
Chapter 2
Vibrations of Lumped-Parameter Systems

This chapter presents an overview and a refresher on the linear vibration principles
of lumped-parameters systems, which are used to model MEMS. Since most mi-
crostructures undergo some sort of vibratory motion, the information presented here
are fundamental to the understanding of many key aspects of MEMS dynamical be-
havior. Also, some of the methods to extract the parameters needed to model MEMS
devices and structures require knowledge in the principles of vibrations. In addition,
this chapter serves as a good introduction to the more advanced topics of nonlinear
oscillations that will be discussed in the following chapters. The principles of opera-
tion of some MEMS devices, including accelerometers, gyroscopes, and band-pass
filters, will be discussed here.

In lumped-parameters systems, MEMS devices are modeled as lumped or con-
centrated masses, springs, dampers, and point forces. The discussion will start on
single-degree-of-freedom (SDOF) systems. The free vibration problem (damped and
undamped) will be discussed. Then, forced vibrations due to external point loads and
due to base excitations will be addressed. Arbitrary excitation will be also discussed.
Finally, the analysis of the vibration of two-degree-of-freedom (2-DOF) systems will
be presented. For more in-depth treatment of these topics, the readers are referred to
these excellent references in vibrations [1–5].

2.1 Introduction

Vibration can be defined as the study of repetitive motion of objects relative to a sta-
tionary frame [1]. There are many examples of vibrations in our everyday life, such as
heart beating, cars vibrations on bumpy roads, and the motion of tree branches with
wind. In MEMS, most devices employ a microstructure or more that is either driven
intentionally to vibrate to achieve sensing or actuation functions, such as microres-
onators and atomic force microscopes (AFM), or they undergo some sort of vibratory
motion when excited by dynamic disturbances, such as when microstructures are
subjected to mechanical shock.
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Fig. 2.1 a A schematic
shows a spring being pulled
by a force. b A force–
deflection curve showing a
linear regime with a slope
k ending with a possible
nonlinear hardening or
softening behaviors
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For vibration to occur there must be an exchange of energy between potential and
kinetic energy. Hence, a vibratory system must have a spring-like component that
stores the potential energy and converts it to kinetic energy in the form of motion.
Complaint structures, such as beams and rods, play the role of springs in MEMS.
If the spring is loaded with a force, Fig. 2.1a, and its deflection is measured then
a force–displacement curve can be generated, such as that of Fig. 2.1b. Typically,
the curve is a straight line for small range of force (linear range). The slope of this
line is a constant called the stiffness coefficient of the spring k. Beyond the linear
regime, the spring shows a nonlinear force–deflection relationship characterized by
either increasing in stiffness (hardening behavior) or decreasing in stiffness (softening
behavior) compared to the linear case.

To describe the motion of a system undergoing vibrations, a number of indepen-
dent coordinates need to be assigned to the system to adequately describe its motion.
These are called degrees of freedom (DOFs). For example, a body that undergoes
translational and rotational motion in a single plane requires two independent vari-
ables to describe its motion, one for translation and one for rotation (unless both are
related). If the vibration is induced by initially disturbing the system from its equilib-
rium position without having a force that continuously acting on it, the vibration is
called free vibration (vibration due to initial conditions). If a force acts continuously
on the system during motion, the vibration is called forced vibration. Vibration also
can be classified as damped or undamped depending on whether the energy of the
system is conserved or is being dissipated during vibration. Next, we discuss some
of these types of vibrations.

2.2 Free Vibration of Single-Degree-of-Freedom Systems

2.2.1 Undamped Vibration

Many systems that have one mode of motion dominating their response or one princi-
pal DOF can be modeled as SDOF systems. In the absence of damping or dissipation
mechanisms, a lumped spring–mass system, such as that of Fig. 2.2a, can be used
to represent this system. The first step in the vibration analysis is the dynamics, that
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Fig. 2.2 a A spring–mass system to model the free vibration of a conservative SDOF system. b A
diagram showing the forces acting on the mass in the horizontal direction when disturbed to the
positive direction to the right

is, we need first to derive the equation of motion for the system. For this, Newton’s
second law of motion is used:

∑ �F = m�a (2.1)

where � �F represents the forces acting on the mass m in a specific direction and
�a is the induced acceleration of the mass in that direction. To apply Eq. (2.1) on
the system, the mass is assumed displaced in the positive direction (to the right) a
distance x. Then, we isolate the mass, label all the forces acting on it, and label the
acceleration �a in the positive direction, which is the same as that of x as shown in
Fig. 2.2b. We recall here that the acceleration �a is the second-time derivative of the
displacement, �a = ẍ, where the superscript dot denotes a time derivative. As noted
from Fig. 2.2b, when the mass is displaced to the right, there will be a resistance
restoring force acting on it to the left, which assuming a linear relationship as in
Fig. 2.1b is expressed as

�F = −kx (2.2)

where the negative sign in Eq. (2.2) indicates that the force has an opposite direction
to the positive displacement to the right. Applying Eq. (2.1) yields

−kx = mẍ (2.3)

or after rearranging

mẍ + kx = 0. (2.4)

Dividing Eq. (2.4) by m gives

ẍ + ω2
nx = 0 (2.5)
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where ω2
n = k/m and ωn is called the natural frequency of the system. It has the

unit of rad/s. It depends on the “natural” characteristics of the system, mass and
stiffness. Equation (2.5) represents a second-order linear differential equation of
constant coefficients. To solve this equation, we assume x to be of the form

x(t) = aeλt (2.6)

where t is the time, a and λ are unknown constants, and e is the exponential con-
stant. Substituting Eq. (2.6) into Eq. (2.5) and dividing by aeλt yields the following
characteristic equation for λ:

λ2 + ω2
n = 0. (2.7)

From Eq. (2.7), λ2 = ±iωn, and hence according to Eq. (2.6) and using the principle
of superposition, the total solution of Eq. (2.5) becomes

x(t) = a1e
iωnt + a2e

−iωnt (2.8)

where a1 and a2 are the constants of integration that are determined from the initial
conditions of the system (its initial velocity and displacement). Alternatively, using
Euler’s formulas, Eq. (2.8) can be written as

x(t) = A sin(ωnt + φ) (2.9)

where A andφ are the constants of integration. Equation (2.9) describes the oscillatory
motion of the system of Fig. 2.2a over time with A representing the amplitude of
oscillation and φ the phase shift. To determine A and φ, we assume the system has
an initial velocity v0 and an initial displacement x0, that is

x(0) = x0; ẋ(0) = v0. (2.10)

From Eqs. (2.9) and (2.10)

A =
√

x2
0 + (v0/ωn)2; φ = tan−1 (ωnx0/v0). (2.11)

Figure 2.3 shows an example plot of Eq. (2.9) clarifying the terminologies defined
above. As seen in the figure, the resulting motion is an oscillatory motion that repeats
itself every time interval T. This time is called the natural period. It is related to the
natural frequency by T = 2π/ωn and has the unit of time. As noted, the natural
period indicates how “frequent” the motion repeats itself in one cycle T. The inverse
of T, f, is also called the natural frequency and it has the unit of (1/s) or Hertz (Hz).
Hence,

f = 1

T
= ωn

2π
. (2.12)
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Fig. 2.3 A portion of the
time–history response of the
spring–mass system of
Fig. 2.2a indicating some of
the key vibration features of
the system. In the figure,
x0 > 0 and v0 > 0
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To obtain the mass velocity and acceleration, Eq. (2.9) is derived with respect to
time once and twice, respectively, which yields

ẋ(t) = ωnA cos(ωnt + φ) (2.13)

ẍ(t) = −ω2
nA sin(ωnt + φ). (2.14)

One can note from Eq. (2.13) that the magnitude of the maximum velocity is ωnA

with a phase shift π/2 with respect to the displacement. Also from Eq. (2.14), the
magnitude of the maximum acceleration is ω2

nA with a phase shift π with respect to
the displacement and π/2 with respect to the velocity.

Example 2.1: A system operates in vacuum, as in the case of some MEMS res-
onators, can be modeled as an undamped spring–mass system, such as that of Fig. 2.2.
In an experiment to determine the mass and stiffness of the system, its natural fre-
quency was measured and found to be 100 Hz. Then, a new mass was added to the
system equals 1 g and the natural frequency was measured again and found to be
90 Hz. Determine the stiffness and mass of this system.

Solution: Given: f 1 = 100 Hz, f 2 = 90 Hz, δm = 0.001kg.

From Eq. (2.12)

f1 = ω1

2π
=

√
k/m

2π
(a)

f2 = ω2

2π
=

√
k/(m + δm)

2π
. (b)

Dividing Eq. (a) over Eq. (b)

f1

f2
=

√
k/m√

k/(m + δm)
=
√

m + δm

m
. (c)
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Squaring Eq. (c)
(

f1

f2

)2

= m + δm

m
. (d)

Solving for m gives

m = δm
f 2

2

f 2
1 − f 2

2

. (e)

Substituting the numbers yields m = 4.3 g. Solving for k from Eq. (a) gives
k = 1.683 kN/m.

2.2.2 Damped Vibration

The model presented in Sect. 2.2.1 predicts an oscillatory motion that keeps going
forever and never dies out. A more realistic model of vibrating systems should ac-
count for the fact that the energy of vibrations dissipates over time through damping
mechanisms. One way to account for this is by adding a dashpot or a damper element
to the model of Fig. 2.2a. If the damping force �Fd is assumed linearly proportional to
the speed of the mass, as in the case of viscous damping from air, then the damping
force can be expressed as

�Fd = −cẋ (2.15)

where c is the viscous damping coefficient and the minus sign indicates that the force
is a resistance force with a direction opposite to the motion direction. It should be
noted here that MEMS damping mechanisms can be more complicated and may be
nonlinear, as will be discussed in the next chapter. Figure 2.4 shows a schematic for
the model and the corresponding force diagram.

Applying Newton’s second law on the system of Fig. 2.4 yields the below equation
of motion:

mẍ + cẋ + kx = 0. (2.16)
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Fig. 2.4 a A spring–mass–damper system to model the free vibration of a nonconservative SDOF
system. bA diagram showing the forces acting on the mass in the horizontal direction when disturbed
to the positive direction to the right
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Dividing Eq. (2.16) by m yields

ẍ + 2ζωnẋ + ω2
nx = 0 (2.17)

where ζ is called the damping ratio, a nondimensional quantity, defined as

ζ = c

2mωn

. (2.18)

To solve Eq. (2.17), we substitute Eq. (2.6) into Eq. (2.17) and divide the outcome
by aeλt to yield

λ2 + 2ζωnλ + ω2
n = 0. (2.19)

Solving Eq. (2.19) gives

λ1,2 = −ζωn ± ωn

√
ζ 2 − 1 (2.20)

and hence using the principle of superposition, the total solution of Eq. (2.17) is

x(t) = a1e
λ1t + a2e

λ2t . (2.21)

As noted from Eqs. (2.20) and (2.21), the nature of the response depends on whether
λ1 and λ2 are complex, real, or mix. This in turn depends on the square-root term
in Eq. (2.20) and particularly whether ζ is less than one, greater than one, or equal
one. Accordingly, the free vibration of damped systems can be classified into the
following categories:

1. Overdamped motion (ζ > 1)

As the name suggests, this case indicates too much damping. In this case, λ1 and λ2

are pure real numbers. Hence, the solution of the system can be expressed as

x(t) = e−ζωnt
[
a1e

ωnt
√

ζ 2−1 + a2e
−ωnt

√
ζ 2−1

]
. (2.22)

Figure 2.5 shows a plot of the response of Eq. (2.22) for various damping ratios.
As seen in the figure, the response in this case is not oscillatory; the damping is too

Fig. 2.5 Examples of
time–history responses of an
overdamped spring–mass–
damper system for various
damping ratios for
1 < ζ1 < ζ2 < ζ3. In the
figure, x0 > 0 and v0 = 0
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Fig. 2.6 A comparison for the
response of a spring–mass–
damper system between the
critically damped and
overdamped cases. In the
figure, x0 = 0 and v0 > 0
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much that the motion dies very quickly without allowing for oscillations. The rate
of motion decaying increases with the amount of damping and the value of ζ.

2. Critically damped motion (ζ = 1)

This case is called “critically” damped because it separates two different qualitative
behaviors: oscillatory motion for ζ < 1 and non-oscillatory motion for ζ > 1. In
this case, Eq. (2.20) gives two real equal roots, λ1,2 = −ωn. Hence, the solution of
Eq. (2.17) becomes

x(t) = e−ωnt (a1 + a2t). (2.23)

The response of the system in this case is similar to the overdamped case except that
decaying of the motion takes longer time. Figure 2.6 compares the response of this
case to an overdamped case.

3. Underdamped motion (0 < ζ < 1)

As the name suggests, this case indicates low damping compared to the other two
cases. Here, λ1 and λ2 are complex numbers. To remind ourselves of this, λ1 and λ2

are rewritten from Eq. (2.20) explicitly with the imaginary root i, that is

λ1,2 = −ζωn ± iωn

√
1 − ζ 2. (2.24)

Hence, the solution for the system motion according to Eq. (2.21) becomes

x(t) = e−ζωnt
[
a1e

iωnt
√

1−ζ 2 + a2e
−iωnt

√
1−ζ 2

]
. (2.25)

Using Euler’s formula, Eq. (2.25) can be rewritten in the more convenient form as

x(t) = Ae−ζωnt sin[ωdt + φ] (2.26)

where A and φ are the amplitude and phase of the response, respectively and ωd =
ωn

√
1 − ζ 2 is the damped natural frequency of the system. In the case of low values

of ζ , ωd ≈ ωn. The parameters A and φ are determined from the initial conditions
of the system. Using Eqs. (2.10) and (2.26) yields

tan (φ) = x0ωd

v0 + ζx0ωn

; A =
√

(x0ωd )2 + (v0 + ζx0ωn)2

ωd

(2.27)
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Fig. 2.7 An example of a
time–history response of an
underdamped spring–mass–
damper system. In the figure,
x0 = 0 and v0 > 0
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An example of the response obtained from Eq. (2.26) is plotted in Fig. 2.7. The figure
shows an oscillatory motion that decays exponentially with time (note the exponential
envelope in dashed lines). As noted from Figs. 2.5, 2.6, and 2.7, underdamped motion
is the only damped case that can be considered as “true” vibration motion where
the moving mass passes through the equilibrium position more than once. Also,
underdamped motion is the most common; hence, the majority of vibration analysis
and studies are focused on this case.

Before closing this section, we should point out to the fact that in all of the above
discussion, we implicitly assumed that the damping ratio ζ or the damping coefficient
c to be positive. If otherwise damping is negative then the resulting motion will be
unstable vibratory motion (flutter), which usually leads to the collapse or failure of
the structure (a famous example of this case is the collapse of the Tacoma Bridge
in 1940). A similar note applies on the stiffness k, which must be positive also. In
short, both the stiffness and damping of the system must be positive to lead to stable
vibration. More on stability issues are discussed in Chap. 5.

Example 2.2: A spring–mass–damper system, Fig. 2.4, has m = 1 kg, k = 100 N/m,
and c = 1 kg/s. If the system is given an initial velocity of 10 mm/s while it is in the
equilibrium position, determine and plot the response of the system. If the system
vibrates, determine the frequency of vibration due to this excitation in Hz.

Solution: First, the system needs to be determined if it is overdamped, un-
derdamped, or critically damped. Hence, we need to calculate ζ , but first we
calculate ωn

ωn =
√

k

m
=
√

100

1
= 10 rad/s. (a)

From Eq. (2.18)

ζ = c

2mωn

= 1

2(1)(10)
= 0.05. (b)



22 2 Vibrations of Lumped-Parameter Systems

Fig. 2.8 A time–history
response of the underdamped
system of Example 2.2
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Hence, the system is underdamped. It vibrates with ωd given by

ωd = ωn

√
1 − ζ 2 = 10

√
1 − .052 = 9.9875 rad/s (c)

and in Hz

f = ωd

2π
= 1.59 Hz. (d)

As can be seen, for low damping, ωn and ωd are almost the same. However, this tiny
difference can be translated to hundreds of Hz for microstructures with mega- and
gigahertz frequencies.

To determine the response, A and φ are calculated from Eq. (2.27)

tan (φ) = x0ωd

v0 + ζx0ωn

= 0 × ωd

v0 + ζx0ωn

= 0 ⇒ φ = 0 rad. (e)

A =
√

(x0ωd )2 + (v0 + ζx0ωn)2

ωd

=
√

(0)2 + (.01 + 0)2

9.9875
= 0.001 m. (f)

Hence, from Eq. (2.26), the response of the system is expressed as

x(t) = .001e−.5t sin[9.9875t]. (g)

Figure 2.8 shows a plot of the response.

2.3 Forced Harmonic Excitation of Single-Degree-of-Freedom
Systems

Harmonic excitation is very common in MEMS through actuation methods, such
as electrostatic and piezoelectric actuation. In this section, the forced vibration
of a SDOF system, Fig. 2.9a, to a harmonic force excitation is analyzed. From
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Fig. 2.9 a A model for the forced vibration of a spring–mass–damper system. b A diagram showing
the forces acting on the mass in the horizontal direction when disturbed to the positive direction to
the right

the force diagram of Fig. 2.9b, the equation of motion of the system can be
written as

mẍ + cẋ + kx = F0 cos(	t) (2.28)

where F0 is the harmonic force amplitude and 	 is the excitation frequency. Dividing
Eq. (2.28) by m yields

ẍ + 2ζωnẋ + ω2
nx = f0 cos(	t) (2.29)

where f 0 = F0/m. Equation (2.29) is a nonhomogenous linear differential equation
of constant coefficients. Hence, its solution consists of two parts: a homogenous
solution xh and a particular solution xp. The homogenous solution corresponds to
the case when f 0 = 0, which is similar to the cases discussed in Sect. 2.2. Thus,
depending on the damping ratio, xh can be calculated by either of Eqs. (2.9), (2.22),
(2.23), or (2.26). However, the constant of integrations cannot be calculated based
on any of the formulas of Sect. 2.2; they need to be calculated based on relating
the initial conditions to the total homogenous and particular solution of the system
x = xp + xh. The homogenous solution represents physically the transient behavior of
the system; hence, it decays away leaving only the particular solution, which is also
called the steady-state response. To calculate the particular solution, the method of
undetermined coefficients is used. Toward this, xp is expressed as

xp(t) = As cos(	t) + Bs sin(	t) (2.30)

where As and Bs are unknown coefficients to be determined. Substituting Eq. (2.30)
into Eq. (2.29) and solving for As and Bs (see [1] for details) yield

As = (ω2
n − 	2)f0

(ω2
n − 	2)2 + 4ζ 2ω2

n	
2

; Bs = 2ζωn	f0

(ω2
n − 	2)2 + 4ζ 2ω2

n	
2
. (2.31)

A more convenient way to express this solution is through writing it in the form of
an amplitude X and a phase θ as

xp(t) = X cos(	t − θ ) (2.32)
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where

X = f0√
(ω2

n − 	2)2 + (2ζωn	)2
(2.33)

θ = tan−1

(
2ζωn	

ω2
n − 	2

)
. (2.34)

If the forcing function in Eq. (2.28) is of the form F0 sin(	t), then the cosine is
replaced with sine in Eq. (2.32), whereas Eq. (2.33) and Eq. (2.34) still apply.
Equation (2.32) indicates an important fact for linear systems, that is if the system
is excited with a frequency 	, it responds with the same frequency.

For convenience, the excitation frequency is normalized with respect to the natural
frequency. This is a more meaningful way to describe the excitation frequency as a
ratio of the natural frequency than just saying it as an absolute number, which does
not reveal much unless it is known how far it is from the natural frequency. Thus,
a normalized frequency ratio is introduced as r = 	/ωn. Accordingly, Eqs. (2.33)
and (2.34) are rewritten as

X

f0/ω2
n

= 1
√

(1 − r2)2 + (2ζ r)2
(2.35)

θ = tan−1

(
2ζ r

1 − r2

)
. (2.36)

Note that the ratio X/(f0/ω
2
n) is the dynamic steady-state response due to the

harmonic force normalized to the static deflection of the system due to an equiv-
alent static force of the same magnitude as the harmonic force (note that f0/ω

2
n =

F0/mω2
n = F0/k = δ, where δ is a constant). Therefore, this ratio indicates how

much the response of the system is being amplified due to the dynamic effect. Note
also that both sides of Eq. (2.35) are nondimensional.

Mostly in forced-vibration problems, the interest is in the steady-state response.
In this case, Eq. (2.35) and (2.36) play key rule in revealing the vibration features of
the system. Figures 2.10, 2.11, and 2.12 show plots of these equations while varying
the damping ratio and the normalized excitation frequency. The following notes can
be observed from Fig. 2.10:

• All the curves start from X/k = 1, which corresponds to very low excitation fre-
quencies compared to the natural frequency. This range of excitation is called
quasi-static. It is a stiffness-dominated range with slight effect from damping
or inertia. By exciting the system near this range, one can extract the stiffness
coefficient of the system if the amplitude of vibration is measured.

• The normalized response of all the curves become small and approach zero as r
increases beyond r = 2. This range is called inertia-dominated range with slight
effect from damping or stiffness. For sensor applications in MEMS, this range is
not of much benefit since the system responds very weakly to the input excitation.
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Fig. 2.10 Frequency–
response curves of
spring–mass–damper system
showing the normalized
steady-state amplitude versus
the normalized excitation
frequency for various values
of damping ratio
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Fig. 2.11 The phase angle of
a spring–mass–damper
system versus the normalized
excitation frequency for
various values of damping
ratio
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• For the range near 0.5 < r < 1.5, the curves of small ζ (0.4 and 0.1) peak in their
value near r = 1. This corresponds to the so-called resonance phenomenon. It
occurs when the excitation frequency is equal to the natural frequency and results
in the maximum response for systems of low damping. Resonance is very impor-
tant concept in vibration and MEMS as well. On the other hand, the curves of
large ζ (0.707 and 2) do not show any peak in their response. It turns out that all
the curves of ζ < 0.707 have peak amplitudes somewhere close to r = 1 whereas
all the curves of ζ > 0.707 do not have any peaks. Because this range of r is very
sensitive to damping, it is called damping dominated.

• While resonance most often corresponds to the maximum response of the system,
it is not always the case, especially for large damping. In fact one can see that
the maximum response for ζ = 0.4 is shifted slightly to the left. In general, the
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Fig. 2.12 Frequency–
response curves for smaller
values of the damping ratio
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frequency corresponding to the peak response 	peak is given by

	peak = ωn

√
1 − 2ζ 2. (2.37)

For small values of ζ , the peak, resonance, and natural frequencies are almost the
same.

From Fig. 2.11, the following can be noted:

• All the curves pass through θ = π/2 at r = 1. This represents another indication
of resonance corresponding to π/2 phase shift.

• For values of r � 1, θ ≈ 0. This means that for very small excitation frequencies,
the response is almost in phase with the excitation force.

• For values of r � 1, θ ≈ π. This means that for large excitation frequencies, the
response is 180◦ out of phase with the excitation force.

Figure 2.12 shows frequency–response curves for small values of ζ. Many MEMS
resonators and sensors are operated in such conditions with even lower values of
damping ratios. As seen in the figure, the curves become very sharp and narrow near
resonance. In sensors, the interest is to achieve the highest response to give strong
signal as an indication of what is being measured. The sharpness of resonance is
commonly expressed in terms of a quantity called the quality factor Q, which is
related to the damping ratio by

Q = 1

2ζ
. (2.38)

A rough estimation for the quality factor can be taken from the height of the resonance
peak, as shown in Fig. 2.13. Another quantity of interest for sensors applications is
the width of the resonance spike. As noted from Fig. 2.12, it is very hard to operate a
resonator at the exact location of resonance for very small values of ζ. Therefore, it is
desirable to have the width of the spike as large as possible. A standard way to measure
this width is through a quantity called bandwidth �	. To calculate the bandwidth, a
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Fig. 2.13 A frequency–
response curve illustrating the
concepts of quality factor and
bandwidth
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horizontal line is drawn intersecting with the frequency–response curve at a height of
Q/

√
2 as shown in Fig. 2.13. The height Q/

√
2 represents the vibration amplitude

that corresponds to half the maximum power (power is proportional to the amplitude
squared). In decibel, this height represents −3 dB. The points of intersection, called
half-power points, are labeled 	1 and 	2. The bandwidth is then expressed as [2]

�	 = 	2 − 	1 = 2ζωn. (2.39)

Hence, from Eq. (2.38) and Eq. (2.39)

Q = ωn

�	
. (2.40)

Equation (2.40) is used to measure the quality factor, which more accurate than
depending on measuring the height of the resonance peak. Equation (2.40) indicates
that achieving high quality factor is on the expense of a good bandwidth and vice
versa. This poses a challenge for MEMS and sensors applications. One way to
overcome this and to achieve both high-quality factor and wide bandwidth is through
using band-pass filters as sensors, as will be explained in Sect. 2.9.

Example 2.3: Figure 2.14 shows the measured phase angle of the steady-state
response of the system of Fig. 2.9a for a harmonic force of various excitation frequen-
cies. If the system is then driven by F(t) = 200cos(10t), calculate the steady-state
amplitude of the system assuming m = 1 kg.

Solution: Based on Fig. 2.14, we note that the response has a phase shift π/2 when
	 = 100 rad/s. This indicates resonance, which means that the natural frequency
of the system is also 100 rad/s. Since the excitation frequency is given to be 10
rad/s, this means that r = 10/100 = 0.1. Hence, this is a quasi-static excitation case,
in which knowing the damping is not important. According to Fig. 2.10, in this case

X

f0/ω2
n

≈ 1. (a)

Accordingly, f0 = F0/m = 200 N/kg and from (a) X ≈ 0.02m.
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Fig. 2.14 A measured phase
response for the system of
Example 2.3
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Example 2.4: Calculate the maximum response of the system of Example 2.2 if it
is driven by a harmonic force of amplitude 10 N.

Solution: We recall from Example 2.4 that ωn = 10 rad/s, ζ = 0.05. Since the
system is lightly damped, its maximum response occurs at resonance when r = 1.
From Eq. (2.35)

X

f0/ω2
n

= 1

2ζ
. (a)

Substituting f0 = F0/m = 10 N/kg yields

X

10/102 = 1

2(.05)
⇒ X = 1 m. (b)

2.4 Vibrating MEMS Gyroscopes

As an application for the previous section, we study here the vibration response of
MEMS gyroscopes. A gyroscope is a device that captures the rotational motion of a
body. More specifically, it is a device that measures the angular velocity of a body
about a certain axis of rotation. Gyroscopes have wide range of uses in vehicle control
applications, such as anti-rollover and antiskid control systems, aviation, navigation,
space applications, robotics, and military applications, such as for missiles navi-
gation. Conventional gyroscopes rely on large structures, such as tuning forks or
spinning disks that are free to rotate in specific directions. Also, they may contain
complicated components, such as bearings and rotating rings. Hence, the classical
gyroscopes are bulky, expensive, and unreliable.
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The technology of MEMS with the advantages of batch fabrication, small size,
and low price has offered an attractive alternative to conventional gyroscopes. Al-
most all MEMS gyroscopes rely on vibrating mechanical elements that are driven
to oscillate in the plane of the chip and to respond to rotation by another vibratory
motion also in the same plane. This simple motion in a single plane and the fact that
MEMS gyroscopes do not require complicated rotating parts or bearings have led to
simplified and compact designs that can be easily fabricated using micromachining
techniques.

MEMS gyroscopes have enabled smart generations of new technologies and ap-
plications, especially in consumer electronics, which would not have been possible
before. MEMS gyroscopes are currently being used in video and still cameras and
other portable electronics to help in the stabilization of their performance and to re-
duce the effect of human body motion and shaking. In addition, they are being used
for interactive video games and head-mounted displays to sense and guide rotational
motions.

The main principle of MEMS gyroscopes is the transfer of energy between two
modes of vibrations, the drive and the sense modes, through the so-called Coriolis
acceleration. Coriolis acceleration is an apparent acceleration that arises in a rotating
frame and is proportional to the rate of rotation. The proof mass of MEMS gyroscopes
can be driven and sensed using many methods; however, the most common is through
electrostatic transduction. A major challenge in MEMS gyroscope is the fact that the
generated Coriolis acceleration is very small. Hence, it is challenging to fabricate a
small gyroscope of small mass with high sensitivity. More information on MEMS
gyroscopes can be found in [6–8]. Next, we demonstrate through an example the
basic dynamical and vibration features of a typical MEMS gyroscope.

Example 2.5: Consider the model of a vibratory MEMS gyroscope of Fig. 2.15.
Derive the equations of motion of the device. Then, solve for the response of the

Fig. 2.15 A model of a
typical MEMS vibratory
gyroscope
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device when undergoing a rotational motion and derive an analytical expression for
the device’s sensitivity.

Solution: To derive the equations of motion, we need to apply Newton’s second
law, which requires determining the acceleration of the mass. The acceleration can
be determined by taking twice the derivative of the position vector of the mass with
respect to time as measured from a stationary frame of reference (the X–Y frame
in Fig. 2.15). An additional frame (the X–Y frame in Fig. 2.15) is also introduced,
which rotates with the plane of the vibrating mass with an angular velocity 	. Both
the stationary and rotating frames are assumed to share the same origin. The position
vector �R of the mass can be written in terms of the x–y frame as

�R = xb̂1 + yb̂2 (a)

where b̂1 and b̂2 are the unit vectors along the x and y coordinates, respectively. To
find the velocity of the mass, the position vector is derived using the role of the time
derivative of a rotating vector [9], which is

X−Y d �R
dt

=
x−yd �R

dt
+ x−y �ω × �R (b)

where X−Y d �R/dt refers to the time derivative of the vector with respect to the inertial
frame, x−yd �R/dt is the local derivative of the vector with respect to the rotating
frame, x−y �ω is the rotational speed of the rotating frame (here assumed equal 	b̂3),
and × refers to the cross product operation. Applying Eq. (b) on Eq. (a) yields the
velocity vector �V :

�V = ẋb̂1 + ẏb̂2 + 	b̂3 × (xb̂1 + yb̂2) ⇒ �V = (ẋ − 	y) b̂1 + (ẏ + x	) b̂2. (c)

Similarly, taking one more time derivative of the velocity vector of Eq. (c) while
applying the derivative role of Eq. (b) yields the acceleration vector �a

�a = (
ẍ − 	̇y − 2ẏ	 − 	2x

)
b̂1 + (

ÿ + 	̇x + 2ẋ	 − 	2y
)
b̂2 (d)

where 	̇ is the angular acceleration. One can also arrive to Eq. (d) by applying
directly the five-term acceleration formula for rotating frames [9].

Based on Eq. (d), and by considering the forces on the mass of Fig. 2.15, the
equations of motion of the mass in the x and y directions can be written, respectively,
as

−kxx − cxẋ + F0sin(ωdt) = m(ẍ − 	̇y − 2ẏ	 − 	2x) (e)

−kyy − cyẏ = m(ÿ + 	̇x + 2ẋ	 − 	2y) (f)

where F0 and ωd are the driving force amplitude and frequency, respectively. Equa-
tions (e) and (f) represent two coupled differential equations. The coupling comes
from the terms involving 	̇ and the two terms with “2” (2ẏ	 and 2ẋ	), which are
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nothing but the Coriolis acceleration terms. Equations (e) and (f) can be simplified
by assuming constant angular speed, hence 	̇ = 0. Also, since 	 is usually much
smaller than the natural frequencies of the system, the terms involving 	2 can be
dropped. Further, because the sense mode response y is much smaller than the re-
sponse of the directly-excited drive mode x, the term 2ẏ	 can be dropped. Under
these simplifications, Eqs. (e) and (f) are reduced to

mẍ + kxx + cxẋ = F0sin(ωdt) (g)

mÿ + kyy + cyẏ = −2m	ẋ. (h)

Equation (g) can be solved independently of Eq. (h). Then the solution is substituted
into Eq. (h), which is then solved for the sense-mode response y. To proceed, Eq. (g)
is divided by m, hence it becomes

ẍ + 2ζxωxẋ + ω2
xx = fxsin(ωdt) (i)

where ωx = √
kx/m, ζx = cx/(2mωx), and fx = F0/m. The solution of Eq. (i) is

given by

x(t) = X sin(ωdt − φ) (j)

where

X = fx/ω
2
x√

(1 − r2
x )2 + (2ζxrx)2

; φ = tan−1

(
2ζxrx

1 − r2
x

)
(k)

and rx = ωd/ωx. To find the sense-mode response, Eq. (j) is substituted into Eq. (h),
which after dividing by m becomes

ÿ + ω2
yy + 2ζyωyẏ = fy cos(ωdt − φ) (l)

where ωy = √
ky/m, ζY = cy/(2mωy), and fy = −2	ωdX. Hence, the amplitude

of the sense-mode response can be written as

Y = fY /ω2
Y√

(1 − r2
y )2 + (2ζY ry)2

=
(

2m	ωdX

ky

)
1

√
(1 − r2

y )2 + (2ζY ry)2
(m)

where ry = ωd/ωy. The sensitivity of the gyroscope is defined as the induced sense-
mode amplitude (output) divided to the rotational speed (input), that is

Y

	
=
(

2mωdX

ky

)
1

√
(1 − r2

y )2 + (2ζY ry)2
. (n)

One can see from Eq. (n) that the sensitivity is proportional to the oscillating mass,
which puts some restrictions on the level of miniaturization that can be achieved
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for MEMS gyroscopes. To achieve the highest sensitivity, X needs to be as large as
possible. Hence, the mass usually is driven at resonance, rx = 1. Also, resonance
in the sense mode, ry = 1, maximizes the sensitivity. This means that for maximum
sensitivity ωd = ωy = ωx. Hence, substituting rx = 1 in Eq. (k) and then substituting
the outcome and ry = 1 into Eq. (n) yield the below simplified expression for the
sensitivity

Y

	
= 2mωdF0QxQy

kxky

(o)

where Qx = 1/2ζx and Qy = 1/2ζy are the quality factors of the drive and sense
modes, respectively. It is clear that high-quality factors are desirable to improve
sensitivity.

Due to fabrication imperfections and environmental effects, it is extremely diffi-
cult to fabricate a gyroscope with ωy = ωx and to lock the driving frequency exactly
at resonance. This is known as the frequency mismatch problem in the literature
[6–8]. Adding more DOFs to the design of MEMS gyroscopes can alleviate this
problem [8].

2.5 Base Excitations of SDOF Systems and Accelerometers
Principles

Base excitation, also called support excitation, refers to the case when a structure or
a device is placed on top of a moving floor with some damping and stiffness charac-
teristics, such as isolation rubber floors. Also, it models the case when a structure is
supported through elastic mountains, which can act as springs and dampers, such as
shock absorbers in cars. When the floor or the supports move, they cause vibration
to the structure, which is influenced by the stiffness and damping properties of the
floor or the supports.

The above description refers to the classical scenarios for base excitation. In
MEMS, base excitation represents a more common case. Flexible structures of
MEMS in handheld devices and machinery components are excited into vibration
through their supports. Essentially, any MEMS chip that contains a flexible struc-
ture will base-excite that structure if the chip is placed in an application where it
moves. The flexibility of the structure plays the role of a spring, which is actuated
from the base. MEMS accelerometers, gyroscopes, and pressure sensors inside a
car are subjected to base excitation whenever the car hits a bump or even undergoes
slight vibration. Accelerometers, including MEMS type, are intentionally designed
to detect the motion properties of a moving base or a structure. In addition, several
kinds of AFM rely on exciting a cantilever beam from its support, such as the tapping
mode AFM.

Currently, there is considerable interest in harvesting energy from environmental
vibrations. This can be done by designing flexible structures to be mounted over
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Fig. 2.16 a A packaged device modeled as a spring–mass–damper system subjected to base exci-
tation. b A diagram showing the forces acting on the mass when disturbed to the positive direction
upward

a floor or a machine that undergoes slight vibration, for example a microwave or a
dishwasher, such that the structures will be base-excited to vibration. Then the kinetic
energy of the excited structures is converted into electricity through piezoelectric,
electrostatic, or electromagnetic mechanisms [10, 11].

Figure 2.16a shows a schematic for a packaged device, for example an accelerom-
eter, containing a flexible structure placed over a base that moves with displacement
y(t). Figure 2.16b shows a free-body diagram for the mass indicating the forces act-
ing on it when displaced from its equilibrium position upward. Note here that the
gravitational force of the weight is not included since it affects only the equilibrium
position with no influence on the dynamic response (this is true for linear systems
only). Based on Fig. 2.16b, the equation of motion of the mass can be written as

mẍ + k(x − y) + c(ẋ − ẏ) = 0 (2.41)

where x is the absolute deflection of the mass. In MEMS applications, usually the
structure is suspended a small distance above the substrate. Hence, an excessive
support excitation can lead to a contact between the structure and the substrate, which
may lead to the device failure. Thus, it is important to monitor the relative deflection
z(t) of the structure with respect to the moving base, which is expressed as z = y−x.
In addition, transduction mechanisms, such as electrostatic and piezoelectric, depend
on this relative deflection. Writing Eq. (2.41) in terms of z yields

mz̈ + cż + kz = −mÿ. (2.42)

The base is assumed to have harmonic excitation in the form of

y = Y cos(	bt) (2.43)

where Y denotes the amplitude of the base excitation and 	b is its frequency.
Substituting Eq. (2.43) into Eq. (2.42) and dividing the outcome by m yields

z̈ + 2ζωnż + ω2
nz = 	2

bY cos(	bt). (2.44)
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Equation (2.44) looks similar to Eq. (2.29) with f0 = 	2
bY. Defining r = 	b/ωn

and using Eqs. (2.35) and (2.36) result in the below expression for the steady state
relative response:

z(t) = Z cos(	bt − θ ) (2.45)

where

Z

Y
= r2

√
(1 − r2)2 + (2ζ r)2

(2.46)

and θ is as defined in Eq. (2.36).
The nondimensional ratio Z/Y represents an amplification factor indicating how

much relative displacement is induced in the structure compared to the input dis-
placement. Figure 2.17 shows a plot for Z/Y based on Eq. (2.46) for various damping
ratios. It is observed that at resonance, the relative displacement reaches a maximum
value for damping ratios below 0.707. For small values of r, Z/Y is very small. It is
noted also that all the curves converge to Z/Y ≈ 1 as r exceeds 3. Based on this
interesting observation, the device shown in Fig. 2.16 can be used to measure the dis-
placement of the base by relating it directly to the relative displacement of the mass,
which can be transformed into a voltage signal for instance through piezoelectric,
magnetic, or electrostatic methods. This is again provided that r > 3, which means
that the natural frequency of the device should be at least below one-third of that
of the frequency being measured. This implies that the device and its moving mass
should be bulky and large to satisfy this requirement, which puts practical limitations
on the use of such devices. This kind of measurement devices is called seismometer.

Fig. 2.17 A plot for the
relative deflection of a
structure excited from the
base normalized to the
amplitude input
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Now consider the quantity z(t)ω2
n. From Eq. (2.45), it can be written as

z(t)ω2
n = 	2

bY cos(	bt − θ )
√

(1 − r2)2 + (2ζ r)2
. (2.47)

Recall that ÿ = −	2
bY cos(	bt − θ ), hence according to Eq. (2.47)

z(t)ω2
n = −ÿ

√
(1 − r2)2 + (2ζ r)2

. (2.48)

Note that as r → 0; 1√
(1−r2)2+(2ζ r)2

→ 1. Hence, from Eq. (2.48), in this case the

relative displacement is proportional to the base acceleration as
∣∣z(t)ω2

n

∣∣ = |ÿ| .
The previous observation represents the basic principle of accelerometers. By

measuring the relative deflection of the structure inside the accelerometer through a
transduction mechanism, for instance electrostatic or piezoelectric, the acceleration
of the base is determined. This is provided again that r is sufficiently small. To further
quantify this condition, we plot in Fig. 2.18 the ratio 1√

(1−r2)2+(2ζ r)2
for small range

of r for various values of ζ . As noted from the figure, this ratio remains equal to
unity for the largest range of r when ζ = 0.707. Hence, by tuning the damping of
the accelerometer to be near this damping ratio, the maximum operating range of
the device is achieved. It is agreed on that for accurate measurements, r must be less
than 0.2. This means that the natural frequency of the accelerometer should be at
least five times higher than the measured frequency. This implies that the mass of the
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Fig. 2.18 A plot for the coefficient of ÿ versus the normalized frequency for various values of
damping ratios
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accelerometer should be small enough to satisfy this condition. It turns out that this
requirement in addition to the requirement of high damping near critical are easily
satisfied via the MEMS technology. Through MEMS, the size of the accelerometer
is made very small making the useful range of the accelerometer very large. Also,
through the naturally existing squeeze-film damping, achieving critical damping is
neither difficult nor costly in the micro scale. Therefore, no wonder that MEMS
accelerometers were among the first and most successful MEMS devices that made
it to commercialization.

2.6 Response of SDOF Systems to Arbitrary Excitation

Sections 2.3 and 2.4 deal with forced vibration, in which a system is constantly
being excited by a harmonic force. In many situations, systems can be excited by
nonharmonic and even nonperiodic forces, which may last for limited duration of
time. A common example in the macro and micro applications is the mechanical
shock force, which is induced on a structure when dropped on the ground. This force
can take the shape of a pulse, for example triangle or half-sine, of limited duration,
corresponding to the time of contact between the body and the ground. As a result
of such a force, a flexible structure can get excited and undergo oscillatory motion
over several cycles before the motion dies out due to damping.

In this section, we discuss the response of SDOF systems subjected to an arbitrary
excitation based on the convolution integral approach without going into derivations
details. For an undamped system, such as that of Fig. 2.2a, subjected to a force F(t)
of an arbitrary profile, Fig. 2.19, the response of the system can be expressed as

x(t) = 1

mωn

∫ t

0
F (τ ) sin[ωn(t − τ )]dτ. (2.49)

For an underdamped system, such as that of Fig. 2.4a, subjected to F(t), the response
of the system is calculated by

x(t) = 1

mωd

∫ t

0
F (τ )e−ζωn(t−τ ) sin[ωd (t − τ )]dτ. (2.50)

Fig. 2.19 An example of a
force of arbitrary profile
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Equations (2.49) and (2.50) predict the total response of the system due to the applied
force assuming trivial initial conditions. For other initial conditions, Eqs. (2.49) and
(2.50) represent only the particular solution for the equation of motion due to the
force. The total response will then be composed of Eq. (2.49) or Eq. (2.50) plus the
homogenous solution (corresponding to zero force). From relating the total solution
to the initial conditions, the constants of integration of the homogenous solution are
determined. This is further clarified in Example 2.7. Calculating the integrals in Eqs.
(2.49) and (2.50) can be difficult analytically. Hence, numerical approaches, such as
the trapezoidal method, can be used, which are found readily in software, such as
Mathematica [12] and Matlab [13].

Example 2.6: Calculate the response of an undamped SDOF system, Fig. 2.2a,
when subjected to a suddenly applied constant force F0 (step force), Fig. 2.20.
Assume trivial initial conditions for the system.

Solution: The equation of motion for this system is written as

mẍ + kx = F (t) (2.51)

where F(t) is an arbitrary force. Hence, applying Eq. (2.49) yields

x(t) = 1

mωn

∫ t

0
F0 sin[ωn(t − τ )]dτ = −F0

mωn

cos[ωn(t − τ )]

−ωn

∣∣∣∣
t

0

(2.52)

⇒ x(t) = F0

k
[1 − cos(ωnt)]. (2.53)

Example 2.7: Calculate the response of an undamped SDOF system, Fig. 2.21,
dropped to the ground from a distance h. This problem models the drop test used
in the industry to test the survivability of portable devices and electronics including
MEMS.

Solution: At the instant the system touches the ground, the spring will be pushed
upward from its base. Also, at that moment, the whole system will be under the
influence of the gravity acceleration − g, where the negative sign indicates that the
acceleration is in a direction opposite to x (downward). This is similar to the base

Fig. 2.20 A step force
applied at time zero
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Fig. 2.21 A model for a drop test of a packaged device of Example 2.7

excitation problem of Sect. 2.4, except that the force here is not harmonic but arbitrary
(constant). From Eq. (2.42), the equation of motion for this system is expressed as

mz̈ + kz = −mÿ = mg = F0 (2.54)

which is similar to the case of Example 2.6 except that here the system is not initially
at rest. The initial velocity of the system at the time of contact v0 can be found from
equating the potential energy mgh to the kinetic energy mv2

0/2, which gives

v0 = √
2gh. (2.55)

The total solution for Eq. (2.54) is composed of a particular solution given by Eq.
(2.53) and a homogeneous solution given by Eq. (2.9), that is

x(t) = F0

k
[1 − cos(ωnt)] + A sin(ωnt + φ). (2.56)

Substituting F0 = mg, k = mω2
n, using the initial conditions x0 = 0 and Eq. (2.55),

and solving for A and φ yield

x(t) = g

ω2
n

[1 − cos(ωnt)] +
√

2gh

ωn

sin(ωnt). (2.57)

To find the instantaneous acceleration for the mass, Eq. (2.57) is differentiated twice
with respect to time:

ẍ(t) = g cos(ωnt) − ωn

√
2gh sin(ωnt). (2.58)

Alternatively, Eq. (2.58) can be written as

ẍ(t) = g

√

1 + 2hω2
n

g
sin

[
ωnt + tan−1(

−g

ωnvo

)

]
. (2.59)
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Hence, the maximum acceleration magnitude is given by

|ẍmax| = g

√

1 + 2hω2
n

g
. (2.60)

We note from Eq. (2.60) that the maximum induced acceleration increases with the
height of drop h and the natural frequency of the system.

Example 2.8: A more accurate model for the shock force induced from the impact
of a system with the ground is achieved by modeling it as a pulse force or acceleration
of finite duration. As an example, consider a rectangular pulse force of amplitude
F0 and duration t1, Fig. 2.22. Calculate the response of the undamped system of
Fig. 2.2a to this force pulse assuming trivial initial conditions.

Solution: The force of Fig. 2.22 can be expressed as

F (t) =
{
F0 0 ≤ t ≤ t1
0 t1 ≤ t

. (2.61)

Since the force is split into two parts, the response of the system is also split into
two parts. For the first time period, 0 ≤ t ≤ t1 the scenario looks exactly like the
case of Example 2.6 (the system is always under the influence of F0 during this time
interval). Hence, the response of the system in this interval is given by Eq. (2.53).
For the second time interval, t1 ≤ t , the convolution integral, Eq. (2.49), is applied
as

x(t) = 1

mωn

∫ t1

0
F0 sin[ωn(t − τ )]dτ + 1

mωn

∫ t

t1

0 × sin[ωn(t − τ )]dτ (2.62)

where the integral has been split into two parts to account for the discontinuity of the
force over time, as expressed in Eq. (2.61). Calculating the above integrals yields

x(t) = F0

k
{cos[ωn(t − t1)] − cos(ωnt)} . (2.63)

In summary, the response of the system is given by

x(t) =

⎧
⎪⎪⎨

⎪⎪⎩

F0

k
[1 − cos(ωnt)] 0 ≤ t ≤ t1

F0

k
{cos[ωn(t − t1)] − cos(ωnt)} t1 ≤ t

. (2.64)

Fig. 2.22 A rectangular pulse
that can be used to model
shock forces
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2.7 Vibrations of Two-Degree-of-Freedom Systems

This section presents an introduction to an important topic, which is the vibration of
multi-DOF systems. This topic is too big to be covered in a single section or even
in a single chapter. Here, we attempt to go over the basic elements of this subject,
which have direct applications in MEMS. For more in-depth coverage of this topic,
the reader is referred to any of these books [1–5].

We focus next on systems that need two independent coordinates to describe
their motions. These are called 2-DOF systems. Figure 2.23 shows examples of
such. Note that for each system, two independent coordinates are needed to fully
describe the motion, which can be translational or rotational coordinates. Examples
of such systems in MEMS include filters made of two coupled oscillators, gyroscopes,
directional microphones, and devices placed over flexible printed-circuit boards.

2.7.1 Undamped Free Vibration and Eigenvalue Problem

As with SDOF systems, we start by analyzing the free vibration of 2-DOF systems. To
illustrate the procedure, we consider as an example the system shown in Fig. 2.24. The
first step in the analysis is to write the equations of motion for the system. Typically,
this can be done using Lagrange’s or energy approaches for complicated multi-DOF
systems. These are outside the scope of this book. Hence, whenever it is possible, we

k2

m2

x2

k1

x1

k1 k2

x

k
m1

x

�

�

k1

m

x

k2

y

m1

m2

Fig. 2.23 Examples of 2-DOF systems
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k

m

x2

k

m

x1

k

Fig. 2.24 A 2-DOF system

will use the Newtonian or force-diagram approach. In this approach, each mass is
separated from the system and all the forces acting on it in the considered directions of
motion are considered. In this example, the masses move in the horizontal direction,
hence the horizontal forces are analyzed. Assuming each mass is displaced to the
positive direction to the right, the resistance forces will be as depicted in Fig. 2.25.

Based on Fig. 2.25, the equation of motion of each mass is written as

−kx1 + k(x2 − x1) = mẍ1 ⇒ mẍ1 + 2kx1 − kx2 = 0 (2.65)

−kx2 − k(x2 − x1) = mẍ2 ⇒ mẍ2 − kx1 + 2kx2 = 0. (2.66)

Equations (2.65) and (2.66) are two coupled linear second-order differential equa-
tions. The fact that they are coupled means that we cannot solve one equation inde-
pendently from the other; both need to be solved simultaneously. For convenience,
we cast them in a matrix format as

[
m 0
0 m

]

︸ ︷︷ ︸
[m]

{
ẍ1

ẍ2

}
+
[

2k −k

−k 2k

]

︸ ︷︷ ︸
[k]

{
x1

x2

}
=
{

0
0

}
(2.67)

where [m] is called the mass matrix and [k] is called the stiffness matrix. To solve
the system of Eq. (2.67), we assume

x1 = X1e
iωt

x2 = X2e
iωt (2.68)

where i is the imaginary root. This is equivalent to assuming that each mass vibrates
in harmony with the other; hence, they vibrate with the same frequency ω but with

Fig. 2.25 Force diagrams
showing the horizontal forces
of the two masses of Fig. 2.24
when displaced to the right

m

x1, x1

kx1 k(x1 − x2)
m

kx2

x2, x2
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different amplitudes, X1 and X2 for mass one and two, respectively. Substituting
Eq. (2.68) into Eq. (2.67), dividing by eiωt , and regrouping the coefficients yield

[
[k] − ω2[m]

] {X} ⇒
[

2k − ω2m −k

−k 2k − ω2m

]{
X1

X2

}
=
{

0
0

}
. (2.69)

Equation (2.69) is a homogenous algebraic system of equations in X1 and X2. Mul-
tiplying both sides by the inverse of the matrix

[
[k] − ω2[m]

]
yields simply that X1

and X2 are zeros (trivial solution) meaning no vibrations. Our only hope for not
ending with this result is to reconsider the matrix

[
[k] − ω2[m]

]
and assume that this

matrix is non-invertible (singular matrix). Mathematically this means its determinant
must be equal to zero.

To summarize, to obtain nontrivial solutions, we need to solve Eq. (2.69) as an
eigenvalue problem by first setting the determinant of

[
[k] − ω2[m]

]
equal to zero.

This yields the following quadratic (characteristic) equation in ω2:

(
2k − ω2m

)2 − k2 = 0. (2.70)

Solving Eq. (2.70) for ω2 yields the so-called eigenvalues

ω2 = k

m
; ω2 = 3k

m
. (2.71)

Taking the square roots yields

ω1 =
√

k

m
; ω2 =

√
3k

m
;

ω3 = −
√

k

m
; ω4 = −

√
3k

m
. (2.72)

The positive roots, ω1 and ω2, are the natural frequencies of the system. This is a
major feature characterizing 2-DOF systems compared to SDOF systems; they have
two natural frequencies instead of one. To proceed, we need to solve for the ratio of
X1 with respect to X2, the so-called eigenvectors or modeshapes, for each eigenvalue.
For this, each value of ω2 in Eq. (2.71) is substituted into Eq. (2.69). Then, one of
the two resulting equations in X1 and X2 is solved to determine the ratio X1/X2. The
second equation is dependent on the first, hence one needs to use only one of the two
equations. Substituting ω2 = k/m and adopting the first equation (first row) gives

(
2k − k

m
× m

)
X1 − kX2 = 0 ⇒ X1

X2
= 1. (2.73)

From Eq. (2.73), we say that the first eigenvector v1 corresponding to the natural

frequency ω1 is equal v1 =

{
1
1

}
. This means that for some initial conditions, if the

system happens to vibrate in ω1 only, then the ratio of the displacement of the first
mass to the second mass is equal 1. In another word, if the first mass is displaced a
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distance one unit to the right, the second mass will also be displaced a one unit to
the right. This is the meaning of the eigenvector or modeshape.

Similarly, substituting ω2 = 3k/m and adopting the first equation give
(

2k − 3k

m
× m

)
X1 − kX2 = 0 ⇒ X1

X2
= −1. (2.74)

From Eq. (2.74), the second eigenvector v2 corresponding to the natural frequency

ω2 is equal to v2 =
{

1
−1

}
. This means that for some initial conditions, if the system

happens to vibrate in ω2 only, then the ratio of the displacement of the first mass to
the second mass is equal − 1. In another word, if the first mass is displaced a distance
one unit to the right, the second mass will also be displaced a one unit to the left.
We should mention here that an eigenvector is arbitrary within a constant. So if we
multiply it by any number α, it remains the same eigenvector. What really matters is
the ratio between the individual elements of the eigenvector and not their absolute
values.

After finding the natural frequencies and modeshapes, the free response of each
mass can be expressed in term of those as

{
x1(t)
x2(t)

}
= B1

{
1
1

}
eiω1t + B2

{
1
1

}
e−iω1t

+ B3

{
1

−1

}
eiω2t + B4

{
1

−1

}
e−iω2t (2.75)

where B1–B4 are constants of integration, which are determined from the initial
conditions of the system. Equivalently, Eq. (2.75) can be rewritten as

{
x1(t)
x2(t)

}
= A1

{
1
1

}
sin(ω1t + φ1) + A2

{
1

−1

}
sin(ω2t + φ2) (2.76)

where also the constants A1, A2, φ1, and φ2 are determined from the initial conditions
of the system, for example Eq. (2.77) below:

x1(0) = x10; x2(0) = x20; ẋ1(0) = v10; ẋ2(0) = v20. (2.77)

Substituting Eq. (2.77) in either Eq. (2.75) or Eq. (2.76), four algebraic equations
are obtained for the constant of integrations, which are then solved simultaneously.

2.7.2 Modal Analysis

Modal analysis is the key procedure to study the damped and forced vibrations of
multi-DOF systems. In this procedure, the coupled system of differential equations
governing the vibration of a multi-DOF system is decoupled into independent SDOF
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systems, which can be solved using the information in Sects. 2.2–2.6. To illustrate
the procedure, consider the below undamped multi-DOF system subjected to the
force vector {F(t)}:

[m]{ẍ} + [k]{x} = {F (t)}. (2.78)

In Eq. (2.78), the matrices [m] and [k] are generally not diagonal, and hence the
equations of motion are coupled. To decouple them, a transformation is used that
transforms the physical coordinates {x} into “modal coordinates” {y} as

{x} = [s]{y} (2.79)

where the transformation matrix [s] is composed of the normalized eigenvectors of
the system vn

j , calculated as in Sect. 2.7.1, being put in columns as

[s] = [vn
1vn

2vn
3 . . . .]. (2.80)

The normalization of the eigenvectors is done as below

{vn
j }T [m]{vn

j } = 1 (2.81)

where the superscript T denotes transpose.
Next, we substitute Eq. (2.79) into Eq. (2.78) and multiply the outcome by [s]T

[s]T [m][s]{ÿ} + [s]T [k][s]{y} = [s]T {F (t)}. (2.82)

It turns out that the following facts are true for Eq. (2.82) and the transformation
matrix [s]:

• [s]−1 = [s]T [m].
• [s]T [m][s] = [I ], where [I ] is the identity matrix.
• [s]T [k][s] = [�], where [�] is a diagonal matrix composed of the eigenvalues of

the system, that is [�] =
⎡

⎣
ω2

1
ω2

2
. . .

⎤

⎦ .

Thus, our objective of getting diagonal matrices is achieved. The individual SDOF
equations due to the transformation are written as

ÿ1 + ω2
1 y1 = f1

ÿ2 + ω2
2 y2 = f2

...
...

...
...

(2.83)

where f 1, f 2 . . . are the modal forces. For a 2-DOF system, they are given by

{
f1(t)
f2(t)

}
= [s]T

{
F1(t)
F2(t)

}
. (2.84)
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Equations (2.83) are solved as presented in Sects. 2.2–2.6 for their homogenous part
(transient) and forcing part (steady state). For the transient behavior, the modal initial
conditions, for instance for a 2-DOF system, are calculated by

{
y1(0)
y2(0)

}
= [s]T [m]

{
x1(0)
x2(0)

}
;

{
ẏ1(0)
ẏ2(0)

}
= [s]T [m]

{
ẋ1(0)
ẋ2(0)

}
.

(2.85)

Once the modal coordinates are obtained, Eq. (2.79) is used to transform back to the
physical coordinates.

A final note is regarding damping. Damping can pose challenges to modal analysis
unless it is of proportional type. This is more of a mathematical concepts, which
means that the damping matrix [c] depends on the mass and stiffens matrices, that
is [c] = α[m] + β[k], where α and β are constants. We refer to [1–5] for further
information on proportional damping. In addition, damping ratios can be imposed
directly on Eq. (2.83) through experience or measurements [1]. Hence, the damped
modal equations become

ÿ1 + 2ζ1 ω1 ẏ1 + ω2
1y1 = f1

ÿ2 + 2ζ2 ω2 ẏ2 + ω2
2y2 = f2

...
...

...
...

(2.86)

Each equation above is dealt with as explained in Sects. 2.3–2.6.

Example 2.9: Consider the system of Fig. 2.24. Assume a harmonic force F1 =
cos(	t) is acting on the first mass only and that the modal damping ratios for the
first and second modes of vibrations are 0.05, 0.02, respectively. Consider m = 1 kg
and k = 100 N/m. Calculate the steady-state response of each mass as a function of
	 and plot their response for 	 = 15rad/s.

Solution: This is a forced vibration of a 2-DOF system. One method to solve it
is using modal analysis. Hence, the first step is to calculate the matrix [s]. From
Sect. 2.7.1, we obtained v1 and v2. So the next step is to normalize them according
to Eq. (2.81). This means, we need to evaluate α to satisfy Eq. (2.81), that is

α{vn
1}T [m]α{vn

1} = 1 ⇒ α2[1 1]

[
m 0
0 m

]{
1
1

}
= 1 ⇒ α = 1√

2m
. (a)

Hence,

vn
1 = 1√

2m

{
1
1

}
. (b)

Similarly,

vn
2 = 1√

2m

{
1

−1

}
. (c)
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The transformation matrix is written as

s = 1√
2m

[
1 1
1 −1

]
. (d)

The second step is to calculate the modal forces according to Eq. (2.84):
{
f1(t)
f2(t)

}
= [s]T

{
cos(	t)

0

}
= 1√

2m

{
cos(	t)
cos(	t)

}
. (e)

Next, the modal equations are written according to Eq. (2.86). Substituting the values
of k, ζ1, ζ2, and m and recalling the values of ω2

j from Sect. 2.7.1 yield

ÿ1 + 2ζ1ω1ẏ1 + ω2
1y1 = f1 ⇒ ÿ1 + ẏ1 + 100y1 = cos(	t)√

2

ÿ2 + 2ζ2ω2ẏ2 + ω2
2y2 = f2 ⇒ ÿ2 + 0.7ẏ2 + 300y2 = cos(	t)√

2
.

(f)

Equations (f) are solved according to Eqs. (2.32)–(2.34) as below:

y1(t) = Y1 cos(	t − θ1)
y2(t) = Y2 cos(	t − θ2)

(g)

where

Y1 = 1/
√

2
√

(100 − 	2)2 + (	)2

Y2 = 1/
√

2
√

(300 − 	2)2 + (.7	)2

(h)

θ1 = tan−1

(
	

100 − 	2

)

θ2 = tan−1

(
0.7	

300 − 	2

)
.

(i)

Transforming back to the physical coordinates using Eq. (2.79) yields
{

x1

x2

}
= 1√

2

[
1 1
1 −1

]{
Y1 cos(	t − θ1)
Y2 cos(	t − θ2)

}
. (j)

Substituting for the values of Y 1 and Y 2 gives the final expressions for x1 and x2:

x1(t) = cos(	t − θ1)

2
√

(100 − 	2)2 + (	)2
+ cos(	t − θ2)

2
√

(300 − 	2)2 + (.7	)2
(k)

x2(t) = cos(	t − θ1)

2
√

(100 − 	2)2 + (	)2
− cos(	t − θ2)

2
√

(300 − 	2)2 + (.7	)2
. (l)

Figure 2.26 shows the response of each mass in time.
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Fig. 2.26 The time–history response of the first and second mass of Example 2.9

2.7.3 Resonances in 2-DOF Systems

In a 2-DOF system, there are two resonance frequencies (and in an n-DOF systems,
there are n resonance frequencies). They occur when the system is excited near one
of its natural frequencies. For example, for the system described in Sect. 2.7.1 and
in Example 2.9, we should expect resonances near 	 = 10 rad/s and 17.3 rad/s. The
next example illustrates this further.

Example 2.10: Plot the frequency–response curves of the system of Example 2.9
and show its resonances.

Solution: The responses are given in Eqs. (k) and (l) in Example 2.9. To plot the
frequency–response curves, we need to rewrite the response expression in terms of
amplitude and phase. For simplicity, we let

A1 = 1

2
√

(100 − 	2)2 + (	)2
; A2 = 1

2
√

(300 − 	2)2 + (.7	)2
. (a)

Then, using trigonometric identities of the cosine of the sum of two angles, it can be
shown that

x1(t) = X1 sin[	t + �1]; x2(t) = X2 sin[	t + �2]; (b)

where

X 1,
2

=
√

A2
1 + A2

2 ± 2A1A2 cos(θ1 − θ2) (c)

� 1,
2

= tan−1

(
A1 sin(θ1) ± A2 sin(θ2)

A1 cos(θ1) ± A2 cos(θ2)

)
. (d)

Figure 2.27 shows the frequency–response curve obtained from Eqs. (a) and (c). It
is clear that both masses exhibit resonant behaviors near the natural frequencies of
the system at 	 = 10rad/s and 	 = 17.3rad/s.
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Fig. 2.27 Frequency–
response curves of the
first and second mass
of Example 2.9
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2.8 Numerical Integration

In the previous sections, we discussed analytical techniques to solve for the response
of systems to initial conditions and to forcing, harmonic and arbitrary. The analytical
results and expressions can reveal valuable information about the response without
even plugging numbers. However, in many situations, such as in the presence of
nonlinearities, analytical solutions may not be available or possible. Even if the
analytical solutions are available, it is recommended to check the validity of these
using numerical techniques and software. Numerical techniques, such as the Runge-
Kutta method, can be used to integrate the equation of motion in time, and hence
solve the equation of motion numerically.

This section gives an introduction to the numerical integration techniques using
the software Mathematica [12] and Matlab [13]. These will be used and referred
to more frequently in the subsequent chapters. In Matlab, there are many ordinary-
differential equations (ODE) solvers, such as ode45 and ode23. To use those, the
user needs to write a main program, an m file, to input the various parameters of
the problem and to process the obtained solutions, and a subprogram, another m
file, which contains the equations of motion written in state-space representation. In
Mathematica, one can use the command NDSolve, which does not require casting
the equations in state-space format. Without further introduction, we demonstrate
the use of these in the following examples.
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Example 2.11: Write Matlab and Mathematica codes to simulate the response
of a spring–mass–damper system to a generic excitation force using numerical
integration. Then, solve Example 2.2 and compare to the analytical results.

Solution:

1. Matlab: To solve this problem in Matlab, the equation of motion needs to be
rewritten in state-space representation, which is to transform the equation of mo-
tion into a system of first-order differential equations in time. Consider below the
general SDOF equation normalized by the mass:

ẍ + c

m
ẋ + k

m
x = F (t)

m
. (a)

To write Eq. (a) in a state-space form, we let x1 = x and x2 = ẋ. Then Eq. (a)
becomes:

ẋ1 = x2;

ẋ2 = − c

m
x2 − k

m
x1 + F (t)

m
.

(b)

The below Matlab code is used to find the response of Example 2.2. The code
yields the same results as shown in Fig. 2.8.

(a) The main Program (the m file is called main1).

%This program solves the response of a SDOF system to
% a generic force.
%Below is the solution for example 2.2 using
%numerical time integration.
clear all;clc;close all
global m k c F %This is to make those parameters
%identified in both the main program and the
%subprogram.
m=1;
k=100;
c=1;

%Tint is the time interval for the time integration
%(start and end).
tend=12;
Tint=[0 tend];

%Below are the initial conditions of the system.
x0=0;
v0=0.01;
Int=[x0 v0];

%This the main time integration command. It calls
%a subroutine that we build in a separate m-file,
%called eq1. The output will be two vectors: t:
%refers to the time vector and x1: refers to the
%displacement vector.
[t,x1]=ode45('eq1',Tint,Int);
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%Below is the plot of the solution in mm.

plot(t,x1(:,1)*1000);xlabel('t(s)');ylabel('x (mm)');

(b) The subroutine program (the m file is called eq1).

%This is the subprogram or subroutine where the
%equations of motion are entered.
%The subroutine must be named as it was called in
%the main program (in this case it must be
%named 'eq1'
function dxdt(eq1(t,x)
global m k c
F=0; %This is the forcing in the system.
%The equations of motion below are written in
%state-space form.
dxdt=[x(2);

-k/m*x(1)-c/m*x(2)+F/m];

2. Mathematica: Below are the command lines to solve this problem (note that
in Matheamtica multiplication is expressed using a space between the various
variables and numbers):

tend=12;
x0=.0;
v0=0.01;
m=1;
k=100;
c=1;
solution(Flatten[NDSolve[{x"[t]+c/m x'[t]+k/m
x[t]==0,x[0]==x0,x'[0]==v0},x[t], {t,tend},MaxSteps→109]];
Plot[ Evaluate[(x[t])*1000 /.solution],

{t,0,tend},PlotRange→All,AxesLabel→{"t (s)","x (mm)"}]

Example 2.12: Solve Example 2.6 using numerical integration assuming F0 = 10
N, m = 1 kg, and k = 100 N/m and compare to the analytical results.

Solution: ωn = √
k/m = 10 rad/s. Hence, the analytical solution Eq. (2.53)

becomes

x(t) = 0.1[1 − cos(10t)]. (a)

1. Matlab: We use similar m-files of the previous example with slight modifications
for this problem input. Figure 2.28 shows the results. Below are the used code:

(a) The main program (the m file is called main2).

%Below is the solution for example 2.12 using numerical
time integration.
clear all;clc;close all
global m k c
m=1;
k=100;
c=0;
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Fig. 2.28 A comparison of the time history response of Example 2.12 obtained analytically (left)
to that obtained using time integration (right)

tend=5;
Tint=[0 tend];

x0=0;
v0=0.01;
Int=[x0 v0];
[t,x1]=ode45('eq2',Tint,Int);

%Below is the plot of the numerical solution in mm.
plot(t,x1(:,1)*1000);xlabel('t (s)');ylabel('x (mm)');

%Below is the plot of the analytical solution in mm.
Xanalyt=0.1*(1-cos(10*t));
figure; plot(t,Xanalyt*1000,'--');

xlabel('t (s)');ylabel('x (mm)');

(b) The subroutine program (the m file is called eq2).
%This is the subprogram named 'eq2'
%function dxdt(eq2(t,x)
global m k c
F=10*stepfun(t,0); %This defines a unit-step function
%multiplied by 10.
%The equations of motion below are written in state-
%space presentation.
dxdt=[x(2);

-k/m*x(1)-c/m*x(2)+F/m];

2. Mathematica: The same command lines of Example 2.11 can be used after
adjusting the damping and the forcing as below:

solution=Flatten[NDSolve[{x"[t]+c/m x'[t]+k/m

x[t]==10 UnitStep[t], x[0]==x0, x'[0]==v0}, x[t],

{t,tend},MaxSteps→10∧9]];
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2.9 MEMS Band-Pass Filters

Perhaps one of the earliest researched MEMS devices since the beginning of the
technology is the MEMS band pass filter. Since the mid-sixties, Nathanson and
coworkers at Westinghouse demonstrated in a series of papers the attractive features
of electrostatically actuated microbeams, called resonant gate transistors, such as
their high-quality factors, their excellent thermal properties, and their desirable band-
pass filter characteristics [14, 15]. This is in addition to the more significant advantage
of their ability to interface with integrated electronics at the board level (on-chip
integration), which is essential for miniaturization. This cannot be achieved with
conventional off-chip bulky filters. Nathanson et al. [14, 15] have noticed that the
distinctive large response of these microbeams when driven near their resonance
frequencies qualify them as distinguished band pass filters, which pass signals at
frequencies within a certain range near resonance and attenuate signals at frequencies
outside this range. Nowadays, MEMS filters are commonly used in communication
systems, such as wireless and cellular applications. They come in various designs
and shapes, and not necessarily based on coupled vibrating systems.

In addition to realizing a band-pass filter from the vibration of a single microstruc-
ture near resonance, Nathanson et al. [15] have proposed the use of coupled multiple
filters to improve their performance. This is achieved by mechanically connecting
more than one vibrating microstructure of close resonant frequencies to each other
through a weak mechanical coupler, for example Fig. 2.29. The bandwidth of the
filter is then determined by the stiffness of the mechanical coupler. This has the
effect of widening the bandwidth of the filter and improving the roll-off from the
pass-band to the stop-band (making the transition from the resonance regime to
nonresonant regime steeper and faster). In recent years, many studies have been
presented on MEMS filters to increase their operating frequency and improve their
overall performance, see for instance [16–18].

Fig. 2.29 Schematic of one
of the possible configurations
of a MEMS band-pass filter

Input 
Vibrations

output 
Vibrations

Coupler



2.9 MEMS Band-Pass Filters 53

Fig. 2.30 The response of a
band-pass filter showing
some of its key parameters
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Figure 2.30 shows an example of the response of a band-pass filter explaining
some of its main characteristics. A good band pass filer in general has a high-quality
factor, low insertion loss (insertion loss is the ratio of output to input signals of
the filter; it measures the reduction of the signal power as it passes the filter), flat
pass band (minimum ripples), and sharp or rapid roll off from the pass-band to stop
band.

Example 2.13: Consider the 2-DOF model of a band-pass filter of Fig. 2.31. Assume
m = 0.1 g, k = 1 N/m, c = 0.6 g/s and F = 0.1 μN. Calculate the response of the second
unforced mass (output) for (a) δk = 0.06N/m and (b) δk = 0.1N/m.

Solution: The equation of motion of the system can be written as

mẍ1 + cẋ1 + (k + δk)x1 − δkx2 = F cos 	t (a)

mẍ2 + cẋ2 + (k + δk)x2 − δkx1 = 0. (b)

F1 = F cos(Ωt)

cc

δk

x2
k

x1
k

mm

Fig. 2.31 A model of a two coupled microstructures acting as a band-pass filter
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Fig. 2.32 The response of the unforced mass of Fig. 2.31 showing a band-pass filter characteristic

Using modal analysis as in Sect. 2.7.1, it is found that the natural frequencies of the
system are expressed as

ω1 =
√

k

m
; ω2 =

√
(k + 2δk)

m
. (c)

Hence, one can see that the larger the value of δk is the larger the separation between
the two frequencies is, which means a wider bandwidth. Equations (a) and (b) can be
solved using modal analysis, similar to Sect. 2.7.2, or can be integrated numerically
directly, as in Sect. 2.8. Here we choose to use the second method as an exercise
toward learning the procedure for the more complicated nonlinear problems. In this
method, a for-loop is built to run over several values of excitation frequencies. At each
excitation frequency, a numerical integration of the equations of motion is carried
out over a sufficient period of time that guarantees that the system reaches steady-
state response (one can check this visually by plotting the time history response for a
single excitation frequency). Then, the maximum value of the response over the last
oscillation period of the time response is calculated. This represents a single point on
the frequency response at the current excitation frequency of the for-loop. Repeating
this for several values of the excitation frequency yields the complete frequency–
response curve. The results are depicted in Fig. 2.32. Note that the bandwidth has
increased with the increase of δk.

Problems

1. For the SDOF system of Fig. 2.4a, given m = 1 kg, k = 100 N/m, and assuming the
system has trivial initial conditions, calculate and plot the response of the system
for the following cases:
(a) c = 0 kg/s.
(b) c = 2 kg/s.
(c) c = 20 kg/s.
(d) c = 40 kg/s.
(e) Verify your results in (a)–(d) using numerical integration for the equation of

motion, as in Sect. 2.8, using Matlab or Mathematica.
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2. For the SDOF system of Fig. 2.9a, given m = 10 kg, k = 4000 N/m, and c =
200 kg/s, calculate

(a) The undamped natural frequency.
(b) The damped natural frequency.
(c) The resonance frequency.
(d) The peak frequency (where the amplitude of the response is maximum).
(e) The steady-state amplitude of the response at resonance.
(f) The peak steady-state amplitude (at the peak frequency).
(g) Verify your results in (e) and (f) using numerical integration for the equation

of motion, as in Sect. 2.8, using Matlab or Mathematica.

3. Assume the device of Fig. 2.16a, with m = 0.01 kg, k = 100 N/m, and c = 0.2 kg/s,
is subjected to a harmonic base excitation of amplitude 10 mm. Calculate the
maximum steady-state relative deflection of the device with respect to the base
for:

(a) Excitation frequency equals 10 Hz.
(b) Excitation frequency equals 30 Hz.
(c) Excitation frequency at resonance.

4. Solve Example 2.8 assuming a triangular pulse force, Fig. 2.33, instead of the
rectangular pulse of Fig. 2.22. (Hint: you may want to use Mathematica to carry
out the convolution integrals).

5. For the 2-DOF system of Fig. 2.34, write the equations of motion for the system
and then calculate

(a) The natural frequencies of the system.
(b) The corresponding mode shapes.
(c) The transformation matrix S.
(d) The amplitude of the steady-state response of each mass for 	 = 10 rad/s

assuming m = 1 kg and k = 100 N/m.
(e) Verify your results in (d) using numerical integration for the equation of

motion, as in Sect. 2.8, using Matlab or Mathematica.
(f) The values of 	 that will cause resonance for the system.

6. Consider the band-pass filter of Example 2.13. Investigate the variation of the
damping coefficient c on the performance of the filter.

Fig. 2.33 Schematic of a
triangular pulse for Problem 4
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F2 = cos( Ωt )

k

x2

3k

x1

2mm

Fig. 2.34 The two-DOF system of Problem 5
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