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Preamble

I was unable to devote myself to the learning of this al–jabr and the
continued concentration upon it, because of obstacles in the vagaries
of Time which hindered me; for we have been deprived of all the people
of knowledge save for a group, small in number, with many troubles,
whose concern in life is to snatch the opportunity, when Time is asleep,
to devote themselves meanwhile to the investigation and perfection of
a science; for the majority of people who imitate philosophers confuse
the true with the false, and they do nothing but deceive and pretend
knowledge, and they do not use what they know of the sciences except
for base and material purposes; and if they see a certain person seeking
for the right and preferring the truth, doing his best to refute the false
and untrue and leaving aside hypocrisy and deceit, they make a fool of
him and mock him.

Omar Khayyam,
Risala fi’l–barahin ‘ala masa’il al–jabr wa’l–muqabala

2.1 A Historical Enigma

Figure 2.1 shows cuneiform tablet no. 322 in the Plimpton Collection of the
Rare Book and Manuscript Library at Columbia University. This compilation
of sexagesimal (base 60) numbers1 is believed to originate from the ancient
Mesopotamian city Larsa (Tell Senkereh in modern Iraq) and has been dated
to the period 1820–1762 BC. It was discovered in the 1920s and acquired in a
market by the antiquities dealer Edgar A. Banks, who then sold it for $10 to
George A. Plimpton, a New York publisher and a collector of mathematical
artifacts. Plimpton bequeathed his entire collection to Columbia University
in 1936, but the significance of the tablet was not fully appreciated until a

1 Our modern use of minutes and seconds as measures of time and angle can be
traced back to the Mesopotamian sexagesimal number system.
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Fig. 2.1. Plimpton 322, the “Pythagorean triples” cuneiform tablet from the ancient
city of Larsa in Mesopotamia (∼1820–1762 BC). Reproduced with permission from
the Plimpton Collection, Rare Book and Manuscript Library, Columbia University.

thorough transcription and analysis of its contents was published [344] in 1945
by Otto Neugebauer and Abraham Sachs at Brown University.

Of all existing cuneiform mathematical tablets, Plimpton 322 has been
the subject of the most intense scholarly research [65,66,72,128,205,344,377,
378,393]. While its numerical content (and even the correction of calculation
and transcription errors therein) is no longer in doubt, the interpretation of
its mathematical significance and its “purpose” are still the subject of lively
debate and reassessment, some 60 years after its initial decipherment.

The tablet measures approximately 5 × 3 1
2 inches, but is incomplete — a

portion has broken off at the left edge, while parts of the available fragment
are damaged and hence illegible. Traces of modern glue have been identified
along the broken edge, suggesting that the tablet may have been broken after
its modern discovery. The available portion, though incomplete, nevertheless
reveals a profound degree of numeracy and algebraic sophistication.

The fragment lists fifteen rows of sexagesimal numbers arranged in four
columns, with the last column being simply a counter for the rows. A clearer
impression may be gained from the drawing by Eleanor Robson [377] shown in
Fig. 2.2. Table 2.1 presents a transcription of Plimpton 322 in modern Indo–
Arabic numerals [343], with commas employed to separate the coefficients for
successive powers of 60. In the second and third columns, it is assumed that
the right–most entries are the coefficients of unity — for example, the quantity
3,31,49 in the fourth row, second column is interpreted as

3 × (60)2 + 31 × 60 + 49 ,

or 12,709 in familiar decimal notation. However, the quantities in the first
column apparently all begin with 1, suggesting a different interpretation with
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Fig. 2.2. A scale drawing by Eleanor Robson, clarifying the cuneiform sexagesimal
numbers tabulated in Plimpton 322 — reproduced with permission from [377].

Table 2.1. Left: the transcription of Plimpton 322 by Neugebauer and Sachs [344],
including interpolated missing or corrected values in square brackets. Right: deduced
integers p and q that generate the values in the four columns of Plimpton 322.

f = [ (p2 + q2)/2pq ]2 a = p2 − q2 c = p2 + q2 #

[1;59,0,]15 1,59 2,49 1
[1;56,56,]58,14,50,6,15 56,7 1,20,25 2
[1;55,7,]41,15,33,45 1,16,41 1,50,49 3
[1;]5[3,1]0,29,32,52,16 3,31,49 5,9,1 4
[1;]48,54,1,40 1,5 1,37 5
[1;]47,6,41,40 5,19 8,1 6
[1;]43,11,56,28,26,40 38,11 59,1 7
[1;]41,33,59,3,45 13,19 20,49 8
[1;]38,33,36,36 8,1 12,49 9
1;35,10,2,28,27,24,26,40 1,22,41 2,16,1 10
1;33,45 45,0 1,15,0 11
1;29,21,54,2,15 27,59 48,49 12
[1;]27,0,3,45 2,41 4,49 13
1;25,48,51,35,6,40 29,31 53,49 14
[1;]23,13,46,40 56 1,46 15

p q

12 5
1,4 27

1,15 32
2,5 54

9 4
20 9
54 25
32 15
25 12

1,21 40
1,0 30
48 25
15 8
50 27
9 5

the left–most entries as the coefficients of unity.2 The quantity 1;48,54,1,40 in
the fifth row, first column is thus interpreted as

2 Mesopotamian numbers do not use a “sexagesimal point” to separate whole and
fractional parts, and are thus indeterminate by a power of 60 (although this is
often resolved by the context). Following Robson [377] we employ semi–colons to
denote the putative position of such points.



14 2 Preamble

1 +
48
60

+
54

(60)2
+

1
(60)3

+
40

(60)4
.

The parentheses [ ] in Table 2.1 indicate illegible entries that were “restored”
by Neugebauer and Sachs, who also corrected several apparent transcription
or calculation errors (where the listed values are inconsistent with the overall
structure apparent in the tabulation).

From a modern viewpoint, this structure is that the first three columns can
be generated from appropriately–selected integers p and q by the expressions

f =
[
p2 + q2

2pq

]2

, a = p2 − q2 , c = p2 + q2 . (2.1)

Deduced values for p and q are appended on the right in Table 2.1, where it
can be seen that 1 < q < 60, q < p, and the ratio p/q is steadily decreasing —
which also implies that the first–column entries steadily decrease. The column
headings in Table 2.1 are repeated here from (2.1) for convenience, and are
not transcriptions from the original tablet — it must be emphasized that the
manipulation of symbolic notations in mathematics was not widely practiced
prior to the Renaissance, and was certainly unknown in ancient Mesopotamia.

Neugebauer [343] observed that the values in columns two and three, and
also the denominators of the squares of the rational numbers in column one,
are intimately connected to a well–known procedure from number theory that
generates Pythagorean triples of integers (a, b, c) satisfying

a2 + b2 = c2 , (2.2)

where a, b, c denote the three sides of a right triangle (see Fig. 2.3). Namely,
when p and q range over all pairs of positive integers such that: (i) q < p;
(ii) p and q are not both odd; and (iii) p and q have no common factor other
than 1; then the expressions

a = p2 − q2 , b = 2pq , c = p2 + q2 (2.3)

yield all primitive integer solutions to (2.2) without repetition (a “primitive”
triple is one in which a, b, c have no common factor other than 1 — i.e., we
exclude solutions that are merely of the form (a′, b′, c′) = (ka, kb, kc) where
(a, b, c) is an integer solution and k is an integer greater than 1).

Mathematicians who have studied Plimpton 322 were tempted to regard
it as an exercise in number theory, in which their Mesopotamian predecessors
were engaged in computing Pythagorean triples by means of the generating
functions (2.3) — or alternatively as a trigonometric table, since the entries
in the first column amount to sec2 θ (where θ is the angle between the triangle
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b = 2 p q

a
=

p2 –
q2 c = p 2+ q 2

θ

Fig. 2.3. Right triangle with integer sides generated by expressions (2.3).

sides b and c, as in Fig. 2.3) and the resulting θ values decrease in an orderly
progression from just under 45◦ to just over 30◦.

However, Robson [377, 378] argues convincingly that such “internalized”
mathematical interpretations are unduly colored by the modern perspectives
of their authors, and do not adequately take account of the historical, cultural,
and linguistic milieu of the tablet’s creation. For example, the theory that the
Pythagorean generating functions (2.3) were directly employed in calculating
the column entries contradicts the typical orderly left–to–right calculational
progression seen on contemporaneous tablets: one would expect each line to
begin explicitly with p and q, and proceed to subsequent derived quantities
towards the right. Similarly, a trigonometric reading contradicts the absence
of a well–developed notion of angle measure in Mesopotamian mathematics.
Robson illustrates this by contrasting the Mesopotamian perspective on the
area of a circle with the modern view. The modern formula A = πr2 derives
from the genesis of a circle by the angular rotation of a vector of length r, the
radius. In Mesopotamian thought, however, the circumference C (which we
know to be C = 2πr) is predominant: they expressed the area as A = C2/4π
— with, of course, an approximate π value — i.e., they conceived of the circle
as the locus of given length C that bounds a symmetric area.

The explication of the purpose of Plimpton 322 currently considered most
likely [65, 66, 205, 377, 378, 393] is that it represents a “school text” employed
to train scribes to perform computations concerned with reciprocal numbers.
In Mesopotamian mathematics, the division p/q of two numbers p and q is
accomplished by first computing the reciprocal 1/q of the denominator, and
then multiplying it with the numerator p. The regular sexagesimal numbers
— i.e., those whose reciprocals have finite sexagesimal expressions — are of
particular importance in this regard (such numbers possess factorizations of
the form 2α3β5γ for positive integers α, β, γ). Lists of regular reciprocal pairs
are common among mathematical cuneiform tablets, and presumably served
as aides to routine computations.
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Now if p/q and q/p are a regular reciprocal pair (i.e., two numbers with
finite sexagesimal representations whose product is unity), the Plimpton 322
entries can be readily computed from them using the formulae

f =
1
4

(
p

q
+

q

p

)2

, a = pq

(
p

q
− q

p

)
, c = pq

(
p

q
+

q

p

)
. (2.4)

Such numbers occur in the solution of an equation of the form

x =
1
x

+ h (2.5)

for a regular reciprocal pair, x and 1/x, where the former exceeds the latter by
some integer amount h. The motivation for this is a “cut–and–paste” geometry
problem of the following form: given a rectangle of area A = 1 with sides x
and 1/x, the former exceeding the latter by h, we wish to determine x and
1/x from this data. We cut off a portion of width 1

2h along the side x of the
rectangle, and affix it to the top to form an L shape, as shown in Fig. 2.4. The
L shape is contained within a square of side 1/x + 1

2h, and its area A = 1
must equal the area of this square, minus the area of the smaller shaded square
shown in Fig. 2.4, of side 1

2h. Thus

1 = (1/x + 1
2h)2 − ( 1

2h)2 ,

and multiplying both sides by x yields equation (2.5). Now writing x = p/q,
the quantities 1

2h and 1/x + 1
2h arising in this construction become

1
2

(
p

q
− q

p

)
and

1
2

(
p

q
+

q

p

)
,

and if we scale them by 2pq to obtain integers, they agree precisely with the
quantities a and c in (2.4), while the quantity f represents the (unscaled) area
of the square that contains the L shape.

x = 1 / x + h

1
/x

h / 2

1 / x + h / 2

1
/x

 +
 h

/2

Fig. 2.4. Interpretation of Plimpton 322 in terms of a “cut–and–paste” geometry
problem. Left: a rectangle of unit area with reciprocal sides, x and 1/x, the former
exceeding the latter by an integer amount h. Right: cutting off width 1

2
h and placing

it on top produces an L shape within a square of side 1/x + 1
2
h. The area of this

square minus that of the smaller shaded square, of side 1
2
h, must be equal to 1.
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The interpretation of Plimpton 322 as a compilation of “cut–and–paste”
geometry exercises involving regular reciprocal pairs is perhaps more mundane
(but more credible) than “number theory” or “trigonometry” interpretations.
Even as a humble pedagogical tool, however, it suggests at least an implicit
familiarity with the concept of Pythagorean triples, and imparts respect for
the thoroughness of Mesopotamian scribal training. A sense of the dedication
and professional pride that Mesopotamian scribes possessed, as the vanguard
of human literacy and numeracy, is apparent in the following passage from
“In praise of the scribal art,” translated [417] by Åke W. Sjöberg:

The scribal art is the mother of orators, the father of masters,
The scribal art is delightful, it never satiates you,
The scribal art is not (easily) learned, (but) he who has learned it

need no longer be anxious about it,
Strive to master the scribal art and it will enrich you,
Be industrious in the scribal art

and it will provide you with wealth and abundance,
Do not be careless about the scribal art, do not neglect it . . .

2.2 Theorem of Pythagoras

Pythagoras of Samos (∼580–500 BC) is credited with the famous theorem

a2 + b2 = c2 (2.6)

that relates the hypotenuse length c of a right triangle to the lengths a, b of
the other sides. On account of its simplicity and profundity, and its archetypal
role in the emerging concept of proof, this mathematical theorem has acquired
the unusual distinction of universal recognition. However, modern scholarship
— exemplified by the exhaustive treatise of W. Burkert [74] — has demolished
the legendary and heroic stature of Pythagoras (concerning his mathematical
achievements, at least). According to M. F. Burnyeat [76]:

It is hard to let go of Pythagoras. He has meant so much to so many
for so long. I can with confidence say to readers of this essay: most
of what you believe, or think you know, about Pythagoras is fiction,
much of it deliberately contrived.

The “traditional lore” concerning Pythagoras goes as follows. He is thought
to have travelled to Egypt and perhaps Mesopotamia, acquiring scientific and
mathematical knowledge there before founding a secretive society called the
“Pythagorean school” in Crotone on the south coast of modern Italy — part of
Magna Graecia in the time of Pythagoras. The Pythagorean school’s secretive
nature, and the fact that no contemporary biography of Pythagoras survives,
have only served to enhance his legendary standing and near–apotheosis. The
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followers of Pythagoras supposedly shunned individuality, and believed that
the discovery and stewardship of knowledge should be a communal endeavor:
it was their custom to credit all discoveries to their leader.

The Pythagorean school was ultimately destroyed in a political upheaval,
possibly engendered by external suspicion of their secret and elitist practices.
Pythagoras himself fled Crotone but was pursued and killed in Metapontum.
The Pythagoreans left no written documents — what we know of their ideas
and accomplishments comes from others. It is usually claimed, however, that
they were the first intellectual society, pursuing philosophy and mathematics
for their own sake,3 and as a medium for moral advancement. Their putative
motto — All is number — expresses their faith in the unity of nature’s latent
mathematical structure, with its diverse manifestations in musical harmony,
the planetary motions, and other natural phenomena.4

The Pythagoreans pursued a fruitful mixture of algebra and geometry, in
which the emphasis was on securing the certainty and universality of results
by rigorous proof, based upon logical argument, rather than the case–by–case
examples that characterized most prior mathematics. Although commonly
attributed to Pythagoras, it has not been possible to establish with certainty
that he was the first to prove the right–triangle theorem (2.6). The form of
the proof is unknown, but is likely to have followed an intuitive geometrical
argument, such as that suggested [61] in Fig. 2.5. Four copies of a right–triangle
tile are positioned adjacent to each other, so the long side indicates the four
compass directions — north, east, south, west. Adding a small square tile
(shaded) in the center then yields the square on the hypotenuse. By a simple
re–arrangement of these tiles, it is evident that the area of this square equals
the areas of the squares on the long and short triangle sides.

The legend that Pythagoras sacrificed a hundred oxen for the Muses, to
celebrate his proof of the theorem, is likely apocryphal in view of the strict
vegeterianism of the Pythagorean school — motivated by their beliefs in the
transmigration of souls and other mystical views. Having established the basic
relation (2.6) that governs all right triangles, the Pythagoreans were naturally
interested in examples for which it is satisfied by “whole numbers” (a, b, c) —
i.e., in Pythagorean triples of integers. They were familiar with the simplest
triple (3, 4, 5) employed by the Egyptians in the construction of the pyramids,
and probably many others transmitted from Mesopotamia or discovered by
themselves. But they also devised a procedure to construct such triples, by
inserting odd numbers m into the expressions

a = 1
2 (m2 − 1) , b = m, c = 1

2 (m2 + 1) .

3 Pythagoras himself supposedly coined the terms philosophy for “love of wisdom”
and mathematics for “that which is learned” to describe the goals of his school.

4 In medieval times, the quadrivium or “four paths” (arithmetic, geometry, music,
astronomy) complemented the trivium (grammar, dialectic, rhetoric) to form the
seven liberal arts. Arithmetic was the study of pure number; geometry of number
in space; music of number in time; and astronomy of number in space and time.
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b

a
c

(i)

(iv)

(ii)

(v)

(iii)

(vi)

Fig. 2.5. By four–fold replication of the triangle in (i), and addition of the central
shaded square of side b − a, we obtain the square of area c2 on the hypotenuse in
(iv). This can be re–arranged and divided, as indicated by the dashed line in (vi),
into squares of areas a2 and b2 — hence, the Pythagorean theorem a2 + b2 = c2.

This was subsequently generalized in Euclid’s Elements — where it is shown
that, for integers u and v, the formulae

a = u2 − v2 , b = 2uv , c = u2 + v2 (2.7)

yield all Pythagorean triples. If u, v have no common factor (gcd(u, v) = 1),
expressions (2.7) define a primitive Pythagorean triple in which a, b, c have
no common factors. Of course, it is possible to generate other Pythagorean
triples by simply multiplying expressions (2.7) by any integer h > 1.

But the Pythagorean theorem also proved to be a source of consternation
to the Pythagoreans — a severe blow to their belief that all is number (where
“number” connotes a whole number or, at most, a ratio of whole numbers).
If we choose a = b = 1 in (2.6) the resulting value for c, which nowadays we
denote by

√
2 and recognize to be irrational, is not a whole number nor a

ratio p/q of whole numbers p, q. The Pythagoreans knew this, by one of the
first recorded cases of “proof by contradiction” or reductio ad absurdum. The
argument is as follows: suppose that

√
2 = p/q, where p and q are integers

with no common factors (and hence not both even). Then

p2 = 2q2 , (2.8)

so p2 is even, and p must also be even, since only the squares of even numbers
are even. Thus, p = 2r for some integer r, and substituting into (2.8) gives

4r2 = 2q2 or q2 = 2r2 .
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So q2 must be even, and q must also be even. The conclusion that p, q must
both be even contradicts the supposition that

√
2 = p/q, with p and q not

both even, and hence this supposition must be false.
The discovery of “incommensurable” lengths in elementary geometrical

configurations incurred a crisis of confidence for the Pythagorean school and
subsequent Greek geometers. Their response was to retreat within the safety of
intuitive geometrical constructions by straight–edge and compass, a strategy
that allowed them to circumvent algebraic confrontations with values that are
not exactly expressible as whole–number ratios. As with other mathematical
stumbling blocks, the ultimate solution to this impasse was to regard it as an
opportunity to define a richer and more general mathematical structure, the
continuum of real numbers, based on experience in the natural world.

The significance of the Pythagorean theorem, which has been deemed the
most fundamental result in all of mathematics, is that it lies at the foundation
of distance measurement. The use of Cartesian coordinates (x, y) to describe
the position of any point p corresponds to specifying its distances from two
orthogonal lines, the coordinate axes. The distance

d =
√

(x2 − x1)2 + (y2 − y1)2

between points (x1, y1) and (x2, y2) is then obtained by applying the theorem
to a triangle with horizontal and vertical sides x2 − x1 and y2 − y1.

With the advent of calculus, it became possible to precisely define not only
the straight–line distance between two points, but also the distance along a
curved path, i.e., to rectify5 (compute the arc length of) of curves. Applying
the Pythagorean theorem to an infinitesimal segment dξ of a differentiable
parametric curve r(ξ) = (x(ξ), y(ξ)) allows us to express its arc length as

ds =
√

x′2(ξ) + y′2(ξ) dξ ,

and the total arc length S of a finite segment ξ ∈ [ a, b ] is thus given by the
integral

S =
∫ b

a

√
x′2(ξ) + y′2(ξ) dξ .

Under what circumstances can we consider this integral exactly computable?
To obtain a closed–form reduction of the integral, the integrand must admit
an indefinite integral — or “anti–derivative” — expressible in terms of known
analytic functions, i.e., we must be able to identify a function s(ξ) such that

d
dξ

s(ξ) =
√

x′2(ξ) + y′2(ξ) .

5 The term rectification connotes the “straightening out” a curve, as though it were
a piece of string, so it can be compared with straight lines of known length.
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It is instructive to consider a sequence of progressively more difficult cases:

• if x(ξ), y(ξ) are linear polynomials — i.e., r(ξ) is a straight line — then√
x′2(ξ) + y′2(ξ) is a constant, and s(ξ) is linear in ξ;

• if x(ξ) = r cos ξ, y(ξ) = r sin ξ — i.e., r(ξ) is a circle of radius r — then√
x′2(ξ) + y′2(ξ) = r and s(ξ) is again linear in the angular variable ξ;

• if x(ξ), y(ξ) are quadratic, r(ξ) defines a parabola, and
√

x′2(ξ) + y′2(ξ)
is the square root of a quadratic in ξ — a closed–form expression for s(ξ)
involving a logarithmic terms is possible;

• when x(ξ), y(ξ) are cubic,
√

x′2(ξ) + y′2(ξ) is the square root of a quartic
in ξ, and s(ξ) can be expressed in terms of incomplete elliptic integrals —
the same is true for the ellipse and hyperbola.

For higher degree curves, the arc length integral s(ξ) does not, in general,
admit a closed–form expression. Even in the cases where such an expression
is possible, but involves transcendental functions, its cumbersome nature may
compromise its practical value.6 However, the qualification in general suggests
a possible means to ameliorate this problem: if the argument x′2(ξ) + y′2(ξ)
of the square root happens to be the exact square of some polynomial σ(ξ) —
i.e., x′(ξ), y′(ξ), σ(ξ) constitute a Pythagorean triple of polynomials satisfying

x′2(ξ) + y′2(ξ) ≡ σ2(ξ)

— then s(ξ) is just the indefinite integral of the polynomial σ(ξ), and is thus
itself a polynomial (of degree one higher). To make this a viable scheme, we
cannot depend on the Pythagorean nature of the triple x′(ξ), y′(ξ), σ(ξ) to
arise serendipitously — rather, we must ensure that we explicitly incorporate
this structure into the polynomials x′(ξ), y′(ξ) that represent the hodograph
(derivative) components of a planar curve r(ξ) = (x(ξ), y(ξ)).

Like the integers, polynomials with coefficients in any given field (e.g., the
rational, real, or complex numbers) constitute a unique factorization domain
(UFD). A UFD is, essentially, a set closed under addition or subtraction and
(commutative) multiplication, whose members admit unique decompositions
into products of prime or “irreducible” factors. In the case of integers, these
factors are of course the prime numbers. In the case of degree–n polynomials,
they are polynomials of degree ≤n with coefficients in the prescribed field
that admit no further reduction into products of lower–degree factors with
coefficients in that field (we first factor out the highest–order coefficient, to
obtain a monic polynomial whose irreducible factors are also monic).

Euclid’s characterization (2.7) of Pythagorean triples of integers may be
generalized [292] to the members of any unique factorization domain. Thus,
three polynomials a(t), b(t), c(t) with coefficients in the field of real numbers
and no non–constant common factors will satisfy the Pythagorean condition

a2(t) + b2(t) ≡ c2(t)

6 See §16.2 for a historical perspective on the curve rectification problem.
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if and only if they can be written in terms of two real polynomials u(t), v(t)
in the form

a(t) = u2(t) − v2(t) , b(t) = 2u(t)v(t) , c(t) = u2(t) + v2(t) .

Note that, for polynomials with real coefficients, the roles of a(t) and b(t) are
essentially interchangeable since we can obtain the same triple from

a(t) = 2 ũ(t)ṽ(t) , b(t) = ũ2(t) − ṽ2(t) , c(t) = ũ2(t) + ṽ2(t) ,

where ũ(t) = [u(t) + v(t) ]/
√

2 and ṽ(t) = [u(t) − v(t) ]/
√

2. By considering
curves defined by hodographs (derivatives) defined in terms of relatively prime
polynomials u(t), v(t) in the form

x′(t) = u2(t) − v2(t) , y′(t) = 2u(t)v(t)

we resolve the difficulty of rectification. For such Pythagorean–hodograph (PH)
curves, the arc length can be exactly computed through just a few arithmetic
operations on the curve coefficients, and we shall find that they possess many
other interesting and useful attributes. For space curves, the three hodograph
components x′(t), y′(t), z′(t) must be specified in terms of four polynomials
u(t), v(t), p(t), q(t) in order to satisfy a Pythagorean condition.

To facilitate their construction and analysis, it is advantageous to employ
PH curve formulations based on appropriate algebras — the complex numbers
and quaternions for planar and spatial PH curves, and Clifford algebra in an
even broader setting — this is the motivation for our present survey of algebra.
The treatment of PH curves begins in earnest in Part IV.

2.3 Al–Jabr wa’l–Muqabala

The etymological origins of the term algebra, as the descriptor of a particular
style of mathematical methodology, can be traced to the Kitab al–mukhtasar fi
hisab al–jabr wa’l–muqabala [273,380], a treatise in Arabic by the 9th–century
Persian mathematician Muhammad ibn Musa al–Khwarizmi (or Muhammad,
son of Moses, of Khwarizm). A copy of this manuscript, dated A. H. 743 (A. D.
1342), is housed in the Bodleian Library of Oxford University: see Fig. 2.6.

In rough translation, the phrase al–jabr wa’l–muqabala means “restoration
and balancing” — in reference to the rearrangements of terms in an equation,
so as to determine its solution.7 Khwarizmi’s book was translated into Latin
in 1145 by the Englishman Robert of Chester, while living in Segovia (Spain),
as the Liber algebrae et almucabola — hence the discipline algebra. The term
7 Another use of algebra was in the sense of “reunion of broken parts,” in reference

to the surgical process of setting fractured bones. According to a 1565 quotation
in the Oxford English Dictionary, “This Araby worde Algebra sygnifyeth as well
fractures of bones, etc. as sometyme the restauration of the same.”
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Fig. 2.6. Opening page (folio 1a) of MS. Huntington 214 in the Bodleian Library,
University of Oxford — a compilation of mathematical treatises including the Kitab
al–mukhtasar fi hisab al–jabr wa’l–muqabala by Muhammed ibn Musa al–Khwarizmi
and several related works by other authors. Reproduced with permission.

algorithm, prevalent in modern computer science, arose from a corruption of
al–Khwarizmi’s name through the title of the translation8 of another treatise,
dealing with the Hindu numeral system: the Algoritmi de numero Indorum.

Another famous medieval Persian algebraist (but more famous as a poet)
was Omar Khayyam (1048–1131), or Ghiyath al–Din Abu’l–Fath Umar ibn
Ibrahim al–Nisaburi al–Khayyami to be more precise, where the moniker al–
Nisaburi identifies his place of origin as the town of Nishapur in Khurasan,
and al–Khayyami reveals the family profession, namely, tent–makers. Among
his diverse mathematical, astronomical, musical, and poetical writings is the
Risala fi’l–barahin ‘ala masa’il al–jabr wa’l–muqabala (or Treatise on Proofs
in Problems of Algebra) written c. 1070 under, by his own account, difficult
circumstances of political upheaval [274]. In it he proclaims

I say, with God’s help and good guidance, that the art of al–jabr
and al–muqabala is a mathematical art, whose subject is pure number
and mensurable quantities in as far as they are unknown, added to
a known thing with the help of which they may be found; and that

8 Possibly by Adelard of Bath [75] c. 1130: the translation was discovered by Baron
Baldassarre Boncompagni in Cambridge, and published in 1857 — see [420].
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thing is either a quantity or a ratio, so that no other is like it, and
the thing is revealed to you by thinking about it. And what is required
in it are the coefficients which are attached to its subject–matter in
the manner stated above. And the perfection of the art is knowing the
mathematical methods by which one is led to the manner of extracting
the numerical and mensurable unknowns.9

This has been regarded as one of the first definitions of algebra, as a clearly–
identified and articulated field of mathematical study [478].

Among his diverse scientific accomplishments, Khayyam was engaged in
a refinement of the calendar by measuring the length of the year in days to
an accuracy of five decimal places (the true value actually varies in the sixth
decimal place over a human lifespan), and he also developed methods to solve
specific types of cubic equations “geometrically” in terms of the intersections
of conic curves. For example, he solved cubics of the form

x3 + a2x = a2b and x3 + ax2 = b3 (2.9)

in terms of the intersections of conics (see Fig. 2.7). In the former case, he
drew the parabola x2 = ay and the circle x2 + y2 − bx = 0. If P is their point
of intersection (other than the origin), and we drop a perpendicular from it
to the point Q on the x–axis, the unique real root is given by OQ. In the
latter case, he invoked the parabola y2 = b(x + a) and rectangular hyperbola
xy = b2. Dropping a perpendicular from P (their intersection point in the
right half–plane) to Q on the x–axis, the desired positive root is OQ.
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Fig. 2.7. Omar Khayyam’s solution of the cubic equations (2.9), in terms of the
parabola x2 = ay and circle x2+y2−bx = 0 on the left, and the parabola y2 = b(x+a)
and hyperbola xy = b2 on the right. In each case, the length OQ is the desired root.

Khayyam knew that some cubics possess more than one real root, and
he aspired to a method for solving general cubics. But this was not achieved
until more than 400 years later, using complex numbers, in Renaissance Italy.
Today, he is more renowned as a poet, for his famous Ruba‘iyat (quatrains),

9 As translated in S. H. Nasr, Science and Civilization in Islam [341].
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popularized by Edward FitzGerald’s translation/interpretation of 1859. These
stanzas — alternately mystical and sensual, optimistic and fatalistic — offer
a fascinating glimpse into the complexity and subtlety of Khayyam’s mind:

The moving finger writes, and, having writ,
Moves on: nor all thy piety nor wit
Shall lure it back to cancel half a line,
Nor all thy tears wash out a word of it.

It has been said of the Ruba‘iyat that “No other book of poetry has appeared
in so many guises, from the edition de luxe to the penny pamphlet” [121] —
it has even been rendered as a musical score, for voice and orchestra, by the
composer Alan Hovhaness in 1975 (opus 282).

Of course, in the time of al–Khwarizmi and Khayyam, algebraic deductions
were conducted entirely in prose: the use of symbolic methods in algebra came
much later. The universal symbol x for the unknown quantity in an algebraic
equation is thought to be derived through Spanish from the Arabic word shay’
for “thing” — by which al–Khwarizmi and Khayyam referred to the unknown.

2.4 Fields, Rings, and Groups

Beginning with the “natural” numbers (i.e., the positive integers), which arise
directly from physical experience, the development of algebra is characterized
by a steadily increasing level of abstraction in the concept of number. Despite
the absurdity of a negative number of cows or sheep, the negative numbers are
simply too useful in calculations to be disqualified on philosophical grounds.
Elementary geometrical problems soon lead to confrontations with irrational
numbers, such as

√
2, and even transcendental numbers like π. The desire to

systematically solve non–linear algebraic equations obliges us to introduce the
“two–dimensional” complex numbers a+i b, where i =

√
−1. Despite lingering

doubts over their “existence,” the complex numbers prove immensely valuable
in contexts that greatly exceed their original purpose (see Chap. 4).

The quaternions, which resulted from Hamilton’s attempt to construct a
“three–dimensional number” system, are a turning point in this development:
aspects of the familiar rules of arithmetic, formerly considered inviolable, were
for the first time relinquished — the result of multiplying two or more of these
entities depends on the order in which they are specified. This led to a certain
loss of inhibition among algebraists: the laws of algebra were no longer viewed
as immutable expressions of the natural order that governs the physical world,
but as more–or–less arbitrary rules (or axioms) that one can posit at will, in
order to investigate their logical consequences. Although this has incurred
an explosion in the variety and complexity of algebraic systems that have
been subject to detailed scrutiny, it has been convincingly argued by Morris
Kline [282] that the resulting detachment of mathematics from the “natural
world” has not been an unequivocally beneficial development.
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Since we will be working with algebraic systems such as the real numbers,
complex numbers, quaternions, polynomials, and rational functions, it is useful
to briefly review some of the basic principles used to categorize them. Suppose
a, b, c are elements of some set S, and let + and × be two binary operations
that, acting on any pair of elements from S, generate another element of S.
We postulate a set of possible rules for these operations, as follows:

A1. a + b = b + a

A2. (a + b) + c = a + (b + c)
A3. there exists z ∈ S such that a + z = a for all a ∈ S

A4. for all a ∈ S there exists −a ∈ S such that (−a) + a = z

M1. a × b = b × a

M2. (a × b) × c = a × (b × c)
M3. there exists u ∈ S such that a × u = a for all a ∈ S

M4. for all a ∈ S, except z, there exists a−1 ∈ S such that a−1 × a = u

D1. a × (b + c) = (a × b) + (a × c)

The binary operations + and × on pairs of elements in S are called addition
and multiplication. Rules A1 and M1 specify the commutative law for sums
and products, which requires the result to be independent of the order of the
two operands. Similarly, A2 and M2 specify the associative law for sums and
products: this states that the result is independent of the grouping of terms
in a sum or product of three (or more) elements. Rules A3 and M3 guarantee
that an additive identity and multiplicative identity exist as elements of S. In
all the sets that interest us, these elements of are simply z = 0 and u = 1.
Furthermore, rules A4 and M4 ensure that each element of S has an additive
inverse and (except z) a multiplicative inverse. Finally, the distributive law
D1 states that the product of an element with a sum equals the sum of the
products of that element with each of the summands.

Rules A4 and M4 allow us to introduce inverses − and ÷ to the operations
+ and ×. Specifically, we set a − b = a + (−b) and a ÷ b = a × (b−1), and
the existence of the additive and multiplicative inverse for every element of S
ensures closure under these operations, called subtraction and division.

A field is a set S whose elements are subject to a pair of operations +,×
that satisfy all of the rules A1–A4, M1–M4, and D1. Some familiar fields are
the rational numbers (i.e., fractions) Q, real numbers R, complex numbers C,
and rational functions (i.e., ratios of polynomials) with real coefficients R(t).
All these sets exhibit closure under the operations of addition, subtraction,
multiplication, and division. Moreover, sums and products in these systems
are commutative and associative, and they obey the distributive law.

A ring is a set S whose elements are subject to a pair of operations +,×
that satisfy the rules A1–A4, M2, and D1. Rule M1 may or may not be also
satisfied — if it is, we have a commutative ring, otherwise a non–commutative
ring. In other words, addition, subtraction, and multiplication (which may or
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may not be commutative) are always possible within S, although division is
not. Familiar examples of rings are the integers Z, and the polynomials R[t]
with real coefficients in some variable t. We can add, subtract, and multiply
integers or polynomials, and the result is always an integer or polynomial.
However, we cannot in general divide integers or polynomials, and expect the
result to always be an integer or polynomial.

The integers and polynomials are commutative rings, in which the order
of terms in a product does not matter. An example of a non–commutative
ring is R

n×n, the set of n × n matrices with real entries. Matrix products do
not, in general, commute — BA �= AB for general matrices A,B ∈ R

n×n so
M1 is not satisfied. Also, matrices must be non–singular to have an inverse,
so in general they do not satisfy M4 (although M3 is satisfied).

Some systems that concern us lie “between” a ring and a field in terms of
their algebraic structure — i.e., they obey all the laws of a ring, but not quite
all the laws of a field. Many commutative rings that interest us also satisfy
M3 but not M4. A system that obeys all the laws of a field except M4 is an
integral domain. The integers Z are, of course, the archetypal example of such
systems. Another example is the polynomials with real coefficients R[t] in a
variable t. We can construct a field from an integral domain by extending
membership of the set S to include all ratios a/b of elements a and b �= z.
Such quotient fields include the rational numbers (obtained from the integers)
and rational functions (obtained from the polynomials).

A system that obeys all the laws of a field except M1 is a division ring (or
a skew field or non–commutative field). The example of primary interest to us
here is the quaternions H. We defer a detailed treatment of them to Chap. 5
and simply observe now that, although every quaternion has a multiplicative
inverse, the non–commutative nature of quaternion products requires us to
make a careful distinction between the processes of “left–multiplication” and
“right–multiplication” in manipulating quaternion expressions.

Table 2.2 summarizes these classifications. However, not every system with
the two binary operations + and × will fall neatly into one of these categories.
Consider, for example, the case of interval arithmetic — which is concerned
[332, 333] with sets of real values t, of the form [ a, b ] = { t | a ≤ t ≤ b }. The
result of an arithmetic operation ∗ ∈ {+,−,×,÷} on interval operands [ a, b ]
and [ c, d ] is the set of values obtained by applying ∗ to pairs of values drawn
from each of the two intervals:

[ a, b ] ∗ [ c, d ] = {x ∗ y | x ∈ [ a, b ] and y ∈ [ c, d ] } .

From this definition, one may infer that

[ a, b ] + [ c, d ] = [ a + c, b + d ] ,
[ a, b ] − [ c, d ] = [ a − d, b − c ] ,
[ a, b ] × [ c, d ] = [min(ac, ad, bc, bd),max(ac, ad, bc, bd) ] ,
[ a, b ] ÷ [ c, d ] = [ a, b ] × [ 1/d, 1/c ] , (2.10)
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Table 2.2. Summary of rules observed ( ∗ ) or not observed ( – ) by the two binary
operations + and × in canonical algebraic systems, together with some examples.

ring
commutative

ring
integral
domain

division
ring

field

A1 ∗ ∗ ∗ ∗ ∗
A2 ∗ ∗ ∗ ∗ ∗
A3 ∗ ∗ ∗ ∗ ∗
A4 ∗ ∗ ∗ ∗ ∗
M1 – ∗ ∗ – ∗
M2 ∗ ∗ ∗ ∗ ∗
M3 – – ∗ ∗ ∗
M4 – – – ∗ ∗
D1 ∗ ∗ ∗ ∗ ∗

example R
n×n

Z, R[t] Z, R[t] H R, C, R(t)

where division is usually defined only for denominators such that 0 �∈ [ c, d ].
This system may be employed to model the propagation of errors in numerical
computations, or calculations with uncertain input values (see §12.3.4).

It can be verified that addition and multiplication are commutative and
associative, and the degenerate10 intervals [ 0, 0 ] and [ 1, 1 ] define the additive
and multiplicative identities. However, non–degenerate intervals [ a, b ] do not
have additive or multiplicative inverses (−, ÷ are not the inverses to +, ×).
Furthermore, multiplication does not in general distribute over addition —
instead, we have the sub–distributive law

[ a, b ] × ( [ c, d ] + [ e, f ] ) ⊆ ( [ a, b ] × [ c, d ] ) + ( [ a, b ] × [ e, f ] ) .

Thus, interval arithmetic has a rather unusual algebraic structure — it obeys
the rules A1–A3 and M1–M3, but not A4, M4, and D1.

We conclude by briefly mentioning the simpler algebraic structure known
as a group. This is a set S equipped with just a single binary operation. This
operation obeys the associative law, and the set exhibits closure under it — if
the group operation also obeys the commutative law, we have a commutative
(or Abelian) group, otherwise a non–commutative group. S also includes an
identity element with respect to the group operation, and each element of S
has a corresponding inverse in S. An important example is SO(n), the set of
special orthogonal real n × n matrices. A matrix is orthogonal if its inverse
is identical to its transpose, and it is special if its determinant is unity. Since
the product of two special orthogonal matrices is always a special orthogonal
matrix, such matrices constitute a (non–commutative) group under matrix
multiplication. The geometrical significance of the matrices in the group SO(n)
is that they describe rotations in the Euclidean space R

n (see §5.7).

10 By including degenerate elements, interval arithmetic subsumes the real numbers.


