
Chapter 2
Hardware Platforms

2.1 Chapter Overview

As discussed in Chapter 1, single-threaded software applications no longer obtain
significant gains in performance with the current processor scaling trends. With the
growing complexity of VLSI designs, this is a significant problem for the elec-
tronic design automation (EDA) community. In addition to multi-core processors,
hardware-based accelerators such as custom-designed ICs, reconfigurable hardware
such as FPGAs, and streaming processors such as graphics processing units (GPUs)
are being investigated as a potential solution to this problem. These platforms allow
the CPU to offload compute-intensive portions of an application to the hardware for
a faster computation, and the results are transferred back to the CPU upon com-
pletion. Different platforms are best suited for different application scenarios and
algorithms. The pros and cons of the platforms under consideration are discussed in
this chapter.

The rest of this chapter is organized as follows. Section 2.2 discusses the hard-
ware platforms studied in this monograph, with a brief introduction of custom
ICs, FPGAs, and GPUs in Section 2.3. Sections 2.4 and 2.5 compare the hard-
ware architecture and programming environment of these platforms. Scalability
of these platforms is discussed in Section 2.6, while design turn-around time on
these platforms is compared in Section 2.7. These platforms are contrasted for
performance and cost of hardware in Sections 2.8 and 2.9, respectively. The imple-
mentation of floating point operations on these platforms is compared in Sec-
tion 2.10, while security concerns are discussed in Section 2.11. Suitable applica-
tions for these platforms are discussed in Section 2.12. The chapter is summarized in
Section 2.13.

2.2 Introduction

Most hardware accelerators are not stand-alone platforms, but are co-processors to
a CPU. In other words, a CPU is needed for initial processing, before the compute-
intensive task is off-loaded to the hardware accelerators. In some cases the hardware
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accelerator might communicate with the CPU even during the computation. The
different platforms for hardware acceleration in this monograph are compared in
the following sections.

2.3 Hardware Platforms Studied in This Research Monograph

2.3.1 Custom ICs

Traditionally, custom ICs are included in a product to improve its performance. With
a high production volume, the high manufacturing cost of the IC is easily amortized.
Among existing hardware platforms, custom ICs are easily the fastest accelerators.
By being application specific, they can deliver very high performance for the target
application. There exist a vast literature of advanced circuit design techniques which
help in reducing the power consumption of such ICs while maintaining high perfor-
mance [36]. Some of the more well-known techniques to reduce power consumption
(both dynamic and leakage) are design and protocol changes [31, 20], reducing sup-
ply voltage [17], variable Vt devices, dynamic bulk modulation [39, 40], power gat-
ing [18], and input vector control [25, 16, 41]. Also, newer gate materials which help
achieve further performance gains at a low power cost are being investigated [32].
Due to their high performance and small footprint, custom ICs are the most suitable
accelerators for space, military, and medical applications that are compute intensive.

2.3.2 FPGAs

A field-programmable gate array (FPGA) is an integrated circuit which is designed
to be configured by the designer in the field. The FPGA is generally programmed
using a hardware description language (HDL). The ability of the user to program
the functionality of the FPGA in the field, along with the low non-recurring engi-
neering costs (relative to a custom IC design), makes the FPGA an attractive plat-
form for many applications. FPGAs have significant performance advantages over
microprocessors due to their highly parallel architectures and significant flexibility.
Hardware-level parallelism allows FPGA-based applications to operate 1 to 2 orders
of magnitude faster than equivalent applications running on an embedded processor
or even a high-end workstation. Compared to custom ICs, FPGAs have a somewhat
lower performance, but their reconfigurability makes them an easy choice for several
(particularly low-volume) applications.

2.3.3 Graphics Processors

General-purpose graphics processors turn the massive computational power of a
modern graphics accelerator into general-purpose computing power. In certain
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applications which include vector processing, this can yield several orders of magni-
tude higher performance than a conventional CPU. In recent times, general-purpose
computation on graphics processors has been actively explored for several scientific
computations [23, 34, 29, 35, 24]. The rapid increase in the number and diversity of
scientific communities exploring the computational power of GPUs for their data-
intensive algorithms has arguably had a contribution in encouraging GPU manu-
facturers to design GPUs that are easy to program for general-purpose applications
as well. GPU architectures have been continuously evolving toward higher perfor-
mance, larger memory sizes, larger memory bandwidths, and relatively lower costs.
Additionally, the development of open-source programming tools and languages
for interfacing with the GPU platforms, along with the continuous evolution of the
computational power of GPUs, has further fueled the growth of general-purpose
GPU (GPGPU) applications.

A comparison of hardware platforms considered in this monograph is presented
next, in Sections 2.4 through 2.12.

2.4 General Overview and Architecture

Custom-designed ICs have no fixed architecture. Depending on the algorithm, tech-
nology, target application, and skill of the designers, custom ICs can have extremely
diverse architectures. This flexibility allows the designer to trade off design param-
eters such as throughput, latency, power, and clock speed. The smaller features also
open the door to higher levels of system integration, making the architecture even
more diverse.

FPGAs are high-density arrays of reconfigurable logic, as shown in Fig. 2.1 [14].
They allow a designer the ability to trade off hardware resources versus perfor-
mance, by giving the hardware designers the choice to select the appropriate level
of parallelism to implement an algorithm. The ability to tradeoff parallelism and
pipelining yields significant architectural variety. The circuit diagram for a typical
FPGA logic block is shown in Fig. 2.2, and it can implement both combinational
and sequential logic, based on the value of the MUX select signal X. The lookup
table (LUT) in this FPGA logic block is shown in Fig. 2.3. It consists of a 16:1
MUX circuit, implemented using NMOS passgates. This is the typical circuit used
for implementing LUTs [30, 21]. The circuit for the 16 SRAM configuration bits
(labeled as ‘S’ in Fig. 2.3) is shown in Fig. 2.4. The DFF of Fig. 2.2 is implemented
using identical master and slave latches, each of which has an NMOS passgate con-
nected to the clock and a pair of inverters in a feedback configuration to implement
the storage element.

In the FPGA paradigm, the hardware consists of a regular array of logic blocks.
Wiring between these blocks is achieved by reconfigurable interconnect, which can
be programmed via passgates and SRAM configuration bits to drive these passgates
(and thereby customize the wiring).

Recent FPGAs provide on-board hardware IP blocks for DSP, hard processor
macros, and large amounts of on-chip block RAM (BRAM). These hardware IP
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blocks allow a designer to perform many common computations without using
FPGA logic blocks or LUTs, resulting in a more efficient design.

One downside of FPGA devices is that they have to be reconfigured every time
the system is powered up. This requires the use of either a special external memory
device (which has an associated cost and consumes real estate on the board) or an
on-board microprocessor (or some variation of these techniques).

GPUs are commodity parallel devices which provide extremely high memory
bandwidths and a large number of programmable cores. They can support thou-
sand of simultaneously issued software threads operating in a SIMD fashion. GPUs
have several multiprocessors which execute these software threads. Each multipro-
cessor has a special function unit, which handles infrequent, expensive operations,
like divide and square root. There is a high bandwidth, low latency local memory
attached to each multiprocessor. The threads executing on that multiprocessor can
communicate among themselves using this local memory. In the current genera-
tion of NVIDIA GPUs, the local memory is quite small (16 KB). There is also a
large global device memory (over 4 GB in some models) of GPU cards. Virtual
memory is not implemented, and so paging is not supported. Due to this limitation,
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all the data has to fit in the global memory. The global device memory has very
high bandwidth (but also has high latency) to the multiprocessors. The global
device memory is not directly accessible by the host CPU nor is the host memory
directly accessible to the GPU. Data from the host that needs to be processed by
the GPU must be transferred via DMA (across an IO bus) from the host to the
device memory. Similarly, data is transferred via DMA from the GPU to the CPU
memory as well. GPU memory bandwidths have grown from 42 GB/s for the ATI
Radeon X1800XT to 141.7 GB/s for the NVIDIA GeForce GTX 280 GPU [37].
A recent comparison of the performance in Gflops of GPUs to CPUs is shown in
Fig. 2.5. A key drawback of the current GPU architectures (as compared to FPGAs)
is that the on-chip memory cannot be used to store the intermediate data [22] of a
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computation. Only off-chip global memory (DRAM) can be used for storing inter-
mediate data. On the FPGA, processed data can be stored in on-chip block RAM
(BRAM).

2.5 Programming Model and Environment

Custom-designed ICs require several EDA tools in their design process. From func-
tional correctness at the RTL/HDL level to the hardware testing and debugging of
the final silicon, EDA tools and simulators are required at every step. For certain
steps, a designer has to manually fix the design or interface signals to meet timing or
power requirements. Needless to say, for ICs with several million transistors, design
and testing can take months before the hardware masks are finalized for fabrica-
tion. Unless the design and manufacturing cost can be justified by large volumes or
extremely high performance requirements, the custom design approach is typically
not practical.

FPGAs are generally customized based on the use of SRAM configuration cells.
The main advantage of this technique is that new design ideas can be implemented
and tested much faster compared to a custom IC. Further, evolving standards and
protocols can be accommodated relatively easily, since design changes are much
simpler to incorporate. On the FPGA, when the system is first powered up, it
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can initially be programmed to perform one function such as a self-test and/or
board/system test, and it can then be reprogrammed to perform its main task. FPGA
vendors provide software and hardware IP cores [3] that implement several common
processing functions. More recently, high-end FPGAs have become available that
contain one or more embedded microprocessors. Tasks that used to be performed by
an external microprocessor can now be moved into the FPGA core. This provides
several advantages such as cost reduction, significantly reduced data transfer times
from FPGA to the microprocessor, simplified circuit board design, and a smaller,
more power-efficient system. Debugging the FPGA is usually performed using
embedded logic analyzers at the bitstream level [26]. FPGA debugging, depend-
ing on the design density and complexity, can easily take weeks. However, this is
still a small fraction of the time taken for similar activities in the custom IC
approach. Given these advantages, FPGAs are often used in low- and medium-volume
applications.

In the recent high-level languages released for interfacing with GPUs, the hard-
ware details of the graphics processor are abstracted away. High-level APIs have
made GPU programming very flexible. Existing libraries such as ACML-GPU [2]
for AMD GPUs and CUFFT and CUBLAS [4] for NVIDIA GPUs have inbuilt effi-
cient parallel implementations of commonly used mathematical functions.
CUDA [10] from NVIDIA provides guidelines for memory access and the usage
of hardware resources for maximal speedup. Brook+ [2] from AMD-ATI provides
a lower level API for the programmer to extract higher performance from the hard-
ware. Further, GPU debugging and profiling tools are available for verification and
optimization. In comparison to FPGAs or custom ICs, using GPUs as accelerators
incurs a significantly lower design turn-around time.

General-purpose CPU programming has all the advantages of GPGPU program-
ming and is a mature field. Several programming environments, debugging and
profiling tools, and operating systems have been around for decades now. The vast
amount of existing code libraries for CPU-based applications is an added advantage
of system implementation on a general-purpose CPU.

2.6 Scalability

In high-performance computing, scalability is an important issue. Combining mul-
tiple ICs together for more computing power and using an array of FPGAs for
emulation purposes are known techniques to enhance scalability. However, the extra
hardware usually requires careful reimplementation of some critical portions of the
design. Further, parallel connectivity standards (PCI, PCI-X, EMIF) often fall short
when scalability and extensibility are taken into consideration.

Scalability is hard to achieve in general and should be considered during the
architectural and design phases of FPGA-based or custom IC-based algorithm accel-
eration efforts. Scalability concerns are very specific to the algorithm being targeted,
as well as the acceleration approach employed.
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For graphics processors, existing techniques for scaling are intracluster and inter-
cluster scaling. GPU providers such as NVIDIA and AMD provide multi-GPU solu-
tions such as [12] and [1], respectively. These multi-GPU architectures claim high
scalability, in spite of limited parallel connectivity, provided the application lends
itself well to the architecture. Scalability requires efficient use of hardware as well
as communication resources in multi-core architectures, custom ICs, FPGAs, and
GPUs. Architecting applications for scalability remains a challenging open problem
for all platforms.

2.7 Design Turn-Around Time

Custom ICs have a high design turn-around time. Even for modest sized designs, it
takes many months from the start of the design to when the silicon is delivered. If
design revisions are required, the cost and design turn-around time of custom ICs
can become even higher.

FPGAs offer better flexibility and rapid prototyping capabilities as compared to
custom designs. An idea or concept can be tested and verified in an FPGA without
going through the long and expensive fabrication process of custom design. Further,
incremental changes or design revisions (on an FPGA) can be implemented within
hours or days instead of months. Commercial off-the-shelf prototyping hardware
is readily available, making it easier to rapidly prototype a design. The growing
availability of high-level software tools for FPGA design, along with valuable IP
cores (prebuilt functions) for several commonly used control and signal processing
tasks, makes it possible to achieve rapid design turn-arounds.

GPUs and CPUs allow for a far more flexible development environment and
faster turn-around times. Newer compilers and debuggers help trace software bugs
rapidly. Incremental changes or design revisions can be compiled much faster than
in custom IC or FPGA designs. Code profiling technique for optimization purposes
is a mature area [15, 10]. Thus, a software implementation can easily be used to
rapidly prototype a new design or to modify an existing design.

2.8 Performance

Depending on the application, custom-designed ICs offer speedups of several orders
of magnitude as compared to the single-threaded software performance on the CPU.
However, as mentioned earlier, the time taken to design an IC can be prohibitive.
FPGAs provide a performance that is intermediate between that of custom ICs
and single-threaded CPUs. Hardware-level parallelism allows some FPGA-based
applications to operate 1–2 orders of magnitude faster than an equivalent applica-
tion running on a higher-end workstation. More recently, high-performance sys-
tem designers have begun to explore the capabilities of FPGAs [28]. Advances
in FPGA tool flows and the increasing FPGA speed and density characteristics
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(shown in Fig. 2.6) have made FPGAs increasingly popular. Compared to custom-
designed ICs, FPGA-based designs yield lower performance, but the reconfigurable
property gives it an edge over custom designs, especially since custom ICs incur
significant NRE costs.

When measured in terms of power efficiency, the advantages of an FPGA-based
computing strategy become even more apparent. Calculated as a function of mil-
lions of operations (MOPs) per watt, FPGAs have demonstrated greater than 1,000×
power/performance advantages over today’s most powerful processors [5]. For this
reason, FPGA accelerators are now being deployed for a wide variety of power-
hungry computing applications.

The power of the GPGPU paradigm stems from the fact that GPUs, with their
large memories, large memory bandwidths, and high degrees of parallelism, are
readily available as off-the-shelf devices, at very inexpensive prices. The theoretical
performance of the GPU [37] has grown from 50 Gflops for the NV40 GPU in
2004 to more than 900 Gflops for GTX 280 GPU in 2008. This high computing
power mainly arises due to a heavily pipelined and highly parallel architecture, with
extremely high memory bandwidths. GPU memory bandwidths have grown from 42
GB/s for the ATI Radeon X1800XT to 141.7 GB/s for the NVIDIA GeForce GTX
280 GPU. In contrast, the theoretical performance of a 3 GHz Pentium4 CPU is 12
Gflops, with a memory bandwidth of 8–10 GB/s to main memory. The GPU IC is
arguably one of the few VLSI platforms which has faithfully kept up with Moore’s
law in recent times. Recent CPU cores have 2–4 GHz core clocks, with single- and
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multi-threaded performance capabilities. The Intel QuickPath Interconnect (4.8
GT/s version) copy bandwidth (using triple-channel 1,066 MHz DDR3) is 12.0
GB/s [7]. A 3.0 GHz Core 2 Quad system using dual-channel 1,066 MHz DDR3
achieves 6.9 GB/s. The level 2 and 3 caches have 10–40 cycle latencies. CPU cores
today also support a limited amount of SIMD parallelism, with SEE [8] instructions.

Another key difference between GPUs and more general-purpose multi-core pro-
cessors is hardware support for parallelism. GPUs have a hardware thread control
unit that manages the distribution and assignment of thread blocks to multiproces-
sors. There is additional hardware support for synchronization within a thread block.
Multi-core processors, on the other hand, depend on software and the OS to perform
these tasks. However, the amount of power consumed by GPUs for executing only
the accelerated portion of the computation is typically more than twice that needed
by the CPU with all its peripherals. It can be argued that, since the execution is
sped up, the power delay product (PDP) of a GPU-based implementation would
potentially be lower. However, such a comparison is application dependent, and
thus cannot be generalized.

2.9 Cost of Hardware

The non-recurring engineering (NRE) expense associated with custom IC design far
exceeds that of FPGA-based hardware solutions. The large investment in custom IC
development is easy to justify if the anticipated shipping volumes are large. How-
ever, many designers need custom hardware functionality for systems with low-to-
medium shipping volumes. The very nature of programmable silicon eliminates the
cost for fabrication and long lead times for chip assembly. Further, if system require-
ments change over time, the cost of making incremental changes to FPGA designs
are negligible when compared to the large expense of redesigning custom ICs. The
reconfigurability feature of FPGAs can add to the cost saving, based on the applica-
tion. GPUs are the least expensive hardware platform for the performance they can
deliver. Also, the cost of the software tool-chain required for programming GPUs is
negligible compared to the EDA tool costs incurred by custom design and FPGAs.

2.10 Floating Point Operations

In comparison to software-based implementations, a higher numerical precision
is a bigger problem for FPGAs and custom ICs. In FPGAs, for instance, on-chip
programmable logic resources are utilized to implement floating point functional-
ity for higher precisions [19]. These implementations consume significant die-area
and tend to require deep pipelining before acceptable performance can be obtained.
For example, hardware implementations of double precision multipliers typically
require around 20 pipeline stages, and the square root operation requires 30–40
stages [38].
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GPUs targeting scientific computations can handle IEEE double precision float-
ing point [6, 13] while providing peak performance as high as 900 Gflops. GPUs,
unlike FPGAs and custom ICs, provide native support for floating point operations.

2.11 Security and Real-Time Applications

In industry practice, design details (including HDL code) are typically documented
to make reuse more convenient. At the same time, this makes IP piracy and infringe-
ment easier. It is estimated that the annual revenue loss due to IP infringement in
the IC industry is in excess of $5 billion [42]. The goals of IP protection include
enabling IP providers to protect their IPs against unauthorized use, protecting all
types of design data used to produce and deliver IPs, and detecting and tracing the
use of IPs [42].

FPGAs, because of their re-programmability, are becoming very popular for cre-
ating and exchanging VLSI IPs in the reuse-based design paradigm [27]. Existing
watermarking and fingerprinting techniques embed identification information into
FPGA designs to deter IP infringement. However, such methods incur timing and/or
resource overheads and cause performance degradation. Custom ICs offer much
better protection for intellectual property [33].

CPU/GPU software IPs have higher IP protection risks. The emerging trend is
that most IP exchange and reuse will be in the form of soft IPs because of the
design flexibility they provide. The IP provider may also prefer to release soft IPs
and leave the customer-dependent optimization process to the users [27]. From a
security point of view, protecting soft IPs is a much more challenging task than
protecting hard IPs. Soft IPs are hard to trace and therefore not preferred in highly
secure application scenarios.

Compared to a CPU/GPU-based implementation, FPGA and custom IC designs
are truly hard implementations. Software-based systems like CPUs and GPUs, on
the other hand, often involve several layers of abstraction to schedule tasks and
share resources among multiple processors or software threads. The driver layer
controls hardware resources and the operating system manages memory and pro-
cessor utilization. For a given processor core, only one instruction can execute at
a time, and hence processor-based systems continually run the risk of time-critical
tasks pre-empting one another. FPGAs and custom ICs, which do not use operating
systems, minimize these concerns with true parallel execution and dedicated hard-
ware. As a consequence, FPGA and custom IC implementations are more suitable
for applications that demand hard real-time computation guarantees.

2.12 Applications

Custom ICs are a good match for space, military, and medical compute-intensive
applications, where the footprint and weight constraints are tight. Due to their high
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performance, several DSP-based applications make use of custom-designed ICs.
A custom IC designer can create highly efficient special functions such as arithmetic
units, multi-port memories, and a variety of non-volatile storage units. Due to their
cost and high performance, custom IC implementations are best suited for high-
volume and high-performance applications.

Applications for FPGA are primarily hybrid software/hardware-embedded appli-
cations including DSP, video processing, robotics, radar processing, secure commu-
nications, and many others. These applications are often instances of implementing
new and evolving standards, where the cost of designing custom ICs cannot be jus-
tified. Further, the performance obtained from high-end FPGAs is reasonable. In
general, FPGA solutions are used for low-to-medium volume applications that do
not demand extreme high performance.

GPUs are an upcoming field, but have already been used for accelerating scien-
tific computations in fluid mechanics, image processing, and financial applications
among other areas. The number of commercial products using GPUs is currently
limited, but this might change due to newer architectures and high-level languages
that make it easy to program the powerful hardware.

2.13 Chapter Summary

In recent times, due to the power, memory, and ILP walls, single-threaded appli-
cations do not see any significant gains in performance. Existing hardware-based
accelerators such as custom-designed ICs, reconfigurable hardware such as FPGAs,
and streaming processors such as GPUs are being heavily investigated as potential
solutions. In this chapter we discussed these hardware platforms and pointed out
several key differences among them.

In the next chapter we discuss the CUDA programming environment, used for
interfacing with the GPUs. We describe the hardware, memory, and programming
models for the GPU devices used in this monograph. This discussion is intended to
serve as background material for the reader, to ease the explanation of the details
of the GPU-based implementations of several EDA algorithms described in this
monograph.
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