space variables (x, u)tothe phase-space variables (j, x). 

5  Symplectic Invariance of the Maximum Principle

It took approximately a year before a full proof of the maximum principle was 
found. It is not my intention here to go into the details of the history of this proof. 
I shall only mention that in full generality the proof of the PMP, as formulated 
above, became possible after V. Boltyansky’s invention of the so-called “needle 
variations” of the control function. These variations are zero everywhere on the 
time-interval, except on several segments with a small total length, where they can 
attain arbitrary admissible values, and they have an important property of admit-
ting an operation of convex combination, regardless of the shape of U. This was 
Boltyansky’s major contribution to the subject. 

I should like to make now some final remarks about the nature of the maximum 
principle and its significance for optimal control theory and calculus of variations. 

The role of the Pontryagin Maximum Principle, discovered for the needs of 
optimal control, was twofold in mathematics. First, it created a really working 
device for solving important applied problems of optimization, not amenable by 
classical calculus of variations, and second, it gave a much broader perspective on 
necessary conditions of extremality in mathematics in general. Though formulated 
in 1955, the maximum principle was never changed, nor even slightly improved, 
since then. All first-order advancements were directed toward generalizations of 
the optimal problem itself, especially toward developing nonsmooth optimization, 
with corresponding first-order necessary conditions shaped after the maximum 
principle. 

This could be explained by the very nature of the maximum principle. Despite 
its seemingly hard analytic form, it is deeply geometric and symplectic invariant 
already in its initial formulation. It prescribes a canonical way of deriving differen-
tial equations of extremals in the phase space of the problem, the cotangent bundle 
of the state-space manifold, on which the variational problem is formulated. Since 
the equations are obtained canonically, they are invariantly connected with the 
cotangent bundle, hence with the canonical symplectic structure of the bundle, 
and any information about the interrelations of the equations with the symplectic 
structure is a nontrivial information about the variational problem itself. We can 
even say that a real mathematical investigation of the variational problem starts 
after the equations of extremals are derived, and not after the formulation of the 
variational problem. The latter could be considered only as a “letter of intent”, 
whereas the equations of extremals give us the “contract” itself, which should 
bring the mathematical dividends. 

To reformulate the maximum principle in an explicitly invariant form, let me 
rewrite the initial control system in the “state-invariant” form on a smooth mani-
fold M, 
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and consider the family of vector fields fu as a family of scalar-valued functions Hu 
on the cotangent bundle T M M* →π , which are linear on fibers, 

                                                                           Hu is linear on fibers.

The family of scalar-valued functions Hu generates on T *M a family of Hamilto-
nian vector fields 

�
Hu  according to the standard relation

where v is the canonical symplectic form on T *M. We thus obtain the Hamiltonian 
system of the maximum principle (13.2). The field 

�
Hu  is the canonical lift into the 

cotangent bundle T *M of the vector field fu defined on the base manifold M, i.e., it 
generates on T *M a fiber-preserving flow, mapping an arbitrary fiber T Mx

*  linearly 
onto the fiber T M

e xt fu ( )
* ,

 
The maximum principle asserts that the extremals of the problem are trajectories 
x(t) of the nonstationary Hamiltonian vector field 

�
Hu t( )  such that the maximum 

condition holds, 

If the maximum condition 

eliminates the parameter u from the family Hu in some region O T M⊂ * ,  and as 
a result of this elimination, we obtain a smooth scalar-valued function (without 
parameters) H, the master-Hamiltonian of the problem, then the optimal problem 
considered on O is reduced to studying trajectories of a fixed Hamiltonian vector 
field 

�
H :

Regular problems of the calculus of variations are typical examples of this situa-
tion. Actually, this picture was envisaged by Pontryagin in his initial attempt to 
solve the problem. 

It is remarkable that the described geometric approach permits us, practically 
in all interesting cases, including nonregular cases, to construct canonically from 
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Figure 1. According to information received from Samara State Aerospace University, the launchings 

of Sputnik 1 and Sputnik 2 in 1957 were made without recourse to the Pontryagin’s Maximum Principle. 

Later tasks – bringing down cosmonauts safely, and guaranteeing that intercontinental missiles surviv-

ing a first strike would not miss New York by more than the radius of efficiency of a hydrogen bomb – did 

use the Maximum Principle, which was in the public domain well before that. For Sputnik 1 and 2, ideas 

due to Pontryagin were used to find the correct weight of the space craft (same source). [Editors’ note; 

photo: Samara State Aerospace University Museum]
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the given optimal problem a nonlinear connection on T *M, which produces new 
important infinitesimal invariants of the optimal problem that are nontrivial 
already in the regular case. In particular, we can obtain the curvature tensor of 
the optimal problem, cf. [4]. If we try to derive from here global invariants of the 
state manifold M, for example, try to express its Euler characteristic through the 
curvature of the optimal problem (a possible generalization of the Gauss-Bonnet-
Chern formula), we should inevitably come to generalizations of some classical 
relations concerning characteristic classes due to Pontryagin and Chern, which 
were obtained in the special case when the standard Riemannian length on the 
manifold M is minimized. Thus, two major achievements of L. S. Pontryagin, 
based on completely different ideas and obtained in different periods of his activ-
ity, might be intimately related. 

I have reached the end of the story, which started with two humble Air Force 
engineers who ignited the mathematical genius of L. S. Pontryagin almost fifty 
years ago. 

Summing up, we should consider the discovery of the Maximum Principle and 
the subsequent development of optimal control as a classical example of a theory 
that initially emerged as an effective device for solving a concrete engineering 
problem not amenable by existing methods, and eventually developed into a math-
ematical theory of major significance.
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