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Introduction

In many different fields, including management science, computer science, and elec-
trical and industrial engineering, we are confronted with combinatorial optimization
problems. In such problems we are given a finite or countably infinite set of solu-
tions from which we have to find one that minimizes or maximizes a given cost
function. One of the best studied combinatorial optimization problems is the TRAV-
ELING SALESMAN PROBLEM (TSP), which can be formulated as follows. Consider
a salesman who wants to visit each city from a set of n cities exactly once and who
wants to end up in the same city in which he started, where the distance between
any two cities is given. In what order should the salesman visit the cities, such that
the traveled distance is minimal? To see that this problem is indeed a combinatorial
optimization problem, observe that it corresponds to picking a tour with minimum
length from the finite set of all possible tours visiting the » cities.

As a representation of a tour we can use a permutation of the cities that is given
by © = (1(1),7(2),...,t(n)), where t(i) denotes the ith city visited in the tour. As
the number of tours, which equals the number of permutations, is factorial in the
number of cities, it grows exponentially with the number of cities. More specifically,
for one hundred cities the number of tours exceeds 10'°°, which is larger than the
estimated number of particles in the universe. So the solution space is extremely
large, and the search for the optimum tour by evaluating them all is impracticable.

The formulation of TSP is characteristic of combinatorial optimization problems.
Such problems, more specifically their solution space, can typically be formulated in
terms of discrete structures, such as sequences, permutations, graphs, and partitions.
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This use of discrete structures and the use of sophisticated algorithms that work on
these structures, positions combinatorial optimization, which is the discipline that
deals with combinatorial optimization problems, at the intersection of two well-
developed scientific fields: discrete mathematics and computer science.

A major achievement in combinatorial optimization is the development of com-
putational complexity theory. This theory formalizes the difference between easy
and hard problems. A problem is called easy if it can be solved by a polynomial-
time algorithm, where we say that an algorithm solves a problem if it always returns
an optimal solution. A problem is called hard, formally referred to as NP-hard, if it
is commonly believed that a polynomial-time algorithm that solves it does not ex-
ist. Many interesting combinatorial optimization problems, including TSP, have this
property. We assume the reader to be acquainted with the basics of complexity the-
ory. If not, the reader is referred to the standard work of Garey & Johnson [1979].
An overview of the discipline is given in Appendix B.

When confronted with an NP-hard combinatorial optimization problem, we have
two options for tackling it. The first option is to aim for an optimal solution, despite
the NP-hardness of the problem. One reason why this can still be feasible is that the
instances at hand may have some special structure that makes the special case easy
to solve. Another reason is that having an exponential running time does not nec-
essarily mean that an algorithm based on enumeration, such as branch-and-bound,
cannot be useful. It can, for instance, be adequate if one is interested in solving rel-
atively small problem instances. Furthermore, the NP-hardness of a problem only
indicates that (most probably) no algorithm exists with a worst-case polynomial
running time. The average-case running time, however, can be much better than the
worst-case running time.

A second option for tackling an NP-hard combinatorial optimization problem
is to use a heuristic algorithm. Solutions found by such an algorithm are not nec-
essarily optimal, but they are found within an acceptable amount of time. Hence,
heuristic algorithms trade off optimality against computing time.

Heuristic algorithms can be classified into two categories: constructive algo-
rithms and local search algorithms. A constructive algorithm generates a solution
through a number of steps, where in each step the partial solution obtained so far is
extended until in the last step a complete solution is obtained. The order in which
the steps are carried out and the actions performed in each step are often strongly
problem dependent. Local search algorithms, on the other hand, try to find high-
quality solutions by searching through the solution space. More precisely, these
algorithms start with an initial solution and then iteratively generate a new solution
that is ‘near’ to the current solution. A neighborhood function defines for a given
solution the solutions that are near to it. As mentioned above, solutions of many
combinatorial optimization problems can be represented by discrete structures such
as sequences, permutations, graphs, and partitions. Local search algorithms typi-
cally use these representations by defining neighborhood functions in terms of local
rearrangements, such as swapping, moving, and/or replacing items, that may be
applied to a representation to obtain a neighboring solution.
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In this book, we focus on local search algorithms. In practice, excellent results
have been obtained by using local search algorithms for a wide variety of problems.
This has led to a growing interest in theoretical results concerning the approach in
the past two decades. However, many problems are still open as a challenge for the
interested reader. The material presented in this book can be subdivided into two
main categories: on the one hand, theory and results that are problem independent,
and on the other hand more dedicated results for several classical combinatorial
optimization problems. Besides having their own merits, we hope the latter results
help the reader to derive similar results for other problems.

We remark that this book should not be considered as a handbook on how to
apply local search in practice. For instance, we do not give any specific details on
how to implement various local search metaheuristics, such as simulated anneal-
ing and tabu search. The aim of this book is to give a better understanding of the
fundamental behavior of local search by proving theoretical results.

1.1 Basics of Local Search

As mentioned, this book deals with combinatorial optimization problems. These
problems can be formalized as follows.

Definition 1.1. An instance of a combinatorial optimization problem is a pair
(S, f), where the solution space S is a finite or countably infinite set of solutions
and the cost function f is a mapping f : S — R that assigns a real value to each
solution in § called the cost of the solution. a

Definition 1.2. A combinatorial optimization problem Il is specified by a set of
problem instances and it is either a minimization or a maximization problem. The
problem is to find for a given instance (S, f) a solution s* € S that is globally optimal.
For a minimization problem, this means that f(s*) < f(s) has to hold for all s € S,
and for a maximization problem it means that f(s*) > f(s) has to hold for all s € S.
If no confusion can arise, a globally optimal solution is simply called optimal. O

In this definition the adjective ‘combinatorial’ refers to the constraint that S has to
be finite or countably infinite. If this constraint does not hold, then the problem is
called an optimization problem. In a problem instance (S, f) of TSP, set S consists
of all possible tours over a given number of cities and f defines for each tour in
S its length. We note that a problem instance (S, f) is generally defined implicitly
by using a compact data representation and not by giving the complete solution set
S and the cost of each solution. A problem instance of TSP can, for instance, be
defined by giving for each pair i, j of cities the distance from city i to j. The size of
the representation, expressed as the number of bits required for storing it, is called
the size of the problem instance. An algorithm is called a polynomial-time algorithm
if its running time is polynomial in the size of a problem instance. Otherwise, it is
called exponential.

We consider local search algorithms for tackling combinatorial optimization
problems. The key feature of these algorithms is their neighborhood function. This
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function specifies, for each solution, which solutions are in some sense near to it.
The neighborhood function is generally defined in terms of small changes that may
be applied to a solution to obtain a neighboring solution.

Definition 1.3. For an instance (S, f) of a combinatorial optimization problem, a
neighborhood function is a mapping N : § — 25, where 25 denotes the powerset
{V|v C S}. The neighborhood function specifies for each solution s € S a set
N(s) C S, which is called the neighborhood of s. The cardinality of N(s) is called
the neighborhood size of s. We say that solution s’ is a neighbor of s if s € N(s). The
neighborhood function N is said to be symmetric in the case that we have s’ € N(s)
if and only if s € N(s'). O

Throughout this section, we let S and f define a problem instance of an arbitrary
combinatorial optimization problem and we let N be an arbitrary neighborhood
function for §. Furthermore, without loss of generality we only consider minimiza-
tion problems. A maximization problem can be transformed into a minimization
problem by reversing the sign of cost function f.

A local search algorithm starts with an initial solution that is constructed by
some heuristic algorithm. Next, the local search algorithm searches through the
solution space by continually moving from a solution to one of its neighbors. This
process can be modeled as a walk through the neighborhood graph.

Definition 1.4. The neighborhood graph of an instance (S, f) of a combinatorial
optimization problem and an accompanying neighborhood function N is a directed
node-weighted graph G = (V,E). The node set V is given by the set S of solutions,
and the arc set E is defined such that (i, j) € E if and only if j € N(i). Furthermore,
we define the weight of a node as the cost of the corresponding solution. If the
neighborhood function is symmetric, then the directed graph can be simplified to an
undirected graph by replacing arcs (i, j) and (j,i) by a single edge {i, j}. O

We note that the neighborhood functions used in practice are almost always sym-
metric. We assume the reader to be familiar with basic graph theory. An overview
of the basic graph theory concepts used in this book is presented in Appendix A.

Definition 1.5. A solution j is reachable from solution i if the neighborhood graph
G contains a path from i to j. This means that a sequence of solutions s,s2,. ..,
exists with k > 1 such that s; =i, sy = j, and 5741 € N(s;) with 1 <[ < k. O

Definition 1.6. A neighborhood graph is strongly connected if, for each pair i, j of
solutions, j is reachable from i. A neighborhood graph is weakly optimally con-
nected if, for each solution i, it contains a path from i to an optimal solution. O

Different strategies have been proposed for walking through a neighborhood graph.
The most obvious strategy is used by the iterative improvement algorithm, also
known as the hill climbing algorithm. This is the basic local search algorithm. In
each iteration, the algorithm searches in the neighborhood of the current solution
for a solution with better cost. If such a solution is found, it replaces the current
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solution. Otherwise, the algorithm stops and returns the current locally optimal
solution.

Definition 1.7. A solution § € S is called locally optimal with respect to N or N-
optimal if f(§) < f(s) for all s € N(S). m|

In this book, a star as superscript indicates global optimality and a hat indicates
local optimality. Hence, s* is a globally optimal solution, whereas § is locally, but
not necessarily globally optimal.

We note that if we have two different neighborhood functions N; and N, for the
same problem instance and if N is dominated by N, as defined below, then each
local (global) optimum for NV, is also a local (global) optimum for Nj.

Definition 1.8. Let N and N, be two different neighborhood functions for the same
instance (S, f) of a combinatorial optimization problem. If for all solutions s € S we
have N (s) C Nx(s), then we say that N, dominates Nj. O

Instead of being modeled as a walk through a neighborhood graph, an execution of
iterative improvement can be modeled more precisely as a walk through a transition
graph.

Definition 1.9. The transition graph of an instance of a combinatorial optimization
problem and an accompanying neighborhood function is a directed, acyclic sub-
graph of their neighborhood graph G. It is obtained from G by deleting all arcs (i, j)
for which it holds that the cost of solution j is worse than or equal to the cost of
solution i. a

Note that a solution is locally optimal if and only if it has outdegree zero in the
transition graph. The rule used by iterative improvement to select a neighboring
solution in the case that a solution has multiple neighbors with a better cost is called
the pivoting rule. Well-known pivoting rules are first improvement and best improve-
ment. In first improvement we generate neighbors and we accept the first solution
encountered with better cost, where the neighbors can be generated randomly or in
some specified order. When using best improvement, we replace s by a best solution
in its neighborhood, provided that it has better cost. Figure 1.1 gives the iterative
improvement algorithm in pseudo-code. If the neighborhood function is exact, then
the algorithm is guaranteed to give a globally optimal solution.

Definition 1.10. A neighborhood function is called exact if each local optimum is
also a global optimum. O

Example 1.1. To illustrate the definitions given above, consider the problem in-
stance (S, f) and the (symmetric) neighborhood function N defined in Table 1.1.
Figure 1.2 depicts the corresponding neighborhood graph. The figure also shows
the corresponding transition graph, which can be derived from the neighborhood
graph. The problem instance has two global optima, namely solutions 3 and 6. Fur-
thermore, solution 1 is a local optimum. This implies that the neighborhood function
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algorithm Iterative Improvement

begin
s := some initial solution;
repeat

generate an s’ € N(s);
if f(s') < f(s) then s := ',
until f(s") > f(s) forall s’ € N(s);
end;

Figure 1.1. Iterative improvement algorithm for a minimization problem. The first-
improvement pivoting rule generates neighbors from N(s) at random or in some
specified order. The best-improvement pivoting rule generates a neighbor from N (s)
with lowest cost.

we consider is not exact. To make it exact, it suffices to change the neighborhood
function such that solutions 1 and 3 are neighbors of each other.

The neighborhood graph of Figure 1.2 contains two disconnected components:
the subgraph G; induced by solutions 1, 2, 3, and 4 and the subgraph G, induced
by solutions 5, 6, and 7. Solutions from G are not reachable from solutions from
G and vice versa. Hence, the neighborhood graph of Figure 1.2 is not strongly
connected. However, as G; and G, both contain a global optimum it is weakly
optimally connected. O

One often uses the metaphor of walking in a mountainous region to get an intuitive
idea of local search. Consider an instance of a minimization problem. If we define
the height of a solution as its cost, then walking through a neighborhood graph to
find a global optimum can be seen as walking on a three-dimensional surface to find
the lowest point. This looks like walking in a dense fog over the surface of the earth
with its mountains and valleys, where we are looking for the lowest point and we
cannot see farther than one step ahead. Furthermore, a local optimum corresponds
to the lowest point in a valley and applying iterative improvement means that we
only allow downhill moves.

A major drawback of applying iterative improvement is that it may get trapped
in poor local optima. One way to tackle this problem is to find a better, possibly
more complex, neighborhood function. Alternatively, one can allow non-improving
moves or perform multiple runs of iterative improvement. The latter two approaches
are frequently used in practice and often with success. The most popular local search
algorithms based on them are discussed in Chapter 7.

The performance of iterative improvement is determined not only by the quality
of the local optima, but also by the time it takes to reach a local optimum. The time
required to reach a local optimum is determined by two aspects: the time needed for
moving from one solution to the next and the number of solutions that are visited
before one arrives at a local optimum. To keep the first part small, it is important



1.1. Basics of Local Search 7

Table 1.1. Problem instance (S, f) with S = {1,2,...,7} and neighborhood function
N discussed in Example 1.1.

solution | f(s) | N(s) solution | f(s) | N(s)
1 2 | (2 5 2 | {6}
2 3| {1,3} 6 1| {57
3 1| (2,4 7 2 | {6}
4 2 {3}

that the outdegree of the nodes in the neighborhood graph is not too large, i.e., the
cardinality of the neighborhoods of solutions may not be too large. Consider, for
instance, the extreme case in which the neighborhood graph is a complete graph.
This means that for each i,j € S, we have i € N(j). We then have high-quality
local optima because the neighborhood function is exact. However, testing for local
optimality and finding a better neighbor in the case that a solution is not locally
optimal comes down to solving the original problem.

To keep the number of iterations to reach a local optimum small, it is important
that the transition graph has a small ‘potential’.

Definition 1.11. Let 7 be a transition graph, and let V be the nodes in 7' with out-
degree zero, i.e., the nodes that correspond to local optima. The potential of a node
v is defined as the minimum distance of v to a node in V, where the distance from
node i to j is defined as the minimum number of arcs in a connecting path from i to
Jj. The potential of transition graph 7T is the maximum potential over all its nodes.

O

The potential of a transition graph gives a lower bound on the number of iterations
that are maximally required by iterative improvement if it can select an arbitrary
solution as the starting solution. The lower bound is tight whenever an optimal
pivoting rule is used, where optimal means that a shortest path to a locally optimal
solution is chosen.

As mentioned, local search algorithms that admit non-improving moves are of-
ten used in practice to overcome the problem of ending up in poor local optima.
In the remainder of this section, we consider such algorithms and discuss some re-
lated issues. First, we observe that they can still result in low-quality solutions if
a neighborhood graph consists of several disconnected components, i.e., if the so-
lution space can be partitioned into subsets Vi, Va,...,Vy,, such that from solution
i € V; only other solutions from V; can be reached. If in that case we start with
a solution from a subset V; with only low-quality solutions, then the local search
algorithm still has a poor performance. Obviously, this problem does not occur if
we require the neighborhood graph to be strongly connected. However, when we
start with an initial solution i, we are actually not interested in whether all solu-
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Figure 1.2. Neighborhood graph and transition graph of the problem instance and
neighborhood function defined in Table 1.1. The number written inside a node
defines its weight, i.e., the cost of the solution it represents.

tions are reachable. We only want to know whether we can reach a global optimum.
Hence, the condition that the neighborhood graph must be strongly connected can
be weakened to that it must be weakly optimally connected.

We do not only want that a global optimum is reachable. We also want it to
be reachable within a reasonable number of steps. This is realized in a strongly
connected neighborhood graph if its diameter is not too large.

Definition 1.12. The diameter of a neighborhood graph is the maximum distance
between any pair of nodes, where the distance is as defined in Definition 1.11. If
the neighborhood graph is not strongly connected, then its diameter is defined to be
infinitely large. O

Although the performance of a local search algorithm generally improves by allow-
ing deteriorating moves, it should not be too eager to carry out these moves in order
to prevent it from carrying out a random search. As a result, the difficulty in reach-
ing a solution j from a solution i via a path p strongly depends on the height of the
path.

Definition 1.13. Let p = (s1,s2,...,5;) be a path in a neighborhood graph, where s;
is the ith node in the path. Then the height of path p is given by the maximum label
of any of its nodes, i.e., by max;<;<x f(s). O

Using this definition, we can define the depth of a local optimum to express how
hard it is to escape it.

Definition 1.14. Let § € S be a local optimum. The depth of § is defined as the
minimum height of a path p from § to a solution s with f(s) < f($). If such a
solution s does not exist, then the depth of § is co. O

To obtain an effective local search algorithm, it is important that the solution space
does not contain large plateaus, where a plateau refers to a part of the solution
space in which all solutions have (approximately) the same value. On a plateau
it is difficult for a local search algorithm to guide itself to better solutions as all
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directions look the same. Another problem arising on plateaus is cycling. Cycling
means that the algorithm revisits solutions over and over again. If, for instance,
we have a plateau containing two local optima, s and s', that are neighbors of each
other, have the same cost, and are surrounded by solutions with very high cost, then
a local search algorithm will tend to alternate between s and s’. To avoid cycling
a local search algorithm can remember the last visited solutions or fingerprints of
these solutions.

1.2 Outline of the Book

The remainder of this book is organized as follows. In the next chapter we present
some classical combinatorial optimization problems with accompanying neighbor-
hood functions. Besides illustrating how the use of different solution representations
may give rise to different neighborhood functions, these are the problems and neigh-
borhood functions for which we prove problem-dependent results in this book.

Neighborhood function can be based on representations that directly define a
solution and on representations that indirectly define a solution. In Chapter 3 we
show the use of indirect representations. In Chapter 4 we derive properties of neigh-
borhood functions, such as the diameter and connectivity of their corresponding
neighborhood graph. Performance guarantees for neighborhood functions, i.e., for
their local optima, are proved in Chapter 5. In this chapter we also prove the nega-
tive result that if it is NP-hard to find an R-approximate solution for some problem,
then the problem does not admit an efficient neighborhood function with a perfor-
mance bound of R. While Chapter 5 relates to the quality of local optima, Chapter 6
is concerned with the time complexity of finding a local optimum. This includes a
formal theory that is similar to the theory of NP-completeness.

Chapter 7 elaborates on several different techniques to overcome the problem
that iterative improvement stops at the first local optimum it encounters. One of
the techniques presented is simulated annealing, for which we prove in Chapter 8
that, under some mild conditions, it converges asymptotically to the set of globally
optimal solutions.

1.3 Bibliographical Notes

Classical textbooks on combinatorial optimization are Cook, Cunningham, Pulley-
blank & Schrijver [1998], Korte & Vygen [2002], Lawler [1976], Nemhauser &
Wolsey [1988], and Papadimitriou & Steiglitz [1982]. All these textbook have been
written for a more advanced audience. Foulds [1984] presents a more introduc-
tory textbook written at the undergraduate level. Beale [1988] presents a more
general introduction to optimization with a chapter on combinatorial optimization.
Recently, Schrijver [2003] published a three-volume textbook that provides a quite
elaborate and in-depth presentation of the field with a wealth of references to the ex-
isting literature. Annotated bibliographies on combinatorial optimization are given
by O’Heigeartaigh, Lenstra & Rinnooy Kan [1985] and Dell’ Amico, Maffioli &
Martello [1997].



10 1. Introduction

Aarts & Lenstra [1997] present an overview of both theoretical and practical as-
pects of local search. Hoos & Stiitzle [2004] present a book that serves as a practical
guide to the application of local search algorithms and its many variants. A gentle
introduction to local search is given by Michalewicz & Fogel [2000]. Overviews on
local search algorithms are given by Glover & Kochenberger [2003], Reeves [1993],
and Ribeiro & Hansen [2002]. An annotated bibliography on local search is given
by Aarts & Verhoeven [1997].

1.4 Exercises

1. The set A = {1,3,6,9} of integers is given. We define the cost of a sequence T
of the numbers in A as f(t) = Y+, it(i), where each number of A occurs exactly
once in T and where (i) denotes the ith integer in t.

We consider the problem of finding a sequence T over A that minimizes f(7).
This problem is equivalent to finding a descending ordering of the numbers in A.

a) Give the solution space of the described problem instance.
b) Give the cost of each solution/sequence.

Consider the swap neighborhood function in which sequence 7’ is a neighbor of
sequence T if and only if T’ can be obtained from T by changing the order of two
adjacent numbers.

¢) Give the neighborhood graph for the swap neighborhood function.
d) Give the transition graph for the swap neighborhood function.

e) Verify that the swap neighborhood function is exact.

f) Determine the depth of the local optima.

2. Consider the iterative improvement algorithm described in Figure 1.1. We apply
this algorithm to the problem instance of Exercise 1, where an initial solution
is selected uniformly at random. Show that applying the best-improvement piv-
oting rule results in a smaller expected number of iterations than applying the

first-improvement pivoting rule, where the first-improvement pivoting rule gen-
erates neighbors uniformly at random.

3. We defined iterative improvement such that a neighbor is only accepted if it has
strictly better cost. Give a reason to not accept a neighbor that has equal cost.



