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Abstract The relentless advance of biochemistry has enabled us to take apart
biological systems with ever more fine-grained and precise instruments. The fruits
of this dissection are millions of measurements of base pairs and biochemical con-
centrations. Yet to make sense of these numbers, we need to reverse our dissection
by putting the system back together on the computer. This first step in this process
is reconstructing molecular anatomy through static modeling, the determination of
which pieces (DNA, RNA, protein, and metabolite) is present, and how they are
related (e.g., regulator, target, inhibitor, cofactor). Given this broad outline of com-
ponent connectivity, we may then attempt to reconstruct molecular physiology via
dynamic modeling, computer simulations that model when cellular events occur
(ODE), where they occur (PDE), and how frequently they recur (SDE). In this
review we discuss techniques for both of these modeling paradigms, illustrating
each by reference to important recent papers.

Keywords Biological networks · Computer simulation · Dynamic modeling · Static
modeling

2.1 Introduction

The term “post-genomic era” became a cliche even before the human genome was
sequenced, but it has a definite meaning. It refers to the refocusing of effort on tasks
that were insurmountable without the genome as platform, such as the construction
of hybridization probes for every human gene (Schena et al. 1996) or the phenotyp-
ing of knockout strains for every yeast ORF (Winzeler et al. 1999). Many different
kinds of these genome-scale data sets are now available (Collins et al. 2007; Foster
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et al. 2006; Gavin et al. 2006; Kim et al. 2005; Krogan et al. 2006; Lamb et al. 2006;
Sachs et al. 2005), and each analysis tells the same story: the components of biolog-
ical systems are not free-floating parts, but are organized into functional modules
(Hartwell et al. 1999).

Systems biology is the science of quantitatively defining and analyzing these
modules (Bornholdt 2005) and can be divided into two broad areas: static modeling
of an organism’s interactome (Section 2.2) and dynamic modeling of a biological
system’s kinetics, spatial structure, or stochastic variation (Section 2.3).

In general, static models tend to be broader and coarser in scope, often encom-
passing the entire interactome, while dynamic models usually focus on the details
of a single subsystem, such as chemotaxis (Alon et al. 1999), lysogeny (Arkin et al.
1998), or morphogenesis (Igoshin et al. 2004a,b). Static modeling is less demand-
ing from an experimental perspective, as just about any assay on a population of
cells will prove informative. By contrast, deterministic dynamic models require
temporally and sometimes spatially (Meinhardt and de Boer 2001) resolved data,
and stochastic dynamic models require even more data in the form of population
ensembles. In this review, we discuss both modeling strategies with an eye toward
describing statistical considerations and summarizing recent successes.

2.2 Static Models of Biological Networks

Static modeling is best conceptualized as the computerized reconstruction of molec-
ular anatomy. In much the same way that macroscopic anatomy tells us that the
shinbone is connected to the kneebone, molecular anatomy tells us which molecules
interact with each other.

Yet the situation at the molecular level is complicated by the fact that we cannot
yet “see” the molecular components of a cell at the same resolution that a patholo-
gist can observe the bones and muscles of a cadaver. Our approach is rather more
like that of an archaeologist who discovers many piles of bones in different config-
urations and must statistically reason that shinbones and kneebones are likely to be
functionally related, as they are (1) often found near each other, (2) usually present
together in different species, and (3) more correlated in size than random pairs of
bones.

This concept of statistically inferring static relationships via “gnilt by associ-
ation” is one of the core ideas behind static modeling. We visually represent these
inferred static relationships by a network. Nodes of this network correspond to com-
ponents of the system and edges to relationships between components. Different
kinds of static models are usefully distinguished by the number and type of nodes
and edges which are present. As a general rule, larger networks for more complex
organisms require more data to reconstruct.

In this section, we review methods for the representation and inference of static
network models from multiple data sources. We describe a common Bayesian for-
mulation which unifies the steps of network integration and experimental validation.
By analogy to the concept of a reference genome assembly (Lander et al. 2001;
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Venter et al. 2001), we then describe how recent large-scale efforts at network
determination, such as the recent connectivity map (Lamb et al. 2006) and the
proposed human interactome project (Ideker and Valencia 2006), have led natu-
rally to the concept of ontologically labeled, richly typed reference networks. We
conclude by discussing methods for network alignment, network visualization, and
network-guided experimental prioritization.

2.2.1 Advantages of Static Models

Because static modeling is about determining which elements are present (nodes)
and how they are interconnected (edges), it is a basic prerequisite for any kind of
systems biological analysis. As one example, determining whether two bacteria can
metabolize the same sets of compounds requires an enumeration of their functional
modules, roughly corresponding to the evolutionarily conserved subgraphs in their
respective static models. As another example, identifying proteins which are essen-
tial for cellular function can be greatly aided by knowledge of which proteins are
central in static network models. In particular, static models are essential starting
points for more complex dynamic modeling strategies.

2.2.2 Limitations of Static Models

Perhaps the most obvious limitation of a static model is that it is in fact static: it
does not incorporate temporal, spatial, or conditional information except indirectly.
In particular, less detailed static models may give little information about how dif-
ferent nodes talk to each other. For example, low-resolution models that predict
solely whether two proteins “interact” with some probability are useful for generat-
ing hypotheses, but give little mechanistic insight as to whether they are related by
physical contact, presence in the same pathway, or regulation of the same genes.
These limitations can be partially overcome by including more types of edges,
though there are fundamental limitations on the level of conditional detail (Fig. 2.1)
possible in a static network.

2.2.3 Specific Tasks Associated with Static Modeling

We can order the process of static modeling into five sequential tasks:

1. Determine desired network detail. The first step in static modeling is to deter-
mine the scope and detail of the network reconstruction. Put simply, how many
nodes and edges are desired, and what are their types? The goal here is to quanti-
tatively parametrize the network by a response variable. For example, this could
be an N2 × 1 vector of boolean connectivities on N2 edges (as per L in Fig. 2.2)



16 B.J. Daigle et al.

Marginal Correlations Can 
Be Determined Individually...

b ...But Conditional Correlations 
Demand Cross-Sectional Data

a

.84

1.1

1.2

.87 .65.32

.93 .74 .73

.65.69.97

t1 t2 t3 t4

Expression Ratios
(Time Course)

Gene 1

Gene 2

Gene 3 –.07–.17 1

1.96 –.07

–.17.961

gene correlation 
across time points

 Protein Profiling
(Subcellular Organelle Abundance)

5021

19175

4431

9388 5698

5221 3071

3821737385

f1 f2 f3
Prot. 1

Prot. 2

Prot. 3 –.68.59 1

1–.19 –.68

.59–.191

Prot. 1

Prot. 2

Prot. 3

t
1

t
4

f 3

f 1

protein correlation 
across fractions

t
4

f 3

f 1

timefra
ction

conditional correlation 
across fractions at
given time point

Rt

Rf

Rf |t4

extract
submatrix

calculate
correlation

Fig. 2.1 Data availability constrains network detail. (a) Given a cell cycle time course of gene
expression measurements, we can determine which genes are temporally coexpressed (Spellman
et al. 1998). Similarly, from protein correlation profiling (Foster et al. 2006), we can determine
which proteins are abundant in the same subcellular organelles, and thereby derive a rough mea-
sure of colocalization. (b) Suppose, however, that we wish to determine whether a given protein
pair is colocalized at a particular time in the cell cycle. To calculate this conditional correlation we
must (1) sharply increase the number of data points in our experiment and (2) collect both kinds of
data on the same object at the same time. This may be difficult or impossible to do experimentally;
for example, the methods for determining protein abundance across organelles are very different
from those for determining an mRNA abundance time series. As more kinds of variables are incor-
porated (chemical stimuli, genetic background, etc.) the requisite number of data points increases
exponentially. These constraints fundamentally limit the extent to which conditional interactions
can be probed with independently collected data sets. Reproduced from (Srinivasan et al. 2007)
with permission from Oxford University Press

or an N × 1 vector of node properties (as per Y in Fig. 2.3). Ideally some high-
resolution data on Y or L is already available, a so-called training set. This
data could come from well-established individual publications and/or from low
throughput, expensive experiments.

2. Enumerate input data sources. The next step is to work backward to determine
which input variable could potentially predict the desired network properties.
Input variables can usually be either N × 1 vectors that give data on each node
or N2 × 1 vectors that predict edge data (X and E, respectively, in Fig. 2.3).

3. Network reconstruction. Given predictors (X, E) and partial training data on
(Y, L), we can use machine learning to predict the remaining elements of (Y, L)
(Figs. 2.2 and 2.3). The result is a static network model (Ŷ , L̂) with information
on the nodes and edges of the biological system under consideration. Here the
“hat” denotes the fact that these values are estimates and of lower reliability than
the “gold-standard” training set.

4. Experimental confirmation. In the ideal scenario, the properties of the pre-
dicted network are then experimentally tested. The gold standard is to make
new high-resolution measurements on (Y, L) using the same methods used to
assemble the training set and to compare these experimental measurements to
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Fig. 2.2 Enumerating labels and predictors for data integration. For each protein pair, we can com-
pute labels and predictors. At the top of the figure, two kinds of labels and four predictors have been
tabulated for each pair of proteins; given N proteins, this table will have N (N − 1)/2 rows. Labels
are directly useful to humans while predictors represent raw experimental data. Importantly, many
labels correlate with predictors. For example, calculating conditional density estimates (lower left)
for the phylogenetic profile correlation over all pairs in Mycoplasma genitalium shows that highly
coinherited pairs are likely to functionally interact in the same KEGG category (Srinivasan et al.
2006). This statistical dependence can be used to put predictors on the same scale, by normalizing
them in terms of their ability to recapitulate functional interactions. It can also be used to fill in
uncurated labels and integrate different data types (Fig. 2.3). Reproduced from Srinivasan et al.
(2007) with permission from Oxford University Press

the predictions (Ŷ , L̂). If the predictions match experiment sufficiently well, we
can replace potentially expensive high-resolution measurements on (Y, L) with
cheaper bulk measurements of the relevant (X, E) variables.

5. Network applications. Given an experimentally reliable static network, we can
then proceed to further applications, such as comparisons of networks across
species and conditions (network alignment) and network-guided experimental
prioritization.
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Fig. 2.3 Data integration as supervised learning. For each biological object, we tabulate labels
and predictors as in Fig. 2.2. Rather than comparing predictors in terms of their correlation with
the label, we use all the predictors at the same time to estimate the label. For example, if we do
this for the specific biological object of individual proteins, we can obtain an integrative predic-
tion of protein function. If instead we do this for pairs of proteins, we can obtain an integrative
prediction of protein interaction. Note that some of the columns in the pair table are only defined
for pairs (in this case, the TAP/MS and Y2H data) while other quantities can be computed from
the protein table. Note also that for statistical reasons, the interaction prediction problem can be
easier than the function prediction problem. In the former case, we have a multiclass classification
problem with only a few thousand data points, while in the latter case we have a binary classifica-
tion problem with millions of data points (Hastie et al. 2001). Importantly, the supervised learning
framework can be applied to many other kinds of biological objects besides proteins and protein
pairs. Reproduced from (Srinivasan et al. 2007) with permission from Oxford University Press

The remainder of the chapter is split into four parts: a summary of data sources
used for static modeling, an overview of algorithms for network reconstruction,
a discussion of network representations, and a survey of applications of static
networks.

2.2.4 Data for Static Modeling

2.2.4.1 Data Types and Sources

The goal of static modeling is to infer the properties of nodes and edges for a
given biological system, which is often the entire interactome of a single organism.
Subgraphs of tightly interconnected objects in these networks represent functional
modules (Barabasi and Oltvai 2004). Some of these networks are obtained from
edge predictors E in Fig. 2.3, in that they come from direct measurements of pair-
wise interactions (Zhu et al. 2007), including physical (Gavin et al. 2006; Krogan
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et al. 2006), signaling (Pokholok et al. 2006; Ptacek and Snyder 2006), transcrip-
tional (Davidson et al. 2002; Wei et al. 2006), metabolic (Covert et al. 2004), and
epistatic (Collins et al. 2007; Schuldiner et al. 2005; Tong et al. 2001) networks.
Other networks have their connectivity inferred indirectly through measurements
on node predictors X, such as coexpression under the same conditions (Lamb et al.
2006), in the same tissues (Chen et al. 2006), or at the same time points (Laub et al.
2000; Spellman et al. 1998); coinheritance in the same species (Pellegrini et al.
1999; Srinivasan et al. 2005); collocation on chromosomes (Overbeek et al. 1999);
coevolution of residues (Pazos et al. 2005); or shared mutant phenotype (Dudley
et al. 2005). These indirect networks are constructed by using variation along one
dimension (time, space, environmental perturbation, etc.) to inform the construction
of the global network. For example, proteins that are abundant in the same subcellu-
lar organelles (Foster et al. 2006) are likely to functionally interact, as are genes that
are expressed at the same time (Spellman et al. 1998); such interacting sets represent
subgraphs in the global interaction network.

Given that hundreds of these large-scale data sets are now available, it has
become essential to consult meta-databases. Among the most useful are Pathguide
(Bader et al. 2006), BiowareDB (Matthiessen 2003), BioGRID (Stark et al. 2006),
the yearly Nucleic Acids Research Database (Galperin and Cochrane 2009) and
Web Server (Benson 2009) issues, and a recent compilation of more than 150 pub-
licly available functional genomic resources (Ng et al. 2006). As a general rule, it
is probably best to limit one’s use of raw data to data sets curated by the major
databases (NCBI, EBI, DDBJ, UCSC, etc.). Otherwise a great deal of time will be
spent mapping identifiers and parsing various data formats.

2.2.4.2 Data Limits Static Model Complexity

As we shall see, the advantage of static modeling is that it can incorporate data
sets compiled by a number of investigators at different times and under different
conditions. However, this very advantage also imposes fundamental limitations on
static model complexity.

For example, consider the problem of determining a conditional network of
interactions or correlations in each subcellular organelle. As Fig. 2.1 shows, this
seemingly simple request dramatically increases the amount of data that must be
simultaneously collected. Moreover, in many cases the extra resolution is simply
unavailable with current experimental techniques. Microfluidic automation of basic
laboratory procedures (Demello 2006; Hansen and Quake 2003) may make such
cross-sectional measurements feasible in the future, but with few exceptions, such
as the high-throughput construction and characterization of deletion strains (Giaever
et al. 2002), fine-grained conditional data is usually unavailable. Even in large-scale
studies, data is usually collected on only one variable at a time.

Thus, the limitations of the available data tend to force us toward a static low-
est common denominator map of interactions for most organisms, averaged over
time, space, perturbation, and other variables. All is not lost, however, as this static
network is still a significant conceptual leap beyond the raw genome sequence of an
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organism. Moreover, variation of different kinds (e.g., upregulation of genes or spa-
tial localization of proteins) can be visualized by superimposing tracks and layouts
upon such static networks (Hu et al. 2007; Shannon et al. 2003) in the same way we
view gene and motif tracks upon a genome assembly (Kuhn et al. 2007).

2.2.5 Network Reconstruction

2.2.5.1 Labels vs. Predictors

For the purposes of data integration, a useful data set is one that provides measure-
ments on at least one type of biological object, such as genes, proteins, or protein
pairs (Fig. 2.2). Such data sets can be divided into two broad categories: labels and
predictors. Predictors, such as expression ratio measurements on a gene (Schena
et al. 1996) or phylogenetic profiles of a protein (Pellegrini et al. 1999), are often
“dense” in that they are available for most instances of a biological object and are
acquired in a high-throughput way. For example, because most genes are present
on standard microarrays, expression profiles are available for most genes (mod-
ulo missing values). In contrast, labels such as GO consortium gene annotations
(Ashburner et al. 2000) or phosphorylation interactions culled from the literature
(Saric et al. 2006) tend to be sparse and of high quality. One of the most impor-
tant discoveries (Jansen et al. 2003) in functional genomics is that these curated
labels, which represent directly useful information, can be statistically predicted
from combinations of uncurated predictors.

2.2.5.2 Early Methods for Clustering and Integration

The road to this discovery began with early attempts at unsupervised integration and
clustering. When the first microarray data sets became available, dozens of different
algorithms for unsupervised clustering of these data sets were published (Altman
and Raychaudhuri 2001; Sherlock 2000). These techniques were also applied to
other data sets, such as phylogenetic profiling (Pellegrini et al. 1999). While indi-
vidual clusters of genes were sometimes experimentally validated (Srinivasan et al.
2005; Stuart et al. 2003), it was difficult to assess the extent to which any given clus-
tering reflected the true modules of the organism. Given the fuzziness of the module
concept, the fact that genes (and other biological objects) can belong to more than
one module, and the often conditional nature of intra-module interactions, it was not
clear whether the concept of a true set of modules was even a useful one.

This problem became more pronounced when investigators began to combine
interaction networks inferred from different assays, which in turn had apparently
different modular structures. The first attempts (Tong et al. 2002) applied arbitrary
thresholds to the interactions derived from different assays and used the union or
intersection of these sets as an integrated network. In some cases, such as large-
scale yeast two hybrid data, the intersection was essentially the null set (Ito et al.
2001). While the goal of combining different assays to reduce noise was a step in the
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right direction, the problem was that no clear method for weighting the confidence
of different assays was available. As with unsupervised clustering, the underlying
issue here was the lack of a true set of curated modules to benchmark different
assays against.

2.2.5.3 Data Integration by Supervised Learning

Supervised Normalization

The solution (Jansen et al. 2003; Lee et al. 2004; Lu et al. 2005a; Srinivasan et al.
2006; Tanay et al. 2004; Troyanskaya et al. 2003; Wong et al. 2004) was to build
a gold standard to compare different kinds of predictors. In general, different kinds
of gold standards can be built from different labels; while a colocalization gold
standard can be built from MIPS (Mewes et al. 1999), a functional interaction gold
standard can be generated from EcoCyc (Karp et al. 2002), Reactome (Vastrik et al.
2007), GO (Harris et al. 2004), or KEGG (Kanehisa et al. 2006). Negative examples
can then be easily generated via random permutation of positive labels (Ben-Hur
and Noble 2006). Though simple, the permutation-based approach to generating
negative examples has been shown to be superior to selecting a statistically biased
subset of negative examples, such as proteins known to be in different subcellular
localizations (Ben-Hur and Noble 2006).

Given this gold standard, a useful predictor will separate positive from negative
examples. This observed statistical separation can then be converted into a poste-
rior probability by applying Bayes’ Rule (Srinivasan et al. 2006), allowing different
predictors (uncurated data) to be compared in terms of their ability to recapitulate
known biological labels (curated data). In the specific case of protein interaction
prediction, a good predictor will recapitulate known labels by separating interacting
protein pairs from non-interacting pairs (Figs. 2.2 and 2.3).

Detection of Corrupted Data

One important application of this result is screening microarray experiments for cor-
rupted data (Srinivasan et al. 2006). In addition to a battery of internal consistency
checks (Irizarry et al. 2005; Woo et al. 2004), a series of expression measurements
can also be used to calculate a correlation matrix, which can then be compared to
a gold standard. If coexpression correlations separate positive and negative train-
ing examples as in the lower left panel of Fig. 2.2, the data set contains at least
some signal; if no separation is observed, problems may have occurred with some
hybridizations.

Another important application is identifying which kinds of data may be sys-
tematically unreliable; for example, interactions from large-scale yeast two hybrid
(Y2H) studies appear to be uncorrelated with any of several gold standards (Qi et al.
2006). This matches other results that indicate that the properties of hubs (Bloom
and Adami 2003) and degree distributions (Deeds et al. 2006) in Y2H networks may
be artifactual and may explain the low overlap of independently collected Y2H data
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sets with each other (Gandhi et al. 2006; Goll and Uetz 2006; Hart et al. 2006) and
with literature-curated interactions (Rual et al. 2005). Moreover, the generally low
correlation of Y2H interactions with curated data stands in contrast to TAP/MS-
derived interactions and most other kinds of functional genomic data, including
expression arrays (Qi et al. 2006). The ability to perform such comparisons is one
of the primary advantages of a gold standard.

Supervised Integration

In addition to allowing comparison of different predictors, a gold standard also
enables us to perform data integration. In the context of protein interaction pre-
diction, an array of association predictors is the input to a binary classifier function,
which returns the integrated probability that two proteins are linked in the sense
stipulated by the gold standard (Fig. 2.3). When this binary classifier function is
applied to predict interaction probabilities for all protein pairs in a genome, the result
is an integrated probabilistic protein interaction network. Variants of this approach
have been used to predict functional associations (Jansen et al. 2003; Lee et al.
2004; Srinivasan et al. 2006), physical contacts (Qi et al. 2006), synthetically lethal
genetic interactions (Wong et al. 2004), and colocalizations (Qi et al. 2006; Jansen
et al. 2002).

Importantly, this supervised learning framework for data integration is not limited
to interaction prediction and has also been applied to direct prediction of protein
function (Han et al. 2004; Lu et al. 2005b) and transcription factor/DNA binding
(Beyer et al. 2006). In fact, the applications of supervised learning in functional
genomics can be seen as a natural outgrowth of supervised learning methods in
gene finding (Ratsch et al. 2007), protein sequence alignment (Do et al. 2006a), and
RNA secondary structure prediction (Do et al. 2006b; Gruber et al. 2007).

2.2.6 Network Representation

2.2.6.1 From Reference Assemblies to Reference Networks

Along with algorithms for network reconstruction, a fundamental question in static
modeling is the issue of data structures, of how an inferred network model is rep-
resented on the computer. The field is currently moving from a number of ad hoc
network representations to a better defined concept of a reference network.

To motivate this, recall the concept of a “reference human genome assembly.”
This concept is a fiction, as the genome coils and uncoils (Champoux 2001), moves
about the cell (Riddihough 2003), is methylated and demethylated (Weber and
Schubeler 2007), varies substantially between individuals (Abecasis et al. 2007)
and has nontrivial three-dimensional structure (SantaLucia and Hicks 2004).

Nevertheless, it is a useful fiction, as each of these phenomena can be visualized
and analyzed by superimposing tracks upon the reference assembly, which repre-
sents a lowest common denominator of analysis. In particular, by separating the
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raw data (the reference assembly) from the metadata (the species-specific tracks
and annotations), cross-species comparisons and genome alignments are enabled
(ENCODE Project Consortium 2007; Brudno et al. 2003).

Similarly, a feasible near-term goal for static modeling is the construction of
reference networks for key model organisms with explicitly typed edges (Figs. 2.4
and 2.5). These reference networks may integrate multiple data types (Fig. 2.3) and
incorporate explicit models of uncertainty. However, as they are meant to represent
the average cell of a given organism near the median of the norm of reaction (Lynch
and Walsh 1998), they should not directly incorporate interactions which only occur
during certain perturbations, at specific times, or within particular cell types. As with
reference assemblies, such conditional interactions should be modeled by superim-
posing tracks and layouts on the static reference network rather than incorporating
conditional interactions directly into the reference network (Fig. 2.4).

a

b
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of high confidence 
physical interactions

Reference sequence of
high confidence base pairs

gene track

SNP track

...GCATGCTAC...

Reference network concept
separates physical interactions

 from metadata (tracks & layouts)
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Fig. 2.4 Reference assemblies and reference networks. (a) The concept of a reference assembly
allows us to enforce a divide between data and metadata. Everything other than finished sequence
data is visualized and represented as a metadata track associated with the raw sequence (Kuhn et al.
2007). (b) Enforcing a similar kind of separation for a reference network will have key advantages.
By enumerating a static list of highly probable physical interactions which occur for an average
cell of a given species (averaged over condition, space, time, etc.), we can obtain a lowest common
denominator of interaction information to compare between species. Given this physical backbone,
metadata can then be visualized via tracks and layouts. For example, we can apply a node track to
flag essential nodes, an edge track to highlight strongly and weakly conserved edges, and a layout
to mirror the known physical separation of modules. Reproduced from Srinivasan et al. (2007) with
permission from Oxford University Press
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By keeping the building blocks of the reference network separate from the details
of when or where they interact, a separation between data and metadata is enforced
that permits powerful kinds of network visualizations and alignments (Fig. 2.4).
This is particularly valuable because network metadata is likely to accumulate in
bits and pieces due to the prohibitive cost of compiling cross-sectional data on
different network states (Fig. 2.1). With respect to visualizing this metadata, the
primary new feature in the network context is the availability of layouts in addi-
tion to tracks, which are particularly suitable for visualizing spatial or functional
relationships (Fig. 2.4b).

2.2.6.2 Strongly Typed Static Network Models

One of the most important lessons learned from genome sequencing was the value of
the Gene Ontology’s systematic, machine-readable approach to categorizing func-
tion (Ashburner et al. 2000). Before GO, it was impossible for a computer to
discern that a protein annotated as an alcohol dehydrogenase was a kind of oxidore-
ductase.

We propose that a similar state of affairs is currently prevalent in systems biology,
and believe that a Network Ontology for explicit ontological markup of reference
networks will prove to be an essential tool (Fig. 2.5) specifically, note that the
edges and nodes of the reference network in Fig. 2.4 have explicit ontological

�
Fig. 2.5 (continued) Jansen and Gerstein 2004), or transcription factors and motifs (Beyer
et al. 2006). In order to achieve the ambition of a refernce network, however, a notation
must be devised for dealing with many kinds of typed interactions. (a) As a motivating exam-
ple, consider the interaction of EGRI with a transcription factor-binding site, which involves
three zinc finger domains and a zinc cofactor. (b) One possible schematic of this interaction
is shown, where an individual protein with three domains (top layer) conditionally binds a
DNA position (bottom layer) in the presence of zinc (middle layer). The problem is that it is
not immedialtely obvious how to represent this in machine-readable terms. (c) One solution
lies in representing a network as a list of triples encoded in a “Network Ontology”. This pro-
posed Network Ontology is a meta-ontology that draws on established ontologies and controlled
vocabularies. By combining these source vocabularies, the small set of interactions described
in panel (b) can be described in terms of a set of unordered triples. Each triple represents a
fact about the network, expressed as (subject, predicate, object) tuple. In general, each mem-
ber of the triple has its own canonical identifier. For example, the triple (CID: 23994,
MI: 0407, CDD: pfam 00096) indicates that zinc (CID: 23994 in PubChem) physically
interacts (MI: 0407, in PSI-MI) with the zinc finger domain (CDD: pfam 00096 in the
CDD). For simplicity, we have represented the is_a and part_of predicates as literals, but in
general these should also be specified by URIs. For example, the subtleties regarding the Sequence
Ontology’s part_of definition are treated during the discussion of extensional mereology opera-
tors in (Eilbeck et al. 2005). (d) The advantage of the triple-based representation of the network is
that it corresponds to the RDF standard of the W3C consortium. While RDF can be expressed as an
XML file, the N3/Turtle notation (Beckett and Berners-Lee 2007) is far more compact and human
readable. Shown is an example of a Turtle format encoding of the triplestore described in panel (c).
After the preliminary enumeration of namespaces, each non-comment line corresponds to a single
triple. Reproduced from Srinivasan et al. (2007) with permission from Oxford University Press
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Represent network as a list of triples
(Network Ontology is a meta-ontology)

#Define Namespaces
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix CID: <http://pubchem.ncbi.nlm.nih.gov/> .
@prefix CDD: <http://ncbi.nlm.nih.gov/Structure/cdd/> .
@prefix UniProt: <http://www.ncbi.nlm.nih.gov/entrez/> .
@prefix craHsap: <http://www.cisred.org/> .
@prefix MI: <http://www.psidev.info/> .
@prefix GO: <http://www.geneontology.org/> .
@prefix SO: <http://song.cvs.sourceforge.net/> .

#Begin List of Triples
CID:23994 is_a MI:0682 .
CID:23994 MI:0407 CDD:pfam00096 .
UniProt:P18146 is_a GO:0003700 .
craHsap:197014 is_a SO:0000235 .
dom:P18146-d1 part_of UniProt:P18146 .
dom:P18146-d1 is_a CDD:pfam00096 .

#...more triples below...

EGR1 interaction with DNA
(three zinc fingers in complex)

Schematic of 
physical interactions

EGR1 w/ three 
zinc finger 
domains

EGR1 
binding site

Zinc cofactors
enable binding

Problem: implicit semantics
prevent machine readability

a b

c

Explicit RDF representation (Turtle/N3 format)d

... ...... ...

CDD:pfam00096 Type of domainis_adom:P18146-d1

dom:P18146-d1 UniProt:P18146 First domain in proteinpart_of

craHsap:197014 SO:0000235
This motif is transcription

factor-binding site
is_a

EGR1 is a transcription factorUniProt:P18146 is_a GO:0003700

MI:0407 CDD:pfam00096CID:23994
zinc directly interacts w/

zinc finger domain

Zinc is a cofactorCID:23994 MI:0682is_a

NoteObjectPredicateSubject

Fig. 2.5 Network Ontology and RDF representation. Most current networks involve only one or
two kinds of biological objects, such as proteins alone (Lee et al. 2004; Srinivasan et al. 2006;
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labels. This Network Ontology is a kind of meta-ontology that derives largely from
existing ontologies, something like a more focused analog of the Unified Medical
Language System (Bodenreider 2004) for systems biology. Many of the terms can
be derived from existing ontologies like the Gene and Sequence Ontology and from
lists of canonical identifiers such as those available through Entrez Gene (Wheeler
et al. 2007), UniProt (Mulder et al. 2007), CDD (Marchler-Bauer et al. 2003), and
PubChem (Wheeler et al. 2007). There are also several available standards in the
systems biology space (Stromback and Lambrix 2005) which can serve as building
blocks for this project, including SBML (Hucka et al. 2003), CellML (Nielsen and
Halstead 2004), BioPax (Luciano 2005), and PSI-MI (Orchard et al. 2005). Of these
ontologies. SBML and CellML are invaluable tools for detailed, time-dependent
modeling but may be too granular for genomic scale networks. BioPax and PSI-MI
are more appropriate; BioPax was originally developed for exchanging pathway data
between database such as KEGG and Ecocyc, and PSI-MI was built for describing
the results of high-throughput experiments (Hermjakob et al. 2004).

By combining these source vocabulaties, a Network Ontology provides a uni-
fied framework for defining a reference network and its associated metadata in
terms of lists of triples (Fig. 2.5). Each triple corresponds to a fact about the net-
work, represented as a subject/predicate/object tuple of uniform resource identifiers
(URIs). Each URI represents a canonical identifier drawn from one of the estab-
lished databases or ontologies. In addition to the vast number of ontological terms
compiled by the members of the OBO foundary (Rubin et al. 2006), good URIs cur-
rently exist for proteins via UniProt, domains via the CDD, genes via Entrez Gene,
and small molecules via PubChem. Canonical names are also emerging for ncRNAs
(Kin et al. 2007) and regulatory motifs (Robertson et al. 2006), though a consensus
solution will remain elusive until NCBI or EBI launches a database.

Given a consensus set of URIs for biological objects, an explicitly typed refer-
ence network can then be naturally represented as a set of ontological triples, such as
A physically_interacts_with B, or X is_a Y, in which canonical
URIs are used for each member of the triple (Fig. 2.5). This triple-based repre-
sentation of a network corresponds to the RDF format of the World Wide Web
Consortium (Prudhommeaux and Seaborne 2007). Though originally developed for
the Semantic Web (i.e. web page X links to web page Y), a list of triples (also
known as a triplestore) is clearly also a natural representation for pathway and net-
work information. Importantly, significant progress has already been made by the
BioRDF working group (Stephens 2007) toward converting key biological databases
into RDF format.

One of the principle advantages of representing network data as an RDF triple-
store with canonical URIs for each member of the triple is that if everyone uses the
same URIs, then facts produced by different providers can be integrated by form-
ing the union of the two triple stores (though in practice statistical methods will be
used to resolve any contradictory triples). Another advantage is that a network in
RDF format with explicitly typed nodes and edges can be the subject of nontriv-
ial queries based on the SPARQL query language (Prudhommeaux and Seaborne
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2007), such as find all X’s which are regulated by Y or find all singal transduction
paths between A and B. A network with explicitly marked nodes and edges also sug-
gests natural possibilities for data visualization and enables rich kinds of network
alignment (Section 2.2.7.2).

Reference networks can be inferred by a direct extension of the supervised learn-
ing methods described in Section 2.2.4. As depicted in Fig. 2.3, the shared thread
behind the supervised learning methods for network integration and protein function
predication is to (1) select a biological object (protein pair, gene pair, protein, etc.),
(2) calculate a list of desired labels and predictive features, and (3) use machine
learning to compute a mapping between features and labels. Given sufficient labels
and predictors data on any kind of biological object can be integrated.

This kind of approach has already been used to score interaction confidence
during the process of data collection (Krogan et al. 2006); in the long run such tech-
niques may become as common to network determination as PHRED and PHRAP
(Ewing and Green 1998; Ewing et al. 1998) became in the early days of sequence
determination.

2.2.7 Applications of Network Models

Now that static network modeling has become commonplace for several years,
the trend is to make network analysis a starting point for applications, such as
user-friendly network visualization, network-guided experimental validation, and
network alignment.

2.2.7.1 Experimental Prioritization

Ultimately, an interaction network is a model of a system, and a model is only useful
to the extent that it successfully predicts experiments. In particular, one of the most
important ways to leverage network data is not simply to analyze it, but to use it to
understand what data to gather next.

One way to formulate this problem is in terms of an experiment recommender,
which uses network context to prioritize experiments. For example, network context
can be used to identify genes that are likely to be in pathways of interest (Owen
et al. 2003). Experiment recommenders of different kinds have also been used to
determine rate constants (Flaherty et al. 2005), define metabolic topologies (Barrett
and Palsson 2006), determine disease genes (Aerts et al. 2006), and discern causal
structure in signaling pathways (Sachs et al. 2005).

It is important to note that many such recommendation problems can be viewed
as updates of an uncertain state variable, such as the GO category of a protein or
the value of a rate constant. On a formal basis, this is highly similar to the Bayesian
supervised learning model for data integration described in Fig. 2.3, in which a
prior gold standard is updated to produce a posterior distribution. There is thus a



28 B.J. Daigle et al.

significant opportunity to unify the problems of data integration and experiment
recommendation in a common Bayesian framework, where experiments are rec-
ommended in order of their ability to reduce the uncertainty of state variables of
interest.

2.2.7.2 Network Alignment

Once multiple genome sequences became available, research attention naturally
turned to the question of comparative genomics (ENCODE Project Consortium
2007). Similarly, the availability of several different kinds of networks from dif-
ferent sources and species has ignited interest in comparative functional genomics.
Many questions are still open in this area: for example, can we enumerate an
organism’s inventory of modules much as we can enumerate its inventory of
genes? Is it feasible to transfer module annotations from well-studied organisms
to newly sequenced ones? And can we identify conserved modules of unknown
function?

One promising way of answering such questions is through network alignment,
which is a systems biological analog of sequence alignment. Network alignment
allows us to compare interaction networks between different species to find con-
served modules. When comparing protein interaction networks, conserved modules
are sets of proteins that have both conserved primary sequences and conserved pair-
wise interactions between species. For example, we can apply network alignment to
find all species with nitrate reduction systems similar to that of Escherichia coli, or
to examine the extent to which the cell division apparatus is conserved across a set
of microbes. A sample alignment found with the Graemlin network aligner is shown
in Fig. 2.6; the figure displays a putative DNA uptake and transformation module
in which seven protein families across four species show a conserved pattern of
functional association (Flannick et al. 2006).

Network alignment has attracted much interest in recent years, beginning with
manual alignments of metabolic pathways (Dandekar et al. 1999; Forst and Schulten
2001), proceeding to precursors of network alignment guided by best bidirectional
BLAST hits (Ogata et al. 2000; Stuart et al. 2003; Yu et al 2004), and culminating
in more recent graph-based formulations (Kelley et al. 2003). Recent alignment
algorithms have introduced the ability to compare three networks at once (Sharan
et al. 2005) as well as simple models of network evolution (Koyuturk et al. 2006).
We recently developed the Graemlin network aligner, which was the first program
capable of identifying conserved functional modules across an arbitrary number
of dense association networks. By using a number of BLAST-like optimizations
Graemlin’s running time scaled linearly rather than exponentially with the number
of species (Flannick et al. 2006).

Just as sequence alignment rests upon substitution matrices (Henikoff and
Henikoff 1993) and models of sequence evolution (Durbin et al. 1999), it will be
crucial to provide a prinicipled foundation for network alignment by developing a
detailed theory of network evolution (Berg and Lassig 2006; Weitz et al. 2007).
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E. coli

pal

ybgC

ruvC

tolR

tolBtolQ

Network alignment
locates conserved
module: DNA uptake
and transformation

ruvA

V. cholerae C. jejuni C. crescentus

Fig. 2.6 Network alignment. A sample network alignment calculated with the Graemlin algo-
rithm (Flannick et al. 2006). In the top row, integrated association networks for four microbes are
depicted. In these large graphs, nodes represent proteins and edge weights are probabilities of asso-
ciation between proteins. Calculating a global network alignment finds several conserved modules,
including one consisting of seven conserved protein families: ruvC, ruvA, tolR, tolB, tolQ, pal, and
ybgC. Each family contains four homologous proteins, one in each species; node shape denotes
the species of origin and proteins from a given family are grouped near each other. Moreover,
the pattern of functional associations between protein families (as revealed by the edges) displays
significant conservation. The alignment suggests a possible function for the module: exogenous
DNA is allowed into the cell by the tol/exb membrane channel proteins and then incorporated
into the chromosome by the ruv recombination proteins. The literature supports this hypothesis,
as insertional disruption of tol/exb family proteins in Pseudomonas stutzeri reduces transforma-
tional efficiency to 20% of its previous level (Graupner and Wackernagel 2001). This strongly
suggests that exogenous DNA travels through these channels before chromosomal incorporation.
Reproduced from Srinivasan et al. (2007) with permission from Oxford University Press

Moreover, just as fast algorithms for sequence alignment such as BLAST became
ever more essential as sequence data accumulated, it seems clear that the utility of
network alignment will rise in direct proportion to the quality of inferred interaction
networks in different organisms.
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Indeed, the pace of research in this area is accelerating, with several papers
published in the last few months (Zhenping et al. 2007; Liang et al. 2006; Singh
et al. 2007; Stumpf et al. 2007). Part of the reason for this interest is that many of
the signal successes of bioinformatics have been concentrated in the area of align-
ment (Batzoglou 2005). Even though the vast majority of objects in biology have
not been directly characterized by experimentalists, information on objects which
have good digital encodings, like sequences and structures, can easily propagated
with an appropriate alignment tool. For example, we can characterize a protein in
Drosophila melanogaster and immediately BLAST its digital representation to get
some clue as to the function of that protein in other insects, or possibly even in
humans or yeast.

Yet the lack of digital representation means that many other interesting objects
(like tissues or developmental hierarchies) are not yet easily “aligned” between
organisms. Currently, we resort to simple phylogenetic interpolation to reason that
if organism X is phylogenetically equidistant between organism Y and organism Z,
then its characteristics are intermediate between these two organisms. However, it is
well known that gene trees are not the same as species trees (Degnan and Rosenberg
2006; Nichols 2001; Pamilo and Nei 1988), and that it is far more accurate to com-
pare genes via sequence alignment. While the divergence of a network tree from
the species tree is likely to be less than that of a gene tree (as a collection of genes
will have lower sampling variance than an individual gene), nevertheless the same
principle holds: the evolutionary history of a module is distinct from that of its
host. The promise of network alignment, then, is that we may be to improve upon
crude phylogenetic interpolation by directly comparing network models of higher
order processes (such as organs and developmental hierarchies) between species and
individuals.

2.2.7.3 Network Visualization

Large interaction data sets with thousands of nodes and edges are best visualized
interactively rather than statically. Several tools for this purpose are now available
and can be divided into standalone applications, programming libraries, and web
applications.

Desktop Tools

Among standalone programs, several options are available, including Cytoscape
(Shannon et al. 2003), Osprey (Breitkreutz et al. 2003), Medusa (Hooper and Bork
2005), and Pajek (de Nooy et al. 2005). Cytoscape is a popular choice with many
features and plugins, but as it is written in Java it requires large amounts of mem-
ory to navigate dense networks. Osprey is similar in functionality and is somewhat
more responsive, but has a smaller user community. Medusa has several novel fea-
tures, including support for multigraphs with multiple edges between a given pair of
nodes. Pajek has many features for mathematical graph analysis but a comparatively
steep learning curve.



2 Current Progress in Static and Dynamic Modeling 31

Programming Libraries

Data analysts often wish to dynamically generate network visualizations from
within programs, and many libraries for this purpose are available. Cytoscape, men-
tioned has an API that can be called from within Java. The Boost Graph Library
(Siek et al. 2007) and AT&T’s Graphyviz library (Ellson and North 2007) are open
source C+ libraries which have bindings for many different programming languages,
including R, Python, and Perl.

Online Network Browsers

Several rich web applications for network visualization have been described in
recent years, including STRING (von Mering et al. 2007), PubGene (Jenssen et al.
2001), iHOP (Fernandez et al. 2007), and PSTIING (Ng et al. 2006). STRING pro-
vides several different kinds of interaction predictions between genses for many
sequenced genomes. STRING, PubGene, and iHOP all allow browsing of literature
co-occurrence networks. PSTIING is a powerful data browser which is particularly
useful for analysts looking for new data sets to integrate.

2.2.8 Outstanding Challenges in Static Modeling

Now that hundreds of different functional genomic data sets are available through
resources like NCBI’s GEO, an important near-term goal is the generation of static
reference networks for major model organisms. In order to make these networks
relevant, every predicted node and edge should have an associated gold-standard
empirical test for verification purposes. For example, a postulated network of phy-
sical protein protein interactions is in theory confirmable by exhaustive coimmuno-
precipitation of protein pairs. Moreover, the parameters of static models should be
designed to be flexible enough to be updated in the light of new information, e.g.,
by using Bayesian updates.

2.3 Dynamical Models of Biological Networks

A dynamical model is a reconstruction of molecular physiology, a description of
how the state of a system evolves over time. This description usually consists of
equations that describe the time dependence of each of the state variables of the
system. To describe a biological networks as a dynamical system requires identi-
fication of the variables (protein species, signaling molecules, and their associated
amounts), how they interact (network connectivities), and how both the values of the
state variables and their interactions change over time. A variety of approaches have
been used to model signaling networks as dynamical systems; one useful means of
organization is by whether the model uses discretely or continuously varying states.
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2.3.1 Discrete Models

Discrete models require the states of the system variables (genes, proteins, signaling
molecules) to take on integer values. Although at a molecular level this requirement
is the most realistic, it is often used at a higher level to simplify the resulting mod-
els. A boolean model provides one such simplification: it consists of binary-valued
variables whose interrelationships are captured by boolean functions. In systems
biology, this expresses the state of a gene (“on” or “off”) as a boolean function of
the states of other genes. As an example, a Boolean model was constructed for the
mammalian cell cycle (Faure et al 2006), and it was shown to reproduce known wild-
type and mutant behavior. Boolean models can either be deterministic or stochastic;
the latter as referred to as probabilistic boolean networks (PBNs) (Shmulevich et al.
2002).

In cases where a boolean model is too coarse grained for a particular system,
a more elaborate dynamic Bayesian network can be used. These models can be
either discrete or continuous, and they allow dynamical systems to be described
probabilistically. An example of a recent discrete DBN applied to yeast cell cycle
time series data is found in Zou and Conzen (2005).

Although DBNs are more realistic than boolean models, they are still more
descriptive than mechanistic. Short of molecular dynamics simulations that track the
simultaneous position and velocity of every molecule in the system, the most real-
istic (and mechanistic) signaling network models fall under the stochastic chemical
kinetics framework (Gillespie 2007). These models represent biological systems as
well-stirred collections of finite numbers of chemical species; reactions are simu-
lated probabilistically according to known reaction propensities. We shall return to
these models in Section 2.3.8.

2.3.2 Continuous Models

Continuous models permit system variables to take on non-negative real-valued
states. We focus on so-called chemical kinetic (mechanistic) models where states
represent concentrations of molecules. These models, though approximate, are
sufficiently accurate when the molecular populations of all species are orders of
magnitude larger than one (Gillespie 2007). The oldest and most common model-
ing formalism uses ordinary differential equations (ODEs) and known chemical
kinetic/physico-chemical principles (Cornish-Bowden 1979) to deterministically
model molecular concentrations as a function of time. Though these equations are
not usually analytically solvable, there exist a wide variety of numerical tools that
can efficiently model relatively complex systems (Rangamani and Jyengar 2007).
We shall cover ODEs in more detail in Section 2.3.6.

Partial differential equation (PDE) models of signaling networks describe the
evolution of molecular concentrations as functions of both space and time. These
models are more physically realistic than ODEs, but they are also significantly more
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difficult to solve and typically require custom-made numerical solution methods
(Eungdamrong and Iyengar 2004). We discuss PDEs in detail in Section 2.3.7.

The addition of a noise term to a deterministic differential equation yields a
stochastic differential equation (SDE), which in chemical kinetic systems often
takes the form of a chemical Langevin equation (CLE) (Gillespie 2000). The CLE
follows from approximations to discrete stochastic chemical kinetics, and its solu-
tion can be computed much more efficiently than solutions for the corresponding
discrete models (Wilkinson 2009). We discuss SDE modeling of signaling networks
in Section 2.3.8.

Discrete dynamical models represent an active area of research in systems biol-
ogy, and they have recently been discussed elsewhere (Uhrmacher et al. 2005). In
the remainder of this chapter we restrict our focus to the three classes of continuous
dynamical models listed. As these models are mechanistic in nature, their means
of specification and analysis are the most dissimilar to the descriptive models of
static interaction networks (Section 2.2) and most of the discrete dynamical models
mentioned above. We begin by describing some general advantages and limitations
of representing biological networks with differential equations, followed by com-
mon tasks carried out when applying such models. These points will motivate the
remaining discussion and the particular examples used for illustration.

2.3.3 Advantages of Continuous Dynamical Models

The cellular environment is constantly changing as a result of deterministic chemi-
cal reactions and stochastic fluctuations. Thus, dynamical systems are more realistic
depictions of biology than static models, and they can be used to answer detailed
questions unanswerable by the latter (Mogilner et al. 2006). In particular, the mod-
eler can test hypotheses that would be hard to query experimentally (Angeli et al.
2004). Through simulation, dynamical models enable characterization of nonlinear,
emergent behavior that evolves over time. Such behavior is often only visible at a
systems level and would be missed by reductionist methods (Bhalla and Iyengar
1999).

The outputs of differential equation models relate more closely to experimentally
observed phenotypes than coarser-grained alternatives (Sauer 2004). As a result,
though these models often require extensive parameterization, the parameter space
can be constrained such that the model reproduces experimental data. This signif-
icantly reduces the complexity of model calibration and also enables easier model
validation (Rangamani and Iyengar 2007). In addition, the models we shall discuss
are mechanistic, and first principles of chemical kinetics (Cornish-Bowden 1979)
and physics can reduce parametric uncertainty. These same principles are often
unapplicable in more approximate models (Price and Shmulevich 2007). In general,
the process of parameter learning sheds light on correctness of initial hypotheses: if
no parameter values exist which reproduce observed behavior, initial assumptions
must be revisited (Tomlin and Axelrod 2007; You 2004; Ideker et al. 2001).
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Finally, though these models require large amounts of high-resolution data,
experimental systems are in place to make many of the needed measurements
(Albeck et al. 2006).

2.3.4 Limitations of Dynamical Models

The level of detail present in differential equation models can also impose limi-
tations. Implementation of these systems often requires detailed prior biochemi-
cal/network knowledge which is not always readily available or uniformly reliable
(Herrgard et al. 2003; Mogilner et al. 2006). Given the extensive parameterization
needed, it can be hard to validate the entire model and multiple solutions (network
structures/parameter values) often exist. With limited amounts of data, models are
also prone to overfitting (Amonlirdviman et al. 2005; You 2004).

Though dynamical systems are able to reproduce experimental observations,
their calibration is not always compatible with high-throughput data (Price and
Shmulevich 2007). Instead, these models require costlier quantitative data to define
concentrations of signaling components, kinetic/diffusion parameters, and initial/
boundary conditions (Weng et al. 1999; Schnell and Turner 2004).

Finally, due to their complexity, simulation of these models is computation-
ally intensive, and models are often limited by size (Rangamani and Iyengar 2007;
Tomlin and Axelrod 2007).

In light of the above points, it is not surprising that successful examples of
dynamical biological modeling are in systems that benefit from the advantages while
minimizing the effects of the limitations. We will cover some of these examples in
detail in the remainder of the chapter.

2.3.5 Specific Tasks Associated with Dynamical Modeling

We categorize the undertakings and objectives of dynamical modeling into five com-
mon tasks (Aldridge et al. 2006a), many of which follow from the characteristics of
dynamical models listed above:

1. Model construction and calibration. The first step is to specify the structure
and parameterization of a model from prior knowledge and experimental data.
As we discuss below, this often requires advanced computational and statistical
methods to process noisy or incomplete data (Brewer et al 2008; Wilkinson 2009;
van Riel and Sontag 2006; Jaqaman and Danuser 2006).

2. Model validation and testing. After calibration, it is important to compare
model output with existing experimental data (Eungdamrong and Iyengar 2004;
Ideker et al. 2001). This procedure is necessary (though not sufficient) to deter-
mine whether a model is specified correctly.

3. Parameter sensitivity analysis. Sensitivity analysis involves determining which
molecular concentrations or kinetic parameters have the greatest influence on
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model behavior. This is valuable when prioritizing parameters for subsequent
experimental measurement or perturbation (Rangamani and Iyengar 2007).

4. Analysis of emergent behavior. As mentioned emergent behavior arises from
systems level properties that are not apparent from studying individual com-
ponents. Many of these phenomena, which can include robustness to noise,
feedback, bistability, and oscillation, are best characterized through simulation
of the model (Gilbert et al 2006; Angeli et al 2004).

5. Predictive modeling and discovery. One of the most exciting areas of systems
biology is prospective modeling to test hypotheses that are too difficult or expen-
sive to query in vivo. Here, a prerequisite for making accurate predictions is a
sufficiently detailed and accurate model (You 2004).

The remainder of the chapter is split into three parts: one each covering ODE,
PDE, and SDE modeling of biological systems. Each section begins with an intro-
duction to the corresponding modeling framework, followed by a brief review of
early successes from the literature. We then focus in depth on current (within the
last 5 years) examples, which we discuss in terms of the five tasks listed above. We
conclude each section with outstanding research challenges.

2.3.6 ODE Systems

Ordinary differential equation models are by far the most common dynamical model
used in biology (Andrews and Arkin 2006). They represent behavior at the level of
chemical kinetics, whereby the concentration of each system component yi(t) as a
function of time is represented in the following manner:

dyi (t)

dt
= fi (y (t)), 1 ≤ i ≤ n, (2.1)

where y (t) = [
yi (t) , . . . , yn (t)

]
and fi is a function which describes the rate

of change of yi(t). This function can be constant (uninhibited synthesis), linear
(first-order reaction such as degradation), or nonlinear (second-order reaction like
Michaelis–Menten kinetics), and its precise form follows from qualitative prior
experimental knowledge. These coupled expressions are often collectively referred
to as reaction rate equations (RREs). The RREs of most biologically realistic
systems cannot be solved analytically, but numerous well-developed and efficient
numerical methods for solving these systems are available.

2.3.6.1 Assumptions of ODE Biological Network Models

The relative ease with which ODE models of biological systems can be constructed
and solved is a consequence of the simplifying assumptions made about the system.
These assumptions include as follows:
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• Reactions occur in a homogeneous, well-stirred volume (corollary: molecular
concentrations are functions of time and not space)

• Reactions occur in a deterministic manner
• Discrete effects on molecular concentrations can be ignored (corollary: molecular

populations of all species are orders of magnitude larger than one)

The solution to the RREs describes the deterministic time evolution of the sys-
tem’s component concentrations; this solution often represents the average (mean)
result of a population of many individual reaction trajectories in the presence of
noise (Gillespie 2007). However, if any of the above assumptions are violated, ODE
models of the system may be invalid and even exact solutions of such models can
differ substantially from population averages. Even when the assumptions are met,
it can be shown that the solution to the RREs is not equivalent to the population
ensemble mean (Samoilov and Arkin 2006). Nevertheless, these models have proven
useful in describing the dynamic behavior of biological networks, and they have
been in use for several decades.

2.3.6.2 Early Examples of ODE Models Describing Biological Systems

One of the earliest uses of an ODE model to describe a biological network comes
from Goodwin, who constructed equations describing the change in concentration
of an mRNA species and its corresponding protein product (Goodwin 1963). This
work simulated feedback loops, which were shown to give rise to nonlinear oscil-
lations. Walter built upon this work, where he identified a finite range of parameter
values in a feedback system that led to oscillatory behavior (Walter 1970). Tyson and
Othmer furthered our understanding of feedback control in biological networks, and
they characterized emergent properties such as stability, bifurcation, periodicity, and
hysteresis that were exhibited by these networks (Othmer 1976; Tyson 1975; Tyson
and Othmer 1978).

Since that time, ODE models have been applied to biological networks governing
a wide range of functions, including viral infection (Shea and Ackers 1985), chemo-
taxis (Spiro et al 1997), cell cycle regulation (Novak et al. 1998), and developmental
patterning (von Dassow et al. 2000); see (You 2004) for additional references.
Many of these biological ODE models focus on small, well-characterized biolog-
ical systems, and for good reason: they can be easily parameterized from existing
knowledge and they are computationally inexpensive to characterize and solve.

2.3.6.3 Modern Applications of ODE Models to Biological Networks

We now turn to more recent ODE modeling applications in systems biology. Several
of the studies below perform many or all of the common tasks listed in Section 2.3.5,
but we discuss only one per study. As the use of ODEs to model biological net-
works is quite widespread, we have tried to choose particularly novel or innovative
examples.
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Bayesian Calibration of a GPCR ODE Model Using Noisy Data

G-protein-coupled receptors (GPCRs) are a large family of transmembrane recep-
tors that facilitate the transduction of a wide range of cellular signals. Cells exposed
to multiple GPCR-binding ligands often respond as if the signals are additive,
though occasionally the response can be synergistic. The precise mechanism of
such synergy is unknown, which motivated the authors of Flaherty et al. (2008) to
model the calcium release in mouse macrophage cells exposed to the signaling
molecules complement factor 5a (C5a) and uridine diphosphate (UDP). Their math-
ematical model consisted of 53 ODEs (constructed using prior knowledge) with 84
parameters and 24 non-zero initial conditions. Parameters were estimated from a
combination of preexisting data and knowledge and newly performed experiments.

For the latter, the authors made time-resolved intracellular calcium measure-
ments of mouse RAW264.7 cells in response to varying doses of C5a and UDP.
They also collected similar measurements using five knockdown cell lines, illustrat-
ing the effects of decreasing quantities of five key signaling proteins (GRK2, Gα i2,
Gαq, PLCβ3, and PLCβ4). These data were used to learn 20 of the 84 parameters
most relevant to the five knockdown targets.

Unlike most optimization procedures that choose point estimates of parameters
maximizing the fit to the observed data, this study adopted a Bayesian procedure to
estimate a full posterior distribution of parameters given the data. Bayesian methods
are well suited for incorporating prior knowledge of parameter values with observed
data to arrive at updated posterior parameter estimates. These posterior estimates are
calculated as the mode of a posterior distribution, specified by Bayes’ rule:

Pr (θ |y) = p (y|θ)Pr (θ)

Pr (y)
, (2.2)

where θ represents the parameters, y the observed data, Pr(·) a probability measure,
and p(·) a likelihood function. The posterior distribution often cannot be expressed
in closed form; in these cases Markov chain Monte Carlo (MCMC) methods are
used to generate samples from the distribution. The probabilistic nature of the
Bayesian framework is appropriate for dealing with the presence of uncertainty; the
authors note that measurement uncertainty and knockdown efficiency uncertainty
are two such sources present in their data.

Informative prior distributions were placed on the 20 parameters of interest that
excluded negative values and centered on previous estimates of these parameters
from biochemical experiments. A Metropolis–Hastings algorithm was then used to
empirically estimate the posterior density of the parameters using the data measure-
ments in conjunction with a Gaussian likelihood function. This procedure resulted
in posterior parameter estimates that were sometimes quite different from (but still
influenced by) their prior values. Figure 2.7 shows two examples. Each parameter’s
posterior distribution provides an automatic measure of precision: the tighter the
distribution, the more precise the estimate. As the authors note, parameters with low
precision are good candidates for further biochemical experimentation.
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Fig. 2.7 Prior (light gray) and posterior (dark gray) density estimates for two parameters from the
GPCR ODE model in Flaherty et al. (2008). Distributions consist of ∼30,000 MCMC samples;
vertical line denotes parameter value chosen for the model. Densities are plotted as a function of
parameter values on a log scale. Reproduced from Flaherty et al. (2008) with permission from
PLoS

Simulation and analysis of the calibrated model led to new insight into synergis-
tic GPCR-mediated calcium release in macrophage cells. Specifically, the authors
discuss the mechanistic causes, robustness, and specificity of synergy. The authors
also discuss two reasons why a Bayesian formulation was effective for calibra-
tion of their model: the abundance and quality of collected data and the speed and
robustness of algorithmic methods for sampling from posterior distributions.

Validation and Testing of a Mathematical Model of Cell Death

The proper regulation of cellular apoptosis is essential for multicellular develop-
ment, and its misregalation has been implicated in cancer, HIV progression, and
viral infection, among other disorders. One of the mysteries of the apoptosis mech-
anism stems from the observation that cells receiving a tumor necrosis factor (TNF)
or TNF-related apoptosis-inducing ligand (TRAIL) signal undergo a variable length
delay followed by immediate cell breakdown. This breakdown is due to effector
caspase activity on cellular substrates. To better understand the overall process,
termed “variable-delay, snap-action” switching, the authors of Albeck et al. 2008b
built an ODE model including reactions both upstream and downstream of a pivotal
apoptotic process: mitochondrial outer membrane permeabilization (MOMP). Their
model, referred to as EARM v1.0 (extrinsic apoptosis reaction model), consists of
58 coupled ODEs describing 18 gene products and their modifications across two
cellular compartments. The model requires values for 70 rate constants, which were
manually adjusted to minimize the difference between simulated and experimental
data measuring caspase activity, timing of MOMP, and effects of protein depletion
and overproduction.

Once calibrated, an essential requirement of any mechanistic model is that it
accurately reproduce experimental data. The authors simulated TRAIL treatment
over a range of concentrations and measured the switching time between initial and
complete effector caspase substrate cleavage (Ts), the fraction of cellular substrate
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cleaved by caspases upon cell death (f), and dose-dependent variation of the vari-
able length delay period (Td). These matched previously experimentally observed
values of ∼30 min and 1.0 for the first two, and a negatively sloped curve rang-
ing from 3–10 h for the latter. Simulated time courses of processes involving three
gene products (Bid cleavage, Smac translocation, and cPARP levels) also closely
matched experimentally observed trends. Figure 2.8 displays these results.

Fig. 2.8 Training data derived from live-cell microscopy used in Albeck et al. (2008b).
a Simulation of Td (left) or Ts and f (right) as a function of TRAIL dose (lines) alongside corre-
sponding experimental values (points with error bars indicating standard deviations). For predicted
values of Td, an envelope of constant coefficient of variation (CV) is shown, as estimated from
experimental data (CV ≈ 20%); the source of variation is not known. b Composite plot of IC-RP
and EC-RP cleavage (measuring initiator and effector caspase activity, respectively) for >50 cells
treated with 50 ng/ml TRAIL and aligned by the average time of MOMP (left) and model-based
simulation of the corresponding species (right). Data in the left panel were originally reported in
Albeck et al. (2008a). Reproduced from Albeck et al. (2008b) with permission from PLoS

Upon proper experimental validation, the model was then used to make six
predictions concerning the molecular mechanisms of variable-delay, snap-action
switching. These predictions were all supported experimentally, leading to a deeper
understanding of TNF/TRAIL-regulated apoptosis. The authors also demonstrated
that the level of mechanistic detail of their model (including compartmentalization)
was necessary to faithfully reproduce experimental results, as a series of simpler
models did not adequately fit the data. Though it is noted that the parameters of
EARM v1.0 are mathematically non-identifiable, the empirical approach used to
select parameter values that best matched observed data led to an accurate model of
a relatively complex biological system.
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Multivariate, Transient Response Sensitivity Analysis of Model Initial Conditions

Traditional sensitivity analysis measures the effects of single parameter changes
on time-evolving model behavior. This univariate approach is useful for iden-
tifying reactions and species of importance to the overall reaction scheme, but
it cannot characterize multiparameter effects on behavior. Naïve approaches that
measure effects of changing multiple parameters simultaneously are often compu-
tationally intractable. In contrast steady-state sensitivity analysis can identify and
describe equilibrium system states as a function of multiple parameter values, but
this approach necessarily ignores transient effects on system dynamics. As signal
transduction networks often utilize short-lived signals to enact downstream function,
methods that characterize transient parameter sensitivities would be beneficial.

To satisfy both of the above requirements, the authors of Aldridge et al. (2006b)
have applied direct finite-time Lyapunov exponent (DLE) analysis to a biological
ODE system to determine sensitivities to model initial conditions (hereafter referred
to as “parameters”). DLE analysis captures transient behavior as a function of all
parameters simultaneously. The method can be used to identify separatrices or
regions in multivariate initial condition space that separate qualitatively different
downstream responses. A DLE takes on the following form:

DLE (t, x0) = log

[

λmax

((
∂x (t)
∂x0

)T (
∂x (t)
∂x0

))]

, (2.3)

where x0 is a vector of initial conditions, x(t) is a vector of species concentrations
as a function of time, and λmax is the square of the spectral norm of the defor-
mation gradient ∂x(t)/∂x0. Thus, a DLE measures the local sensitivity to changes
in parameters evaluated at a finite time, with large DLE values corresponding to
large sensitivity of the system trajectory to parameter changes. Practically speaking,
DLEs are calculated numerically across a multidimensional grid of parameter val-
ues; the presence of separatrices can be visualized in plots of DLE versus a two or
three-dimensional subset of parameters.

In Aldridge et al. (2006b), DLE analysis is applied to a subset of the apoptosis
model in Albeck et al. (2008b) containing eight ODEs. This portion of the apop-
tosis pathway contains the activation of caspase-3 by caspase-8, leading to cell
death, and the influence of X-linked inhibitor of apoptosis (XIAP), which nega-
tively regulates caspase-3 activity. The authors note that this system is expected to
have a separatrix due to the cell’s binary decision of life or death. Systems with
more graded responses would have uniform DLEs and thus be unlikely to have dis-
cernible separatrices. DLE analysis on the apoptosis system identified a pronounced
nonlinear separatrix between cell survival and death. The separatrix tends toward
increased XIAP concentrations as the amount of active caspase-8 increases, high-
lighting the antagonistic effects of these species. For comparison, the authors also
applied steady-state sensitivity analysis to the model and demonstrate that cell fate
is indistinguishable based on steady-state locations.
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More generally, results of a DLE analysis allow the prediction of cell fate at a
given time based only on initial species concentrations. This ability will likely be
useful for a number of applications, including the characterization of cellular disease
states. As ODE models of biological networks continue to increase in complexity
and scale, it is likely that sophisticated dynamical systems tools like DLE analysis
will be more frequently used for the identification and characterization of systems-
level properties.

Dose-to-Duration Encoding as a Means to Transmit Quantitative Information

Signaling networks are responsible for transmitting extracellular signals to intra-
cellular components to generate appropriate cellular responses. This transmission
is not solely passive; many signaling networks involve signal modulation lead-
ing to phenomena like cross inhibition and negative feedback. Often, cellular
response to a signal depends on the dose of that signal, so the signaling system
is capable of transmitting quantitative information about the dose to downstream
effectors. One example of such a system lies in the pheromone response pathway of
Saccharomyces cerevisiae, where the dose of the pheromone leads to qualitatively
different yeast phenotypes. At low dose, cells engage in vegetative growth; at inter-
mediate pheromone levels the cells adopt an elongated shape, and at high dose the
cells undergo growth arrest and extension of mating projections.

The authors of Behar et al. (2008) propose a dose-to-duration mechanism as a
means for encoding pheromone dose into varying downstream behaviors. Unlike
linear response pathways, whose dynamic range is limited by saturation levels of
network components (i.e., receptors), a dose-to-duration mechanism can increase
the dynamic range of the system in such a way that dose-dependent responses can
continue even after saturation of pathway components. This ability is due to the
nonlinearity of the signaling pathway and can lead to a more robust transmission
mechanism when acting between heterogeneous components.

The authors begin with observations from previous work (Hao et al. 2008),
which suggest that increasing doses of pheromone signal lead to increased dose
and duration or only duration of two intracellular MAP kinases (Fus3 and Kss1).
A hypothetical pathway architecture is constructed consisting of four components
that make up a negative feedback loop (Fig. 2.9). Through calibration and simula-
tion of a simple ODE model, it is shown that dose-to-duration encoding is a valid
response of even this simple system. The authors then construct a similar signaling
network using components of the yeast pheromone response pathway and fit the
parameters of a six ODE model to observed data. They demonstrate that this simple
dynamic model results in dose-to-duration encoding that matches experimental data
closely. Though this agreement does not prove the correctness of the model, it does
suggest a biologically plausible mechanism for the observed emergent behavior.
The authors emphasize that information transfer via a dose-to-duration mechanism
occurs through transient activation of pathway components (enacted by signals of
varying durations). This underscores the necessity of using dynamical (i.e, ODE)
models to understand such behavior, as static or steady-state models would preclude
such transient phenomena.
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Fig. 2.9 Pathway architectures that convert stimulus dose to signal duration. a Feed-forward and
b negative feedback encoding modules (KK: Kinase–Kinase, K: Kinase, X: Phosphatase). Shown
are cases of negative regulation operating by inhibiting activation (left) or promoting deactivation
(right). Reproduced from Behar et al (2008) with permission from PLoS

Further implications of the dose-to-duration mechanism are discussed, including
its potential relevance to multicellular organisms. In particular, photoreceptors in rod
cells encode intensity of light as the duration of downstream G-protein-mediated
activity. Such behavior may be due to a biochemical mechanism similar to that
observed in yeast. As typical signal transduction pathways exhibit more elaborate
architecture than that modeled in this study, more complex variations of dose-to-
duration encoding likely exist and the methods of analysis featured in this work will
be useful to decipher such behavior.

Predictive Modeling with a Large-Scale ErbB Signaling ODE System

ErbB signaling, which encompasses the pathways activated by the ErbB1-4 receptor
tyrosine kinases, is one of the best-studied components of multicellular eukaryotic
signal transduction. Abnormal ErbB signaling has been implicated in many human
cancers, and members of these pathways are common drug targets. The four ErbB
receptors orchestrate a complex array of cellular signals, as they are known to bind
13 distinct ligands, form hetero-and homo-oligomers once bound, and activate mul-
tiple downstream pathways including the MAPK/ERK and PI3K/Akt cascades. It is
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not surprising that the precise mechanisms for how different ligands induce differing
downstream responses are poorly understood.

To improve our understanding of ErbB signaling, Chen et al.(2009) developed
a large-scale ODE model including all four ErbB receptors and the ERK and Akt
signaling pathways. In the interest of computational tractability, the authors made
several simplifications in the number and type of receptor dimers, phosphoryla-
tion states, and structure of degradation pathways when constructing the model.
Nevertheless, 828 reactions remained, which were described by 499 ODEs with 229
parameters. To calibrate the model, the authors set parameters to literature-derived
values when possible, and a subset of the rest were learned from experimental data
(chosen according to their impact on an objective function describing model fit).

Experimental data consisted of ErbB1, Akt, and ERK activity levels across a
2-hour time course following stimulation with two different ligands. Given the com-
plexity of the model, the parameters were expected to be non-identifiable (multiple
combinations of parameter values fit the data equally well), and a simulated anneal-
ing optimization scheme was used repeatedly to identify these best-fit parameter
value combinations.

Once the model was (partially) constrained, the authors used simulation results
to make predictions and test them experimentally. The first validated prediction
involved differential sensitivity of ERK and Akt activity to treatment with the anti-
ErbB drugs gefitinib and lapatinib. The ODE model predicted that Akt activity
would be more sensitive to both drugs and experimental results corroborated this
result. Next, several predictions concerning the dose–response of the ErbB network
to ligand were made and subsequently tested. One of these predictions was for a Hill
coefficient (Happ) describing the steepness of the pathway response to increasing
ligand concentration. This coefficient is used in the Hill equation.

signal (x) = xHapp

xHapp + kHapp
, (2.4)

where “signal” is a measure of the pathway response, x represents the concentra-
tion of ligand, and k is the concentration of ligand that gives half-maximal response.
Previous work in Xenopus oocytes predicted a switch-like ERK response to pro-
gesterone (acts as a proxy for EGF) (Huang and Ferrell 1996). This corresponded
to a Hill coefficient of 4.9. In contrast, the ODE model of Chen et al. predicted
a much more gradual response to EGF treatment (Happ ∼ 0.30), and experimental
data confirmed this result. The reason for the discrepancy was identified when the
authors created a sub-model of the ERK response pathway. Simulation of this model
when treated with EGF reproduced switch-like activity, suggesting that modeling of
the larger signaling context was necessary to faithfully reproduce the experimental
observations.

This study demonstrates that a large-scale, partially constrained ODE model con-
sisting of many elementary reactions is capable of accurately predicting observed
data.
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2.3.6.4 Outstanding Challenges in ODE Modeling

As mentioned above, use of ODE models is widespread in systems biology, and
recent applications have begun to model larger and larger signaling networks. We
expect this trend to continue; thus, an obvious challenge is the proper calibration of
these large, complex models. This will require advances in the quality and quantity
of time-resolved data generation and collection. Several recent developments in this
area are discussed in Albeck et al. (2006). Additionally, as models grow in size,
parameter learning can become prohibitively difficult, and certain parameters will be
non-identifiable given limited experimental data. Computational methods to identify
and correctly deal with these parameters will be needed; work in (Chen et al. 2009)
provides a nice example of how to address this task.

An additional challenge arising with larger models is defining the structure of
the individual reactions and their constituent species. In the past, this was mostly
performed manually based on prior knowledge, but this process is time-consuming
and often not feasible for less well-studied systems. Thus, automatic generation
of model structure from high-throughput data is an area of active research; recent
examples can be found in Carrera et al. (2009) and Bonneau (2008).

2.3.7 PDE Systems

Biological systems are known to exhibit spatial inhomogeneity, and some tasks
require explicit modeling of the spatial dimension. This is especially true when
the biological system in question extends across several cellular organelles, each
potentially containing different components, or when the diffusion of individual
components across the modeled space cannot be treated as an instantaneous pro-
cess. Compartmental ODE models have been successfully used to model the former
case, where components are assumed to be well mixed within compartments and
transport between compartments occurs at a much slower measurable rate (Aldridge
et al. 2006a). As these models are modified versions of the ODE models described
above, we will not discuss them further.

In the latter case, i.e., when explicitly modeling the diffusion of certain compo-
nents, partial differential equation models are necessary. Here, the spatial dimension
is modeled as a continuous quantity, and the concentration of each component
becomes a function of both space and time. The PDEs most commonly used to
describe such systems are reaction–diffusion equations, where the concentration of
each component yi(t) of the system can be represented as follows (derived using
Fick’s second law of diffusion):

∂yi (t)

∂t
= fi (y (t))+ Di

m∑

j=1

∂2yi (t)

∂x2
j

, 1 ≤ i ≤ n, 1 ≤ m ≤ 3, (2.5)
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where y(t) is as above, Di is a diffusion coefficient, xj represents a spatial dimension,
and m is the number of spatial dimensions modeled. The first term on the RHS,
fi, describes the contributions of chemical reactions to the time derivative, and the
second term describes the contributions of diffusion.

Compared to ODE models, PDE systems are much more challenging to solve, in
part because they require many more parameters (Eungdamrong and Iyengar 2004).
Aside from the kinetic parameters needed to specify fi, the reaction–diffusion sys-
tem requires a diffusion coefficient for each species (which are difficult to measure
experimentally (Rangamani and Iyengar 2007)), and fluxes and/or concentrations
of each component must be specified at the boundary of the physical space being
modeled. This latter constraint becomes even more prohibitive when considering
complex physical geometries. Solutions to nonlinear PDE systems are almost exclu-
sively numerical, and the added realism of the model comes at a computational cost
due to the increased dimensionality of the system.

2.3.7.1 Early Examples of PDE Models Describing Biological Systems

Models of biological systems governed by PDEs employ two of the three simpli-
fying assumptions of ODE models, with spatial homogeneity being the exception.
Nonetheless, when mathematically and computationally tractable, these models can
accurately reproduce spatially verying molecular behavior. One of the first exam-
ples of a PDE model describing a biological system modeled the behavior of two
(generic) morphogens reacting and diffusing through simple geometries of cells
(Turing 1952). These equations were constructed in a way that provided for ana-
lytical solutions, and these solutions (expressed as functions of the morphogen
concentrations) gave rise to spatial patterns reminiscent of those seen in organismal
development.

Subsequent work elaborated upon this simple model of morphogen-controlled
patterning. One study simulated a four morphogen reaction–diffusion system to
mimic pattern formation in Drosophila embryogenesis (Lacalli 1990). By adjust-
ing model parameters, the authors could produce striped patterns of morphogen
concentration compatible with observed wild-type and mutant phenotypes. Another
application modified the simple morphogen model to allow diffusion coefficients
to depend on the spatial variable (Maini et al. 1992). Model-derived patterns were
shown to produce behavior more compatible with known mechanisms of vertebrate
limb development. A model of pattern formation in the context of E. coli cell divi-
sion was created using six coupled PDEs modeling three proteins in both membrane-
bound and cytoplasmic states (Meinhardt and de Boer 2001). Results from the model
confirmed observed spatial oscillatory behavior of two of the proteins and suggested
a molecular mechanism for the centralized localization of the third.

Additional reaction–diffusion models have been constructed to describe diverse
biological processes such as striping patterns in fish (Kondo and Asai 1995; Asai
et al. 1999), cell migration in butterfly wings (Sekimura et al. 1999), and avian
embryogenesis (Painter et al. 2000). See Baker et al. (2008) for many additional
references.
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2.3.7.2 Modern Applications of PDE Models to Biological Networks

Recent PDE models capture more biological detail (and are thus more realistic)
than their earlier counterparts. As with the ODE section above, we focus on work
published within the last 5 years and discuss one particularly innovative example
per dynamical modeling task. We note that there are considerably fewer numbers
of published studies using PDEs to model signaling networks (when compared
to ODEs); this is due to the increased computational complexity and demand for
experimental data imposed by these models.

Calibration of a Planar Cell Polarity Model Using Qualitative Phenotypes

The process by which planar cell polarity (PCP) signaling generates distally ori-
ented hairs in cells of the D. melanogaster wing is not fully understood. Aside from
wild-type function, certain single gene mutants in cell clones result in an aberrant
hair phenotype in adjacent cells, a process called domineering non-autonomy. The
primary molecular players in this process include the transmembrance receptors Van
Gogh/strabismus (Vang) and frizzled (Fz), and the cytoplasmic proteins Dishevelled
(Dsh) and Prickle-spiny-legs (Pk). Experimental evidence indicates that these pro-
teins selectively accumulate on the distal or proximal sides of wing cells during
wild-type function. In addition, unknown diffusible factors X and Z have been pro-
posed to explain domineering non-autonomy, although no such factors have yet been
experimentally identified.

To better understand the process of PCP and to test whether domineer-
ing non-autonomy is possible without implicating unknown diffusible factors,
Amonlirdviman et al. developed a reaction–diffusion model of hexagonal cells
arranged in a planar array (Amonlirdviman et al. 2005). They included the four
identified proteins listed above and they simulated their known influences on each
other via a feedback loop by allowing the formation of six protein complexes
(DshFz, VangPk, FzVang, DshFzVang, FzVangPk, and DshFzVangPk). The FzVang
interactions were designed to occur across adjacent cells, and all others are con-
ducted intracellularly. The existence of most of these interactions is supported by
experimental evidence.

The feedback loop created by these four proteins is thought to amplify an initial
asymmetry cue, resulting in their polarized spatial accumulation. The authors imple-
mented two different forms of such a signal and found that both resulted in similar
behavior. The overall model contained a system 10 nonlinear PDEs, whose rate con-
stants, diffusion coefficients, and initial protein concentrations were unknown. To
calibrate these parameters, the authors created an objective function describing the
error between the model output and 12 qualitative experimentally observed pheno-
types (both wild-type and mutant). Table 2.1 lists the phenotypes and corresponding
genotypes. Numerical optimization methods were used to identify parameter val-
ues that satisfied all constraints, and sensitivity analysis demonstrated that some
parameters were more tightly constrained than others.



2 Current Progress in Static and Dynamic Modeling 47

Table 2.1 Characteristic PCP phenotypes (and associated references) used in model objective
function. [Table reproduced from Table S1 of Amonlirdviman et al. (2005)]

Genotype Phenotype

Wild-type Asymmetric accumulation of Dsh and Fz on the distal cell membrane.
Asymmetric accumulation of Pk and Vang on the proximal cell membrane

(Tree et al. 2002; Bastock et al. 2003; Axelrod 2001; Strutt 2001).
dsh Polarity disruption inside of the mutant clone. Autonomous phenotype

(Kligensmith et al. 1994; Theisen et al. 1994).
fz Distal domineering non-autonomy (Gubb and Garc&#x00ED;a-Bellido

1982).
Vang Proximal domineering non-autonomy (Taylor et al. 1998).
pk No polarity reversal (Amonlirdviman et al. 2005).
>>dsha Proximal domineering non-autonomy (unpublished).
>>fz Proximal domineering non-autonomy (Strutt 2001).
>>Vang Distal domineering non-autonomy (unpublished).
>>pk Distal domineering non-autonomy.
fzautonomous Polarity disruption inside of the mutant clone. Autonomous phenotype (Jones

et al. 1996).
>>fzautonomous Proximal domineering non-autonomy (Strutt 2001).
EnGAL4, UASpk Overexpression of Pk results in protein accumulation to a degree greater than

or equal to that for wild-type results (Tree et al. 2002).

a>> denotes overexpression

After calibration, numerical simulation of the model was used to investigate
potential mechanisms for domineering non-autonomy. In particular, two mutant
alleles of frizzled (fzF31, fzR52) that cause autonomous and non-autonomous pheno-
types, respectively, were hypothesized to differ in their interactions with Vang. By
making the necessary nodifications to the model for each allele, the desired mutant
behavior was reproduced and experimental evidence confirmed the hypothesized
differences in Fz-Vang interactions.

The authors note that though simulation of their PDE system is able to reproduce
all known phenotypes, this does not prove the correctness of the underlying biolog-
ical model. Nevertheless, model results demonstrate the feasibility of the proposed
mechanism for domineering non-autonomy and suggest that unknown diffusible
factors are not needed to explain the behavior of this system.

Validation of a Simple diffusion Model of Bicoid in the Drosophila Embryo

Another well-studied signal transduction system in D. melanogaster controls antero-
posterior patterning in the developing embryo. Here, gradients in the concentration
of maternal proteins establish gene expression domains that lead to eventual body
segmentation. The Bicoid (Bcd) transcription factor is one of the best-studied mater-
nal morphogens. Bcd RNA is deposited during oogenesis at the anterior pole of the
egg, resulting in an anteroposterior protein gradient. Bcd has been shown to regulate
the hunchback, krüppel, and even-skipped genes which collectively generate striped
gene expression patterns.
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Though it was hypothesized that gradients of Bcd arise through simple diffu-
sion, this claim had never been rigorously verified. To address this, Gregor et al.
injected dextran particles of similar size to Bcd into a Drosophila egg and made
concentration measurements across a time course at 18 spatial positions (Gregor
et al. 2005). They compared these results to those predicted numerically by a simple
three-dimensional diffusion model in an embryo-shaped volume, governed by the
following equation:

∂c (r, t)

∂t
= D∇2c (r, t), (2.6)

where c(r, t) represents particle concentration at position r and time t, D is the
diffusion coefficient, and ∇2 is the Laplace operator (sum of the unmixed second
partial derivatives with respect to each spatial dimension). A nonlinear fitting rou-
tine was used to select the value of D that minimized the difference between the
experimental and predicted concentrations. When simulation output was compared
to experimental results, it was found that the simple diffusion model fit the data very
closely.

Gregor et al. then constructed a reaction–diffusion model for Bcd protein, param-
eterized by the Bcd diffusion coefficient and decay lifetime (τ). The corresponding
PDE takes the following form:

∂c (r, t)

∂t
= D∇2c (r, t)− 1

τ
c (r, t), (2.7)

where the second term on the RHS of Eq. (7) represents the degradation rate of
Bcd. Immunofluorescence data of Bcd protein in Drosophila embryos were used
to fit the parameter τ, resulting in an estimate of ∼6 min. The authors then asked
how Bicoid behavior would scale with increasing embryo size, such as is observed
in Calliphora vicina, a fly with an egg length ∼3 times greater than Drosophila.
Dextran injection experiments were repeated for three additional species of fly with
varying embryo sizes, and estimated diffusion coefficients were shown to be similar
to that of Drosophila. The values of τ for these other species were estimated as
before, yielding values that ranged from 3 for the smallest embryo size to 32 min
for the largest. These values are plausible, yet near the upper limit given the species’
respective developmental time courses. Such a limit further supports the hypothesis
of simple diffusion for Bcd behavior, as active cellular mechanisms restricting Bcd
diffusion would require decay lifetimes for proper gradient formation that exceed
developmental time scales.

The collective findings from this study argue that Bcd gradient formation is
controlled by simple diffusion and that the protein’s decay lifetime increases with
increasing egg size in different fly species. Interestingly, as fly embryos of different
species develop along similar time scales, the above conclusion implies that pattern
formation based on diffusible Bicoid would become physically impossible in fly
embryos much larger than C. vicina.
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Sensitivity Analysis of a Sonic hedgehog Signaling PDE Model

Traditional studies of morphogen gradients in development have focused on steady-
state signal levels and their effects on target genes. Recently, it has become clear
that gradient dynamics are important to tissue patterning as well, as evidenced by
the Sonic hedgehog (Shh) signaling pathway. Shh forms a concentration gradient
during vertebrate development, and it is involved in limb bud, midbrain, and spinal
cord patterning. It has been shown that both time of exposure to Shh and the timing
of Shh secretion are determinants of tissue patterning. Besides passive diffusion,
mechanisms like active transport and interactions with cell surface and extracellular
matrix components are known to affect the temporal dynamics of signaling.

To achieve a better understanding of Shh signaling dynamics, Saha and Schaffer
have constructed a multicellular PDE model of spinal cord patterning in the chick
embryo (Saha and Schaffer 2006). The model comprises a transverse section of
the developing neural tube during the time when Shh secretion from the floorplate
induces dorsally oriented cells to switch from an interneuron to motoneuron fate
(∼33–116 hours after egg laying). System behavior is governed by eight coupled
reaction–diffusion equations describing Shh diffusion and its interaction with recep-
tors, membrane proteins, and downstream transcription factors. Model parameters
were chosen from known values in the literature or estimated from similar bio-
logical systems, and parameters were adjusted to match experimental observations.
Simulation was carried out using a finite element method numerical solver.

The authors conducted sensitivity analysis on model parameters to determine
how varying each one affected the response of a target transcription factor (Gli 1)
to changing Shh concentration. Previous work identified two steady states corre-
sponding to a Gli 1 switch being ‘on’ and ‘off’ (concentration above and below a
threshold, respectively). Three behavioral regimes were described: one where the
‘on’ state is stable, another where the ‘off’ state is stable, and a bistable regime.
By varying the values of each parameter separately across four orders of magni-
tude, it was determined that some parameters did not affect the behavioral regime
(rate constant of Shh receptor outflux), while others altered it given large enough
changes (rate constant of Shh receptor influx). Choice of regime was most sensi-
tive to the value of the maximum rate of Glil synthesis, where even small changes
altered behavior.

The authors then employed the model to reproduce known tissue patterning
results and characterize novel behavior. They confirmed that Shh interactions and
active transport played an important role in Shh-induced downstream changes,
due in part to modulation of Shh signal dynamics. Characterization of this behav-
ior would not have been possible using a steady-state model, underscoring the
importance of dynamical models for understanding signal transduction systems.

Wave Propagation in Astrocyte Signaling Networks

The nervous system is composed of two cell types: neurons and glial cells. For
years glial cells were regarded as nothing more than support cells for neurons, until
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it was shown in 1990 that glutamate can induce Ca2+ waves in astrocyte (a type
of glial cell) cultures (Cornell-Bell et al. 1990). Proposed mechanisms for astro-
cytic Ca2+ wave production fall into two categories: simple intercellular diffusion
of the IP3 signaling molecule and active regeneration of signal by released ATP.
Recent experimental evidence supports the latter theory, although the mechanism of
ATP release is still largely unknown. A better understanding of this process would
be clinically useful, as abnormal astrocytic wave propagation has been linked to
disorders including migraine and epilepsy.

Stamatakis and Mantzaris (2006) have attempted to clarify the mechanism of
astrocytic wave propagation through mathematical modeling. They constructed both
a single-cell ODE and a multiple cell PDE model. The latter comprises a coupled
set of four reaction–diffusion equations taking the following form:

∂u
∂t

= D∇2u + f (u), (2.8)

where u = [
[ATP] [IP3]

[
Ca2+] h

]T
, f (u), is a vector of reaction terms for each

species derived from the single cell model, and D contains diffusion coefficients. h is
a dimensionless variable containing information about the fraction of open channels.
Values for the diffusion coefficients were estimated from the literature, and the PDE
model was numerically simulated in both one-and two-dimensional domains.

ATP-mediated wave propagation was characterized in PDE models employing
one of two hypothetical mechanisms: Ca2+-dependent, excitable (by positive feed-
back) ATP release and IP3-dependent, non-excitable ATP release. The authors found
that the first mechanism led to frequency-encoded oscillations in single cells and
propagation of one-dimensional waves of infinite range in multiple cells. In two
dimensions, a point stimulus of ATP led to spiral waves of ATP and Ca2+. In con-
trast, the second mechanism did not lead to single-cell oscillatory behavior, and
multiple cells exhibited propagation of waves with finite range. This behavior was
due to the extracellular ATP concentration falling below a threshold at a certain
distance from the original stimulus.

Experimental data have been observed that support both ATP-mediated mech-
anisms. On the one hand, spiral waves have been detected in cell culture, and
previous explanations invoked spatial inhomogeneities between cells as the cause.
Model results from this study argue that a simple mechanism of Ca2+-dependent
ATP release is sufficient to explain such patterns. On the other hand, experimen-
tally observed astrocytic wave propagation is finite in range. This is suggestive of
an IP3-dependent ATP release mechanism. Though the results of this study do not
definitively favor either of the two mechanisms of astrocytic wave propagation (or
argue strongly for both), the proposed spatial model does provide a testing ground
for further hypotheses to ultimately elucidate the true mechanism.

Predictive Modeling of Molecular Mechanisms for Hair Follicle Spacing

As mentioned above, one of the earliest PDE models of a biological signaling sys-
tem implicated only two morphogens reacting and diffusing through cellular space.
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This model, proposed by Alan Turing, treated one morphogen as an activator and the
other as an inhibitor, and its simulation produced patterns reminiscent of pigmen-
tation in the animal kingdom (Turing 1952). Until recently, a bona fide real-world
example of the model had never been identified; thus, doubts existed regarding its
authenticity (Maini et al. 2006).

Sick et al. (2006) model and experimentally characterize such an example: the
Wnt signaling pathway controlling hair follicle spacing in mice. A collection of
proteins from the Wnt family and their known inhibitors Dkk1 and Dkk4 are present
in and around the hair follicle during development, and available data suggest that
the Wnt and Dkk proteins are the primary determinants of follicle spacing patterns.
To test this hypothesis in the framework of the Turing reaction–diffusion model, the
authors constructed the following PDE model:

∂a

∂t
= Da∇2a + ρa

a2

(Kh + h)
(
1 + κa2

) − μaa,

∂h

∂t
= Dh∇2 h + ρh

a2

(Kh + h)
(
1 + κa2

) − μhh,

(2.9)

where a and h are the concentrations of generic Wnt and Dkk proteins, respec-
tively; Da and Dh are diffusion cofficients; ρa and ρh are reaction constants scaling
the speed of the interaction between Wnt and Dkk; and μa and μh are decay con-
stants (Kh and κ are additional reaction constants). Parameters were set arbitrarily,
though it is noted that variations in their values do not qualitatively change behavior.
The system was numerically simulated to create consecutive waves of hair follicle
formation in a square grid of mouse skin.

The author then made experimental predictions based on modifications of their
PDE model. Results from model simulation suggested that moderate overexpression
of Wnt proteins increases follicular density, while strong overexpression completely
disrupts patterning. In contrast, overexpression of Dkk in the model led to increased
interfollicular spacing and clustering of new follicles in subsequent waves of forma-
tion (due to higher levels of Wnt around preexisting follicles). Transgenic expression
of Dkk2 (another Wnt inhibitor) in mouse skin was used to test the latter two
predictions. As expected, with increasing levels of inhibitor, hair follicle forma-
tion was impeded, leading to lower follicular density. A closer examination of
mutant mouse skin demonstrated that follicle clusters were present, and ringlike
patterns of Wnt signal-receiving cells were present around preexisting follicles.
These results confirmed both model predictions concerning increased Wnt inhibitor
concentration.

The computational and experimental results of this study provide compelling
evidence for a reaction–diffusion mechanism for the Wnt signaling pathway.
Though additional signaling pathways are known to be involved in follicular
patterning, acting mostly downstream of formation, a model consisting of just
two morphogens provides an accurate representation of experimentally observed
behavior.
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2.3.7.3 Outstanding Challenges in PDE Modeling

Simulation of PDE network models is substantially more computationally inten-
sive than with their ODE counterparts, so a primary challenge is the develop-
ment of mathematical approaches enabling the characterization of larger systems.
Coarsegrained spatial methods like compartmental modeling can lessen the com-
putational load in systems that are tolerant of reduced spatial resolution (de Jong
2002; Rangamani and Iyengar 2007). As with ODE systems, improvements in high-
quality data collection will further enable the simulation of larger PDE models;
Rangamani and Iyengar (2007) discusses techniques for experimentally estimating
protein diffusion constants.

Another challenge is the efficient spatial modeling of complex cellular geome-
tries. Most existing work treats cells and subcellular components as simple geomet-
ric shapes; though this simplifies computation, it may not be sufficiently accurate for
certain model systems. Advances in finite volume modeling enable representation
of and computation on arbitrary cell morphologies, which can lead to more realistic
(and accurate) models.

2.3.8 SDE Systems

Both ODE and PDE models of biological systems assume that reactions occur in
a deterministic manner. This assumption seems to imply that biological reactions
exhibit little to no heterogeneity or stochasticity (“intrinsic noise”), which is known
to be false (McAdams and Arkin 1997). Rather, the main reason for the success of
deterministic biological models is that stochastic effects are often rendered negligi-
ble by averaging across large numbers of molecules or cells. This phenomenon also
underlies the success of continuous mechanistic models, where discrete numbers of
molecules can be approximated with continuous concentrations.

There are, however, a number of well-characterized biological systems where
the modeling assumption of deterministic reactions leads to qualitatively incorrect
depictions of behavior. A deterministic model of the circadian rhythm oscillator
parameterized with particular degradation rates fails to oscillate; in contrast, the
noise present in the corresponding stochastic model gives rise to more robust oscil-
latory behavior (Vilar et al. 2002). In a common class of biochemical reaction
mechanisms, enzymatic futile cycles, extrinsic noise (i.e., noise due to compo-
nents/processes outside the system) in a stochastic model was shown to induce
bistable oscillatory behavior that was absent in a similar deterministic model
(Samoilov et al. 2005).

These (and other) important exceptions to deterministic reaction mechanisms
have led to the application of stochastic models to biological systems. In this section,
we review continuous stochastic chemical kinetic models in the from of stochas-
tic differential equations (SDEs). We focus mostly on a class of SDEs that can be
derived from principles of discrete stochastic chemical kinetics; for illustrative pur-
poses, our treatment starts with this derivation in brief (for more details see Gillespie
2000; El Samad et al. 2005; Gillespie 2007; Resat et al. 2009).
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We begin by representing the state of the system as a function of time with
Z (t) = [Zi (t) , . . . , Zn (t)], where Zi(t) represents the number of molecules of
species i. Capital letters are used to emphasize the stochastic nature of the model;
the Zi’s are random variables. A specific instantiation of the system is represented by
lowercase letters; i. e., z = [zi, . . . , zn]. The system state can be altered by the firing
of any of p reactions; each reaction changes the state by vk = [v1 k, . . . , vnk] , 1 ≤
k ≤ p, where vik represents the change in the number of molecules of species i after
the completion of reaction k. Each reaction can be characterized by its propensity
function ak (z), defined so that ak (z) dt is equivalent to the probability that reaction
k will occur once in the system in the infinitesimal time interval [t, t + dt] given
Z (t)=z. Given that any instantiation of the system is random, it would be useful
to have a probabilistic expression for the time evolution of the system P (z, t|z0, t0)
(probability that the system is in state z at time t, given that it is in state z0 at time
t0). Using the above quantities and the laws of probability, this can be derived as
follows:

P (z, t + dt|z0, t0) = P (z, t|z0s t0)×
(

1 −
p∑

k=1
ak (z) dt

)

+
p∑

k=1
P (z − vk, t|z0, t0) × ak (z − vk) dt.

(2.10)

After rearranging and taking the limit as dt → 0

∂P (z, t|z0, t0)

∂t
=

p∑

k=1

(ak (z − vk)P (z − vk, t|z0, t0)− ak (z)P (z, t|z0, t0)) .

(2.11)

Equation (2.11) is called the chemical master equation (CME). Since the possible
values of z are discretely varying, the CME is actually a set of coupled ODEs that is
nearly as large as the number of possible combinations of molecules in the system.
Consequently, except for very simple systems, these equations are not solvable ana-
lytically and numerical solutions are usually intractable. Progress has been made in
developing approximation schemes for numerically solving the CME (Munsky and
Khammash 2006; Deuflhard et al. 2007; Jahnke and Huisinga 2008), but most appli-
cations turn to Monte Carlo methods to sample from the distribution P (z, t|z0, t0).
The stochastic simulation algorithm (SSA), also known as the Gillespie algorithm,
simulates each reaction sequentially as they occur in time (Gillespie 1977). This
approach has been widely used in stochastic modeling of biological networks, in
part because it produces a draw from the exact probability distribution that solves the
CME. A few example applications of the SSA include McAdams and Arkin (1997),
Samoilov et al. (2005), Arkin et al. (1998), Weinberger et al. (2005), El-Samad et al.
El-Samad and Khammash (2006), and wang et al. (2006).

For systems with large numbers of molecules, use of the SSA becomes very
computationally intensive. An efficient approximation known as tau-leaping was
developed to instantiate multiple reactions that occur during the elapse of a
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preselected time τ (Gillespie 2001). This gives the following (approximate) update
equation for the system state, given that Z (t) = z at time t:

Z (t + τ) ≈ z +
p∑

k=1

vk × Poisk (ak (z) τ ), (2.12)

where the Poisk (λ) are i.i.d. Poisson random variables with mean (and variance) λ.
Subsequent work in approximate methods has led to further speed up of the SSA;
some example include Rao and Arkin (2003), Rathinam and El Samad (2007), Cao
et al. (2005, 2007), and Cao and Petzold (2008). Discrete stochastic kinetic mod-
els are the most common stochastic approach for modeling biological networks,
and they have previously been reviewed extensively (Li et al. 2008; Higham 2008;
Resat et al. 2009 Wilkinson 2006, 2009). As our focus in this chapter is continuous
differential equation models, we will not discuss them further.

Under certain conditions (see Section 3.8.1), we can approximate a Poisson
random variable with one that is normally distributed (with the same mean and
variance), yielding

Z (t + τ) ≈ z +
p∑

k=1
vk × Nk (ak (z) τ , ak (z) τ )

= Z +
p∑

k=1
vk
(
ak (z) τ +√

ak (z)× Nk (0, τ)
)

= Z +
p∑

k=1
vkak (z) τ +

p∑

k=1
vk
√

ak (z)× Nk (0, τ) ,

(2.13)

where Nk
(
μ, σ 2

)
is a normally distributed random variable with mean μ and vari-

ance σ2. Equation (2.13) is a form of the Langevin leaping formula, where the
discretely valued Z(t) has become continuously valued due to the normal approx-
imation. To convert (2.13) to a differential equation, we note that the increment
Bk (t + τ)−Bk (t), where Bk is a standard Brownian motion, is normally distributed
with mean 0 and variance τ (Karlin and Taylor 1975). Thus, by rewriting τ as dt and
rearranging we have the approximate relation (given that Z(t) = z):

dZ(t)
dt ≈

p∑

k=1
vkak (Z (t))+

p∑

k=1
vk
√

ak (Z (t))× dBk(t)
dt

=
p∑

k=1
vkak (Z (t))+

p∑

k=1
vk
√

ak (Z (t))× Wk (t),

(2.14)

where Wk(t) is a white noise process, which, though not well-defined in an ordinary
calculus sense, can be characterized using stochastic calculus and acts as a use-
ful approximation for naturally occurring noise (Karlin and Taylor 1981). Equation
(2.14) is an SDE known as the chemical Langevin equation (CLE).
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It is useful to make one final approximation to establish a connection between the
CLE and the RRE (Section 2.3.6). If the volume of the system and the number of
molecules of each species Zi(t) approach infinity in such a way that the concentration
of each species remains constant (thermodynamic limit), the reaction propensities
grow linearly with the system size (Gillespie 2007; El Samad et al. 2005). Referring
to (2.14), we see that this will result in the second (noise) term becoming negligibly
small with respect to the first (drift) term. If we set the noise term to zero and divide
each state variable by the system volume, random molecule counts (Zi(t)’s) become
deterministic concentrations (yi(t)’s) and we have

dy (t)

dt
≈

p∑

k=1

vkak (y (t)). (2.15)

This is a form of the RRE (1) which we have derived using principles of
stochastic chemical kinetics.

2.3.8.1 Assumptions of SDE Biological Network Models

We now review the assumptions needed to derive and subsequently apply SDEs to
modeling biological systems. They include

• As with ODE models, reactions occur in a homogeneous, well-stirred volume.
• There exist small-enough values for leap times τ such that, as the system evolves

with each time leap, no propensity function changes by an appreciable amount as
a result of executed reactions (permits approximation in Eq. (2.12)).

• The τ times from above are also large enough that the expected number of
occurrences of each reaction during each leap is much greater than one (permits
approximation in Eq. (2.13)).

The latter two assumptions also permit the replacement of τ with dt (macro-
scopic infinitesimal) in Eq. (2.14) (Gillespie 2002). These assumptions can usually
be simultaneously satisfied if the numbers of molecules of each reacting species are
sufficiently large (Gillespie 2002; 2007; El Samad et al. 2005). The major advantage
of working with the CLE is that numerical solutions are much more efficient to gen-
erate than when using the Gillespie algorithm (Adalsteinsson et al. 2004), provided
the above assumptions are satisfied, the solutions should not differ appreciably.

2.3.8.2 Modern Application of SDE Models to Biological Networks

Use of SDE models in system biology is even less common than PDEs, with
most examples emerging in just the last few years. We thus focus immediately on
recent applications to modeling biological networks, highlighting one example per
dynamical modeling task.
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Bayesian Calibration of an SDE Model from Noisy Time Course Measurements

One challenge in calibrating a dynamical model with time course measurements
is the often coarse time resolution of the data. This is particularly true for SDE
models, where approximations that assist in learning parameter values from data
require measurements collected at uniformly closely spaced time points. Heron et
al. illustrate this difficulty with an SDE model of the Hesl autoregulatory network,
which takes the following (differential) form (Heron et al. 2007):

dM (t) =
(

sMv1

1 + (D [P (t)] /sPk1)
n − v2M (t)

)
dt

+
(√

sM

√
sMv1

1 + (D [P (t)] /spk1)
n + v2M (t)

)
dBM (t) ,

dP (t) =
(

sP

sM
v3M (t)− v4P (t)

)
dt

+
(√

sP

√
sP

sM
v3M (t)+ v4P (t)

)
dBP (t) ,

(2.16)

where M(t) and P(t) represent the relative quantities of Hesl mRNA and pro-
tein, respectively; D[P(t)] represents a delay term acting between transcription
and translation; dBM(t) and dBP(t) are independent infinitesimal increments of one
dimensional Brownian motion; {v1, v2, v3, v4, n, k1} are reaction parameters; and sM

and sP are scaling factors.
In order to learn parameter values from the data, an objective function is required

that describes how well a given set of parameter values fit the data. As SDE models
are by nature probabilistic, a likelihood-based approach is a natural choice. With
small enough time steps 	ti = ti + 1 − ti, the increments M (ti + 1) − M (ti) and
P (ti + 1) − P (ti) are normally distributed with means and variances derived from
Eq. (2.16). This property allows the calculation of a likelihood function for param-
eter values given discrete data. When the time course data do not differ by small
enough time steps (as is true for the Hesl data used in Heron et al. 2007), this
likelihood function cannot be used directly.

To compensate, the authors employ a latent data-based Bayesian approach,
whose application to systems biology was first described in Golightly and Wilkinson
(2005, 2006). The method infers unobserved (latent) data at finer time points than
those measured, the presence of which satisfies the assumptions of the likelihood
function. MCMC methods are used to sample distributions of the latent data and
parameters simultaneously, and parameter values can be chosen which maximize
the Bayesian posterior probability function.

Heron et al. applied this method to sparse Hes1 data from Hirata et al. (2002)
and obtained convergent posterior distributions for all parameters except the scaling
factors. They simulated the model with a wide range of high likelihood parameter
values and consistently recovered the cyclicity observed in the experimental data.
Thus, behavior of the calibrated Hes 1 model appears to be robust.
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In an ideal world, experimental data would always be available at sufficient reso-
lution for straightforward model calibration. As modeling is used to study more and
more complex signaling networks, this ideal becomes less realistic. In the increas-
ingly likely scenario where experimental data are sparse, probabilistic methods like
the one described in this study will be useful for robust model calibration.

Comparison of a Stochastic Cell Cycle Model with Experimental data

The eukaryotic cell cycle has been a popular choice for systems biology modeling
due to its fundamental role in development and reproduction. During this ordered
sequence of molecular events, a cell duplicates its components and divides them into
two daughter cells. In the fission of yeast Schizosaccharomyces pombe, fundamental
players in this process include the M (mitotic)-phase promoting factor (MPF), its
negative regulator Weel, and a collection of cell division cycle (Cdc) proteins (i.e.,
Cdc25, which leads to increased levels of MPF).

Over the years, more and more elaborate (and realistic) models have been built
describing this system, most of them deterministic. In Steuer (2004), the authors
adapt a previously published yeast ODE model (Novak et al. 2001) to include
stochastic influences. Written as Langevin-type SDEs with multiplicative noise, the
equations take the following form:

dxi

dt
= fi (· · · )+

√
2DixiWi (t) , (2.17)

where xi represents the concentration of a single species, fi(. . .) comes from the
original deterministic equation, Di is a constant denoting the noise amplitude, and
Wi(t) is white noise. The second term on the RHS of Eq. (2.17) is not derived from
elementary biochemical reactions; rather, it constitutes a general noise term includ-
ing both intrinsic and extrinsic sources. The amplitude of the noise is controlled by
the parameter Di.

After parameterizing their model with the values used in the original work (and a
small but constant value for all Di), the authors run simulations of both the original
ODE and their SDE system. They compare the resulting behavior to well-known
experimental observation of cell cycle time and cell division size distributions. Both
models reproduce the negative correlation seen in wild-type cells between cycle
time and mass at birth (representing a form of cell size control). The authors then
evaluate simulations of a wee1−cdc25	 double mutant, whose behavior has been
shown experimentally to result in three to four clusters in the cycle time vs. mass
at birth plot. The deterministic model does not generate clustered behavior, whereas
the stochastic model consistently does. Mechanistically, this is due to the occasional
inability of MPF levels to reach the threshold needed for entry into mitosis, as a
result of Cdc25 absence and stochastic fluctuations in Pyp3 activity (a weaker MPF
activator). These fluctuations can lead to a random number of G2 phase resets, which
in turn lead to varying but quantized cycle times.
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Thus, an SDE depiction of the cell cycle appears to be more realistic than a deter-
ministic model. The authors go on to characterize the cell size control checkpoint in
their stochastic model, identifying noise-induced oscillations which occur at suffi-
ciently (but not too) large amplitudes of noise (so-called “coherence resonance”).
These oscillations have not as of yet been detected experimentally, suggesting
additional regulatory mechanisms that stabilize this behavior.

Sensitivity of Cell Cycle Behavior to Intrinsic vs. Extrinsic Noise

More recently, Yi et al. investigated the separate effects of intrinsic and extrin-
sic noise on the S. pombe cell cycle (Yi et al. 2008). Unlike in Steuer (2004),
Yi et al. derived a CLE from elementary reactions in the spirit of Section 2.3.8.
Thus, the noise modeled in their SDE system is exclusively intrinsic in origin. The
authors parameterize their model in the same manner as above, and they numer-
ically simulate cell cycle behavior of the wee1−cdc25	 double mutant. Using
a small-enough system size to exhibit fluctuations, the results look quite simi-
lar to those resulting from the SDE in Eq. (2.17) (which combines intrinsic and
extrinsic noise), with visible clustering present in the cycle time vs. mass at birth
plot.

To test the sensitivity of system behavior to noise that is of extrinsic origin, the
authors added noise to the parameter governing Pyp3 activation of MPF (see above),
turning it into a random variable. They inserted this parameter into the ODE model
from Novak et al. (2001) and again performed a simulation on the double mutant
strain. Clustering was still observed in the cycle time vs. mass plot, although the
number of cells with long cycle time is markedly reduced.

Finally, the authors incorporate the above parametric noise into their SDE model
to explicitly test the effects of both intrinsic and extrinsic noise. Once again, cluster-
ing in the cycle time plot was present, with the number of cells having longer cycle
times resembling its original quantity.

In this study, the behavior of the fission yeast cell cycle model demonstrates
sensitivity to the source of noise, with intrinsic noise giving rise to more cells with
long cell cycle times. The precise cause of this difference was not investigated,
and further experiments would be expected to clarify the relative importance of the
two noise sources in this system. It is noteworthy that both sources of noise led
to behavior that is qualitatively different from a deterministic model (and similar to
experimental observations), which highlights the importance of modeling stochastic
effects. Though most biological networks are subject to both intrinsic and extrinsic
noise, modeling approaches that separate the two can be useful for understanding
the mechanisms and consequences of noise generation.

Oscillatory Behavior Due to Coherence Resonance in a Stochastic Model
of Circadian Rhythm

As mentioned above, the phenomenon of coherence resonance (CR) describes emer-
gent behavior (e.g., oscillations) due to an optimal amount of noise present in the
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system. In CR, noise amplitudes lower or higher than the optimum diminish the
oscillatory behavior. Yi et al. (2006) characterize this phenomenon as a function
of both intrinsic and extrinsic noise in an SDE model of the Drosophila circadian
oscillator.

Their model includes two proteins, PER and dCLOCK, which combine to from
both a negative and positive feedback loops. Exposure to light causes the degra-
dation of PER, which bestows on the system a circadian rhythm of 24 h. The
authors derive a CLE from elementary chemical reactions outlined in Smolen et al.
(2002), resulting in a stochastic model with intrinsic noise. The relevant SDEs are
as follows:

dP (t)

dt
=
[

vsp
Lfree (t − τ1)

K1 + Lfree (t − τ1)
− kdpP(t)

]

+ 1√
V

[√

vsp
Lfree (t − τ1)

K1 + Lfree (t − τ1)
W1 (t)−

√
kdpP(t)W2(t)

]

,

dP (t)

dt
=
[

vsc
K2

K2 + Lfree (t − τ2)
− kdcL(t)

]

+ 1√
V

[√

vsc
K2

K2 + Lfree (t − τ2)
W3(t)−

√
kdcL (t)W4(t)

]

,

(2.18)

where P(t) and L(t) represent the concentrations of the PER and dCLOCK pro-
teins, respectively; Lfree = max (L − P, 0) ; τ1 and τ2 are time delays;

{
vsp,

vsc, K1, K2, kdp, kdc
}

are kinetic parameters, V is the system volume, and W1(t) and
W2(t) are independent white noise. The authors parameterized the model accord-
ing to Smolen et al. (2002), and they carried out simulations with kdp = 2.85 h - 1

(light-induced degradation rate of PER), which in the deterministic system induces
a non-oscillatory steady state.

By varying the system volume V, Yi et al. could control the effects of intrinsic
noise (see Eq. (2.18)) and as a result, the amplitude of noise-induced oscillations.
For a moderate system size, oscillations (with period ∼24 h) were most clearly
observed. The authors created a metric β, which measures the strength of CR oscil-
lation in terms of signal-to-noise ratio (SNR), and they discovered that optimal
oscillatory behavior resulted when V = 500.

Yi et al. then added extrinsic noise to the system by making kdp a random vari-
able with a mean of 2.85 h−1. They used a parameter D to control the strength of
the noise, and they studied the behavior of the modified SDE as a function of both
V and D. They discovered that the highest values of β were achieved when V was
very large and D ≈ 0.04, which corresponds to no intrinsic noise and an optimal
level of extrinsic noise. This value of β was roughly 10-fold higher than the maxi-
mum achieved above with only intrinsic noise in the system. In general, increasing
levels of intrinsic noise in a system already under the influence of extrinsic noise
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reduced oscillatory behavior, whereas increasing extrinsic noise in a system already
exhibiting intrinsic noise-induced CR greatly increased the oscillations.

This study provides an initial characterization of noise-induced oscillations that
arise in a well-characterized biological system. Future work will include uncovering
the mechanisms involved in differential sensitivity of CR to noise sources. In addi-
tion, as the intrinsic and extrinsic noise sources in the above model were simulated
to be independent, the authors plan to study the potential coupling effects of the two
types of noise. Such effects would be expected to occur in biological systems where
the number of reactant molecules is very small.

Prediction of Noise-Induced Bistability in an Enzymatic Futile Cycle

Enzymatic futile cycles are a ubiquitous control mechanism in biological systems
consisting of two reactions: conversion of a substrate to a product via a forward
enzyme and conversion of the product back to the substrate via a reverse enzyme.
This motif is present in diverse signaling processes including MAPK cascades, cell
division cycles, and stress response pathways. Deterministic models of futile cycles
have demonstrated that they can act as molecular switches that convert continuous
input signals to binary outputs as well as signal amplifiers.

To characterize the effects of noise on enzymatic futile cycles, Samoilov et al.
developed an SDE model that adds an extrinsic noise term to the deterministic ODE,
yielding the following differential form (Samoilov et al. 2005):

dX∗ =
[

k+E+X

k+ + X
− k−E− (X0 − X)

K− + X0 − X

]
dt + σ+Ep

+k+X

K+ + X
dB(t) , (2.19)

where X and X∗ represent the concentrations of the substrate and product, respec-
tively; X0 = X + X∗, E+, and E− are the concentrations of the forward and
reverse enzymes, respectively; k+ and k− are reaction rate constants; k+ and k−
are Michaelis–Menten constants; σ+ and P parameterize the extrinsic noise; and
dB(t) is an infinitesimal increment of Brownian motion. The authors solve for the
stationary-state response curve R(.), which gives

R (Xss, E+; E−) =E+ − k−E− (X0 − Xss) (K+ + Xss)

k−Xss (K− + X0 − Xss)
+ σ+Ep

+k+K+
(K+ + Xss)

2
,

=0
(2.20)

where Xss is the steady-state concentration of X. This equation is fourth order in Xss,
which allows for a bistable solution (unlike the deterministic equivalent which is
missing the second term in Eq (2.20)). Thus, a prediction of the SDE model is that
Xss can be multivalued. Further analysis by the authors suggests that the onset of
bistability occurs with 20 ≤ El+ ≤ 30, p > 0.75, and σ+ ≈ 20%.

Samoilov et al. tested their bistability predictions by constructing a discrete
stochastic model consisting of elementary biochemical reactions. Stochasticity in
this system only arises through fluctuations in the individual components. Using the
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Gillespie algorithm, the authors simulated trajectories of the model and confirmed
the above predictions on bistability, suggesting that the form of extrinsic noise in
the SDE formalism is sufficiently realistic to predict system behavior.

Ideally, experimental evidence would corroborate the existence of noise-induced
bistability in a real-world enzymatic futile cycle. Unfortunately, to our knowledge
no such evidence has yet been discovered, perhaps due in part to the difficulty of sep-
arating noise-induced behavior from measurement error. Nonetheless, as the authors
suggest, given the ubiquity of enzymatic futile cycles in nature “it is reasonable to
assume that such a behavior is exploited in at least some cellular systems.”

2.3.8.3 Outstanding Challenges in SDE Modeling

SDE modeling of a signaling network requires the existence of a timestep τ that acts
as a macroscopic infinitesimal (Section 2.3.8.1). If this assumption is violated, more
computationally intensive (but accurate) discrete stochastic models must be used.
Thus, an active area of research is a modeling framework that combines features
of both models, partitioning the system into discrete and continuous components as
necessary (Bentele and Eils 2005; Salis and Kaznessis 2005).

Another challenge arises when using probabilistic or MCMC techniques for SDE
model calibration, as in Heron et al. (2007). With large enough models, these meth-
ods become computationally intractable, suggesting the need for a more efficient
strategy. One approach, borrowed from weather and climate modeling, involves
creating an approximate surrogate of the model called an emulator. Parameter esti-
mation can then be performed more cheaply on the emulator than on the full model
(Wilkinson 2009). Though few applications of this method exist so far (Henderson
et al. 2009 demonstrates one), calibration approaches like these will be necessary as
biological models increase in complexity.

2.3.9 Relevant Software

Several excellent reviews have been written detailing available software packages
for constructing and simulating ODE, PDE, and SDE models of biological net-
works. Rather than reproduce that information here, we refer the reader to these
articles: Gilbert et al. (2006); Resat et al. (2009); You (2004). Of particular note is
SBML (Hucka et al. 2003), a data format for representing systems biology mod-
els; data files for many of the models discussed in this review are available at
http://www.sbml.org.

2.3.10 Hybrid Dynamical Models of Biological Systems

As model systems continue to grow in size and complexity, hybrid models will
become more important. A hybrid approach is computationally advantageous in that
it can limit expensive procedures (e.g., stochastic versus deterministic modeling) to
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system subsets where those procedures are necessary. The remaining parts of the
system can be evaluated using computationally cheaper methods without apprecia-
ble losses in overall accuracy. One example of a hybrid dynamical model was given
in Section 2.3.8.3, combining a continuous SDE and discrete stochastic model.

Another example of a hybrid scheme combines spatial with stochastic modeling,
creating a so-called “spatial Langevin” system (Andrews and Arkin 2006; Elf and
Ehrenberg 2004). This provides arguably the most realistic modeling framework
short of molecular dynamics simulations. Several of the software packages listed
above allow implementation of multiple types of hybrid modeling schemes.

Hybrid modeling can also be used to incorporate coarser-grained, non-dynamical
approaches like flux-balance analysis (FBA). FBA uses the steady-state assump-
tion to model reaction fluxes as a system of linear equations. Because the sys-
tem is assumed to be at steady state, these equations are algebraic and can be
solved efficiently using linear programming methods. Covert et al. create such a
hybrid model of E. coli which combines FBA with boolean and ODE systems
(Covert et al. 2008). As the systems biology community moves toward whole
cell models, which in eukaryotic organisms could contain > 1012 reactions (Resat
et al. 2009), hybrid models will be essential in their efficient simulation and
characterization.

2.4 Conclusions

With thousands of sequenced genomes (Wheeler et al. 2007) and hundreds of func-
tional genomic data sets (Barrett et al. 2005), the future of systems biology is
bright.

In static modeling, the supervised learning approach, in which high-throughput
data is compared against a small training set of curated knowledge, has proven to
be the most fruitful data integration strategy to date. In particular, supervised pre-
dictions of function and interaction from multiple data sets are more robust than
those derived from individual data sets and have provided a foundation for recent
work on network alignment and systematic validation. The primary challenges for
static modeling are to (1) decide on a set of reference networks and (2) tie every
predicted node and edge in such networks to a gold-standard experimental test such
as co-immunoprecipitation for confirmation of physical protein interactions. These
steps will be crucial to bringing network predictions to the same level of confidence
and widespread utilization as gene predictions.

For dynamic models, the core problem is that the area will remain data starved
(Albeck et al. 2006) until high-throughput methods for the determination of rate
constants (Famili et al. 2005) and spatial substructure (Foster et al. 2006; Schubert
et al. 2006) become commonplace. Recent efforts at compiling and curating a num-
ber of biological constants (Milo et al. 2009) and developing a repository of systems
biology models (Hucka et al. 2003) are an important step in the right direction
toward establishing a repository of “consensus constants.”
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Ultimately the relevance of both kinds of models is directly proportional to their
ability to predict experiments. In particular, the use of a framework (likely Bayesian)
for smoothly incorporating new measurements into updated parameter estimates is
likely to be of central importance. We also believe that the incorporation of tools
from system identification (Nelles 2000) and parameter estimation will prove useful
in the years to come. In short, now that the mathematical aspects of the field have
matured, from this point forward we expect experimental testability to increasingly
become the focus of the field, with models specifically formulated to be updated as
new experimental data arrives.
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References

Abecasis G, Tam P, Bustamante C, et al (2007) Human genome variation 2006; emerging views on
structural variation and large-scale SNP analysis. Nat Genet 39(2):153–155

Adalsteinsson D, McMillen D, Elston T (2004) Biochemical network stochastic simulator
(BioNetS): software for stochastic modeling of biochemical networks. BMC Bioinformatics 5

Aerts S, Lambrechts D, Maity S, et al (2006) Gene prioritization through genomic data fusion. Nat
Biotechnol 24(5):537–544

Albeck JG, MacBeath G, White FM, et al (2006) Collecting and organizing systematic sets of
protein data. Nat Rev Mol Cell Biol 7(11):803–812

Albeck JG, Burke JM, Aldridge BB, et al (2008a) Quantitative analysis of pathways controlling
extrinsic apoptosis in single cells. Mol Cell 30(1):11–25

Albeck JG, Burke JM, Spencer SL, et al (2008b) Modeling a snap-action, variable-delay switch
controlling extrinsic cell death. PLoS Biol 6(12):2831–2852

Aldridge BB, Burke JM, Lauffenburger DA, et al (2006a) Physicochemical modelling of cell
signalling pathways. Nat Cell Biol 8(11):1195–1203

Aldridge BB, Haller G, Sorger PK, et al (2006b) Direct Lyapunov exponent analysis enables
parametric study of transient signalling governing cell behaviour. IEE Proceedings Syst Biol
153(6):425–432

Alon U, Surette MG, Barkai N, et al (1999) Robustness in bacterial chemotaxis. Nature
397(6715):168–171

Altman RB, Raychaudhuri S (2001) Whole-genome expression analysis: challenges beyond
clustering. Curr Opin Struct Biol 11(3):340–347

Amonlirdviman K, Khare N, Tree D, et al (2005) Mathematical modeling of planar cell polarity to
understand domineering nonautonomy. Science 307(5708):423–426

Andrews SS, Arkin AR (2006) Simulating cell biology. Curr Biol 16(14):R523–R527
Angeli D, Ferrell J, Sontag E (2004) Detection of multistability, bifurcations, and hysteresis

in a large class of biological positive-feed back systems. Proc Natl Acad Sci USA 101(7):
1822–1827

Arkin A, Ross J, McAdams H (1998) Stochastic kinetic analysis of developmental pathway
bifurcation in phage lambda-infected Escherichia coli cells. Genetics 149(4):1633–1648

Asai R, Taguchi E, Kame Y, et al (1999) Zebrafish Leopard gene as a component of the putative
reaction-diffusion system. Mech Dev 89(1–2):87–92

Ashburner M, Ball CA, Blake JA, et al (2000) Gene Ontology: tool for the unification of biology.
The Gene Ontology Consortium. Nat Genet 25(1):25–29

Axelrod JD (2001) Unipolar membrane association of Dishevelled mediates Frizzled planar cell
polarity signaling. Genes Dev 15(10):1182–7



64 B.J. Daigle et al.

Bader GD, Cary MP, Sander C (2006) Pathguide: a pathway resource list. Nucleic Acids Res
34(Database issue)

Baker RE, Gaffney EA, Maini PK (2008) Partial differential equations for self-organization in
cellular and developmental biology. Nonlinearity 21(11):R251–R290

Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization.
Nat Rev Genet 5(2):101–113

Barrett C, Palsson B (2006) Iterative reconstruction of transcriptional regulatory networks: an
algorithmic approach. PLoS Comput Biol 2(5):e52

Barrett T, Suzek TO, Troup DB, et al (2005) NCBI GEO: mining millions of expression profiles–
database and tools. Nucleic Acids Res 33(Database issue)

Bastock R, Strutt H, Strutt D (2003) Strabismus is asymmetrically localised and binds to
Prickle and Dishevelled during Drosophila planar polarity patterning. Development 130(13):
3007–14

Batzoglou S (2005) The many faces of sequence alignment. Brief Bioinform 6(1):6–22
Beckett D, Berners-Lee T (2007) RDF Primer, Turtle Version, www.w3.org/TeamSubmission/

turtle. Accessed 31 Aug 2009
Behar M, Hao N, Dohlman HG, et al (2008) Dose-to-duration encoding and signaling beyond

saturation in intracellular signaling networks. PLoS Comput Biol 4(10)
Ben-Hur A, Noble WS (2006) Choosing negative examples for the prediction of protein-protein

interactions. BMC Bioinform 7 Suppl 1:S2
Benson G (2009) Nucleic Acids Research annual Web Server Issue in 2009. Nucl Acids Res

37(suppl_2):W1–2
Bentele M, Eils R (2005) General stochastic hybrid method for the simulation of chemical reaction

processes in cells. Comput Meth Syst Biol 3082:248–251
Berg J, Lassig M (2006) Cross-species analysis of biological networks by Bayesian alignment.

Proc Natl Acad Sci USA 103(29):10,967–72
Beyer A, Workman C, Hollunder J, et al (2006) Integrated assessment and prediction of

transcription factor binding. PLoS Computational Biol 2(6):e70
Bhalla US, Iyengar R (1999) Emergent properties of networks of biological signaling pathways.

Science 283(5400):381–387
Bloom JD, Adami C (2003) Apparent dependence of protein evolutionary rate on number of

interactions is linked to biases in protein-protein interactions data sets. BMC Evol Biol 3
Bodenreider O (2004) The Unified Medical Language System (UMLS): integrating biomedical

terminology. Nucl Acids Res 32(suppl_1):D267–270
Bonneau R (2008) Learning biological networks: from modules to dynamics. Nat Chem Biol

4(11):658–64
Bornholdt S (2005) Systems Biology: less is more in modeling large genetic networks. Science

310(5747):449–451
Breitkreutz BJ, Stark C, Tyers M (2003) Osprey: a network visualization system. Genome Biol

4(3):R22
Brewer D, Barenco M, Callard R, et al (2008) Fitting ordinary differential equations to short time

course data. Philos Trans Ro Soc A Math Phys Eng Sci 366(1865):519–544
Brudno M, Do CB, Cooper GM, et al (2003) LAGAN and Multi-LAGAN: efficient tools for large-

scale multiple alignment of genomic DNA. Genome Res 13(4):721–731
Cao Y, Petzold L (2008) Slow-scale tau-leaping method. Comput Meth Appl Mech Eng

197 (43–44):3472–3479
Cao Y, Gillespie D, Petzold L (2005) The slow-scale stochastic simulation algorithm. J Chem Phys

122(1)
Cao Y, Gillespie DT, Petzold LR (2007) Adaptive explicit-implicit tau-leaping method with

automatic tau selection. J Chem Phy 126(22)
Carrera J, Rodrigo G, Jaramillo A (2009) Model-based redesign of global transcription regulation.

Nucleic Acids Res 37(5):e38
Champoux JJ (2001) DNA topoisomerases: structure, function, and mechanism. Annu Rev

Biochem 70:369–413



2 Current Progress in Static and Dynamic Modeling 65

Chen WW, Schoeberl B, Jasper PJ, et al (2009) Input-output behavior of ErbB signaling pathways
as revealed by a mass action model trained against dynamic data. Mol Syst Biol 5

Chen X, Wu JM, Homischer K, et al (2006) TiProD: the Tissue-specific Promoter Database.
Nucleic Acids Res 34(Database issue)

Collins S, Miller K, Maas N, et al (2007) Functional dissection of protein complexes involved in
yeast chromosome biology using a genetic interaction map. Nature 446(7137):806–810

Cornell-Bell AH, Finkbeiner SM, Cooper MS, et al (1990) Glutamate induces calcium waves in
cultured astrocytes: long-range glial signaling. Science 247(4941):470–3

Cornish-Bowden A (1979) Fundamentals of Enzyme Kinetics. Butterworths
Covert MW, Knight EM, Reed JL, et al (2004) Integrating high-throughput and computational data

elucidates bacterial networks. Nature 429(6987):92–96
Covert MW, Xiao N, Chen TJ, et al (2008) Integrating metabolic, transcriptional regulatory and

signal transduction models in Escherichia coli. Bioinformatics 24(18):2044–50
Dandekar T, Schuster S, Snel B, et al (1999) Pathway alignment: application to the comparative

analysis of glycolytic enzymes. Biochem J 343 Pt 1:115–124
von Dassow G, Meir E, Munro EM, et al (2000) The segment polarity network is a robust

developmental module. Nature 406(6792):188–192
Davidson EH, Rast JP, Oliveri P, et al (2002) A genomic regulatory network for development.

Science 295(5560):1669–1678
Mrvar A, Batagelj V (2005) Exploratory social network analysis with Pajek. Cambridge University

Press, Cambridge
Deeds EJ, Ashenberg O, Shakhnovich EI (2006) A simple physical model for scaling in protein-

protein interaction networks. Proc Natl Acad Sci USA 103(2):311–316
Degnan JH, Rosenberg NA (2006) Discordance of species trees with their most likely gene trees.

PLoS Genet 2(5)
Demello A (2006) Control and detection of chemical reactions in microfluidic systems. Nature

442(7101):394–402
Deuflhard P, Huisinga W, Jahnke T, et al (2007) Adaptive discrete Galerkin methods applied to the

chemical master equation. SIAM J Sci Comp 30(6):2990–3011
Do C, Gross S, S B (2006a) CONTRAlign: discriminative training for protein sequence alignment.

Proceedings of the tenth annual international conference on computational molecular biology,
(RECOMB 2006) pp 160–164

Do CB, Woods DA, Batzoglou S (2006b) CONTRAfold: RNA secondary structure prediction
without physics-based models. Bioinformatics 22(14)

Dudley A, Janse D, Tanay A, et al (2005) A global view of pleiotropy and phenotypically derived
gene function in yeast. Mol Syst Biol 1(1):msb4100,004–E1–msb4100,004–E11

Durbin R, Eddy S, Krogh A, et al (1999) Biological Sequence Analysis: Probabilistic Models of
Proteins and Nucleic Acids. Cambridge University Press, Cambridge

Eilbeck K, Lewis SE, Mungall CJ, et al (2005) The Sequence Ontology: a tool for the unification
of genome annotations. Genome Biol 6(5):R44

El-Samad H, Khammash M (2006) Regulated degradation is a mechanism for suppressing
stochastic fluctuations in gene regulatory networks. Biophys J 90(10):3749–3761

El Samad H, Khammash M, Petzold L, et al (2005) Stochastic modelling of gene regulatory
networks. Int J Robust Nonlinear Control 15(15):691–711

El-Samad H, Kurata H, Doyle J, et al (2005) Surviving heat shock: Control strategies for robustness
and performance. Proc Natl Acad Sci USA 102(8):2736–2741

Elf J, Ehrenberg M (2004) Spontaneous separation of bi-stable biochemical systems into spatial
domains of opposite phases. Syst Biol (Stevenage) 1(2):230–236

Ellson J, North S (2007) Graphviz: Graph Visualization Software. www.graphviz.org. Accessed
31 Aug 2009

ENCODE Project Consortium (2007) Identification and analysis of functional elements in 1% of
the human genome by the ENCODE pilot project. Nature 447(7146):799–816

Eungdamrong N, Iyengar R (2004) Modeling cell signaling networks. Biol Cell 96(5):
355–362



66 B.J. Daigle et al.

Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error
probabilities. Genome Res 8(3):186–194

Ewing B, Hillier L, Wendl MC, et al (1998) Base-calling of automated sequencer traces using
phred. I. Accuracy assessment. Genome Res 8(3):175–185

Famili I, Mahadevan R, Palsson B (2005) k-Cone Analysis: Determining All Candidate Values for
Kinetic Parameters on a Network Scale. Biophys J 88(3):1616–1625

Faure A, Naldi A, Chaouiya C, et al (2006) Dynamical analysis of a generic Boolean model for the
control of the mammalian cell cycle. Bioinformatics 22(14):E124–E131

Fernandez J, Hoffmann R, Valencia A (2007) iHOP web services. Nucleic Acids Res
Flaherty P, Giaever G, Kumm J, et al (2005) A latent variable model for chemogenomic profiling.

Bioinformatics 21(15):3286–3293
Flaherty P, Radhakrishnan ML, Dinh T, et al (2008) A dual receptor crosstalk model of G-protein-

coupled signal transduction. PLoS Comput Biol 4(9)
Flannick J, Novak A, Srinivasan BS, et al (2006) Graemlin: general and robust alignment of

multiple large interaction networks. Genome Res 16(9):1169–1181
Forst CV, Schulten K (2001) Phylogenetic analysis of metabolic pathways. J Mol Evol 52(6):

471–489
Foster L, de Hoog C, Zhang Y, et al (2006) A Mammalian Organelle Map by Protein Correlation

Profiling. Cell 125(1):187–199
Galperin MY, Cochrane GR (2009) Nucleic acids research annual database issue and the NAR

online Molecular Biology Database Collection in 2009. Nucl Acids Res 37(suppl_1):D1–4
Gandhi TKB, Zhong J, Mathivanan S, et al (2006) Analysis of the human protein interactome and

comparison with yeast, worm and fly interaction datasets. Nat Genet 38(3):285–293
Gavin AC, Aloy P, Grandi P, et al (2006) Proteome survey reveals modularity of the yeast cell

machinery. Nature 440(7084):631–636
Giaever G, Chu AM, Ni L, et al (2002) Functional profiling of the Saccharomyces cerevisiae

genome. Nature 418(6896):387–391
Gilbert D, Fuss H, Gu X, et al (2006) Computational methodologies for modelling, analysis and

simulation of signalling networks. Brief Bioinform 7(4):339–353
Gillespie D (1977) Exact stochastic simulation of coupled chemical-reactions. J Phys Chem

81(25):2340–2361
Gillespie D (2000) The chemical Langevin equation. J Chem Phys 113(1):297–306
Gillespie D (2001) Approximate accelerated stochastic simulation of chemically reacting systems.

J Chem Phys 115(4):1716–1733
Gillespie D (2002) The chemical Langevin and Fokker-Planck equations for the reversible

isomerization reaction. J Phys Chem A 106(20):5063–5071
Gillespie DT (2007) Stochastic simulation of chemical kinetics. Ann Rev Phys Chem 58:35–55
Golightly A, Wilkinson D (2005) Bayesian inference for stochastic kinetic models using a diffusion

approximation. Biometrics 61(3):781–788
Golightly A, Wilkinson D (2006) Bayesian sequential inference for stochastic kinetic biochemical

network models. J Comput Biol 13(3):838–851
Goll J, Uetz P (2006) The elusive yeast interactome. Genome Biol 7(6):223
Goodwin BC (1963) Temporal organization in cells: a dynamic theory of cellular control processes.

Academic Press, Newyork
Graupner S, Wackernagel W (2001) Identification and characterization of novel competence genes

comA and exbB involved in natural genetic transformation of Pseudomonas stutzeri. Res
Microbiol 152(5):451–460

Gregor T, Bialek W, van Steveninck R, et al (2005) Diffusion and scaling during early embryonic
pattern formation. Proc Natl Acad Sci USA 102(51):18,403–18,407

Gruber AR, Neubeck R, Hofacker IL, et al (2007) The RNAz web server: prediction of thermo-
dynamically stable and evolutionarily conserved RNA structures. Nucleic Acids Res 35:
w335–338

Gubb D, García-Bellido A (1982) A genetic analysis of the determination of cuticular polarity
during development in Drosophila melanogaster. J Embryol Exp Morphol 68:37–57



2 Current Progress in Static and Dynamic Modeling 67

Han JD, Bertin N, Hao T, et al (2004) Evidence for dynamically organized modularity in the yeast
protein-protein interaction network. Nature 430(6995):88–93

Hansen C, Quake SR (2003) Microfluidics in structural biology: smaller, faster em leader better.
Curr Opin Struct Biol 13(5):538–544

Hao N, Nayak S, Behar M, et al (2008) Regulation of cell signaling dynamics by the protein
kinase-scaffold Ste5. Mol Cell 30(5):649–56

Harris MA, Clark J, Ireland A, et al (2004) The Gene Ontology (Go) database and informatics
resource. Nucleic Acids Res 32(Database issue)

Hart GT, Ramani AK, Marcotte EM (2006) How complete are current yeast and human protein-
interaction networks? Genome Biol 7(11):120

Hartwell LH, Hopfield JJ, Leibler S, et al (1999) From molecular to modular cell biology. Nature
402(6761 Suppl)

Hastie T, Tibshirani R, Friedman JH (2001) The elements of statistical learning. Springer, New
York, NY

Henderson DA, Boys RJ, Krishnan KJ, et al (2009) Bayesian emulation and calibration of a
stochastic computer model of mitochondrial DNA deletions in substantia nigra neurons. J Am
Stat Assoc 104(485):76–87

Henikoff S, Henikoff JG (1993) Performance evaluation of amino acid substitution matrices.
Proteins 17(1):49–61

Hermjakob H, Montecchi-Palazzi L, Bader G, et al (2004) The HUPO PSI’s molecular interaction
format-a community standard for the representation of protein interaction data. Nat Biotechnol
22(2):177–183

Heron EA, Finkenstaedt B, Rand DA (2007) Bayesian inference for dynamic transcriptional
regulation; the Hes l system as a case study. Bioinformatics 23(19):2596–2603

Herrgard M, Covert M, Palsson B (2003) Reconciling gene expression data with known genome-
scale regulatory network structures. Genome Res 13(11):2423–2434

Higham DJ (2008) Modeling and simulating chemical reactions. SIAM Rev 50(2):
347–368

Hirata H, Yoshiura S, Ohtsuka T, et al (2002) Oscillatory expression of the bHLH factor Hes l
regulated by a negative feedback loop. Scinence 298(5594):840–3

Hooper SD, Bork P (2005) Medusa: a simple tool for interaction graph analysis. Bioinformatics
21(24):4432–3

Hu Z, Mellor J, Wu J, et al (2007) Towards zoomable multidimensional maps of the cell. Nat
Biotechnol 25(5):547–554

Huang CY, Ferrel JE Jr (1996) Ultrasensitivity in the mitogen-activated protein kinase cascade.
Proc Natl Acad Sci USA 93(19):10,078–83

Hucka M, Finney A, Sauro HM, et al (2003) The systems biology markup language (SBML):
a medium for representation and exchange of biochemical network models. Bioinformatics
19(4):524–531

Ideker T, Valencia A (2006) Bioinformatics in the human interactome project. Bioinformatics
22(24):2973–2974

Ideker T, Galitski T, Hood L (2001) A new approach to decoding life: systems biology. Annu Rev
Genomics Hum Genet 2:343–372

Igoshin O, Neu J, Oster G (2004a) Developmental waves in myxobacteria: A distinctive pattern
formation mechanism. Phys Rev E 70(4)

Igoshin O, Welch R, Kaiser D, et al (2004b) Waves and aggregation patterns in myxobacteria. Proc
Natl Acad Sci USA 101(12):4256–4261

Irizarry R, Warren D, Spencer F, et al (2005) Multiple-laboratory comparison of microarray
platforms. Nat Meth 2(5):345–350

Ito T, Chiba T, Ozawa R, et al (2001) A comprehensive two-hybrid analysis to explore the yeast
protein interactome. Proc Natl Acad Sci USA 98(8):4569–4574

Jahnke T, Huisinga W (2008) A dynamical low-rank approach to the chemical master equation.
Bull Math Biol 70(8):2283–2302



68 B.J. Daigle et al.

Jansen R, Gerstein M (2004) Analyzing protein function on a genomic scale: the importance
of gold-standard positives and negatives for network prediction. Curr Opin Microbiol 7(5):
535–45

Jansen R, Lan N, Qian J, et al (2002) Integration of genomic datasets to predict protein complexes
in yeast. J Struct Funct Genomics 2(2):71–81

Jansen R, Yu H, Greenbaum D, et al (2003) A Bayesian networks approach for predicting protein-
protein interactions form genomic data. Science 302(5644):449–453

Jaqaman K, Danuser G (2006) Linking data to models: data regression. Nat Revi Mol Cell Biol
7(11):813–819

Jenssen TK, Laegreid A, Komorowski J, et al (2001) A literature network of human genes for
high-throughput analysis of gene expression. Nat Genet 28(1):21–28

Jones KH, Liu J, Adler PN (1996) Molecular analysis of EMS-induced frizzled mutations in
Drosophila melanogaster. Genetics 142(1):205–15

de Jong H (2002) Modeling and simulation of genetic regulatory systems: a literature review.
J Comput Biol 9(1):67–103

Kanehisa M, Goto S, Hattori M, et al (2006) From genomics to chemical genomics: new
developments in KEGG. Nucleic Acids Res 34(Database issue)

Karlin S, Taylor HM (1975) A first course in stochastic processes, 2nd edn. Academic Press,
Newyork

Karlin S, Taylor HM (1981) A second course in stochastic processes. Academic Press, Newyork
Karp P, Riley M, Saier M, et al (2002) The EcoCyc Database. Nucl Acids Res 30(1):56–58
Kelley BP, Sharan R, Karp RM, et al (2003) Conserved pathways within bacteria and yeast

as revealed by global protein network alignment. Proc Natl Acad Sci USA 100(20):
11,394–11,399

Kim JK, Gabel HW, Kamath RS, et al (2005) Functional genomic analysis of RNA interference in
C. elegans. Science 308(5725):1164–1167

Kin T, Yamada K, Terai G, et al (2007) fRNAdb: a platform for mining/annotating functional RNA
candidates from non-coding RNA sequences. Nucleic Acids Res 35(Database issue)

Klingensmith J, Nusse R, Perrimon N (1994) The Drosophila segment polarity gene dishev-
elled encodes a novel protein required for response to the wingless signal. Genes Dev 8(1):
118–30

Kondo S, Asai R (1995) A reaction-diffusion wave on the skin of the marine angelfish
Pomacanthus. Nature 376(6543):765–768

Koyuturk M, Kim Y, Subramaniam S, et al (2006) Detecting conserved interaction patterns in
biological networks. J Comput Biol 13(7):1299–1322

Krogan NJ, Cagney G, Yu H, et al (2006) Global landscape of protein complexes in the yeast
saccharomyces cerevisiae. Nature 440(7084):637–643

Kuhn RM, Karolchik D, Zweig AS, et al (2007) The UCSC genome browser database: update
2007. Nucleic Acids Res 35(Database issue)

Lacalli TC (1990) Modeling the Drosophila pair-rule pattern by reaction-diffusion: gap input and
pattern control in a 4-morphogen system. J Theor Biol 144 (2):171–194

Lamb J, Crawford ED, Peck D, et al (2006) The Connectivity Map: using gene-expression
signatures to connect small molecules, genes, and disease. Science 313(5795):1929–1935

Lander ES, Linton LM, Birren B, et al (2001) Initial sequencing and analysis of the human genome.
Nature 409(6822):860–921

Laub MT, McAdams HH, Feldblyum T, et al (2000) Global analysis of the genetic network
controlling a bacterial cell cycle. Science 290(5499):2144–2148

Lee I, Data SV, Adai AT, et al (2004) A probabilistic functional network of yeast genes. Science
306(5701):1555–1558

Li H, Cao Y, Petzold LR, et al (2008) Algorithms and software for stochastic simulation of
biochemical reacting systems. Biotechnol Prog 24(1):56–61

Liang Z, Xu M, Teng M, et al (2006) Comparison of protein interaction networks reveals species
conservation and divergence. BMC Bioinformatics 7:457



2 Current Progress in Static and Dynamic Modeling 69

Lu LJ, Xia Y, Paccanaro A, et al (2005a) Assessing the limits of genomic data integration for
predicting protein networks. Genome Res 15(7):945–953

Lu P, Szafron D, Greiner R, et al (2005b) PA-GOSUB: a searchable database of model organ-
ism protein sequences with their predicted Gene Ontology molecular function and subcellular
localization. Nucleic Acids Res 33(Database issue)

Luciano JS (2005) PAX of mind for pathway researchers. Drug Discov Today 10(13):937–942
Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sunderland, MA: Sinauer

Associates
Maini P, Benson D, Sherratt J (1992) Pattern-formation in reaction diffusion-models with spatially

inhomogeneous diffusion-coefficients. Ima J Math Appl Med Biol 9(3):197–213
Maini PK, Baker RE, Chuong CM (2006) Developmental biology. The Turing model comes of

molecular age. Science 314(5804):1397–8
Marchler-Bauer A, Anderson JB, DeWeese-Scott C, et al (2003) CDD: a curated Entrez database

of conserved domain alignments. Nucleic Acids Res 31(1):383–387
Matthiessen MW (2003) BioWareDB: the biomedical software and database search engine.

Bioinformatics 19(17):2319–2320
McAdams H, Arkin A (1997) Stochastic mechanisms in gene expression. Proc Natl Acad Sci USA

94(3):814–819
Meinhardt H, de Boer PA (2001) Pattern formation in Escherichia coli: a model for the pole-to-pole

oscillations of Min proteins and the localization of the division site. Proc Natl Acad Sci USA
98(25):14,202–14,207

Mewes HW, Heumann K, Kaps A, et al (1999) MIPS: a database for genomes and protein
sequences. Nucleic Acids Res 27(1):44–48

Milo R, Jorgensen P, Springer M (2009) Bionumbers: The Database of Useful Biological Numbers.
bionumbers.hms.harvard.edu. Accessed 31 Aug 2009

Mogilner A, Wollman R, Marshall WF (2006) Quantitative modeling in cell biology: What is it
good for? Dev Cell 11(3):279–287

Mulder NJ, Apweiler R, Attwood TK, et al (2007) New developments in the InterProdatabase.
Nucleic Acids Res 35(Database issue)

Munsky B, Khammash M (2006) The finite state projection algorithm for the solution of the
chemical master equation. J Chem Phys 124(4)

Nelles O (2000) Nonlinear system identification: from classical approaches to neural networks and
fuzzy models, 1 st edn. Springer, New York, NY

Ng A, Bursteinas B, Gao Q, et al (2006) pSTING:a ‘systems’ approach towards integrating
signalling pathways, interaction and transcriptional regulatory networks in inflammation and
cancer. Nucleic Acids Res 34(Database issue)

Nichols R (2001) Gene trees and species trees are not the same. Trends Ecol Evol 16(7):358–364
Nielsen P, Halstead M (2004) The evolution of CellML. Conf Proc IEEE Eng Med Biol Soc

7:5411–5414
Novak B, Csikasz-Nagy A, Gyorffy B, et al (1998) Mathematical model of the fission yeast cell

cycle with checkpoint controls at the G1/S, G2/M and metaphase/anaphase transitions. Biophys
Chem 72(1–2):185–200

Novak B, Pataki Z, Ciliberto A, et al (2001) Mathematical model of the cell division cycle of fission
yeast. Chaos 11(1):277–286

Ogata H, Fujibuchi W, Goto S, et al (2000) A heuristic graph comparison algorithm and
its application to detect functionally related enzyme clusters. Nucleic Acids Res 28(20):
4021–4028

Orchard S, Hermjakob H, Taylor CF, et al (2005) Further steps in standardisation. Report of the
second annual Proteomics Standards Initiative Spring Workshop (Siena, Italy 17–20th April
2005). Proteomics 5(14):3552–3555

Othmer H (1976) Qualitative dynamics of a class of biochemical control-circuits. J Math Bio
3(1):53–78

Overbeek R, Fonstein M, D’Souza M, et al (1999) The use of gene clusters to infer functional
coupling. Proc Natl Acad Sci USA 96(6):2896–2901



70 B.J. Daigle et al.

Owen A, Stuart J, Mach K, et al (2003) A Gene Recommender Algorithm to Identify Coexpressed
Genes in C. elegans. Genome Res 13(8):1828–1837

Painter KJ, Maini PK, Othmer HG (2000) A chemotactic model for the advance and retreat of the
primitive streak in avian development. Bull Math Biol 62(3):501–525

Pamilo P, Nei M (1988) Relationships between gene trees and species trees. Mol Biol Evol
5(5):568–583

Pazos F, Ranea J, Juan D, et al (2005) Assessing Protein Co-evolution in the Context of the Tree
of Life Assists in the Prediction of the Interactome. J Mol Biol 352(4):1002–1015

Pellegrini M, Marcotte EM, Thompson MJ, et al (1999) Assigning protein functions by compara-
tive genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci USA 96(8):4285–4288

Pokholok DK, Zeitlinger J, Hannett NM, et al (2006) Activated signal transduction kinases
frequently occupy target genes. Science 313(5786):533–6

Price ND, Shmulevich I (2007) Biochemical and statistical network models for systems biology.
Curr Opin Biotechnol 18(4):365–370

Prudhommeaux E, Seaborne A (2007) SPARQL Query Language for RDF. www.w3.org/TR/rdf-
sparql-query. Accessed 31 Aug 2009

Ptacek J, Snyder M (2006) Charging it up: global analysis of protein phosphorylation. Trends
Genet 22(10):545–54

Qi Y, Bar-Joseph Z, Klein-Seetharaman J (2006) Evaluation of different biological data and com-
putational classification methods for use in protein interaction prediction. Proteins: Struct Funct
Bioinform 63(3):490–500

Rangamani P, Iyengar R (2007) Modelling spatio-temporal interactions within the cell. J Biosci
32(1):157–167

Rao C, Arkin A (2003) Stochastic chemical kinetics and the quasi-steady-state assumption:
Application to the Gillespie algorithm. J Chem Phys 118(11):4999–5010

Rathinam M, El Samad H (2007) Reversible-equivalent-monomolecular tau: A leaping method for
“small number and stiff” stochastic chemical systems. J Computational Phys 224(2):897–923

Ratsch G, Sonnenburg S, Srinivasan J, et al (2007) Improving the Caenorhabditis elegans genome
annotation using machine learning. PLoS Comput Biol 3(2):e20

Resat H, Petzold L, Pettigrew MF (2009) Kinetic modeling of biological systems. Methods Mol
Biol 541:311–335

Riddihough G (2003) Chromosomes through space and time. Science 301(5634):779
van Riel NAW, Sontag ED (2006) Parameter estimation in models combining signal transduction

and metabolic pathways: the dependent input approach. IEE Proc Syst Biol 153(4):263–274
Robertson G, Bilenky M, Lin K, et al (2006) cisRED: a database system for genome-scale

computational discovery of regulatory elements. Nucleic Acids Res 34(Database issue)
Rual JF, Venkatesan K, Hao T, et al (2005) Towards a proteome-scale map of the human protein-

protein interaction network. Nature 437(7062):1173–8
Rubin DL, Lewis SE, Mungall CJ, et al (2006) National Center for Biomedical Ontology:

advancing biomedicine through structured organization of scientific knowledge. OMICS
10(2):185–198

Sachs K, Perez O, Pe’er D, et al (2005) Causal Protein-Signaling Networks Derived from
Multiparameter Single-Cell Data. Science 308(5721):523–529

Saha K, Schaffer D (2006) Signal dynamics in Sonic hedgehog tissue patterning. Development
133(5):889–900

Salis H, Kaznessis Y (2005) Accurate hybrid stochastic simulation of a system of coupled chemical
or biochemical reactions. J Chem Phys 122(5)

Samoilov M, Plyasunov S, Arkin AP (2005) Stochastic amplification and signaling in enzymatic
futile cycles through noise-induced bistability with oscillations. Proc Natl Acad Sci USA
102(7):2310–2315

Samoilov MS, Arkin AP (2006) Deviant effects in molecular reaction pathways. Nat Biotechnol
24(10) 1235–1240

SantaLucia J, Hicks D (2004) The thermodynamics of DNA structural motifs. Annu Rev Biophys
Biomol Struct 33:415–440



2 Current Progress in Static and Dynamic Modeling 71

Saric J, Jensen LJ, Ouzounova R, et al (2006) Extraction of regulatory gene/protein networks from
medline. Bioinformatics 22(6):645–650

Sauer U (2004) High-throughput phenomics: experimental methods for mapping fluxomes. Curr
Opin Biotechnol 15(1):58–63

Schena M, Shalon D, Heller R, et al (1996) Parallel human genome analysis: microarray-based
expression monitoring of 1000 genes. Proc Natl Acad Sci USA 93(20):10,614–10,619

Schnell S, Turner T (2004) Reaction kinetics in intracellular environments with macromolecular
crowding: simulations and rate laws. Prog Biophys Mol Bio 85(2–3):235–260

Schubert W, Bonnekoh B, Pommer A, et al (2006) Analyzing proteome topology and function by
automated multidimensional fluorescence microscopy. Nat Biotechnol 24(10):1270–1278

Schuldiner M, Collins S, Thompson N, et al (2005) Exploration of the function and organization of
the yeast early secretory pathway through an epistatic miniarray profile. Cell 123(3):507–519

Sekimura T, Zhu M, Cook J, et al (1999) Pattern formation of scale cells in lepidoptera by
differential origin-dependent cell adhesion. Bull Math Biol 61(5):807–827

Shannon P, Markiel A, Ozier O, et al (2003) Cytoscape: a software environment for integrated
models of biomolecular interaction networks. Genome Res 13(11):2498–2504

Sharan R, Suthram S, Kelley RM, et al (2005) From the Cover: Conserved patterns of protein
interaction in multiple species. Proc Natl Acad Sci USA 102(6):1974–1979

Shea M, Ackers G (1985) The “or” control-system of bacteriophage-lambda - a physical-chemical
model for gene-regulation. J Mol Biol 181(2):211–230

Sherlock G (2000) Analysis of large-scale gene expression data. Curr Opin Immunol 12(2):
201–205

Shmulevich I, Dougherty E, Kim S, et al (2002) Probabilistic Boolean networks: a rule-based
uncertainty model for gene regulatory networks. Bioinformatics 18(2):261–274

Sick S, Reinker S, Timmer J, et al (2006) WNT and DKK determine hair follicle spacing through
a reaction-diffusion mechanism. Science 314(5804):1447–1450

Siek J, Lee L. Lumsdaine A (2007) The Boost Graph Library. www.boost.org/libs/graph/. Accessed
31 Aug 2009

Singh R, Xu J, Berger B (2007) Pairwise Global Alignment of Protein Interaction Networks by
Matching Neighborhood Topology. Proceedings of the 11th Annual International Conference
on Computational Molecular Biology (RECOMB 2007)

Smolen P, Baxter D, Byrne J (2002) A reduced model clarifies the role of feedback loops and time
delays in the Drosophila circadian oscillator. Biophys J 83(5):2349–2359

Spellman PT, Sherlock G, Zhang MQ, et al (1998) Comprehensive identification of cell cycle-
regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol
Cell 9(12):3273–3297

Spiro P, Parkinson J, Othmer H (1997) A model of excitation and adaptation in bacterial
chemotaxis. Proc Natl Acad Sci USA 94(14):7263–7268

Srinivasan B, Caberoy N, Suen G, et al (2005) Functional genome annotation through phyloge-
nomic mapping. Nat Biotechnol 23(6):691–698

Srinivasan BS, Novak AF, Flannick J, Batzoglou S, McAdams HH (2006) Integrated protein
interaction networks for 11 microbes. In: RECOMB, pp 1–14

Srinivasan BS, Shah NH, Flannick JA, et al (2007) Current progress in network research: toward
reference networks for key model organisms. Briefings In Bioinform 8(5):318–332

Stamatakis M, Mantzaris NV (2006) Modeling of ATP-mediated signal transduction and wave
propagation in astrocytic cellular networks. J Theor Biol 241(3):649–668

Stark C, Breitkreutz BJ, Reguly T, et al (2006) BioGRID: a general repository for interaction
datasets. Nucleic Acids Res 34(Database issue)

Stephens S (2007) HCLSIG BioRDF Subgroup. esw.w3.org/topic/HCLSIG_BioRDF_Subgroup.
Accessed 31 Aug 2009

Steuer R (2004) Effects of stochasticity in models of the cell cycle: from quantized cycle times to
noise-induced oscillations. J Theor Biol 228(3):293–301

Stromback L, Lambrix P (2005) Representations of molecular pathways: an evaluation of SBML,
PSI MI and BioPAX. Bioinformatics 21(24):4401–4407



72 B.J. Daigle et al.

Strutt DI (2001) Asymmetric localization of frizzled and the establishment of cell polarity in the
Drosophila wing. Mol Cell 7(2):367–75

Stuart J, Segal E, Koller D, et al (2003) A gene-coexpression network for global discovery of
conserved genetic modules. Science 302(5643):249–255

Stumpf M, Kelly W, Thorne T, et al (2007) Evolution at the system level: the natural history of
protein interaction networks. Trends Ecol Evol 22(7):366–373

Tanay A, Sharan R, Kupiec M, et al (2004) Revealing modularity and organization in the yeast
molecular network by integrated analysis of highly heterogeneous genomewide data. Proc Natl
Acad Sci USA 101(9):2981–2986

Taylor J, Abramova N, Charlton J, et al (1998) Van Gogh: a new Drosophila tissue polarity gene.
Genetics 150(1):199–210

Theisen H, Purcell J, Bennett M, et al (1994) dishevelled is required during wingless signaling to
establish both cell polarity and cell identity. Development 120(2):347–60

Tomlin CJ, Axelrod JD (2007) Biology by numbers: mathematical modelling in developmental
biology. Nat Rev Genet 8(5):331–340

Tong AH, Evangelista M, Parsons AB, et al (2001) Systematic genetic analysis with ordered arrays
of yeast deletion mutants. Science 294(5550):2364–2368

Tong AH, Drees B, Nardelli G, et al (2002) A combined experimental and computational strategy
to define protein interaction networks for peptide recognition modules. Science 295(5553):
321–324

Tree DRP, Shulman JM, Rousset R, et al (2002) Prickle mediates feedback amplification to
generate asymmetric planar cell polarity signaling. Cell 109(3):371–381

Troyanskaya OG, Dolinski K, Owen AB, et al (2003) A Bayesian framework for combining het-
erogeneous data sources for gene function prediction (in Saccharomyces cerevisiae). Proc Natl
Acad Sci USA 100(14):8348–8353

Turing A (1952) The Chemical Basis of Morphogenesis. Philosophical Transactions of the Royal
Society of London Series B-Biological Sciences 237(641):37–72

Tyson J (1975) Existence of oscillatory solutions in negative feedback cellular control processes.
J Math Biol 1(4):311–315

Tyson J, Othmer H (1978) The dynamics of feedback control circuits in biochemical pathways.
Prog Theor Biol 5:1–60

Uhrmacher A, Degenring D, Zeigler B (2005) Discrete event multi-level models for systems
biology. Transactions on computational systems biology I pp 66–89. Springer, Berlin

Vastrik I, D’Eustachio P, Schmidt E, et al (2007) Reactome: a knowledgebase of biological
pathways and processes. Genome Biol 8:R39

Venter JC, Adams MD, Myers EW, et al (2001) The sequence of the human genome. Science
291(5507):1304–1351

Vilar JMG, Kueh HY, Barkai N, et al (2002) Mechanisms of noise-resistance in genetic oscillators.
Proc Natl Acad Sci USA 99(9):5988–5992

von Mering C, Jensen LJ, Kuhn M, et al (2007) STRING 7–recent developments in the integration
and prediction of protein interactions. Nucleic Acids Res 35(Database issue)

Walter CF (1970) The occurrence and the significance of limit cycle behavior in controlled
biochemical systems. J Theor Biol 27(2):259–272

Wang X, Hao N, Dohlman H, et al (2006) Bistability, stochasticity, and oscillations in the mitogen-
activated protein kinase cascade. Biophys J 90(6):1961–1978

Weber M, Schubeler D (2007) Genomic patterns of dna methylation: targets and function of an
epigenetic mark. Curr Opin Cell Biol 19(3):273–280

Wei CL, Wu Q, Vega VB, et al (2006) A global map of p53 transcription-factor binding sites in the
human genome. Cell 124(1):207–219

Weinberger LS, Burnett JC, Toettcher JE, et al (2005) Stochastic gene expression in a lentiviral
positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell 122(2):169–182

Weitz J, Benfey P, Wingreen N (2007) Evolution, interactions, and biological networks. PLoS Biol
5(1):e11



2 Current Progress in Static and Dynamic Modeling 73

Weng G, Bhalla U, Iyengar R (1999) Complexity in biological signaling systems. Science
284(5411):92–96

Wheeler DL, Barrett T, Benson DA, et al (2007) Database resources of the National Center for
Biotechnology Information. Nucleic Acids Res 35(Database issue)

Wilkinson DJ (2006) Stochastic modelling for systems biology. Chapman and Hall/CRC mathe-
matical and computational biology series, Taylor and Francis

Wilkinson DJ (2009) Stochastic modelling for quantitative description of heterogeneous biological
systems. Nat Rev Genet 10(2):122–133

Winzeler EA, Shoemaker DD, Astromoff A, et al (1999) Functional characterization of the
S. cerevisiae genome by gene deletion and parallel analysis. Science 285(5429):901–906

Wong SL, Zhang LV, Tong AH, et al (2004) Combining biological networks to predict genetic
interactions. Proc Natl Acad Sci USA 101(44):15,682–15,687

Woo Y, Affourtit J, Daigle S, et al (2004) A Comparison of cDNA, Oligonucleotide, and
Affymetrix GeneChip Gene Expression Microarray Platforms. J Biomol Tech 15(4):276–284

Yi M, Jia Y, Liu Q, et al (2006) Enhancement of internal-noise coherence resonance by modulation
of external noise in a circadian oscillator. Phys Rev E 73(4)

Yi M, Jia Y, Tang J, et al (2008) Theoretical study of mesoscopic stochastic mechanism and effects
of finite size on cell cycle of fission yeast. Phys A-Stat Mech Appl 387(1):323–334

You L (2004) Toward computational systems biology. Cell Biochem Biophys 40(2):167–184
Yu H, Luscombe NM, Lu HX, et al (2004) Annotation transfer between genomes: protein-protein

interologs and protein-DNA regulogs. Genome Res 14(6):1107–1118
Zhenping L, Zhang S, Wang Y, et al (2007) Alignment of molecular networks by integer quadratic

programming. Bioinformatics 23(13):1631–1639
Zhu X, Gerstein M, Snyder M (2007) Getting connected: analysis and principles of biological

networks. Genes Dev 21(9):1010–1024
Zou M, Conzen S (2005) A new dynamic Bayesian network (DBN) approach for identifying gene

regulatory networks from time course microarray data. Bioinformatics 21(1):71–79


