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Chapter 2 

REVIEW OF FLUID AND PARTICLE 
MECHANICS 

2.1 Introduction 

Before considering the flow of mixtures of liquids and solid particles, we 
must first treat the flow of single-phase liquids and the motion of particles in 
liquids. These topics also provide an introduction to concepts, terminology 
and notation used in later chapters. The treatment in this chapter is at the 
level of a review, intended primarily to reinforce knowledge which readers 
will have encountered in their undergraduate engineering curriculum, but 
may have not utilized in the interim. As in other parts of this book, the level 
of presentation is directed to practical engineering application. This chapter 
is not intended as an introduction to fluid mechanics in general, to 
turbulence, or to the micromechanics of particle-fluid systems. All these 
subjects have significance for fundamental research, but they are not 
required for an engineering treatment of slurry flow. 

To characterise a simple fluid such as water only two material properties 
are required: density and viscosity. The density, denoted by p, represents the 
mass of fluid per unit volume. The viscosity is a measure of the resistance 
of the fluid to deformation by shearing, and is best illustrated by reference to 
a conceptual experiment illustrated in Fig. 2.1. The fluid fills a gap of 
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thickness y between two flat parallel plates. The plate forming the y = 0 
plane is kept stationary, while the other plate (at y = Y) is moved parallel to 

the first at a steady velocity U. The fluid immediately in contact with each 
solid plate keeps the same velocity as the plate; this is known as the 
'non-slip boundary condition'. Thus the velocity of the fluid at y = 0 is zero 
and at y = Y is U. The fluid velocity, u, at any intermediate position is ylJ/Y. 
The quantity U/Y is the velocity gradient in the fluid, denoted by du/dy. Its 
significance is that it represents the rate of shear deformation of the fluid; it 
is therefore known as the 'rate of shear strain' or, more simply, the 'shear 
rate'. 

- y//////////////7z^/. 
Figure 2.7. Shear defomiation of a fluid (schematic) 

To maintain the steady motion in Fig. 2.1, it is necessary to apply a force 
to the moving plate and an equal and opposite restraining force to the 
stationary plate. These forces are parallel to the plates, and in the direction of 
their relative motion. The force on one plate per unit area is known as the 
'shear stress', denoted by x. As shown in Fig. 2.1, it represents the shear 
stress exerted by each plate on the fluid in the gap. Simple Newtonian 
mechanics dictates that the fluid exerts an equal and opposite shear stress on 
the plate, and that the shear stress within the fluid at any plane parallel to the 
plates is also x. 

Conceptually, an experiment like that in Fig. 2.1 could be used to 
measure x as a function of du/dy. In practice, flat plates are inconvenient; 
practicable ways to measure viscosity are introduced in Chapter 3. For a 
simple fluid like water, the relationship between x and shear rate takes the 
form shown in Fig. 2.2, with x linearly proportional to du/dy. This type of 
relationship defines a 'Newtonian fluid', and the constant of proportionality 
is known as the 'shear viscosity' (or simply the 'viscosity') and will be 
denoted by |LI. Thus 

1^ 
du 

dy 
(2.1) 
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Equation 2.1 is the 'constitutive equation* of a Newtonian fluid. The ratio |a/p 
is known as the 'kinematic viscosity' of the fluid, denoted by v. 

Values for the density and viscosity of water are given in Table 2.1. For 
practical purposes, over the range of conditions encountered in the industries 
using hydraulic transport, Hquids are incompressible so that p and |LI can be 
taken as independent of pressure. However they both depend on temperature. 
Specifically, the viscosity of water decreases significantly with increasing 
temperature. 

Shsar %Xtwm 
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Figure 2.2. Characterisation of a Newtonian fluid (schematic) 

Table 2.1. Properties of Water 

Temperature 
CO 

0 
5 
10 
15 
20 
25 
30 
40 
50 
60 
70 
80 
90 
100 

Density, p 
(kg/m^) 

999.8 
1000.0 
999.7 
999.1 
998.2 
997.0 
995.7 
992.2 
988.0 
983.2 
977.8 
971.8 
965.3 
958.4 

Viscosity, 
^xlO^ 
(Pa.s) 

1.781 
1.518 
1.307 
1.139 
1.002 
0.890 
0.798 
0.653 
0.547 
0.466 
0.404 
0.354 
0.315 
0.282 

Kinematic 
viscosity, 
vxlO^ 
(mVs) 
1.785 
1.519 
1.306 
1.139 
1.003 
0.893 
0.800 
0.658 
0.553 
0.474 
0.413 
0.364 
0.326 
0.294 

Vapour 
pressure, Pv 

(kPa) 

0.61 
0.87 
1.23 
1.70 
2.34 
3.17 
4.24 
7.38 
12.33 
19.92 
31.16 
47.34 
70.10 
101.33 
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2.2 Basic Relations for Flow of Simple Fluids 

Much of this book is concerned with steady motion, in which the mean 
velocity at any point does not change with time (although it may vary with 
location). Whether the flow is steady or unsteady, analysis is based on three 
fundamental laws: the continuity balance (or conservation of matter); linear 
or angular momentum balances (which amount to the application of 
Newton's laws to fluids); and the mechanical energy balance (which is 
essentially the first law of thermodynamics applied to fluids). Some simple 
applications of these laws to solid-liquid mixtures are considered in Section 
2.4. For steady flow of an incompressible fluid in a pipe or conduit, the 
continuity equation states simply that the volumetric flow is the same 
through each section across the pipe. Consider a pipe in which the diameter 
changes between sections A and B, as shown schematically in Fig. 2.3. If the 
total volumetric flowrate in the pipe is Q, and the pipe is taken to be 
'running full', then the mean velocity at section A is 

VA-4Q/7rD'A (2.2) 

where DA is the internal pipe diameter at A, so that the pipe's cross-sectional 
area is n D\/4 . Similarly, at section B the mean velocity is 

VB = 4Q/7rDl (2.3) 

The equation of continuity for this section of pipe then takes the form 

Q^^DAVA/^^TTDIVB /4 (2.4) 

For cases in which it is necessary to consider the local velocity in the pipe at 
distance r from the axis, i.e. u(r), then the total volumetric flow is evaluated 
from the integral 

D/2 D/2 

Q= \ u2nrdr = 271 \ urdr (2.5) 
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in which the area of the element from r to (r+dr) is 27crdr and the velocity 
through it is u. Specific applications of Eq. 2.5 are considered below, and in 
Chapter 3. 

i 

i_j "XL 
f I I I 

Figure 2.3. Flow in a pipe with change in diameter (schematic) 

We next turn to the linear momentum equation, considering the simple 
case illustrated by Fig. 2.4: a fluid in steady motion through a straight 
horizontal pipe of constant diameter. Flow is 'fully developed', i.e. 
conditions do not vary between positions along the pipe. Therefore the shear 
stress exerted by the pipe walls on the fluid, Xo, is the same at all sections. 
Between two sections A and B, a distance L apart, the total area of pipe wall 
is TcDL so that the total force exerted by the pipe walls on the fluid is 
TCDLTQ. The linear momentum equation applied to this case of steady 
uniform fully-developed flow states that the total force on the fluid between 
sections A and B must be zero, (because the momentum flux across section 
A is equal to that across section B), giving 

^(PA-PB) + ̂ Lro-0 (2.6) 

where PA and pß are the (static) pressures in the fluid at the two sections. 
Rearranging Eq. 2.6 

dp^^ (PA-PB) ^4T, 

dL ' L D 

or 
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r . ' - ' - ^ ^ ^ (2.8) 
4L 

Equations 2.7 and 2.8 apply whether or not the fluid is Newtonian (i.e. obeys 
Eq.2.1). 

m 

i 
D 

f ^ y B. 

Figure 2.4. Flow in a straight horizontal pipe of constant diameter (schematic) 

Another basic equation, for angular momentum, is needed for the 
analysis of centrifugal pumps. It will be presented in that context in Chapter 
9. The energy equation is the next to be dealt with here. The mechanical 
energy balance for a flowing fluid is usually written in the form known as 
'Bernoulli's equation'. It will be given here in terms of the 'head' of the fluid. 
'Head' is a concept used extensively by Civil and Mining Engineers, and 
much of the literature on hydraulic conveying is written in terms of head and 
'hydraulic gradient' (see below). Head is a measure of the mechanical 
energy of a flowing fluid per unit mass. It indicates the height by which the 
fluid would rise if the energy were converted to potential energy, and 
therefore has the units of length. The 'total dynamic head' of a fluid of 
density p flowing at velocity V in a pipe at elevation z above a reference 
level and at pressure p is 

H = — + -^ + z (2.9) 
2g pg 

where the first term in this expression represents the kinetic energy of the 
fluid ('velocity head'), the second results from the static pressure in the fluid 
('pressure head'), and the final term is the elevation ('static head'). 

Now consider a liquid propelled by a centrifugal pump, as shown in Fig. 
2.5. Upstream of the pump, at section A on the pump suction, the total 
dynamic head of the fluid is HA- Similarly, at section B on the pump 
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discharge, the total dynamic head is Hß. The increase in head across the 
pump, which is a simple measure of the energy imparted to the fluid by the 
pump, is known as the 'total developed head', TDH; i.e. 

TDH = HB-H, 
Vl 

2g 

Vl ^PB-PA 

Pg 
+ ( ZB " ZAy (2.10) 

Figure 2.5. Fluid passing through a centrifugal pump (schematic) 

In terms of the total volumetric flow rate, Q, and the pipe diameters at the 
two sections, DA and Dß, (Eq. 2.2 and 2.3), the TDH equation becomes 

TDH 
_8Q ^ ( 

n g D'B D\. 

(PB-PA) 

pg 
+ ( ZB~ ZA^ (2.11) 

The second term in Eq. 2.11, the 'pressure head', is normally by far the 
largest. The 'static head* term (ZB - ZA) is usually relatively small, and 
depends on the pump geometry and dimensions. Centrifugal pumps are 
sometimes made with different suction and discharge diameters (see Chapter 
8), so that the first or 'velocity head' term can become significant at large 
flowrates. 

For a fluid flowing in a straight horizontal pipe of constant diameter, the 
only head term which varies along the pipe is that arising from changes in 
pressure. For the flow shown in Fig. 2.4, the reduction in head per unit 
length of pipe is known as the 'hydraulic gradient': 
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: _ (PA-PB) _ 4 To 

PgL pgD 
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(2.12) 

Here i has been related to the wall shear stress, Xo, using Eq. 2.7. The 
units of the hydraulic gradient are (m head lost)/(m pipe run), or feet of head 
per foot of pipe. Thus the numerical value of i is independent of the system 
of units used. However, i is not strictly a dimensionless number: for 
example, if the flow took place on the moon or in any other environment of 
changed gravity, the value of i would be different even though TQ and the 
pressure gradient were unchanged. 

A simple illustration of the significance of i is given by Fig. 2.6. If we 
imagine that 'sight glasses' are attached to the pipe - i.e. vertical open-ended 
transparent tubes - then the height to which the fluid rises in each sight glass 
shows the pressure head inside the pipe at that point. For steady 
fully-developed pipe flow, with constant hydraulic gradient and pressure 
gradient, the levels in sight glasses set along the pipe will lie on a straight 
line. This is known as the 'hydraulic grade line', and its inclination is the 
hydraulic gradient, i. 

1.00 

^/|///ZZ///////////f////////^/7?////4' 

(A) (5) ^ 

Figure 2.6. Significance of hydraulic gradient (schematic) 

Consider now a pipe at an angle to the horizontal, as shown in Fig. 2.7. 
The pressure difference is measured between two sections, A and B, by 
connecting the pipe at these points to a manometer or a differential pressure 
sensor. Point B is Az above A. The sensor is h above A, and therefore (Az-h) 
below B, and the connections from the sensor to the pipe are filled with the 
same fluid as in the pipe, of density p. If the pressure in the pipe at A is PA , 
then the pressure on the upstream side of the sensor is lower by the 
hydrostatic column h: 

PA=P, pgh (2.13) 

Similarly, the pressure on the other side of the sensor is 
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Thus the pressure difference actually measured will be 

^P = PA-PB'^PA-(PB + PS^) 

23 

(2.14) 

(2.15) 

i.e. the sensor will measure the change in the combination of pressure head 
and static head between A and B. For the case where the pipe is of constant 
section this is equal to the change in total head, i.e. ipgL where L is the 
distance from A to B. Thus a simple manometric measurement such as that 
illustrated in Fig. 2.7 serves to measure the hydraulic gradient. 

Standard methods for predicting i for Newtonian fluids are given in the 
following Section. For slurry flow very careful definitions of hydraulic 
gradient are required. These will be introduced in Section 2.4. 

PA P'B 

Figure 2.7. Measurement of hydraulic gradient in an inclined pipe (schematic) 

2.3 Friction in Laminar and Turbulent Flow of Simple Fluids 

Figure 2.8 shows a fluid flowing along a straight horizontal cylindrical 
pipe under the action of the pressure gradient dp/dx, where x is distance 
measured along the pipe. From Eq. 2.8, the shear stress at the pipe wall is 
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(2.16) 

A similar force balance on the fluid within the cylinder of radius r coaxial 
with the pipe shows that the shear stress varies across the pipe section as 
shown in Fig. 2.8, and at radius r the shear stress is 

T = (2.17) 

It is now necessary to introduce an important distinction between two 
modes of flow of a fluid. In laminar flow, each element of the fluid moves 
on a steady path; in the case of flow in a pipe, all these paths are straight and 
parallel to the axis. In general, this type of motion occurs when viscous 
effects in the fluid predominate. In turbulent flow, elements of fluid follow 
irregular fluctuating paths caused by moving eddies. Thus, although the 
average or 'mean' velocity at any point within the fluid is parallel to the wall, 
the instantaneous velocity fluctuates in both magnitude and direction. In 
general, turbulent flow occurs when inertial effects predominate. For water 
in pipes of industrial scale, the flow is invariably turbulent. However, 
laminar flow can be important for non-setfling slurries, which are discussed 
in Chapter 3. 

i >/ 

Laitilniir 

»tniKi 

Figure 2.8. Stress and velocity distributions in pipe flow 

Equation 2.17 applies whether the flow is laminar or turbulent. 
However, the resulting velocity profile in the pipe differs between the two 
types of flow. Consider first a Newtonian fluid in laminar flow, for which 
Eq. 2.1 applies in the form 
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T = /u -
dr 

(2.18) 

where u is the velocity at radius r. From Eq. 2.17 and 2.18, 

du _ r 

dr 2iu \dx J 
(2.19) 

To obtain the velocity profile, Eq. 2.19 is integrated with the two conditions: 

i. by symmetry, the velocity gradient is zero on the pipe axis, i.e. du/dr = 0 at 
r = 0; 

ii. from the no-slip condition, the velocity is zero at the wall, i.e. u = 0 at r = 
D/2. 

The resulting velocity profile takes the characteristic parabolic form, shown 
in Fig. 2.8 and given by 

r 4r'^ 
W - W n 

D' 
(2.20) 

Fluids with other than Newtonian properties have slightly different 
velocity profiles, to be mentioned in Chapter 3. In Eq. 2.20, Umax is the 
maximum velocity in the pipe, which occurs on the axis and is given by 

DTO_ D' { ±] 
\ dxj 4 Id 16 ju^ 

Using Eq. 2.5, the total flowrate in the pipe is obtained as 

i ^ ^ Wmax 

(2.21) 

8 
(2.22) 

Thus the mean velocity in the pipe, as defined in Eq. 2.2, is 
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V = 4Q/7rD'=-Um../2 (2.23) 

i.e. for a Newtonian fluid in laminar flow in a cylindrical pipe, the maximum 
velocity is twice the mean velocity. Finally, from Eq. 2.21 and 2.22 

128jU\ dxj 

and 

(2.25) 

Equation 2.25 will be generalised in Chapter 3 for non-Newtonian fluids. 
If the fluid is in turbulent flow, Eq. 2.18 no longer appHes, because the 

fluctuations exchange slow- and fast-moving fluid across surfaces within the 
flow. The effect of this momentum transfer is to set up stresses, known as 
'Reynolds stresses', which dominate over the purely viscous stresses except 
near the walls. As a result, the velocity profile takes the form shown 
schematically in Fig. 2.8, rather flat in the central core of the flow but with a 
large velocity gradient in the wall region. 

A basic parameter in turbulent flow is the group ̂ TO ^P which has the 

dimensions of velocity. It is known as the 'shear velocity' and is denoted by 
U*. The velocity fluctuations associated with turbulent eddies have the same 
order of magnitude as the shear velocity. In fully turbulent flow the velocity 
gradient du/dy is directly proportional to U* and inversely proportional to the 
'mixing length'. This length is related to the size of the turbulent eddies, and 
for turbulent flow near a pipe wall the mixing length is evaluated as Ky 
where y is the distance from the wall and K is von Karman's coefficient. The 
value K= 0.4 is often employed, and will be used here, giving the velocity 
gradient as 2.5U*/y. 

The local velocity, u, obtained by integration, varies with the logarithm 
of y. If the pipe wall is 'hydraulically smooth', the velocity distribution is 
given by 

— = 2.5in\^^ \ + 5.5 (2.26) 
u* I y ] 
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where In indicates the natural logarithm. The left hand side of this equation 
is a dimensionless velocity, denoted u^, while the ratio yU*/v is a 
dimensionless distance from the wall, denoted y^. At small values of y^ the 
logarithmic velocity law of Eq. 2.26 will not apply, because immediately 
adjacent to a smooth wall there is a 'sub-layer' where viscous stresses are 
more important than Reynolds stresses and the flow can be considered to be 
laminar. As viscosity is dominant here, du/dy must equal TO/|I, by Eq. 2.1. 
This relation gives a linear variation of u with y, equivalent to the statement 
that u^ equals y^ at small values of y^. 

This velocity relation extends from the smooth wall at y^=0 out to about 
y^ = 5 (see Fig. 2.9). Here turbulence first begins to be felt. The 'buffer 
layer' (from y^ = 5 to a value of y^ defined by various authors as between 25 
and 50) is characterised by a gradual shift to fully turbulent flow, so that Eq. 
2.26 becomes strictly valid only for y^ greater than the buffer-layer limit. 
Additional information on velocity profiles may be found in Kay & 
Nedderman (1985) and Reynolds (1974). Although mathematical analysis 
of the buffer layer may be required in sophisticated treatments of turbulence, 
for most engineering purposes it is sufficient to employ a simplified 
treatment in which the transition to turbulent behaviour is assumed to occur 
abruptly at the point where Eq. 2.26 intersects the linear velocity relation 
applicable near the wall. At this point both y^ and u^ equal 11.6. In effect, 
the sub-layer is assumed to extend from the wall to y^ = 11.6, and Eq. 2.26 is 
used for all larger values of y^. The thickness 5 of this sub-layer (referred to 
as the viscous sub-layer) is given by 

ipf^^'^) Pr 

_8_ 
(2.27) 

where f is the friction factor defined in Eq. 2.29 below. Thus the sub-layer 
becomes thinner as the flow in the pipe is increased. 

fiitillilifiiil 

Figure 2.9. Velocity profile near wall in turbulent pipe flow 
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As the axis of the pipe is approached, the observed velocity profile 
diverges somewhat from the logarithmic law of Eq. 2.26. Detailed models 
of turbulent flow take this divergence into account, but for present purposes 
the logarithmic law is adequate for all of the flow except the viscous sub­
layer. As this layer usually occupies a very small portion of the pipe area 
(See Example 2A, below), the average velocity V (the discharge divided by 
the section area TTD^M) can be obtained by integrating Eq. 2.26. The result 
may be written 

V 
— = 2.5 in \ y J 

(2.28) 

Both dimensionless groups in this equation merit careful consideration. 
The ratio V/U* can be expressed directly in terms of the dimensionless group 
known as the 'friction factor'. In this book we use the Moody form of the 
friction factor, defined as 

f = 8To/pV' (2.29) 

This is the definition commonly used by Civil and Mechanical engineers, 
whereas Chemical engineers may be more familiar with the Fanning friction 
factor, equal to f/4. From Eq. 2.29, it follows that V/U* = (8/f)̂ ^^ or 

U* = V(f/Sy^^ (2.30) 

The dimensionless quantity U*D/v found in Eq. 2.28 is called the 'shear 
Reynolds number' Re* which, like the better known 'pipe Reynolds number' 
Re (i.e. VD/v), gives an indication of the state of flow. For cases where the 
pressure gradient, pipe diameter and fluid properties are known, U* and Re* 
can be determined immediately, and the mean velocity V is found by 
substituting these quantities into Eq. 2.28. 

In cases where V and Re are known and U* (and the pressure gradient) 
are required, use is made of the relation 

(2.31) 
.^ J 

On this basis Eq. 2.28 takes the form 
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{Zlff^=2.5in(Re{fl%f^) (2.32) 

With Re known, this equation can be solved for f. Although iteration is 
required, the range of f is small and the solution can be obtained quickly. 

It should be noted that Eq. 2.32 (like Eq. 2.28, from which it is derived) 
applies only to turbulent flow with 'hydraulically smooth' pipe walls. This 
type of behaviour does not require asperities to be completely absent from 
the pipe wall, merely that the size, 8, of the typical roughness asperity is too 
small to penetrate the laminar sub layer and influence the turbulent portion 
of the flow. For larger values of 8 the relative roughness, 8/D, is a 
significant parameter influencing pipe friction. For 'fully rough' pipes the 
viscous sub- layer is hidden between the asperities on the pipe wall, so that 
the roughness interacts directly with the turbulent flow. In this case 
viscosity is no longer important and the friction equation depends on ln(D/8) 
instead of ln(Re*). An appropriate transition function which incorporates 
both 'smooth' and 'rough' behaviour as limiting cases is given by the 
Colebrook-White equation. Rearranged somewhat (Streeter and Wylie, 
1979) it may be expressed as 

s/D 2.51 
+ • 

3.7 Re(f) 1/2 
(2.33) 

Here the inverse of the von Karman coefficient is assigned the value of 
2.43, not significantly different from the 2.5 used in other friction equations. 
As was the case for Eq. 2.28, if the pressure gradient is known (together with 
D, 8, and v) Eq. 2.33 allows the mean velocity to be calculated directly. If 
Re is known, together with 8/D, the equation can readily be iterated for f. 
The same result can be obtained directly firom a graph of the relationship 
given by Eq. 2.33. This plot is often known as the 'Moody diagram' or the 
'Stanton-Moody diagram'. The portion of the diagram that is of interest 
here is displayed on Fig. 2.10. 

Various regions can be distinguished on the Moody diagram. For Re < 
2,000, f is independent of roughness and is given by 

f = 64/Re (2.34) 

This range corresponds to laminar flow, and Eq. 2.34 is simply Eq. 2.25 
written in terms of the dimensionless groups introduced above. 
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Figure 2.10. Pipe friction factor in normal operating range 

For Re between about 2,000 and 3,000, flow can be laminar or turbulent; 
in industrial practice, it will almost always be turbulent. For Re > 3,000, 
flow is turbulent and f depends on both Re and e/D: the curves on Fig. 2.10 
are each drawn for one value of the relative roughness. In general, the 
friction factor decreases as Re increases and as roughness decreases. 
However, for sufficiently large values of Re, the laminar sub-layer becomes 
thinner than the asperities so that the range indicated as 'fully rough' is 
entered: the horizontal curves show that f now depends on s/D but is 
independent of Re. Even in the 'transitional rough' range, the dependence of 
f on Re is weak. Thus, for turbulent flow in a given pipe with fixed relative 
roughness, it is frequently sufficient to treat the fi-iction factor as a constant, 
characteristic of the pipe. 

Detailed characterisation of roughness is a subject in itself, because the 
microscopic geometry will differ fi-om one rough surface to another. 
However, commercial pipes are commonly characterised in terms of the 
'equivalent sand-grain roughness'; i.e. their friction characteristics are 
compared with systematic measurements obtained by Nikuradse (1933) by 
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gluing sand grains to the walls of test sections of pipes. For example, the 
equivalent sand-grain roughness for commercial steel pipe is about 46 |Lim. It 
must be remembered that the effective roughness can change in service: 
corrosion can increase 8, while the polishing action of the particles in a 
slurry can reduce 8 (and possibly also increase D if erosion is severe). 

For a given flow of a given fluid in a given pipe, it is possible to 
calculate Re and 8/D, and hence obtain f from Fig. 2.10 or Eq. 2.33. From 
Eq. 2.12 and Eq. 2.29, the hydraulic friction gradient follows as 

i = f-yT: (2.35) 
2gD 

As f is approximately constant for turbulent flow in a given pipe, Eq. 
2.35 shows that the hydraulic gradient varies roughly as V^(or as Q^ ). 

The approach to estimating hydraulic gradient i summarised above and 
used throughout this book gives results essentially equivalent to those of 
other, more obviously empirical methods. An example of such methods is 
the 'C-factor' of Hazen and Williams which is still sometimes used in the 
mining industry. However, the use of f, with its dependence on Reynolds 
number and relative roughness, is preferred because it gives an indication of 
flow conditions and is more readily extended to interpretation of slurry 
flows. 

For turbulent flow only, the loss of head associated with fittings such as 
bends and valves is usually estimated by multiplying the velocity head by a 
loss coefficient The most widely-used loss coefficients are 0.5 for a 
standard 90-degree elbow (0.2 for a long-radius elbow) and 0.8 for an abrupt 
(unrounded) entry. At a pipe exit the full velocity head is lost, equivalent to 
an exit loss coefficient of 1.0. in Further information on fitting losses is 
given in the McGraw-Hill Pump Handbook (Karassik et al., 2001). 

The energy or head loss per unit length of pipe provides a measure of the 
hydraulic power required to deliver a flowrate Q through a horizontal pipe of 
length L, i.e. 

P = pgQiL (2.36) 

which can be rearranged, using Eq. 2.2 and 2.35, as 

P = ̂ £äJLL (2.37) 
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The very strong dependence on pipe diameter is worth noting. If power 
consumption is a major consideration, the economic incentive is towards 
using pipes of large diameter. The effect of this consideration on slurry 
system design will be evaluated in later chapters. 

Example 2.A - Flow of Water in a Pipe 

Water at room temperature of 20°C flows at 0.12 m /̂s through a standard 8-
inch steel pipe. Calculate: 

(a) the mean velocity and pipe Reynolds number; 
(b) the Moody friction factor; 
(c) the hydraulic gradient; 
(d) the thickness of the sub-layer; 
(e) the shear velocity 
(f) the hydraulic power required. 

(a) Standard 'schedule 20' 8-inch pipe has an internal diameter of 0.2064 m. 
Therefore the pipe cross-sectional area is 

71X (0,2064 f /4 = 0,03346 m' 

and so the mean velocity V is 

0.12/0.03346 = 3.59 m/s 

This mean velocity is towards the low end of the range typically used for 
settling slurries. For water at 20°C, p = 998.2 kg/m^ and |LI = 1.002 x 10"̂  
Pa.s (Table 2.1). Therefore the Reynolds number is 

„ pVD 998.2(3.59)(0.2064) , ,^ , 
Re = -— = — - = 7.38 X JO 

ju 1.002x10' 

Because Re is dimensionless, the same value is obtained whatever system 
of units is used. Note that Re is high and the flow is well into the turbulent 
range. 

(b) For commercial steel pipe, the equivalent sand-grain roughness is 
typically 4.6 x lO'̂ m, as noted previously. Therefore the relative roughness 
is 
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s/D = 4.6x 10'' /0.2064 = 2,23 x w' = 0.000223 

Referring to Fig. 2.10, flow conditions are in the 'transitional rough' 
range where the friction factor depends on the relative roughness and 
(weakly) on Re. From Fig. 2.10 or Eq. 2.33 

f = 0.0152 

Values for the Moody friction factor in the range 0.01 to 0.02 will prove 
to be fairly typical for water alone pumped at conditions commonly used for 
settling slurries. 

•ff 

T • 
AM 

J 
Bmmp 

Figure 2.1 L Simple piping system 

(c) From Eq. 2.35, the hydraulic gradient is 

._fV'_ 0.0152(3.59/ 2gD 2(9.81)(0.2064) 
4.84x10 rn. head per m. pipe 

Values of the order of a few metres head per hundred metres of pipe are 
again typical of water pumped at conditions appropriate for a settling slurry. 

(d) From Eq. 2.29, the wall shear stress is 

To = pf V'/8 = 998.2 (3.59/(0.0152)/8 = 24.4 Nm' 

The thickness of the viscous sublayer is estimated from Eq. 2.27 as 

11.6jLi/ipT,y^'= 11.6 (1.002X10')/(99S.2x24.4y^^ =7.4xl0-'m 
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This value, i.e. 74 |xm, can be compared with the equivalent sand-grain 
roughness, of 46 |Lim. As expected for a flow well into the 'transitional 
rough' range, the sub-layer thickness and the equivalent roughness are of 
comparable magnitude. The value for sub-layer thickness, a few tens of 
microns, is typical and is worth noting. 

(e) From Eq. 2.30, the shear velocity is 

U^ = Vm{fl^y'^=i'59{0m52l^y'^ =0.16 m/s 

and 

U^/V = {fl%y'^=0,044 

This value of U*, of the order of V/20, is typical. 

(f) The power required from the pumps is given by Eq. 2.37 as 

P_8pQ'f_8 (998.2) (0.12 f (0.0152) 

L TT'D' TT'(0.2064/ 
••57W/m 

i.e. 57 kW/km, which again gives a typical order of magnitude for water 
alone. 

In later chapters, we will examine the operability of piping systems 
using centrifugal pumps, by matching the 'system characteristic' with the 
'pump characteristic'. Figures 2.11 and 2.12 illustrate this idea for a system 
conveying a liquid alone. For a simple piping system shown schematically in 
Fig. 2.11, the total head required varies with flowrate as shown by curve 1 in 
Fig. 2.12. The 'static lift' term, Az, from the surface in the sump to the pipe 
discharge, does not depend on flow rate. The flow-dependent terms include 
the friction losses in the pipe and fittings, and also the 'velocity head' at the 
pipe discharge because this is not recovered as pressure. Thus, for a pump 
with head-discharge characteristic (see Chapter 9) given by curve 2, the 
system will operate at the discharge corresponding to the intersection of the 
characteristics at point A. Operation is stable, because the pump 
characteristic is falling while the system characteristic is rising. Thus a slight 
decrease in flow reduces the head demand of the system but increases the 
head delivered by the pump, to return operation to point A. Similarly, 
increases in flow are automatically returned to A. Closing a valve, for 
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example on the pump discharge, reduces the flow by increasing the 
resistance of the system, for example by moving the system characteristic to 
curve 3, so that the operating point moves to B. However, for a simple 
liquid with a rising system characteristic, operation remains stable. 

H t i i 

hM 

Figure 2.12. System and pump characteristics 

2.4 Basic Relations for Slurry Flow 

When we turn from flow of a simple liquid to that of a slurry, i.e. a 
mixture of solid particles in a carrier fluid, the need immediately arises for a 
more precise system of nomenclature. For example, instead of a single 
density, p, several densities must now be distinguished. These include the 
density of the fluid, pf, that of the solid particles, ps, and that of the mixture 
Pm. For a very large number of slurries, the carrier fluid is water, with 
density of approximately 1000 kg/m^. The symbol pw is employed in this 
instance, using pf for fluids of other densities. The value of pw forms the 
basis for expressing the relative density or 'specific gravity' of other 
materials. For example there is a wide range of applications when the solids 
being conveyed have a density around 2650 kg/m^, a typical value for sand, 
and in this case the relative density, Ss or Ps/pw, is 2.65. Although in many 
cases the fluid is standard-density water, this is not always the case. For 
example in marine dredging operations, the carrier fluid is sea water, for 
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which the relative density, denoted Sf, varies from place to place but has a 
typical value of about 1.03. 

For a mixture of solids and fluid, the relative density Sm (i.e. the mean 
specific gravity of the mixture) is given by the general formula 

Sm = Sf^(Ss-Sf)C, (2.38) 

where Cy is the volumetric concentration, i.e. the fraction of the mixture 
volume which is occupied by the solids. When the fluid is water of standard 
density, Sf is unity and the equation for Sm becomes 

Sm = l^(Ss'l)C. (2.39) 

The volumetric concentration, Cy, is employed in this book, but it should 
be noted that a different measure, the weight concentration Cw, is commonly 
used in some industries. If the weight concentration Cw is known, Cy can be 
calculated from: SfCw/[Ss - (Ss-Sf)Cw]. Conversely, Cw is given by the 
expression SsCy/[Sf + (Ss-Sf)Cy]. As we are concerned here with general 
approaches applicable to any slurry, we will work throughout in terms of 
volume concentration. This parameter provides a much clearer indication of 
slurry consistency, applicable whatever the solid density. 

In specifying concentrations, care is required to distinguish between 
delivered and in situ values. The delivered concentration is the fraction of 
solids delivered from (or fed to) the conveying system. If the slurry 
discharged from the system is collected in a tank, then the volume fraction of 
solids for the mixture in this tank is the delivered volumetric concentration, 
denoted Cyd. On the other hand, the resident or in situ concentration is the 
average concentration present in the system, or in some part of it, such as a 
certain length of pipe. If, say, this length of pipe were isolated by suddenly 
closing valves at both ends (ignoring the effects of water-hammer), then the 
volumetric fraction of solids in the isolated pipe is the resident or in situ 
volumetric concentration, denoted Cyi. 

Although it might appear at first sight that these two measures of 
concentration should give the same value, this is only the case for truly non-
settling slurries for which there is no tendency for the two components to 
segregate. The values of Cyd and Cyi differ when the average velocity of the 
solids (Vs) is not the same as that of the fluid (Vf), and this is typically the 
case in stratified flows (see Chapter 3). Although it is not necessary to have 
stationary solids in the pipe for Cyd and Cyi to differ, an extreme example is 
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given by the case where a deposit of stationary soHds fills, say, the lower 
half of the pipe. Water flows through the upper part of the pipe, but moves 
only a few solid particles, which tend to roll along the top of the bed. The in 
situ concentration Cvi is quite large, but as most of the solids are not moving 
at all, the average velocity of the solids is small, much less than that of the 
water. As a result, in this case the concentration of solids in the delivered 
mixture, Cyd, is much smaller than Cyi. 

The volumetric flowrate of liquid, Qf, is the product of Vf and the cross-
sectional area occupied by the fluid, i.e. (l-Cvi)7rDV4. Similarly, the 
volumetric flowrate of solids is VSCVITID^M. The total flowrate of the 
mixture, Qm, is given by the sum of the fluid and solids flowrates, and is also 
equal to 7CDV4 times the mean velocity of the mixture. Thus 

^ = V„, = Vf(l- CJ + Vs Cn (2.40) 

The delivered volumetric concentration, Cvd, represents Qs/Qm, i-e. 

C . = ; ^ = —Cv,- (2.41) 

Equation 2.41 shows directly that the delivered concentration must be less 
than the in situ value provided Vs is less than Vm. This condition is 
described as 'lag', 'hold up' (or, less accurately, 'slip') of the solids. The 
'lag' or 'slip' is the velocity difference Vm - Vs, and the lag ratio A is 
obtained by dividing this quantity by the mean velocity, i.e. 

/^ = L!llK± (2.42) 

On this basis Eq. 2.42 is re-written 

a = 7 — C v . (2.43) 
7-A 

Thus, when there is hold-up of the solids relative to the liquid the in situ 
concentration is greater than the delivered concentration, and the difference 
between the two concentrations increases when the lag ratio increases. 



38 Chapter 2 

This conclusion has a number of far-reaching impHcations. An obvious 
corollary is that measuring the in situ solids concentration, for example by a 
radiation technique (see Chapter 12), does not indicate the delivered 
concentration. A further corollary concerns the analysis of the transport of 
settling slurries, for which the hold-up effect is significant. As will be seen, 
the in situ concentration is most important in determining friction losses. 
However, design methods must be based on the delivered concentration, 
with the in situ concentration either inferred or not estimated explicitly. 
Furthermore, slurry testing must normally use closed-loop systems in which 
the inventory and therefore the resident concentration is fixed, and thus the 
delivered concentration will vary as Vm is changed. Hence the simple 
approach suitable for single-phase fluids cannot be applied to slurries. 

Another area in which slurries require a more careful treatment than 
single-phase fluids is that of the fi-iction gradient or energy gradient. In the 
form of the pressure gradient dp/dx, the friction loss associated with the flow 
of a slurry in a pipe is unambiguous. However, the expression of pressure 
loss as a 'hydraulic gradient' (such as m water per m length of pipe) is so 
common in slurry pipelining that it cannot be avoided. Only precise 
definitions of all quantities will prevent ambiguity. As expressed in Eq. 
2.12, for a single fluid the hydraulic gradient is (-dp/dx)/pg. The possible 
ambiguity arises from the density be used in this expression. For flows of 
water alone the appropriate density is pw (approximately 1000 kgW), so that 
the corresponding hydraulic gradient is 

(2.44) 
P^.S 

giving the friction loss as metres head of water per metre of pipe. 
Following a proposal made by Dr. M.R. Carstens in the early years of 

the GIW Slurry Course, the symbol i is used in this book to denote 
'hydraulic gradients' given by Eq. 2.44 and expressed in height of clear 
water per length of pipe. As both pw and g are constants, this definition is 
equivalent to stating that, for a horizontal pipe, i is simply the pressure 
gradient divided by a constant (9810 N/m^ in S.I. units). The set of 
subscripts introduced above in connection with densities will also be 
employed here. Thus im represents the pressure gradient for a mixture, but 
expressed in height of water per length of line. Similarly if expresses the 
pressure gradient for a fluid (if different from water) in terms of height of 
water, and iw applies when the fluid is water. (The similarity to the use of 
water as a reference fluid for specific gravity will be readily apparent.) In 
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evaluating the extra friction loss caused by the conveyed solids, we use the 
'solids effect' (im - if), where if is the friction gradient for carrier liquid alone 
at flowrate equal to the mixture flowrate Qm- The evaluation of this quantity 
will be discussed extensively in Chapters 4, 5 and 6. 

An alternative definition of the mixture hydraulic gradient is based on 
the mean density of the delivered slurry, pmd (and the associated relative 
density Smd). For clarity, this will be noted by j rather than i, giving 

J m - - ^ \ = - 1 - ^ I ( 2 . 4 5 ) 
PmdS 

This measure of the hydraulic gradient is more useful for some purposes, 
such as matching system and pump characteristics (see Chapter 13). From 
Eq. 2.44 and 2.45, the two are related by 

im = SmdJm (2-46) 

Under some circumstances, to be examined in later chapters, it can 
happen that the additional pressure gradient attributable to the solids is 
proportional to the increase in slurry density, i.e. the 'equivalent fluid' model 
applies with 

im = Smdiw and j ^ = i^ (2.47) 

A slurry of this type will be termed an 'equivalent fluid' because, in effect, it 
behaves as a single-phase liquid with the density of the delivered slurry. 

2.5 Settling of Solids in Liquids 

The properties of slurries depend very strongly on the tendency of the 
particles to settle out from the conveying liquid. For transport of settling 
slurries, an important parameter is the terminal velocity, Vt, i.e. the velocity 
at which a single particle settles through a large volume of quiescent liquid. 
The terminal velocity depends on the liquid properties (pf and |i) on the 
particle diameter (d) and its density (ps) and, to a lesser extent, on its shape. 
For vertical flow of settling slurries the hindered settling velocity is also of 
importance. When particles have fully settled, their concentration, achieved 
without compacting or vibrating the sediment, is referred to in later chapters 
as the 'loose packed' volume fraction, denoted Cyb-
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Particle sizes are commonly reported as 'screen size', i.e. the opening in 
a standard sieve or screen. Particle size distributions are then reported as the 
fraction (by mass or weight) passing through one screen in the series but 
retained on the next. Standard screen series have often been expressed as 
'mesh size' based on the number of openings per inch, but openings in mm 
(or |Lim) are now in common use. 

In general, particles in slurries are not spherical, but the sphere 
represents a convenient reference case in the analysis. Figure 2.13 shows the 
forces acting on a rigid sphere settling through a fluid. The weight of the 
particle is partially reduced by the buoyancy of the surrounding fluid. When 
the spherical particle is moving steadily at its terminal velocity Vts, the 
resulting 'immersed weight', 'submerged weight' or 'net weight' is balanced 
by the drag of the fluid: 

FD-——(prPf)s (2.48) 

Calculation of the terminal velocity therefore depends on estimating the 
velocity at which Eq. 2.48 is satisfied. Since there is no general theoretical 
result which enables this equation to be solved for Vts, we resort to 
dimensional analysis. In general, with fn denoting some function. 

I' 'ts 

^ % - p , ) i 

Figure 2.13. Single spherical particle falling at its terminal velocity 
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FD = fn(Pf,lu.d,vts) 

41 

(2.49) 

where v̂^ refers specifically to the terminal velocity of a spherical particle. 
Given that there are five parameters and the usual three basic dimensions of 
mass, length and time, Buckingham's theorem shows that two dimensionless 
groups suffice to express Eq. 2.49 in general form. Most commonly, the two 
dimensionless groups selected are: 

drag coefficient: CD "^ 8FD 

^dWsPf 

particle Reynolds number: Rep = p. vts d / ju 

so that Eq. 2.49 is written in general form as 

CD^fn(Rep) 

(2.50) 

(2.51) 

(2.52) 

The function indicated in this equation has been fitted to the many 
determinations of drag or terminal velocity, to give the 'standard drag curve' 
shown in Fig. 2.14. For Rep < 3 x 10^ which amply covers the range 
encountered in slurries, the curve is approximated well by an expression 
given by Turton & Levenspiel (1986) 

Figure 2.14. Standard drag coefficient curve for spheres 
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Co = ̂ (l-^0J73RerV\^^ J!'"^^^. ^ ,0. (2.53) 
Rep 1-^1.63x10' Rep 

The terminal velocity can then be determined from Eq. 2.48 and 2.53, but 
the procedure is iterative, with successive estimates for Vts updated to 
converge on the solution. 

The reasons for the form of the curve in Fig. 2.14 are discussed in detail 
by Clift et al (1978). For low particle Reynolds numbers, say Rcp < 0.1, 
Stokes' law applies, with the drag force given by the theoretical result: 

FD^^^ MVtsd (2.54) 

The terminal velocity follows as 

^^J^lSfrP^ (2.55) 
ISju 

At much larger Reynolds numbers, in the approximate range 750 < Re < 
3x10^, the drag coefficient is roughly constant and close to 0.445. This is 
known as the 'Newton's law* range, based on Newton's experiments with 
falling objects (e.g. inflated pigs' bladders falling within the dome of St. 
Paul's cathedral, see Newton, 1726). In this range the terminal velocity of a 
sphere falling through water can be calculated using 

Vts = 1^73^gd(Ss'l) (2.56) 

As a general guide for sand-density particles in water, Stokes' law applies 
for particles smaller than about 50 |im , while Newton's law applies for 
particles larger than about 2mm. 

As noted above, two independent dimensionless groups are needed to 
express empirical drag results in general form. However, these groups can be 
selected for convenience. Various possibilities and their uses are reviewed 
by Clift et al. (1978). Following the suggestion of Grace (1986), it is found 
convenient to define a dimensionless particle diameter d* (equal to the cube 
root of what is often called the Archimides number) 
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d*-[3CoRe,/4f-d 
Pf(Ps-Pf)S 

1/3 

(2.57) 

and a dimensionless terminal velocity 

VIS - Rep/d '• 
4 Rep 

.3 CD. 

J/3 

•Vts 

2 

Pf 
M(ps-Pf)s 

1/3 

(2.58) 

so that Eq. 2.49 becomes in general dimensionless form 

vl = fn(d') (2.59) 

and calculation of Vts, and hence Vts, requires no iteration. This functional 
relation has been worked out in considerable detail, and is entirely suitable 
for particles falling in Newtonian fluids. However, for the analogous case in 
non-Newtonian fluids .(dealt with in Chapter 7) difficulties arise because the 
viscosity is included in both dimensionless variables. To cover both 
Newtonian and non-Newtonian cases, an alternative method has been 
worked out, as described by Wilson et al. (2003) and Wilson & Horsley 
(2004). This method is based on a pair of dimensionless variables that 
employ concepts developed in the pipe-flow analysis of Prandtl (1933) and 
Colebrook(1939). 

The method expresses the velocity ratio (mean velocity to shear velocity) 
as a function of the shear Reynolds number (based on shear velocity rather 
than mean velocity). In pipe flow the shear velocity V* is the square root of 
the ratio of the shear stress at the pipe wall (uniform for a circular pipe) to 
the fluid density. The shear stress set up on the surface of a spherical particle 
is non-uniform, but the mean surficial shear stress, denoted r , forms a 
useful basis for analysis. This stress is given by the submerged weight force 
divided by the surface area of the sphere, which is Tid̂ , where d is the sphere 
diameter. The submerged weight force is the product of the sphere volume 
nö?/6 and (ps - Pf)g, where g is gravitational acceleration and Ps and Pf are 
the densities of the solid and fluid phases, respectively. Thus the mean 
surficial shear stress is given by 

T={p,-Pf)gdl6 (2.60) 
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For the falling-particle case, the shear velocity is based on f. Thus 

V*=^{p^-p^)gdl6pf (2.61) 

or, with S denoting Ps/pf 

F* = ^(S-l)gd/6 (2.62) 

For pipe flow, the velocity ratio is the mean velocity divided by V ; and 
for falling particles the analogous ratio is based on the terminal fall velocity 
of the particle Vt, giving V/V* as the velocity ratio. The shear Reynolds 
number Re has the form: 

Re* = pjV''d/ju (2.63) 

Here d is the particle diameter (analogous to the pipe diameter for the pipe-
flow case) and, for a Newtonian fluid, |LI is the viscosity. 

Next, it is appropriate to investigate the form of the settling curve for 
Newtonian fluids for the V/V* and Re* axes. In terms of these variables, the 
drag coefficient equals 8/[Vt/V*]^ and the conventional Reynolds number Re 
equals the product of Re* and V/V*. For Re larger than about 1100 the drag 
coefficient can be taken as effectively constant at 0.445, equivalent to 
VtA^*=4.24 for Re*>260. At the other end of the Reynolds number range, 
settling obeys Stokes law which can be expressed as V/V =Re /3. In the 
intermediate region, the coordinates of individual points on the CD-RC curve 
can be transformed into VtA *̂ and Re* values and plotted on the new curve, 
which is found to have the shape shown on Fig. 2.15. 

In developing Fig. 2.15, a series of points on the Co-Re curve were 
calculated using the equation of Turton & Levenspiel (1986). These points 
were then transformed to V/V* and Re* co-ordinates, and equations were 
fitted to the transformed points. For Re* < 10, the fit equation is: 

V/V* = Re/[3(1 + 0.08 Re'')] + 2.80/[I + 3.0(10' )(Re*~'')] 

(2.64) 

In the range 10 < Re* < 260 a different fit equation is used, based on x = 
log(Re*/10) and y = log(Vt/V*). It is: 
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Figure 2.15. Curve of relative fall velocity versus shear Reynolds number (from Wilson et 
al., 2003) 

y = 0.2069 + 0,500 x - 0.158 x 1.72 (2.65) 

The curve represented by these equations is shown, on logarithmic 
coordinates, on Fig. 2.15. As mentioned above, for Re* > 260, V/V* = 4.24. 

Approaches to estimating terminal velocities for non-spherical particles 
have been reviewed by Clift et al. (1978). For the conditions of interest in 
hydraulic conveying, the most suitable approach is based on Heywood's 
'volumetric shape factor'. In the range of particle Reynolds numbers from 
roughly unity to of order 100 - which is the range of interest here - a particle 
orients itself during settling so as to maximise the drag. Generally, this 
means that an oblate or lenticular particle, i.e. a shape with one dimension 
smaller than the other two, will settle with its maximum area horizontal. The 
drag of the fluid on the particle then depends most critically on this area, Ap. 
This is also the area seen if the particle lies in a stable position on a flat 
surface, for example a microscope slide. Therefore, for estimation of drag, 
the non-spherical particle is characterised by the 'area-equivalent diameter', 
i.e. the diameter of the sphere with the same projected area: 

da = ̂ JTJJ^ (2.66) 

For particles whose sizes are determined by sieving rather than microscopic 
analysis, da is slightly smaller than the mesh size. However, unless the 
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particles are needle-shaped, the difference between da and the screen 
opening is relatively small, generally less than 20%. The shape of the 
particle is described by the Volumetric shape factor' defined as 

K = (volume of particle)/ dl (2.67) 

so that K is 0.524 for a sphere. Representative values for various mineral 
particle are given in Table 2.2. In general, the more angular or flakey the 
particle, the lower is the value of K. 

Table 2.2. Typical values of volumetric shape factor for mineral particles 

Mineral Particles 

Sand 

Sillimanite 

Bituminous coal 

Blast furnace slag 

Limestone 

Talc 

Plumbago 

Gypsum 

Flake graphite 

Mica 

Typical K 

0.26 

0.23 

0.23 

0.19 

0.16 

0.16 

0.16 

0.13 

0.023 

0.003 

The procedure for calculation of terminal velocity is first to use the 
method presented above to calculate Vts for the sphere of diameter da and the 
same density as the particle of interest. The value for the non-spherical 
particle is then given by 

vr '•^Vts (2.68) 



2. Review of Fluid and Particle Mechanics 47 

where the velocity ratio ^ is a function of the shape factor, K, and a weak 
function of the dimensionless diameter d . Values for ^ are obtained from the 
curves in Fig. 2.16. It will be seen that, for common particles like sand and 
coal, the terminal velocity is typically 50-60% of the value for the equivalent 
sphere. The value of ^ allows for the lower volume (and therefore lower 
immersed weight) of the particle compared to the sphere, and also for 
differences in drag. 

1.0 
0.1 1.0 10 R®p 100 10-* 

FX~^—i\i I IIV.I -o/V' ' ' " KU 

100 

Figure 2.16. Ratio of terminal velocity of non-spherical particle to value for sphere, 5, as 
function of dimensionless diameter, d* 

The hindered settling velocity, Vt', is normally less than Vt and is 
strongly dependent on the volume concentration of solids. For fine particles 
in the 'clay* range, the hindered settling behaviour is dominated by the forces 
between the particles. These forces depend on the chemical nature of the 
particle surfaces and of the liquid, and specifically on acidity, electrolyte 
concentration, and trace concentrations of surface-active agents. At present, 
these effects cannot be predicted reliably. Exactly the same remarks apply to 
the rheological properties of slurries of these particles, and this leads to the 
need for the 'testing and scale-up' approach for non-settling slurries set out 
in Chapter 3. Li general, the effect of interparticle forces reduces Vt' even 
more than purely hydrodynamic effects. However, if the particles flocculate 
or agglomerate, then the hindered settling velocity is increased. 

For larger particles - those which behave as individual grains - the 
hindered settling velocity can be estimated reasonably reliably by the 
correlation of Richardson & Zaki (1954): 

Vt-VtO-Cv/ (2.69) 
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Equation 2.69 allows for two phenomena which reduce Vt' below Vti the 
increased drag caused by the proximity of other particles, and the upflow of 
liquid as it is displaced by the descending particles. The index n depends on 
d*, and is larger for particles settling in the range of Stokes' law (n = 4.6) 
and smaller in the range of Newton's law (n = 2.4). 

Example 2.B - Calculation of Terminal and Hindered Settling Velocities 

Estimate the terminal velocity and hindered settling velocities of sand 
particles with shape factor 0.26 in water at room temperature. Consider 
particles of sizes 0.2, 0.5, 1.0 and 2.0 mm. (It will be shown in Chapter 6 
that particle settling is of greatest significance for heterogeneous flow, which 
applies to particles in this size range.) 

(a) Terminal Velocities of Equivalent Spheres. 
For water at 20°C, Pw = 998.2 kg/m^ and |i = 1.002 x 10"̂  Pa.s (from Table 
2.1). The density of quartz sand is typically 2650 kgW. Therefore the shear 
velocity based on the mean surficial shear stress (Eq. 2.62) is: 

V^ = ^(S,-l)gd or Vn.65;9.81J 

with d in metres. Table 2.3 shows the values that were obtained for this 
quantity for the various particle sizes. Also shown in the table are values of 
Re*, i.e. pfV*d/|Li. This quantity is used to calculate Vts/V*, using Eq. 2.64 for 
the 0.2 mm particle (for which Re* < 10) and Eq. 2.65 for the other particles, 
based on their shear Reynolds numbers. Multiplying the ratio Vts/V* by V* 
gives the fall velocity for a spherical particle, Vts, which is shown in Table 
2.3. Note that the 0.2 mm particles lie well beyond the Stokes' law range, 
while the 2 mm particles are not quite into the Newton's law range. 

(b) Terminal Velocities of Sand Grains 
To obtain the terminal fall velocity of the sand particles, the values of Vts 
must be multiplied by the velocity ratio ^, which, in turn, depends on the 
dimensionless particle size d*, given by Eq. 2.57 
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Pf(Ps-Pf)S 
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y" 

1/3 

d 

or 

998.2 (2650-998.2) (9.81) 
r3 \2 (1.002x10') 

1/3 

d = 2.526 X10^'d 

The values of the velocity ratio, ^, are obtained from Fig. 2.16, by 
interpolation between the contours for K = 0.2 and 0.3 to K = 0.26, at the 
appropriate value of d* in each case. Using the values for ^ and Vts from part 
(a) gives the results shown in Table 2.3. Note that the variation of ^ over the 
range of particle sizes is rather small. 

Table 2.3. Settling velocity calculations 

d(m) 

V* (m/s) 

Re* 

Vts/V* 

Vts (m/s) 

d* 

S 

Vt (m/s) 

2x10-^ 

0.0232 

4.64 

1.041 

0.0241 

5.05 

0.55 

0.013 

5x10-' 

0.0367 

18.4 

2.105 

0.0772 

12.6 

0.58 

0.045 

1 X 10-^ 

0.0519 

51.9 

2.990 

0.1552 

25.3 

0.55 

0.085 

2x10-^ 

0.0735 

147 

3.841 

0.2823 

50.5 

0.52 

0.147 
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