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Dissipativity and Passivity

This chapter introduces the concepts of passive and dissipative systems which
lay the foundation of the developments described in this book. Most of the def-
initions follow Willems [138, 139], Byrnes et al. [24] and Sepulchre et al. [110]
with possibly different notations. The implication of passivity is discussed in
terms of the input-output behavior and stability of the process system.

2.1 Concept of Passive Systems

Much of the discussion presented in this chapter is related to system stability.
Therefore, we start with a brief review of the stability of nonlinear systems.
Consider a nonlinear system:

dx
dt

= f (x, u) , (2.1)

where x ∈ X ⊂ Rn and u ∈ U ⊂ Rm are the state and input vector variables,
respectively. The stability of this system is concerned with its free dynamics
when the input variable u = 0. Assume that

f∗ (x) = f (x, 0) , (2.2)

where the components of the n dimensional vector f∗ (x) are local Lipschitz
functions of x, i.e., f∗ (x) satisfies the following Lipschitz condition:

‖f∗ (x1) − f∗ (x2)‖ ≤ L ‖x1 − x2‖ (2.3)

for all x1, x2 in a neighbourhood of x0, where L is a positive constant and ‖·‖
is the Euclidean norm (i.e., ‖x‖ =

√
xTx). The Lipschitz condition guarantees

that
dx
dt

= f∗ (x) (2.4)
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Fig. 2.1. Lyapunov stability

has a unique solution with the initial condition x (0) = x0. A point x∗ ∈ X
is called an equilibrium point of (2.4) if f∗ (x∗) = 0. The equilibrium point
x = 0 is stable if for each ε > 0, δ = δ (ε) > 0 such that ‖x (0)‖ < δ implies
that ‖x (t)‖ < ε for all t ≥ 0 (as shown in Figure 2.1a for X ⊂ R2). This
equilibrium point is said to be asymptotically stable (AS) if it is stable and δ
can be chosen such that ‖x (0)‖ < δ implies that x (t) approaches the origin as
t tends to infinity (as shown in Figure 2.1b). When the origin is asymptotically
stable, the region of attraction is defined as the set of initial points x (0) such
that the solution of (2.4) approaches the origin as t tends to infinity. If the
region of attraction is the entire state-space X , then the origin is globally
asymptotically stable (GAS) [66]. Unlike linear systems, a nonlinear system
may have multiple equilibrium points, of which some are stable and some are
unstable. A sufficient condition for the stability of an equilibrium point is
given by the Lyapunov stability criterion, which can be used to determine the
stability of an equilibrium point without solving the state equation. Let V (x)
be a continuously differentiable (also denoted as C1) scalar function defined
in X that contains the origin. A function V (x) is said to be positive definite
if

V (0) = 0 and V (x) > 0, ∀ x �= 0. (2.5)

It is said to be positive semidefinite if

V (x) ≥ 0, ∀ x. (2.6)

Similarly, a function V (x) is said to be negative definite if V (0) = 0 and
V (x) < 0 for x �= 0 and is said to be negative semidefinite if V (x) ≤ 0 for all
x.

Theorem 2.1 (Lyapunov stability criterion [67]). Let x = 0 be an equi-
librium point of a system described by (2.4). Function f∗ is locally Lipschitz
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and X contains the origin. The origin is stable if there exists a C1 positive def-
inite function V (x) : X → R such that dV (x)

dt is negative semidefinite and it is
asymptotically stable if dV (x)

dt is negative definite, where dV (x)
dt is the derivative

along the trajectory of (2.4), i.e.,

dV (x)
dt

=
∂V (x)
∂x

f∗ (x) . (2.7)

The function V (x) in the above theorem, if it exists, is called a Lyapunov
function.

A stronger type of stability is called exponential stability, which is defined
as follows:

Definition 2.2 (Exponential stability [67]). A system is globally exponen-
tially stable (GES) if and only if there exists a Lyapunov function V (x) such
that

ρ1|x|2 ≤ V (x) ≤ ρ2|x|2, (2.8)

and with zero input,
dV (x(t))

dt
≤ −ρ3|x|2, (2.9)

where ρi > 0, i = 1, 2, 3 are suitable scalar constants. If these conditions hold,
it follows that there exists some constant ρ ≥ 0 such that with x(0) = x0,

|x(t)| ≤ ρ|x0|e−ρ3t/2 ∀ t ≥ 0. (2.10)

If the above condition is valid for x only in a neighbourhood of x = 0, the
system is locally exponentially stable (LES).

First introduced by Popov [95], the concept of passive systems originally
arose in the context of electrical circuit theory. A network consisting of only
passive components, e.g., inductors, resistors and capacitors, does not generate
any energy and therefore is stable (e.g., [6, 49]). In the early 1970s, Willems
[138, 139] developed a systematic framework for dissipative systems, including
passive systems, by introducing the notation of a storage function and a supply
rate. Passivity, dissipativity and relevant stability conditions are cornerstones
of modern control theory. In this section, an introduction to passive systems
is presented through a very simple example of a gravity tank, followed by
rigorous definitions.

Example 2.3 (Gravity tank). Consider the gravity under flow tank system
illustrated in Figure 2.2. Assume that the input is the inlet volumetric flow rate
u = Fi (t), the state variable is the liquid level x (t) and the output variable is
the liquid pressure y = p (t) = ρgx (t). (Liquid pressure measurement is often
used in level control.) Suppose that the outlet is flowing under the influence
of gravity, i.e.,

Fo (t) = Cv

√
x (t), (2.11)
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where Cv denotes the valve coefficient and Fo is the mass flow rate. The mass
balance is given by

ρA
dx (t)

dt
= ρFi (t) − ρFo (t) = ρFi (t) − ρCv

√
x (t), (2.12)

leading to

dx (t)
dt

= −Cv

A

√
x (t) +

1
A
Fi (t) ,

y (t) = p (t) = ρgx (t) ,
(2.13)

where A is the cross-sectional area of the tank and ρ is the density of the
liquid. Denote the mass in the tank as m. Half of the potential energy stored
in the tank is given by the following equation:

S (t) = S(x (t)) =
1
2
m (t) gx (t) =

1
2

[ρAx (t)] gx (t) =
1
2
Aρgx2 (t) . (2.14)

The inlet flow into the system increases the potential energy in the tank. The
increment of potential energy per unit time can be represented by a function
of the input and output:

w(t) = y (t)u (t) = ρgFi(t)x(t). (2.15)

The rate of change of the potential energy is given by taking the derivative
along the trajectory of x (t):

dS (t)
dt

=
∂S

∂x

dx
dt

= Aρgx (t)
[

1
A

(
Fi (t) − Cv

√
x (t)

)]
(2.16)

= −Cvρgx (t)
√
x (t) + ρgFi (t)x (t) (2.17)

< w (t) . (2.18)

Note that in the range of definition of x, the first term of (2.17) is always
negative. Therefore the rate of change of the stored energy in the tank is
less than that supplied to it by the inlet flow rate (represented by w (t)). As
such, the tank system “dissipates” its potential energy through both the inlet
flow (Fi) and the liquid pressure p, which is a function of both the input and
output. This is called a dissipative system. Because the potential energy S (t)
is a positive definite function of the state variable x (t), it can be treated as a
Lyapunov function. When Fi (t) = 0,

dS (t)
dt

< 0, ∀ x �= 0. (2.19)

Therefore, the equilibrium x = 0 is asymptotically stable (AS). If the outlet
valve is completely shut off (i.e., Cv = 0), then the energy flow into the tank is
totally stored. In this case, this process becomes lossless and the equilibrium
x = 0 is stable.



2.1 Concept of Passive Systems 9

Inlet flow rate

Fi

Fo

Outlet flow rate
x

h

Fig. 2.2. A gravity tank system

Comparing (2.17) with (2.19), it can be seen that by introducing the energy
function, (2.17) gives the stability of a free system (with zero input) and also
how its input and output affect the state variable. If we generalize the energy
function to any nonnegative function of the states, then we can define a class
of nonlinear processes. Consider the following nonlinear system:

H :

{
ẋ = f (x, u)
y = h(x, u),

(2.20)

where x ∈ X ⊂ R
n, u ∈ U ⊂ Rm and y ∈ Y ⊂ Rm are the state, input and

output variables, respectively, and X , U and Y are state, input and output
spaces, respectively. The representation x(t) = φ(t, t0, x0, u) is used to denote
the state at time t reached from the initial state x0 at t0.

Definition 2.4 (Supply rate [138]). The supply rate w(t) = w(u(t), y(t))
is a real valued function defined on U × Y , such that for any u (t) ∈ U and
x0 ∈ X and y(t) = h(φ(t, t0, x0, u)), w(t) satisfies∫ t1

t0

|w(t)| dt < ∞ (2.21)

for all t1 ≥ t0 ≥ 0.

Definition 2.5 (Dissipative systems [138]). System H with supply rate
w(t) is said to be dissipative if there exists a nonnegative real function S(x) :
X → R+, called the storage function, such that, for all t1 ≥ t0 ≥ 0, x0 ∈ X
and u ∈ U ,

S(x1) − S(x0) ≤
∫ t1

t0

w(t)dt, (2.22)

where x1 = φ(t1, t0, x0, u) and R+ is a set of nonnegative real numbers.
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The above condition states that a system is dissipative if the increase in
its energy (storage function) during the interval (t0, t1) is no greater than
the energy supplied (via the supply rate) to it. If the storage function is
differentiable, i.e., it is C1, then we can write (2.22) as

dS (x (t))
dt

≤ w(t). (2.23)

The interpretation is that the rate of increase of energy is no greater than the
input power.

According to the above definition, a storage function has to be positive
semidefinite. The next definition describes the notion of available storage, the
largest amount of energy that can be extracted from the system given the
initial condition x (0) = x:

Definition 2.6 (Available storage [138]). The available storage, Sa of a
system H with supply rate w, is the function Sa : X → R+ defined by:

Sa (x) � sup
x(0)=x
u(t)∈U
t1>0

{
−
∫ t1

0

w (u (t) , y (t)) dt
}
. (2.24)

The available storage is nonnegative, since Sa (x) is the supremum over a
set of values including the zero element. The available storage function plays
an important role in dissipative/passive systems. If a system is dissipative,
the available storage function Sa(x) is finite for each x ∈ X . Moreover, any
possible storage function S(x) satisfies

0 � Sa(x) � S(x) (2.25)

for each x ∈ X . If Sa is a continuous (C0) function, then Sa itself is a possible
storage function. Conversely, if Sa (x) is finite for every x ∈ X , then the
system is dissipative with respect to the supply rate w(t).

The supply rate can be any function defined on the input and output space
that satisfies (2.21). When a bilinear supply rate is adopted, passive systems
can be defined as:

Definition 2.7 (Passive systems [24]). A system is said to be passive if it
is dissipative with respect to the following supply rate:

w (u (t) , y (t)) = uT (t) y (t) , (2.26)

and the storage function S (x) satisfies S(0) = 0.

Two extreme cases of passive systems are lossless and state strictly passive
systems:
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Definition 2.8 (Lossless systems [24]). A passive system H with storage
function S (x) is said to be lossless if for all t1 ≥ t0 ≥ 0, x0 ∈ X and u ∈ U ,

S (x) − S (x0) =
∫ t1

t0

yT (t)u (t) dt. (2.27)

Definition 2.9 (State strictly passive systems [24]). A passive system
H with storage function S (x) is said to be state strictly passive if there exists
a positive definite function V : X → R+ such that for all t1 ≥ t0 ≥ 0, x0 ∈ X
and u ∈ U ,

S (x) − S (x0) =
∫ t1

t0

yT (t)u (t) dt−
∫ t1

t0

V (x (t)) dt. (2.28)

This definition is referred to as strict passivity in [24]. Here we define it
as state strict passivity to discriminate it from other types of strict passivity
discussed later in this book, such as strict input passivity and strict output
passivity.

In the tank system example, the storage function is the total potential
energy stored in the tank system, given by (2.14). The supply rate given by
(2.15) is the inner product of the input and output. Therefore, the tank system
is state strictly passive when the outlet valve is open and is lossless when the
outlet valve is closed. Storage functions are not limited to physical energies.
Any nonnegative real functions defined on state variables can be understood
as a type of abstract energy, like the Lyapunov functions. They are potential
candidates for the storage functions. For example, for the tank system, if we
choose the output as the liquid level x, then the supply rate w (t) = Fi (t)x (t).
With the storage function S (x) = 1

2Ax
2, it is obvious that

dS (x)
dt

= −Cvx (t)
√
x (t) + Fi (t) x (t) < w (t) , (2.29)

which shows that the process is passive (more precisely, state strictly passive).
In this case, the physical meanings of the storage function and supply rate
are not explicit, making it more difficult to determine its passivity directly
from our understanding of the mass and energy balance. However, the process
possesses all the useful properties of passive systems that we are going to
discuss in the next section.

2.2 Properties of Passive Systems

2.2.1 Stability of Passive Systems

In the tank example, we can see that the concept of passivity implies stability if
a positive definite storage function is used. Because the storage function is only
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required to be positive semidefinite in Definition 2.5, stability is not always
ensured by passivity. For example, if a system has two states x = [x1, x2]

T

and the storage function is positive semidefinite, e.g., S (x) = 1
2x

2
1, then pas-

sivity with this storage function does not imply the stability of x2. In this
case, additional conditions on zero-state detectability and observability are
required:

Definition 2.10 (Zero-state observability and detectability [24]). A
system as given in (2.20) is zero-state observable (ZSO) if for any x ∈ X,

y (t) = h(φ(t, t0, x, 0)) = 0, ∀ t ≥ t0 ≥ 0 implies x = 0, (2.30)

and the system is locally ZSO if there exists a neighbourhood Xn of 0, such
that for all x ∈ Xn, (2.30) holds. The system is zero-state detectable (ZSD) if
for any x ∈ X,

y (t) = h(φ(t, t0, x, 0)) = 0, ∀ t ≥ t0 ≥ 0 implies lim
t→∞φ(t, t0, x, 0) = 0,

(2.31)
and the system is locally ZSD if there exists a neighbourhood Xn of 0, such
that for all x ∈ Xn, (2.31) holds.

With the definition of zero-state detectability (ZSD), the link between
passivity and Lyapunov stability can be established:

Theorem 2.11 (Passivity and stability [110]). Let a system H (as rep-
resented in (2.20)) be passive with a C1 storage function S (x) and h (x, u) be
C1 in u for all x. Then the following properties hold:

1. If S (x) is positive definite, then the equilibrium x = 0 of H with u = 0 is
Lyapunov stable.

2. If H is ZSD, then the equilibrium x = 0 of H with u = 0 is Lyapunov
stable.

3. If in addition to either Condition 1 or Condition 2, S (x) is radially un-
bounded (i.e., S (x) → ∞ as ‖x‖ → ∞), then the equilibrium x = 0 in the
above conditions is globally stable (GS).

It can be also found that if system H is state strictly passive with a
positive definite storage function, then the equilibrium x = 0 with u = 0 is
asymptotically stable. The boundedness of the storage function implies the
boundedness of the state variables. However, passivity tells more than just
stability. It relates the input and output to the storage function and thus
defines a set of useful input-output properties, which are explained in the
next section.

2.2.2 Kalman–Yacubovich–Popov Property

One of the most important properties of passive systems is related to the
following definition:
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Definition 2.12 (Kalman–Yacubovich–Popov property [24]). Consider
a control affine system without throughput (as a special case of the system in
(2.20)):

H :

{
ẋ = f (x) + g (x) u
y = h (x) ,

(2.32)

where x ∈ X ⊂ Rn, u ∈ U ⊂ Rm and y ∈ Y ⊂ Rm. It is said to have the
Kalman–Yacubovitch–Popov (KYP) property if there exists a C1 nonnegative
function S (x) : X → R+, with S (0) = 0 such that

LfS (x) =
∂S (x)
∂x

f (x) ≤ 0, (2.33)

LgS (x) =
∂S (x)
∂x

g (x) = hT (x) , (2.34)

for each x ∈ X.

The term LfS (x) = ∂S(x)
∂x f (x) is called the Lie derivative, which is defined

as follows:

Definition 2.13 (Lie derivative). Given a C1 nonlinear scalar function
S (x) : Rn → R and a vector function:

f (x) = [f1 (x) , f2 (x) , · · · , fn (x)]T ∈ R
n → R

n, (2.35)

on a common domain X ⊂ Rn. The derivative of S (x) along f is defined as

LfS (x) =
∂S (x)
∂x

f (x) =
n∑

i=1

∂S (x)
∂xi

fi (x) . (2.36)

The repeated Lie derivative is defined as

Lk
fS (x) =

∂
(
Lk−1

f S (x)
)

∂x
f (x) , (2.37)

with L0
fS (x) = S (x).

Proposition 2.14 ([57]). A system H which has the KYP property is pas-
sive, with a storage function S (x). Conversely, a passive system having a C1

storage function has the KYP property.

For the tank system in Example 2.3, f (x) = −Cv

A

√
x, g (x) = 1

A and
h (x) = ρgx (t). With the storage function defined in (2.14), it is easy to
verify that the tank system has the KYP property. Because the liquid level
x (t) ≥ 0,

LfS (x) = −ρgCvx (t)
√
x (t) ≤ 0, (2.38)

LgS (x) = Aρgx (t)
1
A

= ρgx (t) = y (t) . (2.39)
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For a linear time invariant (LTI) system, there exists a quadratic storage
function S (x) = xTPx (with a positive definite matrix P ), leading to the
following linear version of the KYP condition:

Proposition 2.15 ([139]). Consider a stable LTI system:1

ẋ = Ax+Bu

y = Cx+Du,
(2.40)

where x ∈ Rn, u ∈ Rm and y ∈ Rm. This system is passive if and only if there
exist matrices P,L ∈ Rn×n, Q ∈ Rm×n and W ∈ Rm×m with P > 0, L > 0
(positive definite) such that

ATP + PA = −QTQ− L,

BTP − C = −WTQ,

WTW = D +DT .

(2.41)

For systems with relative degree 0 (i.e., D �= 0), the above condition can
be represented using a linear matrix inequality (LMI), which is often referred
to as the positive-real lemma:

Lemma 2.16 (Positive-real Lemma [21]). A stable LTI system given in
(2.40) with D �= 0 is passive if and only if there exists a positive definite
matrix P such that: [

ATP + PA PB − CT

BTP − C −D −DT

]
< 0. (2.42)

When D = 0, the above condition is reduced to

ATP + PA < 0, (2.43)

BTP = C. (2.44)

Equations (2.43) and (2.44) are the linear versions of (2.33) and (2.34), re-
spectively.

2.2.3 Input-Output Property

Obviously, while (2.33) is related to the stability, (2.34) defines an input-
output property. The input-output property of passive systems is called posi-
tive realness :

1 In this book, the linear system given in (2.40) is said to be stable if Re[λi(A)] < 0,
∀ i = 1, . . . , n. The system is actually asymptotically stable according to Sec-
tion 2.1.
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Definition 2.17 (Positive real systems [24]). A system is said to be pos-
itive real if for all t1 ≥ t0 ≥ 0, u ∈ U ,∫ t1

t0

yT (t)u(t)dt � 0, (2.45)

whenever x (t0) = 0.

The initial condition of the state variable x0 = x (t0) = 0 (consequently
S (x0) = 0) is assumed because positive realness is only an input-output
property, which says nothing about the states. Clearly, passive systems are
positive real. To tell whether a positive real system is passive, we need an
additional reachability condition:

Definition 2.18 (Reachability and controllability [138]). The state-
space of a dynamic system H (as in (2.20)) is said to be reachable from x−1

if for any x ∈ X, there exists a t−1 ≤ 0 and u ∈ U such that

x = φ (0, t−1, x−1, u) . (2.46)

It is said to be controllable to x1 if for any x ∈ X, there exists a t1 ≥ 0 and
u ∈ U such that

x1 = φ (t1, 0, x, u) . (2.47)

A positive real system is passive if any state is reachable from the origin
and Sa is at least continuous (C0). A thorough treatment of passive systems
from the perspective of input-output systems can be found in [32]. In the case
of linear systems, positive realness and passivity are synonyms, provided that
the system is detectable.

The input-output relationship is often more conveniently represented by
system operators. The system operator is a mapping defined on signal spaces.
For example, system H with the input and output signals u (t) and y (t) can
be understood as a mapping from u to y (with certain initial conditions on
the state variable x (t)). In this case, H : u (t) �−→ y (t) is a system operator
and the system output can be represented as

y (t) = Hu (t) . (2.48)

The mapping from y (t) to u (t) is referred to as the inverse of H , denoted as
H−1. For a vector signal function on time f (t) = [f1 (t) , . . . , fm (t)]T , where
fi (t) are scalar functions and t ≥ 0, the “size” of the signal can be quantified
by using norms. Here we introduce the so-called 2-norm:

Definition 2.19 (2-norm of a signal). The 2-norm of a vector time-domain
signal f (t) ∈ Rm is defined as

‖f‖2 �
[

m∑
i=1

∫ ∞

0

f2
i (t) dt

] 1
2

=

√∫ ∞

0

fT (t) f (t) dt. (2.49)
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Define the inner product as follows:

〈f, g〉 �
∫ ∞

0

f (t)T
g (t) dt. (2.50)

Then (2.49) can be written as

‖f‖2 =
√
〈f, f〉. (2.51)

The set of vector functions of f : R+ → Rm which have a bounded 2-norm,
i.e.

‖f‖2 < ∞, (2.52)

are called the Lm
2 space (the superscript indicates the dimension). This is

a Hilbert space (a linear space with inner product). The Lm
2 space can be

extended to allow functions that are unbounded, when t→ ∞, by introducing
the truncation operator:

Definition 2.20 (Truncation operator [130]). Let f : R
+ → R

m. Then
for each T ≥ 0, the function fT (t) is defined by

fT (t) =

{
f(t), 0 ≤ t < T

0, t ≥ T,
(2.53)

and is called the truncation of f to the interval [0, T ].

The space that consists of all functions f such that fT (t) ∈ Lm
2 is called the

extension of Lm
2 , denoted as Lm

2e. Now the definition of input-output stability
can be given as follows:

Definition 2.21 (Input-output stability [130]). Let H : Lm
2e → Lp

2e. Sys-
tem H is said to be L2 stable if Hu ∈ Lp

2 for any u ∈ Lm
2e.

The mapping H is said to have finite L2 gain if there exist finite constants
γ and b such that for all T ≥ 0,

‖(Hu)T ‖2 ≤ γ ‖uT ‖2 + b, ∀ u ∈ Lm
2e. (2.54)

Using the above definition, we can define passivity from the perspective of the
input-output property:

Definition 2.22 ([130]). Let H : u ∈ Lm
2e �→ y ∈ Lm

2e. Then system H is
passive if there exists some constant β such that

〈Hu, u〉T = 〈y, u〉T ≥ β, ∀ u ∈ Lm
2e, ∀ T ≥ 0. (2.55)

The above inequality is equivalent to the positive real condition given in
(2.45), with the assumption t0 = 0. The introduction of constant β is due
to the fact that x (t0) = 0 is not assumed in (2.55). One possible case is
β = S (x (0)), where S (x) is the storage function.

Because both (2.45) and (2.55) are symmetrical in terms of u and y, the
following proposition is obvious:
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Proposition 2.23 ([116]). Consider a positive real system H which maps u
to y. Its inverse (denoted H−1) which maps y to u is also positive real if it
exists.

For stable linear systems, the above input-output property can be defined
on the transfer functions by introducing positive real transfer functions.

Definition 2.24 (Positive real transfer function [139]). A transfer func-
tion G(s) is positive real if

• G(s) is analytic in Re(s) > 0;
• G(jω) +G∗(jω) ≥ 0 for any frequency ω that jω is not a pole of G(s). If

there are poles p1, p2, . . . , pq of G(s) on the imaginary axis, they are non-
repeated and the residue matrix at the poles lim

s→pi

(s−pi)G(s) (i = 1, . . . , q)

is Hermitian and positive semidefinite.

Transfer function G(s) is said to strictly positive real (SPR) if

• G(s) is analytic in Re(s) ≥ 0;
• G(jω) +G∗(jω) > 0 ∀ ω ∈ (−∞,+∞).

Furthermore G(s) is said to be extended strictly positive real (ESPR) if it
is SPR and G(j∞) +G∗(j∞) > 0 [123].

Here, G∗(jω) is the complex conjugate transpose of G(jω).

Theorem 2.25 ([139]). A linear system as given in (2.40) is passive (or
strictly passive) if and only if its transfer function G(s) := C(sI−A)−1B+D
is positive real (or strictly positive real).

The above theorem (together with Definition 2.24) forms an input-output
version of the positive-real lemma in the frequency domain. The above the-
orem is often used as the definition of linear passive systems. According to
Theorem 2.25, G1 (s) = 1

s+1 is a strictly passive system and G2 (s) = 1
s is a

passive system. It is worth pointing out that any PID controller

K (s) = kc

[
1 +

1
τIs

+ τDs

]
, kc > 0, (2.56)

is passive. So is any multiloop PID controller.

2.2.4 Phase-related Properties

The above input-output property implies another interesting characteristic
of passive systems – they are phase bounded. This is very obvious for SISO
passive systems, because the condition G(jω)+G∗(jω) ≥ 0 is then reduced to
Re (G (jω)) ≥ 0, which means that the real part of their frequency response is
always nonnegative. This is what the term “positive real” originally referred
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to. Clearly, the phase shift of a stable SISO passive system in response to a
sinusoidal input is always within [−90◦, 90◦] and the phase shift of a SISO
strictly passive system is always within (−90◦, 90◦).

The above statement is also true for multi-input multi-output (MIMO) lin-
ear systems. Here we adopt the following phase definition for MIMO systems
given by Postlethwaite et al.:

Definition 2.26 (Phase of MIMO LTI systems [96]). Consider an
MIMO LTI system with a transfer function G(s) ∈ C

m×m. Perform the polar
decomposition on its frequency response:

G(jω) = X(jω)Λ(jω)V ∗(jω)
= [X(jω)V ∗(jω)] [V (jω)Λ(jω)V ∗(jω)] = U(jω)H(jω),

(2.57)

where Λ(jω) is an m×m diagonal, real and nonnegative matrix; X(jω) and
V (jω) are unitary matrices. U(jω) = X(jω)V ∗(jω) is also a unitary matrix
and H = V (jω)Λ(jω)V ∗(jω) is a Hermitian matrix. The phase of the system
at frequency ω is defined as the principal arguments of the eigenvalues of
U(jω).

Theorem 2.27 (Phase condition for MIMO LTI strictly passive sys-
tems [13]). Consider an MIMO LTI system with a transfer function G(s) ∈
Cm×m. If the system is strictly passive, then its phase shift lies in the open
interval (−90◦, 90◦) for any real ω.

The proof of the above theorem is given in Section B.1. If the frequency
response of a stable linear system has a phase shift within [−90◦, 90◦] for all
frequencies, this system also satisfies both of the following conditions:

1. it is minimum phase;
2. the difference between the degree of the denominator polynomial and the

degree of the numerator polynomial (i.e., the relative degree) is less than
2.

This can be illustrated by a simple SISO case. Consider a stable and
minimum phase transfer function G (s) = p(s)

q(s) with G (0) > 0, where the
numerator polynomial p (s) is of mth order and the denominator polynomial
q (s) is of nth order. Because G (s) has only left half plane (LHP) zeros and
poles at frequency ω = ∞, the phase shift will be 90◦(n − m). Therefore,
for the system to be phase bounded by [−90◦, 0◦] at all frequencies, it must
satisfy n−m < 2. (A positive phase shift will occur when G (0) < 0.)

Phase is not defined for nonlinear systems. However, the above phase-
related conditions can be extended to nonlinear systems. The relative degree
can be understood as the number of times one has to differentiate the output
to have the input explicitly appearing. Therefore, we can define the relative
degree for nonlinear systems as follows:
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Definition 2.28 (Relative degree [61]). A SISO control affine nonlinear
system

ẋ = f (x) + g (x) u
y = h (x) ,

(2.58)

is said to have relative degree r at point x0 if

1. LgL
k
fh (x) = 0 for all x in a neighbourhood of x0 and all k < r − 1;

2. LgL
r−1
f h (x0) �= 0,

where Lk
fh (x) is the kth order Lie derivative of h along f .

A multivariable nonlinear control affine system as in the following equa-
tion:

ẋ = f (x) +
q∑

j=1

gj (x) uj ,

yi = hi (x) , i = 1, . . . , p,

(2.59)

has a vector relative degree given by {r1, r2, · · · , rp} at a point x0 if

1. LgiL
k
fhi (x) = 0, i = 1, . . . , p, k = 0, . . . , ri − 2 for all x in a neighbour-

hood of x0.
2. The characteristic matrix C (x), given by

C (x) =

⎡⎢⎢⎢⎢⎣
Lg1L

r1−1
f h1 (x) Lg2L

r1−1
f h1 (x) · · · LgpL

r1−1
f h1 (x)

Lg1L
r2−1
f h2 (x) Lg2L

r2−1
f h2 (x) · · · LgpL

r2−1
f h2 (x)

...
...

. . .
...

Lg1L
rp−1
f hp (x) Lg2L

rp−1
f hp (x) · · · LgpL

rp−1
f hp (x)

⎤⎥⎥⎥⎥⎦
p×p

is nonsingular at x0. The total relative degree is defined as r =
∑p

i=1 ri.

For the linear SISO system ẋ = Ax + Bu, y = Cx, the relative degree
is equal to the difference between the degree of the denominator polyno-
mial and the degree of the numerator polynomial of the transfer function
H(s) = C(sI −A)−1B of the system. To extend the concept of minimum
phase systems to nonlinear systems, we need to look at the zero dynamics:

Definition 2.29 (Zero dynamics). Consider the system in (2.32) with the
constraint y = 0, i.e.,

ẋ = f (x) + g (x)u,
0 = h (x) .

(2.60)

The constrained system (2.60) is called the zero-output dynamics, or briefly,
the zero dynamics.
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If the matrix Lgh (0) � ∂h(x)
∂x g (x)

∣∣∣
x=0

of the system in (2.32) is nonsin-

gular and the distribution spanned by the vector fields g1 (x) , · · · , gm (x) is
involutive in a neighbourhood of x = 0, then there exists new local coordi-
nates (z, y) under which the system can be represented as the so-called normal
form:

ż = q (z, y) ,
ẏ = b (z, y) + a (z, y)u.

(2.61)

The zero dynamics of system (2.32) are given by

ż = q (z, 0) . (2.62)

Denote q (z, 0) by f0 (z). Then, the function q (z, y) can be expressed in the
form

q (z, y) = f0 (z) + p (z, y) y, (2.63)
where p (z, y) is a smooth function (see [24]).

Definition 2.30 (Minimum phase nonlinear systems [24]). Consider
the system in (2.32). Suppose that Lgh (0) is nonsingular. Then the system is
said to be:

1. minimum phase if its zero dynamics are asymptotically stable in a neigh-
bourhood of z = 0;

2. weakly minimum phase if there exists a positive differentiable function
W (z) with W (0) = 0, such that

∂W (z)
∂z

f0 (z) ≤ 0 (2.64)

in a neighbourhood of z = 0.

Similarly, we can define globally minimum phase and globally weakly min-
imum phase if the normal form and minimum phase are global. Now we are
in the position to study the phase-related properties of nonlinear passive sys-
tems.

Theorem 2.31 ([24]). Consider system H given in (2.32). Assume that
rank {Lgh (x)} is constant in a neighbourhood of x = 0. If system H is passive
with a C2 storage function S (x) which is positive definite, then

1. Lgh (0) is nonsingular and H has relative degree {1, · · · , 1}.
2. The zero dynamics of H exist locally at x = 0, and H is weakly minimum

phase.

Because system H in consideration does not have a feedthrough term,
its relative degree could not be below {1, · · · , 1}. A passive SISO nonlinear
system has a relative degree of 1 or 0 (if there is a feedthrough term). The
above theorem shows that nonlinear passive systems have phase-related input-
output properties similar to those their linear counterparts possess. These
properties imply output feedback stability conditions which will be discussed
in the next section.
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Fig. 2.3. Interconnections of passive systems

2.3 Interconnection of Passive Systems

The phase-related properties of passive systems imply important output feed-
back stability conditions, which can be used to determine the stability of
networks of interconnected systems. A passive system is very easy to control
via output feedback. For example, a linear passive system (e.g., G (s) = 1

s )
can be stabilized by any proportional only controller with a positive gain.
Similarly, we have the following stability condition for nonlinear systems:

Theorem 2.32. For a nonlinear passive system H given in (2.32), a propor-
tional only output feedback control law u = −ky asymptotically stabilizes the
equilibrium x = 0 for any k > 0, provided that H is ZSD.

Proof. Assume that H is passive with storage function S (x). For u = −y, the
time derivative of S satisfies

Ṡ (x) ≤ −kyT y < 0, ∀ y �= 0. (2.65)

The bounded solution of ẋ = f (x,−y) is confined in {x|h (x) = 0}. If H is
ZSD, then x → 0.

The output feedback stability condition is not limited to static feedback:

Theorem 2.33 (Interconnections of passive systems). Suppose that sys-
tems H1 and H2 are passive (as shown in Figure 2.3). Then the two systems,
one obtained by the parallel interconnection, and the other obtained by feedback
interconnection, are both passive. If systems H1 and H2 are ZSD and their
respective storage functions S1(x1) and S2(x2) are C1, then the equilibrium
(x1, x2) = (0, 0) of both interconnections is stable.

Proof. Passivity: Because H1 and H2 are passive, there exist two positive
semidefinite storage functions S1 (x1) and S2 (x2) such that
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Si (xi (t1)) − Si (xi (t0)) ≤
∫ t1

t0

uT
i yidt, i = 1, 2, (2.66)

where x1, x2 are the state variables of H1 and H2, respectively. Define
x =

[
xT

1 , x
T
2

]T and S (x) = S1 (x1) + S2 (x2). Note that S (x) is positive
semidefinite and

S (x (t1)) − S (x (t0)) ≤
∫ t1

t0

(
uT

1 y1 + uT
2 y2

)
dt. (2.67)

For the parallel interconnection, u = u1 = u2 and y = y1 + y2. Therefore,

S (x (t1)) − S (x (t0)) ≤
∫ t1

t0

uT ydt. (2.68)

For the feedback case, u2 = y1 and u1 = r − y2:

S (x (t1)) − S (x (t0)) ≤
∫ t1

t0

rT y1dt. (2.69)

Therefore, both interconnections are passive.
If systems H1 and H2 are ZSD, the equilibrium (x1, x2) = (0, 0) of both
interconnections is Lyapunov stable, according to Theorem 2.11.

The above conditions can be extended to partial parallel and feedback
connections:

Proposition 2.34 (Partial interconnection of passive systems). Con-
sider systems H1 : u1 �−→ y1 and H2 : u2 �−→ y2, where u1 =

[
uT

11, u
T
12

]T ,

u2 =
[
uT

21, u
T
22

]T , y1 =
[
yT
11, y

T
12

]T , y2 =
[
yT
21, y

T
22

]T . If systems H1 and H2

are passive, then the two systems, one obtained by partial parallel intercon-
nection, and the other obtained by partial feedback interconnection (as shown
in Figure 2.4), are both passive. If systems H1 and H2 are ZSD and their
respective storage functions S1(x1) and S2(x2) are C1, then the equilibrium
(x1, x2) = (0, 0) of both interconnections is stable.

Proof. Similar to the proof of Theorem 2.33, because H1 and H2 are passive,
there exist two positive semidefinite storage functions S1 (x1) and S2 (x2) such
that

Si (xi (t1)) − Si (xi (t0)) ≤
∫ t1

t0

uT
i yidt, i = 1, 2, (2.70)

where x1, x2 are the state variables of H1 and H2, respectively. Define
x =

[
xT

1 , x
T
2

]T and S (x) = S1 (x1) + S2 (x2). Note that S (x) is positive
semidefinite and

S (x (t1)) − S (x (t0)) ≤
∫ t1

t0

(
uT

1 y1 + uT
2 y2

)
dt

=
∫ t1

t0

(
uT

11y11 + uT
12y12 + uT

21y21 + uT
22y22

)
dt.

(2.71)
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For the partial parallel interconnection, define u3 = u12 = u21, y3 = y12 +
y21. The overall system inputs and outputs are u =

[
uT

11, u
T
3 , u

T
22

]T and y =[
yT
11, y

T
3 , y

T
22

]T , respectively. Therefore,

S (x (t1)) − S (x (t0)) ≤
∫ t1

t0

(
uT

11y11 + uT
3 y3 + uT

22y22

)
dt

=
∫ t1

t0

yTudt.

(2.72)

For the feedback case, u12 = −y21 and u21 = y12. The overall system inputs
and outputs are u =

[
uT

11, u
T
22

]T and y =
[
yT
11, y

T
22

]T , respectively. Then

S (x (t1)) − S (x (t0)) ≤
∫ t1

t0

(
uT

11y11 − yT
21y12 + yT

12y21 + uT
22y22

)
dt

=
∫ t1

t0

(
uT

11y11 + uT
22y22

)
dt =

∫ t1

t0

yTudt.

(2.73)
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Therefore, both interconnections are passive. If systems H1 and H2 are ZSD,
from Theorem 2.11, the equilibrium (x1, x2) = (0, 0) of both interconnections
is Lyapunov stable.

As a result, if a process is passive, it can be stabilized at the equilibrium
point (x = 0) by any passive controller, even if it is highly nonlinear and/or
highly coupled. For example, the gravity tank can be stabilized by any PID
controller with a positive controller gain. The controller gain can be arbitrarily
large to reduce the response time without causing instability. This motivates
stability analysis and control design based on passivity. The above stability
condition can be further extended by introducing the notion of a passivity
index.

2.4 Passivity Indices

2.4.1 Excess and Shortage of Passivity

To extend the passivity-based stability conditions to more general cases for
both passive and nonpassive systems, we need to define the passivity indices
that quantify the degree of passivity. The passivity indices can be defined in
terms of an excess or shortage of passivity.

Let system H , as given in (2.32), be passive with a C1 storage function
S (x). Consider a static feedfoward yff = −νu (ν > 0) such that the overall
system H̃ has the output ỹ = y − νu (as shown in Figure 2.5a). Because the
feedforward is static, its state-space is void. Therefore, the storage function
of the overall system remains S (x). If H̃ is also passive, then,

S (x (t1)) − S (x (t0)) ≤
∫ t1

t0

uT ỹdt =
∫ t1

t0

(
uT y − νuTu

)
dt. (2.74)

This is equivalent to the condition that H is dissipative with respect to the
supply rate w (u, y) = uT y − νuTu. In this case, system H is said to have
excessive input feedforward passivity of ν, denoted as IFP(ν). The feedforward
system −νI is not passive because

∫ t1
t0
uT yffdt =

∫ t1
t0

−νuTudt < 0, violating
the positive real condition. From this example, it can be seen that the excess of
passivity in H can compensate for the shortage of passivity in the feedforward
system. Similarly, if H is nonpassive, but it is dissipative with respect to the
supply rate w (u, y) = uT y+ νuTu (ν > 0), then system H + νI is passive. In
this case, H lacks input feedforward passivity, denoted as IFP(−ν).

Another situation is the negative feedback interconnection (as shown in
Figure 2.5b). Let H̃ be the closed-loop system of H with a positive feedback
ρI (ρ > 0). Assume that H̃ is passive with a C1 storage function S (x), then,

S (x (t1)) − S (x (t0)) ≤
∫ t1

t0

rT ydt =
∫ t1

t0

(
uT y − ρyT y

)
dt. (2.75)
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This is equivalent to the dissipativity of system H with respect to the supply
rate w (u, y) = uT y − ρyT y. In this case, H is said to have excessive output
feedback passivity of ρ, denoted as OFP(ρ). If H is not passive, but it is
dissipative with respect to the supply rate w (u, y) = uT y+ρyT y (ρ > 0), then
system H can be rendered passive by a negative feedback ρI. In this case, H is
said to lack output feedback passivity, denoted as OFP(−ρ). Mathematically,

Definition 2.35 (Excess/shortage of passivity [110]). Let H : u �−→ y.
System H is said to be:

1. Input feedforward passive (IFP) if it is dissipative with respect to supply
rate w (u, y) = uT y − νuTu for some ν ∈ R, denoted as IFP(ν).

2. Output feedback passive (OFP) if it is dissipative with respect to supply
rate w (u, y) = uT y − ρyT y for some ρ ∈ R, denoted as OFP(ρ).

In this book, a positive value of ν or ρ means that the system has an excess
of passivity. In this case, the process is said to be strictly input passive or
strictly output passive, respectively. Clearly, if a system is IFP(ν) or OFP(ρ),
then it is also IFP(ν − ε), or OFP(ρ− ε) ∀ ε > 0.

The IFP and OFP can also be defined on the input-output version of
passivity:

Definition 2.36 ([130]). Let H : Lm
2e → Lm

2e. System H is strictly input
passive if there exist β and δ > 0 such that

〈Hu, u〉T ≥ δ ‖uT ‖2
2 + β, ∀ u ∈ Lm

2e, T ≥ 0. (2.76)

H is strictly output passive if there exist β and ε > 0 such that

〈Hu, u〉T ≥ ε ‖(Hu)T ‖2
2 + β, ∀ u ∈ Lm

2e, T ≥ 0. (2.77)
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A strictly output passive system has a finite L2 gain [130]. Furthermore,
a system that has excessive OFP with a C1 storage function has a stable
equilibrium x = 0 when u = 0, provided that the system is ZSD. This can be
seen from the following:

Ṡ ≤ uT y − ρyT y = uT y − ρhT (x)h (x)

< −ρhT (x) h (x) < 0, ∀ h (x) �= 0 and u = 0.
(2.78)

Following a proof similar to Theorem 2.32, x → 0 when t→ ∞.
IFP and OFP systems have the following scaling property:

Proposition 2.37 (IFP/OFP Scaling [110]). For systems H and αH,
where α is a constant, the following statements are true:

1. If H is OFP(ρ), then αH is OFP
(

1
αρ
)
.

2. If H is IFP(ν), then αH is IFP(αν).

Note that the strict passivity definition for linear systems given in The-
orem 2.25 is the IFP plus the stability condition, not the linear version of
state strict passivity for nonlinear systems. More precisely, a linear system is
strictly passive if it is stable and IFP(ν), ν > 0.

Example 2.38. To illustrate the definition of IFP and OFP, let us consider a
linear integrating system:

H :

{
ẋ = u

y = x.
(2.79)

This system is lossless (passive but not strictly passive). By definition, system
H with a positive feedforward ν:

H1 :

{
ẋ = u

y = x+ νu
(2.80)

will have excessive IFP of ν. This can be seen by using a storage function
S (x) = 1

2x
2:

Ṡ = xu = yu− νu2. (2.81)

From an input-output point of view, H (s) = 1/s is passive, and

H1 (s) = H (s) + ν = (νs+ 1) /s (2.82)

has excessive IFP of ν. According to Theorem 2.25, H1 (s) is not strictly
passive because it is not stable.

Similarly, H (s) with a negative feedback of ρ (ρ > 0),

H2 (s) =
1
s

1 + ρ 1
s

=
1

s+ ρ
, (2.83)
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will be OFP(ρ) and also strictly passive. Linear strictly output passive systems
may not be strictly passive (due to the fact that strict passivity for linear
systems requires strict IFP). For example,

H3 (s) =
s

s+ 1
(2.84)

is OFP(1), but it is not strictly passive because H3 (0) +H∗
3 (0) = 0.

More general supply rates can be used to define simultaneous IFP and
OFP. Consider a system H with both input feedforward νI and output feed-
back ρI, as shown in Figure 2.6. If the overall system H̃ is passive, then system
H is dissipative with respect to the supply rate:

w (u, y) = (1 + ρν) yTu− νuTu− ρyT y. (2.85)

In the above discussion, the feedforward and feedback are assumed to be static
and decentralized. A more general case is when they are arbitrary nonlinear
multivariable (thus vector) functions, e.g.

w (u, y) = yTu− νT (u)u− ρT (y) y, (2.86)

where v (u) = [v1 (u) , · · · vm, (u)]T and ρ (u) = [ρ1 (u) , · · · , ρm (u)]T .
Another generalization of the supply rate was given by Hill and Moylan

[57]:

w (u (t) , y (t)) = yT (t)Qy (t) + 2uT (t)Sy (t) + uT (t)Ru (t) , (2.87)

where Q,R, S ∈ Rm×m are constant weighting matrices, with Q and R sym-
metrical. This corresponds to multivariable but linear and static feedforward
and feedback required to render the process system passive.
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2.4.2 Passivity Indices for Linear Systems

For a stable linear system with a transfer function G (s), the IFP index, de-
noted as ν (G (s)), can be calculated based on the KYP lemma. If G (s) has
excessive IFP, then there exists a largest ν > 0 such that the process with the
feedforward −νI is positive real, i.e.,

G (jω) − νI + [G (jω) − νI]∗ > 0, ∀ ω. (2.88)

Therefore, we can have the following definition:

Definition 2.39. The input feedforward passivity index for a stable linear
system G (s) is defined as2

ν (G (s)) � 1
2

min
ω∈R

λ (G (jω) +G∗ (jω)) , (2.89)

where λ denotes the minimum eigenvalue.

If ν is negative, then the minimum feedforward required to render the
process passive is νI. The above definition also gives a numerical approach
for calculating the IFP index. For linear systems, it is possible to define a
tighter IFP index conveniently by employing a frequency-dependent passivity
index:

Definition 2.40 ([11]). The input feedforward passivity index for a stable
linear system G (s) at frequency ω is given by

νF (G (s) , ω) � 1
2
λ (G (jω) +G∗ (jω)) . (2.90)

By using the above definition, we can specify the condition that a dynamic
feedforward Gff (s) needs to satisfy so that G (s) + Gff (s) is passive. For a
stable process G (s), a stable Gff (s) should be chosen such that

νF (Gff (s) , ω) + νF (G (s) , ω) > 0 ∀ ω ∈ R. (2.91)

It is more difficult to calculate the OFP index numerically because it in-
volves feedback loops. If a process G (s) is minimum phase (therefore, G−1 (s)
exists and is stable. G (s) does not need to be stable), then with a positive
feedback of ρI, the closed-loop system is

Gcl (s) = G (s) [I − ρG (s)]−1 =
[
G (s)−1 − ρI

]−1

. (2.92)

According to Proposition 2.23, Gcl (s) is passive if and only if

G−1
cl (s) = G (s)−1 − ρI (2.93)

is passive. Therefore, the OFP index of G (s) is the IFP index of G−1 (s). We
can have the following definition:
2 This definition is similar to the passivity index proposed in [135], except that in

[135] a positive value of ν implies that the system lacks passivity.
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Definition 2.41. The output feedback passivity index for a minimum phase
linear system G (s) is defined as

ρ (G (s)) � 1
2

min
ω∈R

λ
(
G−1 (jω) +

[
G−1 (jω)

]∗)
. (2.94)

The OFP index at frequency ω is given by

ρF (G (s) , ω) � 1
2
λ
(
G−1 (jω) +

[
G−1 (jω)

]∗)
. (2.95)

For processes that are nonminimum phase and unstable, we need both
feedback and feedforward to render the process passive. In this case, the IFP
and OFP indices are dependent. Special passivity indices need to be defined
so that they can be conveniently computed and used in system analysis and
control design. We will introduce these indices in other chapters.

2.5 Passivation

To render a process passive via either feedback or feedforward is called passi-
vation. This is possible if the process lacks either IFP or OFP. Because passive
systems are stable and easy to control, passivation is often a useful step in
control design. For example, we may passivate a process and then stabilize
the passivated system with a (strictly) passive controller (e.g., a static output
feedback controller given in Theorem 2.32).

2.5.1 Input Feedforward Passivation

Many stable processes can be passivated by a static feedforward. For exam-
ple, a linear system G1 (s) = 1−s

s3+s2+s+1 can be passivated by a static unit

feedforward because G (s) = G1 (s) + 1 = s3+s2+2
s3+s2+s+1 is minimum phase, has

a relative degree of 0 and is positive real.
Consider a control affine process H as in (2.32). Assume that the process

has a globally stable equilibrium at x = 0 with a Lyapunov function V (x).
Use V (x) as a storage function, then

dV (x)
dt

=
∂V (x)
∂x

f (x) +
∂V (x)
∂x

g (x)u ≤ ∂V (x)
∂x

g (x) u. (2.96)

As shown in Figure 2.5a with the feedforward νI, ỹ = h (x) + νu. Then
ỹTu = hT (x)u+ νuTu. As long as there exists a ν such that

νuTu >

[
∂V (x)
∂x

g (x) − hT (x)
]
u, (2.97)

V̇ (x) ≤ ỹTu.
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This result can be generalized to dynamic feedforward systems. Any sta-
ble control affine process (of which a Lyapunov function can be found) can
be passivated with a feedforward dynamic system. As shown in Figure 2.3a,
assume that a system

H1 :

{
ẋ = f1 (x) + g1 (x) u1

y1 = h1 (x) ,
(2.98)

is nonpassive but has a globally stable equilibrium point x = 0 with a Lya-
punov function V (x). A feedforward system H2 can be designed to passivate
H1. One way to design such a feedfoward passivater is to assume that the
passivated system H has the same state equation as that of H1 and find an
appropriate output function y (t) = h (x) such that H is passive. According
to the KYP lemma (Proposition 2.14), if we use V (x) as a storage function,
then, the condition LfV (x) = ∂V (x)

∂x f1 (x) ≤ 0 is always satisfied. If we choose

h (x) =
[

∂V (x)
∂x g1 (x)

]T
, then H is passive. The feedforward system H2 can be

obtained by subtracting y from y1:

H2 :

⎧⎨⎩ẋ = f1 (x) + g1 (x)u2

y2 =
[

∂V (x)
∂x g1 (x)

]T
− h1 (x) .

(2.99)

Such a feedforward will stabilize the zero dynamics of H1 (so that H is made
weakly minimum phase) and reduce its relative degree to no greater than
{1, · · · , 1}.

For linear systems, the feedforward system can be easily obtained using
the linear version of the KYP lemma. Detailed discussion will be given in
later chapters. However, it is not possible to passivate an unstable process
with feedforward because the feedforward does not affect the free dynamics of
the process (when u = 0). Such systems can only be passivated via feedback.

2.5.2 Output Feedback Passivation

Passivation of unstable processes is a topic which attracted much interest be-
cause it can be an effective approach to stabilization of nonlinear processes.
Most research work is concerned with passivation by state feedback. A thor-
ough development of this topic can be found in [24]. A control affine system
given in (2.32) is said to be feedback passive (or feedback equivalent to a passive
system) if there exists a state feedback transformation [24]:

u = α (x) + β (x) v, (2.100)

with invertible β (x) such that the system

ẋ = f (x) + g (x)α (x) + g (x)β (x) v,
y = h (x) ,

(2.101)
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is passive. The condition for feedback passivity is given in the following the-
orem:

Theorem 2.42 (State feedback passivity [24]). Consider the control
affine system in (2.32). Assume rank

(
Lgh (x)|x=0

)
= m (where m is the

number of outputs). Then this system is feedback passive with a C2 positive
definite storage function S (x) if and only of it has relative degree {1, · · · 1, }
at x = 0 and is weakly minimum phase.

Clearly, the above condition says that we cannot render a nonminimum
phase system or a system with a relative degree larger than 1 passive via
feedback, because a passive system needs to be weakly minimum phase and
have a relative degree no greater than 1, but the relative degree and the zero
dynamics cannot be altered by feedback [69]. In this case, passivation is only
possible via feedforward.

For the output feedback case, an additional condition is required:

Theorem 2.43 (Output feedback passivity).

1. Necessary condition: If the system in (2.32) can be rendered passive with
a C2 storage function S (x), then it has relative degree {1, · · · , 1} at x = 0
and is weakly minimum phase, and Lgh (x)|x=0 is symmetrical and posi-
tive definite.

2. Sufficient condition: The system in (2.32) can be rendered locally passive
with a C2 positive definite storage function S (x) by an output feedback if
its Jacobian linearization at x = 0 is minimum phase and ∂h(x)

∂x g (x)
∣∣∣
x=0

is symmetrical and positive definite.

To get some intuition from the above conditions, let us look at the case of
linear systems. For a linear system

ẋ = Ax +Bu,

y = Cx,
(2.102)

Lgh (x) =
∂h (x)
∂x

g (x) = CB. (2.103)

Theorem 2.42 says the linear system is feedback passive if it (1) has a relative
degree of 1 (due to the assumption D = 0, the relative degree cannot be
0) (2) is weakly minimum phase (it may have zeros in the LHP and on the
imaginary axis) and (3) rank (CB) = m. Note that if CB is nonsingular, then
the linear system has a relative degree of 1. Therefore, Condition (3) implies
Condition (1) for linear systems.

Clearly, any state feedback cannot change any of the above conditions,
because with a state feedback, u = r −Kx (r is an exogenous input such as
reference), the closed-loop system will be
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ẋ = (A−BK)x+Br,

y = Cx.
(2.104)

For example, systems like G1 (s) = 1−s
s+1 cannot be passivated by any state

feedback controllers.
For output feedback passivity, CB must also be (1) symmetrical and

(2) positive definite. The first condition implies that the input and output
of a process need to be properly paired. The second condition imposes the
limitation on the sign of the steady-state gain. For example, a linear sys-
tem G2 (s) = −1

−s+1 can be stabilized by a negative feedback controller K (s)
with negative steady-state gain, but cannot be made positive real because the
closed-loop system G2(s)

1+G2(s)K(s) will have a negative steady-state gain.

2.6 Passivity Theorem

We have shown the stability condition of passive systems in feedback in The-
orem 2.33. By using the notions of strict input passivity and strict output
passivity, asymptotic stability conditions for interconnected passive systems
can be derived. These conditions are called the Passivity Theorem. The sim-
plest version of the Passivity Theorem is as follows:

Theorem 2.44 (Passivity Theorem [110]). Assume that systems H1 and
H2 are ZSD and dissipative with C1 storage functions S1 (x1) and S2 (x2).
Then the equilibrium (x1, x2) = (0, 0) of their feedback connection (as shown
in Figure 2.7a) with r ≡ 0 is asymptotically stable (AS) if

1. H1 and H2 are strictly output passive; or,
2. H1 and H2 are strictly input passive; or,
3. H1 is GAS and strictly input passive and H2 is passive.

If storage functions S1 (x1) and S2 (x2) are radially unbounded, then the
feedback connection is globally asymptotically stable (GAS).

Proof. The proof of the above theorem can be found in [110]. Here we provide
a simplified version of the proof to clarify the intent. The storage function for
the closed-loop is chosen as S (x1, x2) = S1 (x1) + S2 (x2).

1. Since H1 and H2 are strictly output passive, there exist ρ1, ρ2 > 0 such
that

Ṡ1 (x1) ≤ yT
1 u1 − ρ1y

T
1 y1, (2.105)

Ṡ2 (x2) ≤ yT
2 u2 − ρ2y

T
2 y2. (2.106)

Then,

Ṡ (x1, x2) ≤ yT
1 u1 − ρ1y

T
1 y1 + yT

2 u2 − ρ2y
T
2 y2. (2.107)
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Fig. 2.7. Extended passivity condition

Because u1 = −y2, u2 = y1,

Ṡ (x1, x2) ≤ −yT
1 y2 − ρ1y

T
1 y1 + yT

2 y1 − ρ2y
T
2 y2

= −ρ1y
T
1 y1 − ρ2y

T
2 y2 < 0, ∀ y1, y2 �= 0.

(2.108)

The bounded solution of (x1, x2) is confined in { (x1, x2)| (y1, y2) = (0, 0)}.
Because H1 and H2 are ZSD, (x1, x2) → (0, 0).

2. Since H1 and H2 are strictly input passive, there exist ν1, ν2 > 0 such
that

Ṡ1 (x1) ≤ yT
1 u1 − ν1u

T
1 u1, (2.109)

Ṡ2 (x2) ≤ yT
2 u2 − ν2u

T
2 u2. (2.110)

Then

Ṡ (x1, x2) ≤ yT
1 u1 − ν1u

T
1 u1 + yT

2 u2 − ν2u
T
2 u2

≤ −ν1y
T
2 y2 − ν2y

T
1 y1 < 0, ∀ y1, y2 �= 0.

(2.111)

Similar to Part 1, (x1, x2) → (0, 0).
3. In this case, there exists a ν1 > 0 such that

Ṡ1 (x1) ≤ yT
1 u1 − ν1u

T
1 u1, (2.112)

Ṡ2 (x2) ≤ yT
2 u2, (2.113)

Ṡ (x1, x2) ≤ yT
1 u1 − ν1u

T
1 u1 + yT

2 u2

= −ν1y
T
2 y2 < 0, ∀ y2 �= 0.

(2.114)

Because Ṡ is bounded only by yT
2 y2, the bounded solution of (x1, x2) is

confined in {(x1, x2)| y2 = 0} and u1 = 0. Because H1 is GAS and H2 is
ZSD, (x1, x2) → (0, 0).
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If storage functions S1 (x1) and S2 (x2) are radially unbounded, then all
the above results hold globally.

The input-output version of the Passivity Theorem can be presented as
follows:

Theorem 2.45 ([130]). Consider the closed-loop system shown in Figure 2.7a
with H1, H2 : Lm

2e → Lm
2e. Assume that for any r ∈ Lm

2 there are solutions
u1, u2 ∈ Lm

2e. If

1. H1 is passive and H2 is strictly input passive; or,
2. H1 is strictly output passive and H2 is passive,

then, u2 = y1 = H1 (u1) ∈ Lm
2 , i.e., the closed-loop system from r to y1 is

L2 stable.

Furthermore, if the input-output stability of systems H1 and/or H2 is
assumed, we have

Theorem 2.46 ([130]). Consider the closed-loop system shown in Figure 2.7a
with H1, H2 : Lm

2e → Lm
2e. Assume for any r ∈ Lm

2 that there are solutions
u1, u2 ∈ Lm

2e. If

1. H1 is passive and H2 is strictly input passive and L2 stable; or
2. Both H1 and H2 are strictly output passive,

then, y1, y2 ∈ Lm
2 , i.e., both of the closed-loop systems from r to y1 and

from r to y2 are L2 stable.

For linear systems, Condition 1 of the above theorem simply means:

Proposition 2.47 (Passivity theorem for linear systems). Consider two
LTI systems H1 and H2 in negative feedback configuration, as shown in Fig-
ure 2.7a. The closed-loop system is asymptotically stable if H1 is strictly pas-
sive and H2 is passive.

This can be clearly seen from the example of two SISO systems H1 and
H2. In this case, the phase shifts of H1 and H2 lie within (−90◦, 90◦) and
[−90◦, 90◦], respectively. Therefore, the total phase shift of the open-loop sys-
tem never reaches −180◦, producing no critical frequency in the open-loop
Bode diagram. According to the Nyquist-Bode stability condition, the closed-
loop system is stable regardless of the amplitude ratio of H1 (jω)H2 (jω). The
system has infinite gain margin.

By using the concepts of excess and shortage of passivity, we can extend the
above results further to general (possibly nonpassive) systems. Assume that
system H1 in Figure 2.7a is GAS but lacks IFP, e.g., is IFP(−ν1), ν1 > 0, then
a feedforward of νI (where ν = ν1 + ε and ε is an arbitrarily small positive
number) will render H1 strictly input passive, as depicted in Figure 2.7b. To
make the feedback system equivalent to the original system in Figure 2.7a,
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a positive feedback of νI is added to H2. According to Theorem 2.44, the
equilibrium (x1, x2) = (0, 0) of the closed-loop system is GAS if H2 with
positive feedback is passive, i.e., H2 has excessive output feedback passivity of
ν. Similarly, a shortage of output feedback passivity ofH2 can be compensated
for by excessive input feedforward passivity of H1 so that the closed-loop
system is GAS. More rigorously, we have:

Theorem 2.48 ([110]). Assume that in the feedback interconnection shown
in Figure 2.7a, H1 is GAS and IFP(ν) and the system H2 is ZSD and OFP(ρ).
Then (x1, x2) = (0, 0) is AS if ν+ρ > 0. If, in addition, the storage functions
of H1 and H2 are radially unbounded, then (x1, x2) = (0, 0) is GAS.

If the systems are characterized by a more general supply rate as in (2.86),
the above condition can be further extended:

Theorem 2.49 ([110]). Assume that the systems H1 and H2 are dissipative
with respect to the following supply rates:

wi(ui, yi) = uT
i yi − ρT

i (yi)yi − νT
i (ui)(ui), i = 1, 2, (2.115)

where ui, yi ∈ Rm, i = 1, 2. Furthermore assume that they are ZSD and
that their respective storage functions S1(x1) and S2(x2) are C1. Then the
equilibrium (x1, x2) = (0, 0) of the feedback interconnection in Figure 2.7a is

1. stable, if νT
1 (v)v + ρT

2 (v)v ≥ 0 and νT
2 (v)v + ρT

1 (v)v ≥ 0, ∀ v ∈ Rm;
2. asymptotically stable, if νT

1 (v)v + ρT
2 (v)v > 0 and νT

2 (v)v + ρT
1 (v)v > 0,

∀ v ∈ Rm and v �= 0.

One special case of the supply rates is νi(ui) = ν̄iui and ρi (yi) = ρ̄iyi,
where ν̄i and ρ̄i are scalar constants. In this case,

νT
1 (v)v + ρT

2 (v)v = ν̄1v
T v + ρ̄2v

T v = (ν̄1 + ρ̄2) vT v, (2.116)

νT
2 (v)v + ρT

1 (v)v = ν̄2v
T v + ρ̄1v

T v = (ν̄2 + ρ̄1) vT v. (2.117)

Then, the equilibrium (x1, x2) = (0, 0) of the feedback interconnection is

1. stable if ν̄1 + ρ̄2 ≥ 0 and ν̄2 + ρ̄1 ≥ 0;
2. asymptotically stable if ν̄1 + ρ̄2 > 0 and ν̄2 + ρ̄1 > 0.

Another special case is

ν1(v) = ρ1 (v) = 0, v2 (v) = νv and ρ2 (v) = ρv. (2.118)

This leads to the following stability condition:

Proposition 2.50. Assume that H1 is passive (i.e., dissipative with respect
to the supply rate w1 = uT

1 y1) and H2 is dissipative with respect to the supply
rate of w2 = uT

2 y2 − ρyT
2 y2 − νuT

2 u2. Assume that systems H1 and H2 are
ZSD and their respective storage functions S1(x1) and S2(x2) are C1. Then,
the equilibrium (x1, x2) = (0, 0) of the feedback interconnection in Figure 2.7a
is asymptotically stable if ρ > 0 and ν > 0.

This condition does not require system H1 to be AS.
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2.7 Heat Exchanger Example

Some process systems are inherently passive (after proper rescaling of the in-
puts and/or outputs). One of the examples is the heat exchanger, a device
built for efficient heat transfer from one fluid to another. The fluids are sep-
arated by a solid wall so that they never mix. Heat exchangers are widely
used in air conditioning, refrigeration, space heating, power production, and
in virtually every chemical plant.

Consider a single tube-in-shell heat exchanger as depicted in Figure 2.8,
where cooling water is used to remove heat from a process stream. The volu-
metric flow rates of the process (hot) and service (cold) streams are vh and vc.
The inlet and outlet temperatures of the hot and cold streams are Thi, Tho,
Tci and Tco, respectively. Strictly speaking, a tube-in-shell heat exchanger is
a distributed parameter system (which can be represented by partial differen-
tial equations), because the temperatures of the hot and cold streams in the
tube are functions of the location in the tube. To simplify our discussion, an
approximate lumped parameter model given by Hangos et al. [54] is adopted.
The model was built under the following assumptions:

1. Constant volume of the hot and cold streams in the heat exchanger (Vh

and Vc);
2. Constant physicochemical properties, including density of the hot and cold

streams (ρh and ρc) and their specific heat (cPh and cPc);
3. Constant heat transfer coefficient U and area A;
4. Both hot and cold streams are well mixed and the temperatures of the

hot and cold streams inside the tube are approximated by the outlet tem-
peratures Tho and Tco.

The state equations of the heat exchanger can be developed based on
energy balance [54]:

Ṫco (t) =
vc (t)
Vc

[Tci (t) − Tco (t)] +
UA

cPcρcVc
[Tho (t) − Tco (t)] , (2.119)

Ṫho (t) =
vh (t)
Vh

[Thi (t) − Tho (t)] +
UA

cPhρhVh
[Tco (t) − Tho (t)] . (2.120)

The inputs of the above process are the inlet temperatures and flow rates of
the hot and cold streams. The outputs and states are the outlet temperatures.
Depending on the choices of the manipulated variables, different models can
be derived.

Example 2.51 (Linear model). If the inlet temperatures are manipulated to
control the outlet temperatures, with the assumption that the flow rates of
the cold and hot streams are constant, a linear model can be derived:
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Fig. 2.8. A heat exchanger

ẋ (t) =

[
− vc

Vc
− UA

cP cρcVc

UA
cPcρcVc

UA
cPhρhVh

− vh

Vh
− UA

cPhρhVh

]
x (t) +

[ vc

Vc
0

0 vh

Vh

]
u (t) , (2.121)

y (t) = x (t) , (2.122)

where x = [x1, x2]
T = [Tco, Tho]

T and u = [u1, u2]
T = [Tci, Thi]

T . Define the
following constants k1 = UA

cPcρcVc
, k2 = UA

cPhρhVh
, a1 = vc

Vc
and a2 = vh

Vh
. Clearly,

these constants are positive for any design and operating conditions. Then,
the state equation becomes

ẋ =
[−a1 − k1 k1

k2 −a2 − k2

]
x+

[
a1 0
0 a2

]
u. (2.123)

To study the passivity of the above system, we define the following storage
function:

S (x) =
1
2
xT

[ 1
k1

0
0 1

k2

]
x > 0, ∀ x �= 0. (2.124)

Therefore,

Ṡ (x) = xT

{[ 1
k1

0
0 1

k2

] [−a1 − k1 k1

k2 −a2 − k2

]
x+

[
a1 0
0 a2

]
u

}
= xT

[−a1
k1

− 1 1
1 −a2

k2
− 1

]
x+ xT

[ a1
k1

0
0 a2

k2

]
u

= −a1

k1
x2

1 −
a2

k2
x2

2 − (x1 − x2)
2 +

a1

k1
x1u1 +

a2

k2
x2u2

≤ a1

k1
y1u1 +

a2

k2
y2u2. (2.125)
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Note that the coefficients k1, k2, a1, a2 > 0. If the outputs are rescaled as

y∗ = [y∗1 , y
∗
2 ]T =

[
a1
k1
y1,

a2
k2
y2

]T
,

Ṡ (x) < uT y∗, ∀ x �= 0, (2.126)

leading to the conclusion that the heat exchanger is passive, regardless of de-
sign parameters (such as U, Vc, Vh, A), types of fluid (such as cPc and ρc) and
operating conditions (such as vc and vh). If the heat exchanger parameters
given in [65] are adopted, then vc = 2.29 × 103 ft3/h, vh = 6.24 × 103 ft3/h,
Vc = 5.57 ft3, Vh = 20.40 ft3, A = 521.5 ft2, cPh = 0.58 Btu/(lb·F),
cPc = 0.56 Btu/(lb·F), U = 75 Btu/(h· ft2·F), ρh = 47.74 lb/ft3 and
ρc = 44.93 lb/ft3. In this case, (2.121) and (2.122) become

ẋ =
[−690.87 279.17

69.254 −375.29

]
x+

[
411.7 0

0 306.03

]
u,

y =
[

1 0
0 1

]
x.

(2.127)

It is easy to verify that the above process is passive, because matrices

P =
[

0.0024 0
0 0.0030

]
and L =

[
3.3562 −0.9044
−0.9044 2.4526

]
(2.128)

Q = W = 0 (2.129)

are found to satisfy the conditions given in (2.41). The IFP index plot of
this process is shown in Figure 2.9a. Its phase plot is given in Figure 2.9b,
from which it can be seen that the phase shift is within (−90◦, 90◦) at all
frequencies.

Example 2.52 (Nonlinear model). A more realistic choice of manipulated vari-
ables is the flow rates of hot and cold streams, i.e., u = [u1, u2]

T = [vh, vc]
T . In

this case, we assume that the inlet temperatures Tci and Thi are constant. This
leads to a nonlinear model. To study the passivity of the process with respect
to an equilibrium point x0 = [x10, x20]

T = [Tco0, Thi0]
T , we define the follow-

ing deviation variables: x′ = [x′1, x
′
2]

T = x − x0 and u′ = [u′1, u
′
2]

T = u − u0,
where u0 = [vh0, vc0]

T . (Note: The deviation variables can have negative val-
ues.) Therefore,

ẋ′1 = −k1 (x′1 + x10) + k1 (x′2 + x20) +
[
Tci

Vc
− 1
Vc

(x′1 + x10)
]

(u′1 + u10) ,

ẋ′2 = k2 (x′1 + x10) − k2 (x′2 + x20) +
[
Thi

Vh
− 1
Vh

(x′2 + x20)
]

(u′2 + u20) .

(2.130)

Assume that (x0, u0) is at steady state, i.e.,
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Fig. 2.9. Linear heat exchanger model



40 2 Dissipativity and Passivity

0 = −k1x10 + k1x20 +
Tci

Vc
u10 − 1

Vc
x10u10,

0 = k2x10 − k2x20 +
Thi

Vh
u20 − 1

Vh
x20u20.

(2.131)

Therefore,

ẋ′1 = −k1x
′
1 + k1x

′
2 +

Tci

Vc
u′1 −

1
Vc
x′1u

′
1 −

1
Vc
x10u

′
1 −

1
Vc
x′1u10,

ẋ′2 = k2x
′
1 − k2x

′
2 +

Thi

Vh
u′2 −

1
Vh
x′2u

′
2 −

1
Vh
x20u

′
2 −

1
Vh
x′2u20.

(2.132)

Define a storage function

S (x′) =
1
2
x′T
[ 1

k1
0

0 1
k2

]
x′ > 0, ∀ x′ �= 0; (2.133)

then,

Ṡ (x′) = − (x′1 − x′2)
2 − 1

Vck1
(u′1 + u10) x′1

2 − 1
Vhk2

(u′2 + u20)x′2
2

+
(
Tci − x10

Vck1

)
x′1u

′
1 +
(
Thi − x20

Vhk2

)
x′2u

′
2. (2.134)

Define a rescaled output y∗ = [y∗1 , y
∗
2 ]T =

[(
Tci−x10

Vck1

)
x′1,
(

Thi−x20
Vhk2

)
x′2
]T

. Also
note u1 = u′1 + u10 ≥ 0 and u2 = u′2 +u20 ≥ 0 because u1 and u2 are physical
flow rates. Then,

Ṡ (x′) ≤ − (x′1 − x′2)
2 + y∗1u

′
1 + y∗2u

′
2

≤ y∗Tu′.
(2.135)

Therefore, the process is passive with respect to the equilibrium x′ = [0, 0]T .
It is interesting to point out that

1. Similar to the linear case, the heat exchanger is inherently passive because
the passivity condition is valid for any design parameters, types of fluid
and operating conditions (different Tci and Thi).

2. The system is passive with respect to any physical equilibrium point
[x10, x20]

T because (2.135) holds for any x0.
3. The equilibrium point x0 is GS but not GAS. If x′1 = x′2 �= 0, the unforced

system does not converge to x′ = 0.
4. Output rescaling is equivalent to sensor calibration. Because Tci is never

greater than Tco, the rescaling coefficient for y∗1 is non-positive. A higher
inlet cold stream flow rate will lead to a lower outlet temperatures (Tco and
Tho). This implies that the direction of x′ movement has to be reversed
to obtain a minimum phase condition.
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In addition, as the system outputs are simply rescaled states, the above
system is ZSD. As a result, the heat exchanger is very easy to control.
According to Proposition 2.50, any output feedback controller (a mapping
from y∗ to u′) which is dissipative with respect to a supply rate of w =
u′T y∗ − νy∗T y∗ − ρu′Tu′, ρ > 0 and ν > 0 (i.e., with simultaneous excessive
IFP and OFP) will asymptotically stabilize the equilibrium x′ = [0, 0]T . A
special case is a proportional only controller u′ = −ky∗ for any k > 0.

2.8 Summary

In this chapter, the basic concepts of dissipative systems and passive systems
are introduced. The input-output properties of passive systems are discussed.
These properties lead to useful stability conditions for interconnected systems,
on which the developments described in later chapters build. At first glance,
it seems that the stability conditions based on passivity could be conserva-
tive compared to those based on dissipativity, because passive systems are a
special case of dissipative systems. With the notions of IFP and OFP, the
conservativeness vanishes because dissipative systems with respect to differ-
ent supply rates can be represented by passive systems with certain IFP and
OFP. Excess and shortage of IFP and OFP are also used to characterize pro-
cesses in terms of their passivity. In the next few chapters, passivity-based
system analysis and control design are developed for linear processes. These
approaches can be implemented numerically and applied directly in routine
process control practice.




