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Gröbner Bases, Coding, and Cryptography:
a Guide to the State-of-Art

Massimiliano Sala

1 In the Beginning

Last century saw a number of landmark scientific contributions, solving long-
standing problems and opening the path to entirely new subjects. We are interested
in three1 of these:

1. Claude Shannon’s (1948),
2. Claude Shannon’s (1949),
3. Bruno Buchberger’s (1965)

The title of Shannon’s (1948) paper says it all: “A mathematical theory of com-
munication”. It was later reprinted as Shannon and Weaver (1949) with an even
more ambitious title: “The Mathematical Theory of Communication”. Although
people have exchanged information in speech and writing for centuries, nobody
had ever treated the information exchange (or even information itself) in a rigorous
mathematical way. In Shannon’s time there was a need for it, since the last century
saw a dramatic increase in the amount and speed of information exchange, with the
spreading of new media, like radio, television and telephone.

In Shannon (1948), communication theory is the study of some stationary sto-
chastic processes. Random variables describe information sources and probability
distributions describe channels, through which information is sent. Noisy channels
are modelled and (error correcting) codes are introduced to permit information re-
cover after the transmission. In particular, the (probabilistic) foundation of Coding
Theory was laid.

One year later, another astonishing paper by Shannon appeared: Shannon (1949).
For centuries “secret codes” have been used to protect messages from unauthorized
readers. Unsurprisingly, the lack of a rigorous model for communication prevented
the study of a more specific model for secure communication. Cryptography had
been largely regarded as an art, often mixed with esoteric and obscure references.
A cipher was considered secure until an attacker could break it. Like a lighthouse
in the dark, Shannon’s paper introduces basic definitions and results, which make

1Here listed in chronological order.

M. Sala
Dept. of Mathematics, Univ. of Trento, Trento, Italy
e-mail: sala@science.unitn.it

M. Sala et al. (eds.), Gröbner Bases, Coding, and Cryptography,
DOI 10.1007/978-3-540-93806-4_1, © Springer-Verlag Berlin Heidelberg 2009

1



2 M. Sala

cryptography into a science. Shannon views a cipher as a set of indexed functions
from the plain-text space to the cipher-text space, where the index space is the key
space. Building on his previous paper, he focuses on the probability distribution of
(the use of) the keys and of the plain-texts, on the way they determine the cipher dis-
tribution and on how an attacker can use them. The paper is also full of invaluable
(and prophetic) remarks, such as: “The problem of good cipher design is essentially
one of finding difficult problems . . . How can we ever be sure that a system which
is not ideal . . . will require a large amount of work to break with every method of
analysis? . . . We may construct our cipher in such a way that breaking it is equiva-
lent to . . . the solution of some problem known to be laborious.”

Among the mathematical problems known to be “laborious” (to use Shannon’s
terminology), there is one which has always received a lot of interest: how to “solve”
a system of polynomial equations. This reduces to a more general problem: how to
represent in a “standard” way a (multivariable) polynomial ideal. Even a simple
decision problem like ideal membership2 had no way to be solved and some even
believed it was undecidable, after the word problem in group theory was proved so
in Novikov (1955, 1958).

However, in 1965 Buchberger’s (1965, 2006) thesis he presented the appropri-
ate framework for the study of polynomial ideals, with the introduction of Gröbner
bases. There is no way to summarize in a few pages the surge in computational alge-
bra research originated from Buchberger’s stunning contribution, with uncountable
applications in Mathematics, Engineering, Physics and recently even Biology and
other sciences. Fortunately, this book deals only with the applications of Gröbner
bases to coding theory and cryptography, and in the next section we will hint at
them within the book.

2 Until Now

A finite field F may not look particularly interesting to mathematicians accustomed
to infinite fields. After all, it contains only a finite number of elements. Also, all
nonzero elements are exactly the powers of a primitive element, providing a rather
dull group structure for its multiplicative elements. Nevertheless, it is a field, which
means a lot3 from the point of view of its polynomial rings and their algebraic
varieties. Moreover, it has a very peculiar property: all functions from F

n to F can be
represented as polynomials in F[x1, . . . , xn]. Here lies the heart of the interaction4

between Gröbner bases and coding theory/cryptography.

2Determining whether a polynomial belongs to an ideal I given a finite basis for I .
3For example, the number of roots of p ∈ F[x] is deg(p) (counting multiplicities).
4Some recent research has focused on special classes of rings, we will discuss it at the end of
Sect. 2.3.
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2.1 Classical Coding Theory

After Shannon (1948), coding theory has developed along two main directions:5

algebraic coding theory and probabilistic coding theory. The rationale behind the
(apparently unnatural) introduction of algebra is that it is very difficult to predict (or
even to estimate) the performance of codes constructed and decoded in a probabilis-
tic way, while already the pioneeristic work by Hamming (1950) showed how easy it
is to construct algebraic codes, with algebraic decoding, whose performance can be
easily estimated by the computation of a parameter called the (Hamming) distance.
The main objects of study in algebraic coding theory are “codes”, that is, subsets
of finite-dimensional vector spaces over F. There has been extensive study into lin-
ear codes (subspaces) and much less into non-linear codes, due to implementation
issues. A lot of research has been devoted to cyclic codes, that form a class of lin-
ear codes enjoying special algebraic properties, allowing both easier determination
of their distance and low-complexity decoders. An introduction to linear and cyclic
codes is provided in our chapter (Augot et al. 2009). The two introductory chapters
(Mora 2009a, 2009b) lay down our commutative algebra notation, sketch Gröbner
basis theory and describe its powerful results for 0-dimensional ideals.6 The first in-
stance of applications we present is the chapter on the “Cooper philosophy” (Mora
and Orsini 2009), where it is showed how to decode efficiently cyclic codes using
Gröbner bases. We have a few short notes on linear and non-linear codes, where
some Gröbner basis computation is needed:

• Lally (2009) gives a description of quasi-cyclic codes7 in term of Gröbner bases
of polynomial modules,

• Giorgetti (2009) introduces nth root codes8 and show how to compute their dis-
tance and weight distribution,

• Bulygin and Pellikaan (2009) explains how to decode a (general) linear code,
• Guerrini et al. (2009) explains how to find the distance of (systematic) non-linear

codes (and of linear codes as a special case); a variation allows to classify all such
codes with some given parameters,

• Kim (2009) presents a prize problem in coding theory about the existence of a
code with special parameters (it could be solved by a variation to the methods in
Guerrini et al. 2009),

• Borges-Quintana et al. (2009) provides a Gröbner basis description for binary
linear codes, allowing their decoding and the calculation of their distance,

• Martinez-Moro and Ruano (2009) presents a new family of linear codes endowed
with a natural Gröbner basis description.

5See our note Gluesing-Luerssen et al. (2009) for a hybrid approach.
6I.e., ideals having a finite number of solutions, as it is always the case in coding and cryptography.
7A class of linear codes which can be seen as a generalization of cyclic codes.
8A wide class of linear codes containing cyclic codes.
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2.2 AG Codes

In the eighties (Goppa 1981) the so-called AG (short for “Algebraic Geometry”)
codes were proposed. These are linear codes obtained as evaluation of function
spaces on algebraic curves. Standard results in curve theory yield sharp estimates
for their distance. Their geometric structure permits specific decoding algorithms.
For problems related to these codes, a polynomial formulation is natural and hence
Gröbner bases find a field fertile in applications. Our treatment (chapters) of AG
codes is as follows:

• Leonard (2009a) introduces the AG codes, especially the one-point AG codes,9

• Little (2009) explains their encoding (with Gröbner bases) and the relation with
the curve automorphisms,

• Sakata (2009a) describes the Berlekamp–Massey–Sakata (BMS) algorithm,
which can be specialized to decode AG codes,10 as explained in Sakata (2009b),

• Leonard (2009b) further explores their decoding.

Recently, it has been observed that the classical presentation of AG codes suffers
from some limitations, such as the need for a lot11 of theoretical prerequisites in
order to understand theory and the absence of explicit code descriptions.12 To over-
come these difficulties, a new constructive approach has been proposed: the Order
Domain codes. These codes and their relation to classical AG codes are discussed
in our chapter (Geil 2009). Interestingly, Gröbner bases have turned out to be very
convenient tools for their study.

2.3 Coding Miscellanea

Classical decoding algorithms for cyclic and AG codes can be reinterpreted in terms
of Gröbner basis computation, as explained in our chapter (Guerrini and Rimoldi
2009), where also list-decoding algorithms are detailed. A list-decoding algorithm
is an algorithm13 that decodes a received message into a list of possible codewords.
A probabilistic algorithm is then used to choose the most likely among them. These
algorithms are a compromise between algebraic decoding and probabilistic decod-
ing, which is necessary in order to fully exploit the channel capacity without losing
the advantage of the algebraic approach. Also the BMS algorithm can be adapted to
a list-decoding algorithm (Sakata 2009b).

9Which is their most important subclass, enjoying an easier description. See our note (Matthews
2009) for multi-point AG codes.
10Historically, this was the first fast algorithm to decode such codes.
11In comparison to the prerequisites for standard linear code theory.
12Which would prevent actual use of these codes.
13See also our notes (Augot and Stepanov 2009; Beelen and Brander 2009).
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We report that recently also (linear and cyclic) codes over rings have been stud-
ied. For an introduction to this theory see our chapter (Greferath 2009). Also Gröb-
ner basis theory can be adapted to special classes of rings. This is sketched in our
chapter (Byrne and Mora 2009), where it is also explained how the Gröbner ba-
sis decoding techniques in Guerrini and Rimoldi (2009) are extended to codes over
(special) rings.

2.4 Cryptography

After Shannon’s (1949) paper two main kinds of ciphers have been developed: block
ciphers and stream ciphers. Block ciphers are closer to Shannon’s original idea of
key-indexed transformations from the plain-text space to the cipher-text space, and
can be viewed as maps from F

n to F
m, for some n,m≥ 1. Stream ciphers assume the

message to come in a (ideally) infinite stream (of field elements in F) and they add14

element by element the message stream with a key stream produced by the cipher
itself. Block ciphers and their relation to Gröbner bases are discussed in our chapter
(Cid and Weinmann 2009), while stream ciphers and their relation to Gröbner bases
are discussed in chapter (Armknecht and Ars 2009). It is interesting to note that
Gröbner basis attacks on some stream ciphers have outmatched all classical attacks
and so they are now widely used for assessing the security of keystream generators
(Armknecht and Ars 2009). This is not the case for Gröbner basis attacks on block
ciphers, yet.

The problem with the ciphers as designed by Shannon is that the two peers need
to exchange the key before data transmission. This can be difficult since it requires
the presence of a secure channel. In Diffie and Hellman (1976) they solved this
problem with an ingenious key exchange protocol and their ideas were adapted to
design a cipher based on two keys, a public KP and a secret KS , such that only
a key exchange of KP in a public channel is required (see e.g. Rivest et al. 1978;
McEliece 1978). This branch of cryptography is nowadays called public key (or
asymmetric) cryptography (PKC), while traditional cryptography is called symmet-
ric cryptography. Although PKC cannot provide the same security level as symmet-
ric cryptography without a larger computational cost, in many real situations (such
as in the Internet) there is little choice. Among the PKC systems brought forward
in the last 40 years, there are two families that rely on “laborious” problems in
polynomial rings. They are deeply discussed in our chapters (Billet and Ding 2009)
and (Levy-dit-Vehel et al. 2009). The ciphers in the latter family are called Polly
Cracker systems. Although Gröbner bases are used to attack the systems discussed
in both chapters, Gröbner bases are used to build the systems themselves in the Polly
Cracker case (which then deserves a deeper analysis).

14Or, rarely, perform more complicate transformations.
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As mentioned at the beginning of the section, it is the polynomial nature of all
functions from F

n to F that allows the use of Gröbner bases in coding and cryptog-
raphy. A special case is the binary case, i.e. when F = F2, since in most applica-
tions the encoding/enciphering is binary. Any function from (F2)

n to F2 is called
a Boolean function and any function from (F2)

n to (F2)
m is a vectorial Boolean

functions. As expected, their properties are amply studied in connection with cryp-
tography problems.

We present three notes dealing with three different aspects:

• Simonetti (2009) shows how to use Gröbner bases to compute the non-linearity
of any Boolean function f , which is an important parameter in evaluating the
security of using f in building a cipher;

• Gligoroski et al. (2009b) sketches the use of (vectorial) Boolean functions in
building hash functions;15

• Gligoroski et al. (2009a) uses Gröbner bases to represent a special class of
Boolean functions (quasigroups) which are used to construct a PKC system.

3 Final Comments

In the previous sections, I have tried to convey the general plan behind our book and
its chapters (notes) division. This book is a collection of papers by many authors,
some of them with a very different background.16 As such, it cannot be read as a
text-book, but the accurate choice of the subjects should allow the reader to have a
comprehensive view of the most common applications of Gröbner bases to coding
and cryptography. It is especially important to read carefully the introductory chap-
ters and understand their notation. Within every chapter and note, I have done my
best to insert all inter-book cross-references that I felt adequate. Still, there are many
parts of the theory we have not been able to cover and a lot of further interactions
that we have not detailed.

It is my belief (shared by the Board) that this book can be an excellent guide to
the subject, both for the researcher wishing to go deeper into some unfamiliar part
of the theory and for the student approaching this area.
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