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Dampers and Vehicle Modelling 

2.1 Introduction 

The heart of a semi-active suspension is the controllable damper. Its accurate 
modelling is crucial for suspension analysis and design. In many practical 
applications the damper characteristic exhibits a strong non-linearity, which must 
be taken into account in simulation studies in order to obtain realistic results when 
investigating system performance.  

A damper is identified by its force versus velocity characteristics (damping 
characteristics or hydraulic characteristics), which can be expressed by the 
functional relation 

 )(xfFd = , (2.1) 

Fd being the damping force generated and x  the velocity across it. Other damping 
elements have a more general non-linear characteristics expressed by the functional 
relation 

 )( x,xfFd = . (2.2) 

Such a characteristic is typical of viscoelastic materials, but it could well 
represent a controlled semi-active damper, whilst generalised semi-active damping 
devices can be made to have a characteristic expressed by 

 )( x,x,xfFd =  (2.3) 

with acceleration-dependent damping too. 
A certain amount of hysteresis is always present in a damper characteristic, 

depending upon its internal dissipation mechanism. As introduced in Chapter 1 a 
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damper can be viewed from an energy standpoint as a device that dissipates energy 
through an internal mechanism (e.g., by throttling a viscous flow through an 
orifice). In order to fully identify a damper, besides its damping characteristics it is 
customary to define also its force versus displacement characteristics (damper 
work characteristics), the area of which gives a measure of the energy dissipated 
over a complete cycle. 

This chapter presents the mathematical techniques necessary to model real 
dampers with hysteresis in their characteristics, and subsequently reviews the main 
car and truck ride models, developed for suspension studies. The last part of the 
chapter deals with road modelling.  

Figures 2.1 and 2.2 plot the characteristics of two types of dampers: an ideal 
linear viscous damper and an ideal Coulomb friction damper. These are idealised 
characteristics as no hysteresis is present in the force versus velocity characteristics 
(real dampers always contain a certain amount of hysteresis in their force versus 
velocity map).  

 

Fig. 2.1. Linear viscous damper characteristics 

 
Fig. 2.2. Coulomb friction damper characteristics 
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2.2 Phenomenology of Hysteresis 

Hysteresis occurs in a variety of physical systems; the most noteworthy examples 
are ferromagnetic materials, constituting the core of motors, generators, 
transformers and a wide range of other electrical devices. In automotive 
applications hysteresis is present not only in damper characteristics but also, for 
instance, in tyre characteristics and in all viscoelastic and viscoplastic materials in 
general. 

From a control systems standpoint, hysteresis must not always be regarded as a 
non-linearity hampering controller performance or making its design more 
difficult. Under particular circumstances hysteresis can be beneficially exploited in 
control systems, namely in on–off control algorithms (Gerdes and Hedrick, 1999) 
for reducing chatter which may occur when in a control loop the difference 
between setpoint and feedback (i.e., the error) is close to zero. In such systems the 
required amount of hysteresis is typically generated within the control software in 
microprocessor-based programmable architectures or in hardware by employing 
electronic devices or exploiting the inherent hysteresis present in actuator 
characteristics (e.g., valves). 

Virtually no material or device employed in mechanical and structural systems 
is perfectly elastic, and restoring forces generated as a result of deformations are 
not perfectly conservative. Likewise internal dissipation within viscous fluids in 
dampers result in a hysteretic characteristic. 

 

Fig. 2.3. Typical hysteretic loop for a linear material (copyright Publishing House of the 
Romanian Academy (2002), reproduced from Giuclea M, Sireteanu T, Mita AM, Ghita G, 
Genetic algorithm for parameter identification of Bouc–Wen model, Rev Roum Sci Techn 
Mec Appl, Vol 51, N 2, pp 179–188, used by permission) 

A wide variety of micromechanisms contribute to energy dissipation in cyclically 
loaded materials and in viscous fluids. This behaviour macroscopically results in a 
hysteretic loop when the material or device is subject to a sinusoidal displacement 
Q'. However, it is not possible — except in very special cases — to quantitatively 
predict the macroscopic hysteretic behaviour starting from physical models of the 
microscopic behaviour. Therefore, from an engineering standpoint, an 
experimental assessment of the hysteresis loop and the corresponding energy losses 
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is required to characterise a material. Figures 2.3, 2.4 and 2.5 depict typical 
hysteretic loops for a linear material, a non-linear hardening material and a non-
linear softening material, respectively.  
 

 
Fig. 2.4. Typical hysteretic loop for a non-linear hardening material (copyright Publishing 
House of the Romanian Academy (2002), reproduced from Giuclea M, Sireteanu T, Mita 
AM, Ghita G, Genetic algorithm for parameter identification of Bouc–Wen model, Rev 
Roum Sci Techn Mec Appl, Vol 51, N 2, pp 179–188, used by permission) 

 
Fig. 2.5. Typical hysteretic loop for a non-linear softening material (copyright Publishing 
House of the Romanian Academy (2002), reproduced from Giuclea M, Sireteanu T, Mita 
AM, Ghita G, Genetic algorithm for parameter identification of Bouc–Wen model, Rev 
Roum Sci Techn Mec Appl, Vol 51, N 2, pp 179–188, used by permission) 

The area enclosed by the loop is a measure of the dissipated energy. The area, and 
hence the energy dissipated per cycle, can be calculated by the following contour 
integral: 

 ∫= q'QE d . (2.4) 

Depending upon the material, the hysteresis loop can be either very thin (and 
generally elliptical in shape), resulting in a very small amount of energy dissipation 
(Figure 2.6) or larger, hence producing a more significant energy consumption. 
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Thin loops are likely to occur in elastic materials, such as steel, when they are 
cyclically loaded within their elastic range. Conversely, materials loaded in their 
inelastic range exhibit wider hysteresis loops, as portrayed in Figure 2.7. 
Composite materials too dissipate significant amounts of energy. 

 
Fig. 2.6. Deformation in the elastic range (copyright Publishing House of the Romanian 
Academy (2002), reproduced from Giuclea M, Sireteanu T, Mita AM, Ghita G, Genetic 
algorithm for parameter identification of Bouc–Wen model, Rev Roum Sci Techn Mec 
Appl, Vol 51, N 2, pp 179–188, used by permission) 

 
Fig. 2.7. Deformation in the plastic range (copyright Publishing House of the Romanian 
Academy (2002), reproduced from Giuclea M, Sireteanu T, Mita AM, Ghita G, Genetic 
algorithm for parameter identification of Bouc–Wen model, Rev Roum Sci Techn Mec 
Appl, Vol 51, N 2, pp 179–188, used by permission) 

A loss function L(E) can therefore be defined for a particular material or damping 
device under a sinusoidal load. Measuring the area enclosed by the hysteretic loop, 
and dividing it by the cycle period T, the average energy loss per cycle can be 
obtained 

 ∫=
T

tq'Q
T

EL
0

d1)( . (2.5) 



22 Semi-active Suspension Control 

 

2.3 Damper Hysteresis Modelling 

The energy dissipation and the impact on control systems performance of 
hysteretic materials can be significant and in order to properly assess the system 
response the availability of a control-oriented easy-to-handle analytical model of 
hysteresis is fundamental.  

Hysteresis modelling has been a challenging problem for engineers, physicists 
and mathematicians. Several models have been proposed over the years to capture 
different classes of hysteretic phenomena using a variety of approaches. Some 
models require an in-depth knowledge of specialist areas of mathematics to be 
fully appreciated. A survey can be found in Mayergoyz (1991), in Visintin (1994) 
and in Sain et al. (1997). Amongst the hysteresis models developed it is worth 
citing the Chua–Stromsoe model (Chua and Bass, 1972) and the Hysteron model 
proposed by Krasnoel´skii and Pokrovskii (1989). Another model, known as the 
Preisach model (Brokate and Visintin, 1989) exists, constructed by superposing the 
outputs of a set of hysteretic relays. Other models have been proposed, including 
hysteretic biviscous models (Wereley et al., 1998) and polynomial models (Choi et 
al., 2001).  

A model having an appealing simplicity is the Bouc–Wen model, which has 
gained large consensus within the engineering community. A wide variety of 
hysteretic shapes can be represented by using this simple differential model 
proposed by Bouc (1971) and generalised by Wen (1976). The model is based on a 
nonlinear ordinary differential equation which contains a memory variable z, 
representing (in the case of a damping system) the hysteretic restoring force, the 
position of which is identified by the variable q. The Bouc–Wen equation is 
defined as follows (Sain et al., 1997): given ℜ∈= ][ 0 t,tT , the states q(t) , z(t): 

ℜ→T , a vector-valued function mmm ,,,f ℜ→ℜℜℜℜ )(:  and the input u(t): 
ℜ→T , the Bouc–Wen model is defined by: 

 ,)()()( 00 qtqu,z,q,qftq ==  (2.6a) 

 ,)( 00
1 ztzqAzqzzqz nn =+−−= − νγ  (2.6b) 

where q is the imposed displacement of the device (or the material deformation). 
The quantities γ, ν, A, n are loop parameters defining the shape and the amplitude 
of the hysteresis loop.  

Figures 2.8, 2.9 and 2.10 depicts three typical hysteretic loops plotted for 
different sets of parameters and for an imposed harmonic displacement 
q(t)=q0sin(2πft), where f =1 Hz is the frequency and q0 is the amplitude of the 
sinusoidal input. 

By consideration of the three Figures 2.8, 2.9 and 2.10 it can be seen that the 
Bouc–Wen equation can describe both linear and non-linear (softening and 
hardening) hysteretic behaviour. 
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Fig. 2.8. Linear hysteretic behaviour, plotted for γ = 0.9, ν = 0, A = 1, n = 1 (copyright 
Publishing House of the Romanian Academy (2002), reproduced from Giuclea M, Sireteanu 
T, Mita AM, Ghita G, Genetic algorithm for parameter identification of Bouc–Wen model, 
Rev Roum Sci Techn Mec Appl, Vol 51, N 2, pp 179–188, used by permission) 
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Fig. 2.9. Non-linear softening hysteretic behaviour, plotted for γ = 0.75, ν = 0.25, A = 1,      
n =1 (copyright Publishing House of the Romanian Academy (2002), reproduced from 
Giuclea M, Sireteanu T, Mita AM, Ghita G, Genetic algorithm for parameter identification 
of Bouc–Wen model, Rev Roum Sci Techn Mec Appl, Vol 51, N 2, pp 179–188, used by 
permission) 
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Fig. 2.10. Non-linear hardening hysteretic behaviour (plotted for γ = 0.5, ν = -1.5, A = 1,   
n= 1) (copyright Publishing House of the Romanian Academy (2002), reproduced from 
Giuclea M, Sireteanu T, Mita AM, Ghita G, Genetic algorithm for parameter identification 
of Bouc–Wen model, Rev Roum Sci Techn Mec Appl, Vol 51, N 2, pp 179–188, used by 
permission) 

2.3.1 Bouc–Wen Model  

This section describes how the Bouc–Wen equation coefficients γ, ν, A and n affect 
the shape and the amplitude of hysteretic loops. It will be shown how these 
parameters define the slope rate and the stiffness (linear, hardening or softening) of 
the characteristics and hence the area (and therefore the energy dissipated over a 
cycle). The following results are based on a numerical analysis as it is extremely 
difficult to define analytical correlations due to the non-linearity of the Bouc–Wen 
equation.  

2.3.1.1 Parameter A 
As it can be evinced from Figure 2.11, the parameter A defines the scale and the 
amplitude of the hysteretic curve and the slope of the variation of the stiffness 
characteristic. An increase in the parameter A results in a wider hysteresis loop, 
and consequently in a larger energy dissipation. 
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Fig. 2.11. Hysteretic loop dependence on the parameter A (plotted for γ = 0.9, ν = 0.1, n = 1) 
(copyright Publishing House of the Romanian Academy (2002), reproduced from Giuclea 
M, Sireteanu T, Mita AM, Ghita G, Genetic algorithm for parameter identification of Bouc–
Wen model, Rev Roum Sci Techn Mec Appl, Vol 51, N 2, pp 179–188, used by permission) 

2.3.1.2 Parameter γ 
The dependence of the hysteretic loops on the parameter γ is portrayed in Figure 
2.12 (plotted for ν = 0.1, n = 1, A = 1) and can be summarised by saying that the 
area of the loop increases if γ increases from 0 to a value γ0 (between 2 and 3 in the 
numerical example of Figure 2.12, but in general dependent on the other 
coefficients), and for values of γ larger than γ0 the energy dissipated per cycle 
slightly decreases. 
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Fig. 2.12. Hysteretic loop dependence on the parameter γ (plotted for ν = 0.1, n = 1, A = 1) 
(copyright Publishing House of the Romanian Academy (2002), reproduced from Giuclea 
M, Sireteanu T, Mita AM, Ghita G, Genetic algorithm for parameter identification of Bouc–
Wen model, Rev Roum Sci Techn Mec Appl, Vol 51, N 2, pp 179–188 used by permission) 
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2.3.1.3 Parameter ν 
It can be noticed (Figure 2.13) that the parameter ν controls the shape of the 
hysteretic curve: ν = 0 corresponds to a linear hysteretic behaviour, ν < 0 produces 
a hardening hysteretic behaviour, and ν > 0 results in a softening hysteretic 
behaviour. 
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Fig. 2.13. Hysteretic loop dependence on the parameter ν (plotted for γ = 0.9, n = 1, A = 1) 
(copyright Publishing House of the Romanian Academy (2002), reproduced from Giuclea 
M, Sireteanu T, Mita AM, Ghita G, Genetic algorithm for parameter identification of Bouc–
Wen model, Rev Roum Sci Techn Mec Appl, Vol 51, N 2, pp 179–188, used by permission) 

2.3.1.4 Parameter n 
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Fig. 2.14. Hysteretic loop dependence on the parameter n (plotted for γ = 0.9, ν = 0.1, A = 1) 
(copyright Publishing House of the Romanian Academy (2002), reproduced from Giuclea 
M, Sireteanu T, Mita AM, Ghita G, Genetic algorithm for parameter identification of Bouc–
Wen model, Rev Roum Sci Techn Mec Appl, Vol 51, N 2, pp 179–188, used by permission) 
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As Figure 2.14 (plotted for γ = 0.9, ν = 0.1, A = 1) shows, the variation is 
significant for small values of n (between 1 and 2 in the numerical example of 
Figure 2.14), while for larger values (n > 2) its effect is negligible. 

2.4 Bouc–Wen Parameters Identification 

The Bouc–Wen model has the ability to portray a wide range of hysteretic 
behaviour and by an appropriate choice of the equation coefficients both the slope 
variation of the stiffness characteristic and the energy dissipated per cycle can be 
precisely established. The Bouc–Wen equation can be readily combined with plant 
differential equations to yield an overall dynamic model.  

The shape of the Bouc–Wen hysteretic loop depends on the four parameters γ, 
ν, A and n whose physical meaning has been discussed above. However their 
identification is not straightforward as the dependence between z and the set of the 
four parameters is strongly nonlinear and not easy to investigate analytically; 
furthermore the parameter variation ranges are different. Parameter identification 
through least-square-based methods is a possible avenue, but may not be the best 
choice. Black-box optimisation methods based on artificial intelligence techniques 
such as genetic algorithms (GA) could also be beneficial. Such a method will be 
employed in Chapter 6 in the context of MRD parameters identification. The 
method is here briefly introduced. The reader interested in furthering the topic can 
refer to the textbook of Goldberg (1989). 

A GA is a probabilistic search technique inspired from the evolution of species. 
Such an optimisation tool has an inherent parallelism and ability to avoid 
stagnation in local optima. It starts with a set of potential solutions called 
individuals and evolves towards better solutions with respect to an objective 
function. Genetic operators are defined (namely crossover, mutation and selection) 
and their application drives the solution towards the optimum. The main elements 
of a standard GA are genetic representation for potential solutions, an objective 
function, genetic operators, characteristic constants such as population size, 
probability of applying an operator, number of children and so forth.  

The Bouc–Wen coefficients search problem can be stated as finding a set of 
parameters γ, ν, A and n such that the Bouc–Wen model given by Equation 2.6 
determines a hysteretic curve which is a good approximation of an experimental 
one, knowing the imposed displacement q(t) and a set of measured data (qi, 
z*i)i=1,…, n  corresponding to a complete cycle.  

 

2.5 Vehicle Ride Models 

A broad variety of vehicle mathematical models of increasing degree of 
complexity has been developed over the years by automotive engineers to provide 
reliable models for computer-aided automotive design and vehicle performance 
assessement. 
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From a purely mathematical standpoint vehicle models can be categorised as 
distributed models (i.e., governed by partial differential equations) and lumped 
parameter models (i.e., governed by ordinary differential equations). The former 
are mainly of interest to vehicle design rather than control algorithm design. 
Distributed models (typically solved numerically with finite-element-based 
methods) are widely employed in mechanical, thermal, aerodynamic analyses as 
well as crashworthiness analyses. For car dynamics (ride and handling) and control 
studies, lumped parameter models are usually employed. They typically aim to 
model either ride or handling dynamics or both. In this book only lumped 
parameter models will be considered. 

A car can be thought as being composed of two main subsystems: the sprung 
mass (chassis) and the unsprung masses (wheels, axles and linkages), connected 
via a number of elastic and dissipative elements (suspensions, tyres etc.) and 
subjected to external inputs coming from the road profile, the steering system and 
other external disturbances (e.g., wind gust). 

The motion of a vehicle with the nonholonomic constraint of the road has six 
degrees of freedom (6DOF), classified as follows: 

• longitudinal translation (forward and backward motion) 
• lateral translation (side slip) 
• vertical translation (bounce or heave) 
• rotation around the longitudinal axis (roll)  
• rotation around the transverse axis (pitch) 
• rotation around the vertical axis (yaw) 

Vehicle ride is essentially concerned with car vertical dynamics (bounce, pitch, 
roll) whereas handling is concerned with lateral dynamics (side slip, yaw, roll). 
Ride models are typically composed of interconnected spring–mass–damper 
systems and defined by a set of ordinary differential equations. 

The most trivial representation of a vehicle suspension has 1DOF. In this 
simple model the chassis (body) is represented by a mass and the suspension unit 
by a spring and a damper. Tyre mass and stiffness are neglected as well as any 
cross-coupling dynamics. 

By incorporating a wheel into the model, a more accurate representation having 
2DOF (typically referred to as a quarter car model) can be developed. This model 
was (and still is) very popular in the automotive engineering community, especially 
before the widespread use of computer simulation, the reason being that the quarter 
car model, despite its simplicity, features the main variables of interest to 
suspension performance assessment: body acceleration, dynamic tyre force and 
suspension working space (Sharp and Hassan, 1986). A merit of the quarter car is 
that it permits to evaluate more straightforwardly the effects of modifications in 
control parameters because higher-order dynamics and cross-coupling terms with 
the other suspension units are not taken into account. A good suspension design 
should produce improvement of both vehicle road holding and passenger comfort 
(or possibly improvement of one without degradation of the other), although 
inherent trade-offs are unavoidable in the design of a passive suspension system.  

The quarter car is a 2DOF system having two translational degrees of freedom. 
Another classical model can be obtained with only 2DOF: the half vehicle model 
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having a translational degree of freedom and a rotational degree of freedom to 
describe, respectively, bounce and pitch motions or, analogously, bounce and roll 
motions (in the former case the model is referred to as a bicycle model). Its natural 
extension is a 4DOF model, which also includes tyre masses and elasticity. This 
model can be employed to study the vehicle pitch (or roll) behaviour. However the 
4DOF model cannot take into account the cross-couplings between the right- and 
left-hand side of the car (or front and rear in the case of roll motion). These 
interactions can be taken into account only by using a 7DOF model (sometimes 
referred to as a full car model), which allows to represent bounce, roll and pitch 
motions. 

The models mentioned above are classical ride models. Higher order ride 
models can be developed including further degrees of freedom, e.g., accounting for 
seat and engine mounting elasticity. Driver and passengers can be modelled as well 
with springs, masses and damping elements. This is particularly important for 
accurate human comfort studies. Chapter 3 will deal with this topic in detail. 

Analogously to ride vehicle models, also handling models having different 
degrees of complexity can be developed. The equivalent handling model of the 
quarter car is a linear single track model which describes lateral and yaw dynamic 
responses to handling manoeuvres (ignoring the effect of sprung and unsprung 
masses).  

Models including both ride and handling dynamics are necessary when there is 
a need to accurately investigate the interaction between ride and handling (during a 
turning manoeuvre, for instance) and to study the limit of handling characteristics 
or elements such as anti-roll bars. Multibody techniques allow relatively easy 
development of complicated models with many degrees of freedom. In 1991, Zeid 
and Chang described a 64DOF model. Models with hundreds of degrees of 
freedom have been developed by automotive engineers. Such involved models, 
however, despite their sophistication, suffer from two main drawbacks: parameter 
uncertainty and long simulation running time. For these reasons they are not 
always the best choice for control design. Especially in the early stages of the 
design, a less complicated model is preferable, reserving the use of higher-order 
models for further refinements and optimisations.  

Analogously to cars, several heavy and trailed vehicles (tractor/semi-trailer) 
models (Gillespie,1992; Wong, 1993) have been developed to examine their ride 
comfort, tractor–trailer interactions, dynamic tyre forces and road damage. A 
survey can be found in Jiang et al. (2001). These vehicle models usually include 
linear tyre models, linear or nonlinear suspension characteristics, tandem or single 
axles. Other truck ride models include suspended tractor cab and driver seat with 
linear or non-linear components.  

The models described and the simulation results presented in this book are 
based on the use of MATLAB® and Simulink® software. In the following sections 
the classical vehicle and truck models will be briefly revised. 

2.5.1 Quarter Car Model 

The quarter car has for a long time been the par excellence model used in 
suspension design. It is a very simple model as it can only represent the bounce 
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motion of chassis and wheel without taking into account pitch or roll vibration 
modes. However it is very useful for a preliminary design: it is described by the 
following system of second-order ordinary differential equations (Figure 2.15; tyre 
damping is not shown in the figure): 

 ),()(2 2121111 xxkxxxm s −−−−= ξω  (2.7a) 
 ).()()()( 2 02022121122 zxczxkxxkxxxm tts −−−−−+−= ξω  (2.7b) 

If relative displacement is defined as 21 xxx −= , Equations 2.7a and 2.7b can 
be rewritten in a more compact form:  

 ,x2 111 xkxm s−−= ξω  (2.8a) 
 ).()( 2 002122 zxczxkxkxxm 2tts −−−−+= ξω  (2.8b) 

 

Fig. 2.15. Quarter car model (copyright Inderscience (2005) reproduced with minor 
modifications from Guglielmino, E, Stammers CW, Stancioiu D and Sireteanu T, 
Conventional and non-conventional smart damping systems, Int J Vehicle Auton Syst, Vol. 
3, N 2/3/4, pp 216–229, used by permission) 

From the analysis of the quarter car model equations some fundamental properties 
of the passive suspensions can be analytically evinced and it is possible to quantify 
the compromise when reduction of both chassis acceleration, suspension working 
space (sometimes referred as rattle space) and tyre deflection is pursued: the 
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quarter car is a dynamic system composed of two interconnected subsystems and 
as such is subject to constraint equations, independent of the type of 
interconnections. From the analysis of the quarter car model Hedrick and Butsuen 
(1988) showed that only three transfer functions can be independently defined and 
that invariant points (i.e., values at specified frequencies depending only on kt , m1 
and m2

 but not on ks) exist at particular frequencies. In particular they showed that 
the acceleration transfer function has an invariant point at the wheel-hop 
frequency. Similarly, the suspension deflection transfer function has an invariant 
point at the rattle space frequency. The trade-off between passenger comfort and 
suspension deflection occurs because it is not possible to simultaneously keep both 
transfer functions small around the wheel-hop frequency in the low-frequency 
range.  

2.5.2 Half Car Model 

 
Fig. 2.16. Half car model with 4DOF 

Pitch motion can be taken into account with the half vehicle model (also known as 
the bicycle model). The governing equations are the following (Figure 2.16), with 
α representing pitch: 
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where m is the sprung mass, m1 , m2  the front and rear unsprung masses, J the pitch 
inertia, and a and b the distances of the front and rear of the vehicle from its centre 
of gravity. Replacing α with the roll angle, pitch inertia J by roll inertia and b by 
half-track length this model can be also employed to describe roll motion.  

2.5.3 Full Car Model 

The 7DOF vehicle ride model (Sireteanu et al., 1981) extends the half car model to 
the entire vehicle: 3DOF are used for the sprung mass (bounce, roll and pitch), 
while the unsprung masses have 4DOF (1DOF for each tyre), as depicted in Figure 
2.17. The governing equations can be written compactly in matrix form (bold 
letters denote matrices and vectors): 

00
T

00
T

d
TT zCPzKPFKPqPqCPPqM −−=+++ , (2.10) 

 
Fig. 2.17. Full car model with 7DOF (copyright ASME (2001), reproduced with minor 
modifications from from Guglielmino E, Edge KA, Modelling of an electrohydraulically-
activated friction damper in a vehicle application, Proc ASME IMECE 2001, New York, 
used by permission)  

with q∈ℜ7, z0∈ℜ4, Fd∈ℜ7, M∈ℜ7x7, K∈ℜ8x8, C∈ℜ8x8, K0∈ℜ8x4, C0∈ℜ8x4 and 
P∈ℜ8x7.  

The vertical displacement vector z∈ℜ8 is defined as: 
 =z Tzzzzzzzz ] , ,  ,  ,  ,  ,  , [ 87654321  (2.11)  
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(the vertical displacements are not all independent). 
Let q be the vector of generalised co-ordinates:  

 =  q Tqqqqqqq ] , ,  , , , ,[ 7654321  (2.12) 

with the following choice of co-ordinates: 

 q1 = z ; q2 = z5 ; q3 = z6 ; q4 = z’’ ; q5 = α ; q6 = β ; q7 = β’’,  (2.13) 

z and q being related by the matrix P, dependent upon the vehicle geometry:  

 .Pqz =  (2.14) 

Consider the vertical displacement vector and the matrix P being defined as: 
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where a and b are the distances of the front and rear of the vehicle from its centre 
of gravity, d’ and d’’ are, respectively, the front and rear half-track lengths and E 
the inter-wheel distance. 

The road input vector z0  is then defined as: 

 = z0 .zzzz T]  ,  ,  , [ 04030201
 (2.16) 

Equation 2.10 can be obtained using Lagrangian formalism. The Lagrange 
equations, expressed as a function of the kinetic energy are: 
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where T is the total kinetic energy of the system, defined by the quadratic form 
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 =T ,
2
1 qMqT  (2.18) 

M being the mass matrix: 

 M = diag(m, m1
 , m1, m2 , Jα , Jβ , Jβ’’), (2.19) 

where m is the sprung mass, m1 , m2  the front and rear unsprung masses, Jα the 
pitch inertia and Jβ and Jβ’’  the roll inertias of sprung mass and rear inter-axis bar. 

The right-hand side of Equation 2.17 is defined as: 
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fg     k=1,…, 7.  (2.20) 

Defining the vector f of the forces applied to sprung and unsprung masses 

 .] , ,  ,  ,  ,  ,  , [ 87654321
Tfffffffff =  (2.21) 

the forces applied to sprung and unsprung masses are: 

 ][ 0000 zCzKzCKzf +++−= , (2.22)  

where K is the stiffness matrix: 
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  (2.23) 

and K0 is the unsprung mass stiffness matrix 
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Analogous definitions can be given for matrices C and C0 , the latter being the 
tyre damping matrix, usually negligible (tyre damping is not depicted in Figure 
2.17). 

Combining Equations 2.14 and 2.18 yields: 
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Developing (2.17) yields: 

 )(
8

1

fPqpg T

i
kikk ==∑

=

    k=1,…, 7, (2.27) 

 k
k

)qM(
q
T

t
=

∂
∂

d
d                k=1,…, 7, (2.28) 

hence 

 fPqM T= .   (2.29) 

Taking into account Equation 2.22, the governing Equation 2.10 is obtained: 

 00
T

00
T

d
TT zCPzKPFKPqPqCPPqM −−=+++ . (2.30) 

In the model here described, front suspensions are taken to be independent and 
rear suspensions dependent (connected through a rigid axle). However the model 
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can be easily modified to represent independent front suspensions or both front and 
rear dependent suspensions, by appropriate choices of the matrices M, K and C. 

2.5.4 Half Truck Model 

The half truck model is the equivalent of the half vehicle model for an articulated 
vehicle, and has seven degrees of freedom. Figure 2.18 depicts a schematic of the 
truck model (Tsampardoukas et al., 2007) 

 
Fig. 2.18. Half truck model (copyright Elsevier, reproduced from Tsampardoukas G, 
Stammers CW and Guglielmino E, Hybrid balance control of a magnetorheological truck 
suspension, accepted for publication in Journal of Sound and Vibration, used by permission) 

It is composed of two sprung masses, namely the tractor body (or frame) and the 
trailer body, together with three unsprung masses (the three wheels). The tractor 
and the trailer are linked through an articulated connection known as the fifth 
wheel. Two vibration modes are considered for each sprung unit (heave and pitch) 
and one for the unsprung masses (heave).  

The governing equations can be readily obtained by consideration of forces and 
moments as follows: 
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where 

input_wheel_trailerz
input_wheel_rearz
input_wheel_frontz

xlxvelocity_relative_trailer

xlxvelocity_relative_rear

xzkF
xzkF
xzkF

lxlxcF

lxlxkF

lxxcF

lxxkF

lxxcF

lxxkF

lxxcF

lxxkF

t

t

r

r

f

f

=
=
=

−+=

−+=

−=
−=
−=

+−+=

+−+=

−−=

−−=

−−=

−−=

+−=

+−=

t

r

f

wtt6t

wrc2c

wtttttt

wrrtrtr

wfftftf

t5tc2c5d6

t5tc2c5s6

t6twtdt

t6twtst

c2cwrdr

c2cwrsr

c1cwfdf

c1cwfsf

)(

)(

)(
)(
)(

)(

)(

)(

)(

)(

)(

)(

)(

θ

θ

θθ
θθ

θ
θ

θ
θ

θ

θ

 (2.32) 



38 Semi-active Suspension Control 

 

The equations can be implemented in Simulink®. Figure 2.19 shows a 
schematic of the Simulink® model. The meaning of the symbols in Equations 2.31 
and 2.32 are listed in Table 2.1. 

Table 2.1. Truck model symbols notation (copyright Elsevier, reproduced from 
Tsampardoukas G, Stammers CW and Guglielmino E, Hybrid balance control of a 
magnetorheological truck suspension, accepted for publication in Journal of Sound and 
Vibration, used by permission) 

Fsf  Front tractor suspension spring force 

Fdf  Front tractor suspension damping force 

Fsr  Rear tractor suspension spring force 

Fdr  Rear tractor suspension damping force 

Fst  Trailer suspension spring force 

Fdt  Trailer suspension damping force 

Fs6  Fifth wheel spring force 

Fd6  Fifth wheel damping force 

xt  Trailer heave 

xc  Tractor heave 

ϑc Tractor pitch 

ϑt Trailer pitch 

xwf  Front tractor wheel heave 

xwr  Rear tractor wheel heave 

xwt  Trailer tractor wheel heave 

zf  Front tractor road input 

zr  Rear tractor road input 

zt  Trailer road input 

Ftf  Excitation force (front tractor) 

Ftr  Excitation force (rear tractor) 

Ftt  Excitation force (trailer) 
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Fig. 2.19. Simulink® half truck model 

2.6 Tyre Modelling 

Tyres are made of rubber, i.e., a viscoelastic material and in ride studies the 
vertical tyre stiffness can be approximated by a spring and some damping (either 
pure viscous or hysteretic damping, but often negligible). In the vehicle models 
described so far, the tyre has been represented as a spring (and a viscous damper 
term). This model although quite crude is acceptable for ride analysis. In handling, 
braking or traction studies  more sophisticated models are required which account 
for road–tyre adhesion (both longitudinal and lateral) as well as rolling friction. A 
classical model is the so-called Pacejka magic formula (Pacejka and Bakker, 
1991). At higher frequencies and for short road obstacles even more sophisticated 
models are required. 

The majority of workers utilise a point contact model since it is easy to use. 
Such a model has at least two defects. Firstly, the point follows the slightest 
vertical excursion of the road and hence generates high-frequency inputs which in 
practice would not occur as the tyre contact patch bridges or envelops such points. 
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Secondly, such a model cannot generate longitudinal forces although it is 
evident that these exist to a greater or lesser degree. Indeed such a model cannot 
predict the deceleration of a vehicle on a steady incline. 

A more useful model is a radial spring tyre model (Smith, 1977; Bernard et al., 
1981; Crolla et al., 1984). The number of springs needed is not obvious, and 
depends on the type of road surface; the authors (unpublished work) have found 
360 to be adequate. The stiffness of the springs is adjusted to produce a prescribed 
static deflection. 

For on-road applications, it is valid to regard the road profile as rigid compared 
to the flexible tyre. The chief difficulty is locating the point of contact for each 
spring when a pseudo-random road profile is assumed. Such a model generates 
longitudinal forces but does not admit enveloping, although Davis (1974) has 
extended the model to allow for this. Torsional tyre distortion is not modelled. 

2.7 Road Modelling 

The representation of the road profile is vital for vehicle dynamic simulations 
because it is the main source of excitation. An accurate road model is as important 
as a good vehicle model. Sources of vehicle vibration include forces induced by 
road surface irregularities as well as aerodynamic forces and vibration that arise 
from the rotating mechanical parts of the vehicles (tyres, engine and transmission). 
However, the road surface elevation profile (identified by the co-ordinates iz0 , in 
the previous models) plays the major role. Road roughness includes any type of 
surface irregularities from bump and potholes to small deviations.  

The reduction of forces transmitted to the road by moving vehicles (particularly 
for heavy vehicles) is also an important issue responsible for road damage. Heavy-
vehicle suspensions should be designed accounting also for this constraint. The 
issue will be dealt in detail in a case study in Chapter 7. 

Road inputs can be classified into three types: deterministic road (periodic and 
almost-periodic) inputs, random-type inputs and discrete events such as bumps and 
potholes. 

As far as deterministic inputs are concerned, a variety of periodical waveforms 
can be used, such as sine waves, square waves or triangular waves. To a first 
approximation the road profile can be assumed to be sinusoidal. Although not 
realistic, it is useful in a preliminary study because it readily permits a comparison 
of the performance of different suspension designs both in the time and in the 
frequency domain (through transmissibility charts, plotted at different frequencies). 

A multi-harmonic input which is closer to an actual road profile can be 
generated. A possible choice which approximates fairly well a real road profile is a 
so-called pseudo-random input (Sayers and Karamihas, 1998; Dukkipati, 2000) 
which results from summing several non-commensurately related sine waves (i.e., 
the ratio of all possible pairs of frequencies is not a rational number) of decreasing 
amplitude, so as to provide a discrete approximation of a continuous spectrum of a 
random input. The trend can be proved to be non-periodic (sometimes referred to 
as almost periodic) in spite of being a sum of periodic waveforms (Bendat and 
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Piersol, 1971). To achieve a pseudo-random profile effect it is advisable to select 
spatial frequencies of the form 

 termtaltrascendenΔ +Ωj j=1,…, m. (2.33) 

where j is an integer, ΔΩ is the separation between spatial frequencies and the 
added term could be e/1000 or π/1000 for example. The spatial frequency range is  
(m-1) ΔΩ. The RMS amplitude at each centre frequency is obtained from the 
power spectral law and  multiplication by ΔΩ. 

Another possible way to generate a realistic multi-harmonic input consists in 
making the ratio between frequencies constant and decreasing with amplitude, but 
using randomly generated phase angles (between 0 and 360 degrees) for each 
component. In this case the resulting waveform is periodical. Simulation results 
presented subsequently are based on the latter approach. 

Figure 2.20 shows an example of road profile: 20 sine waves with random 
phases have been added together in order to create a pseudo-random profile. The 
amplitude of the profile is calculated to approximate a smooth highway by using 
the spatial frequency data suggested by the Society of Automotive Engineers 
(SAE).  

 
Fig. 2.20. Pseudo-random road profile 

However, these road profiles are deterministic functions and as a consequence 
could not represent a real random pavement.  

A stochastic model gives the more realistic representation of a road profile. The 
power spectral density (PSD) is the most common way to characterise the road 
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roughness (British  standard BS 7853, 1996). A road could well be approximated 
(Wong, 1993) by an ergodic process with spectral density expressed by:  

 ,)( nCS −= ΩΩ  (2.34) 

where Ω is the spatial frequency, having units of cycles/m (i.e., Ω is the inverse of 
wavelength), C is a coefficient dependent on the road roughness, f  the frequency in 
Hz and n is a rational exponent. It follows that Ω=f/V, where V is the forward 
speed of the car, so that: 

 .)()( n
n f

V
CfS −

−=  (2.35) 

This approach involves an analysis in terms of power spectral densities. For a 
linear system the input and output spectral densities Yin(f) and Yout(f) are related 
through the transfer function of the system G(f), from the equation: 

 ).()()( in
2

out fYfGfY =  (2.36) 

This property in the frequency domain only applies to linear systems and 
allows the output spectral density to be readily calculated if the vehicle transfer 
function and the input spectral density are known. For a nonlinear system this 
property does not hold. 

Several techniques (Cebon, 1996) exist to characterise the road roughness by 
using spectral densities. For example, the inverse discrete Fourier transform (DFT) 
can be used to generate a single road profile. Alternatively a two-dimensional 
inverse DFT can be employed to create a pair of correlated road profiles for full 
vehicle simulation. Tyre envelopment can be added to the models. 

Discrete events such as bumps or potholes cannot be modelled with the 
approaches described above and are instead usually modelled using half-sine 
waves or also using the Heavyside function. 


