
Texts in Theoretical Computer Science. An EATCS Series

Modelling Distributed Systems

Bearbeitet von
Wan Fokkink

1. Auflage 2007. Buch. vIII, 154 S. Hardcover
ISBN 978 3 540 73937 1

Format (B x L): 15,5 x 23,5 cm
Gewicht: 415 g

Weitere Fachgebiete > EDV, Informatik > Programmiersprachen: Methoden

Zu Inhaltsverzeichnis

schnell und portofrei erhältlich bei

Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft.
Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm
durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr

als 8 Millionen Produkte.

http://www.beck-shop.de/Fokkink-Modelling-Distributed-Systems/productview.aspx?product=542552&utm_source=pdf&utm_medium=clickthru_lp&utm_campaign=pdf_542552&campaign=pdf/542552
http://www.beck-shop.de/trefferliste.aspx?toc=8285
http://www.beck-shop.de/fachbuch/inhaltsverzeichnis/9783540739371_TOC_001.pdf


1

Introduction

In the context of hardware and software systems, formal verification is the act
of proving or disproving a property of a system with respect to a formal speci-
fication, using methods rooted in mathematics, such as logic and graph theory.
A formal specification of a system can help to obtain not only a better (more
modular) description, but also a better understanding and a more abstract
view of the system. Formal verification, supported with (semi-)automated
tools, can detect errors in the design that are not easily found using testing,
and can be used to establish the correctness of the design. Formal verification
has, for instance, been applied to communication and cryptographic proto-
cols, distributed algorithms, combinatorial circuits, and software expressed as
source code. A comprehensive overview of the field of formal verification can
be found in [86].

Process algebra focuses on the specification and manipulation of process
terms as induced by a collection of operator symbols. Such a process term con-
stitutes a formal specification of a system. Typically, process algebras contain
action names, to express atomic events, and the two basic operators alterna-
tive and sequential composition to build finite processes. Recursion allows one
to capture infinite behaviour.

Verifying the correctness of distributed systems is a challenge, due to their
inherent parallelism. In order to study the behaviour of distributed systems
in detail, it is imperative that they are dissected into their concurrent com-
ponents. Fundamental to process algebra is therefore a parallel operator, to
break down distributed systems into their concurrent components, at the same
time expressing the communication of corresponding send and receive events
at different components. An encapsulation operator takes care that such corre-
sponding send and receive events can only occur in synchronisation. Finally, a
hiding operator allows one to abstract away from the resulting communication
events, and from the internal events at a component.

In process algebras, each operator in the language is given meaning through
a characterising set of equations, called axioms. If two process terms (built
from the aforementioned operators) can be equated by means of the axioms,



2 1 Introduction

then they represent equivalent system behaviours. Thus the axioms form an
elementary basis for equational reasoning about processes. Process algebras
such as CCS [22, 81], CSP [64, 93] and ACP [10, 6, 41] offer an excellent frame-
work for the description of distributed systems, and they are well equipped
for the study of their behavioural properties. Temporal logics can be used to
formally express such properties.

System behaviour generally consists of a mix of processes and data. Pro-
cesses are the control mechanisms for the manipulation of data. While pro-
cesses are dynamic and active, data are static and passive. In algebraic spec-
ification [72], each data type is defined by declaring a collection of function
symbols, from which one can build data terms, together with a set of axioms,
saying which data terms are equal. Algebraic specification allows one to give
relatively simple and precise definitions of abstract data types. A major ad-
vantage of this approach is that it is easily explained and formally defined,
and that it constitutes a uniform framework for defining general data types.
Moreover, all properties of a data type must be denoted explicitly, and hence-
forth it is clear which assumptions can be used when proving properties about
data or processes. Term rewriting [99] provides a straightforward method for
implementing algebraic specifications of abstract data types. Concluding, as
long as one is interested in clear and precise specifications, and not in opti-
mised implementations, algebraic specification is the best available method.
However, one should be aware that it does not allow one to conveniently use
high-level constructs for compact specification of complex data types, nor op-
timisations supporting fast computation (such as decimal representations of
natural numbers).

Process algebras tend to lack the ability to handle data. In case data
become part of a process theory, one often has to resort to infinite sets of
axioms where variables are indexed with data values. In order to make data
a first class citizen in the formal specification of systems, the language μCRL
[54] has been developed. Basically, μCRL is based on the process algebra
ACP, extended with the algebraic specification of abstract data types. In order
to intertwine processes with data, the action names and recursion variables
that are used to express process behaviour can be parametrised with data
types. Moreover, a conditional (if-then-else) construct can be used to let data
elements influence the course of a process, and the alternative composition
operator is allowed to range over possibly infinite data domains. Despite its
lack of ‘advanced’ features, μCRL has been shown to be remarkably apt for
the description of real-life distributed systems.

A proof theory for μCRL has been developed [53], based in part on the
axiomatic semantics of the process algebra ACP and on some basic abstract
data types. This proof theory, in combination with proof methods that were
developed in e.g. [14, 58], has enabled the verification of distributed systems
in a precise and logical way, which is slowly turning into a routine. Theorem
provers such as PVS [83], Isabelle/HOL [82] and Coq [12] are being used to
help in finding and checking derivations in μCRL. A considerable number of



1 Introduction 3

distributed systems from the literature and from industry have been verified
in μCRL, e.g. [26, 49, 84, 94, 100], often with the help of a theorem prover,
e.g. [5, 13, 50]. Typically, these verifications lead to the detection of a number
of mistakes in the specification of the system under scrutiny, and the support
of theorem provers helps to detect flaws in the correctness proof, or even in
the statement of correctness.

To each μCRL specification there belongs a directed graph, called the state
space, in which the states are process terms, and the edges are labelled with

actions. In this state space, an edge p
a(d)→ p′ means that process term p can

perform action a, parametrised with datum d, to evolve into process term
p′. If the state space belonging to a μCRL specification is finite, then the
μCRL toolset [17], in combination with the CADP toolset [43], can generate
and visualise this state space. Model checking [32] provides a framework to
efficiently prove interesting properties of large state spaces, formulated in
some temporal logic. While the process algebraic proofs that were discussed
earlier can cope with an open environment, such as an unspecified data type
or network topology, the generation of a state space belonging to a distributed
system requires that the environment is given in full detail. This means that
for instance each unspecified data type (typically, the set of objects that can
be received by the distributed system from the ‘outside world’) has to be
instantiated with an ad hoc finite collection of elements, and that a particular
configuration of the network topology has to be chosen.

A severe complication in the generation of state spaces is that, in real life,
a distributed system typically contains in the order of 2100 states or more.
In that sense a μCRL specification is like Pandora’s Box; as soon as it is
opened, the state space may explode. This means that generating, storing
and analysing a state space becomes problematic, to say the least. Several
methods are being developed to tackle large state spaces. Distributed state
space generation and verification algorithms make it possible to store a state
space on a number of processors, and analyse it in a distributed fashion [16].
On-the-fly analysis [65] allows one to generate only part of a state space.
Structural symmetries in the description of a system can often be exploited to
reduce the resulting state space [31]. Scenario-based verification [36] takes as
its starting point a certain scenario of inputs from the outside world, to restrict
the behavioural possibilities of a distributed system. A μCRL specification
may be manipulated in such a way that the resulting state space becomes
significantly smaller [47]. And the ATerm library [21] allows one to store state
spaces in an efficient way by maximal sharing, meaning that if two states (i.e.,
two process terms) contain the same subterm, then this subterm is shared in
the memory space.

This text is set up as follows. Chapter 2 gives an introduction into the
algebraic specification of abstract data types. Chapter 3 provides an overview
of process algebra, and presents the basics of the specification language μCRL.
In Chap. 4 it is explained how one can abstract away from the internal and



4 1 Introduction

communication events of a process. Chapter 5 contains a number of μCRL
specifications of network protocols from the literature, together with extensive
explanations to guide the reader through these specifications. In Chap. 6 it
is explained how a μCRL specification can be reduced to a linear form, from
which a state space can be generated. Also some process algebraic techniques
are described that can be applied to such linear forms. Chapter 7 describes
verification algorithms on state spaces. In Chap. 8, techniques are presented to
analyse μCRL specifications on a symbolic level. Also a symbolic verification
of the tree identify protocol is presented. Finally, Appendix A contains a brief
explanation on how to use the μCRL and CADP toolsets.


