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Statistical Tools and Terminology

2.1 Introduction

Having classified our materials as being stochastic, we require a family of
mathematical tools to represent the distributions of their properties and some
suitable numbers to describe these distributions. This chapter provides infor-
mally some background to these tools. A real number is called a ‘random
variable’ if its value is governed by a well-defined statistical distribution. We
begin by defining some general properties of random variables and many of the
distributions that we will encounter in subsequent chapters and that we shall
use to derive the properties of stochastic fibrous materials. As well as using
standard mathematical notation, the use of Mathematica to handle statistical
functions and generate random data is introduced.

2.2 Discrete and Continuous Random Variables

We have identified the difference between stochastic and deterministic pro-
cesses as being essentially one of uncertainty. Often this uncertainty arises be-
cause we do no know enough about the factors that contribute to the state of
the process or its outcome. Consider for example the rolling of a fair six-sided
die. If we knew enough about the position, orientation in three-dimensions,
and velocity of the die at some given point in time, as well as the relevant
elastic moduli and coefficients of friction of the die and the surface onto which
we are rolling, then we might develop appropriate equations of motion and
solve these to compute the precise position at rest of the die and hence pre-
dict the number that will be rolled. This is a difficult problem to formulate,
let alone solve even if all the equations and variables were known; typically
we expect that at least the first three will be unknown. Accordingly, we have
uncertainty in our system. In fact, even if we create a machine to roll the die
identically for several throws, we expect that different outcomes will result
because of the sensitivity to even small uncertainties in the variables. We are
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unable therefore to deterministically predict the outcome of a roll and must
always be uncertain of any individual event. Despite this uncertainty, we may
be confident that the probability of rolling any number is 1

6 . Thus, whereas
we cannot predict the outcome of an individual roll, we know what all the
possible outcomes are and the probability of their occurrence. We can state
then the random variable x which represents the outcome of the roll of a die
can take the values 1, 2, 3, 4, 5 and 6 and each outcome has probability 1

6 . In
the sequel, we shall see that this characterises the random variable x as being
controlled by the discrete uniform probability distribution, P (x) = 1

6 .
We consider first the application of statistics to the description of systems

where the events within that system or the outcomes of it are discrete. This
means that each possible event or outcome has a definite probability of occur-
rence. We have just considered one such process, the rolling of an unbiased die.
Another example of a discrete stochastic process is the tossing of a coin where
the probability of the outcome being either heads or tails is 1

2 . If we assume
that the probability of the die coming to rest on one of its edges is infinitesi-
mal, then we may state that the probability of each event is 1

6 . Similarly, we
know that it is not possible to throw the die and have the uppermost face
show, for example, 4 1

2 spots. So the outcome of rolling the die is a discrete
random variable. Examples of discrete random variables that characterise the
structure of fibre networks are the number of fibre centres per unit volume or
area in the network, or the number of fibres making contact with any given
fibre in the structure. As a rule, we can expect to encounter discrete random
variables when the feature of interest, experimental conditions permitting,
may be counted; the exception to this being where only certain classes of
events exist, for example, where a fibre network is formed from a blend of
fibres manufactured with precisely known lengths which are known because
they have been measured and not because they have been counted.

Consider now the distribution of the weights of eggs produced by free-
range hens. The probability that an egg weighs precisely 60 g is very small;
as is the probability that it weighs precisely 59.9 g or 60.000001 g. It is much
easier, and certainly more meaningful, to state the probability that eggs from
these hens weigh between say 55 and 65 g or between 45 and 55 g, etc. Clearly,
the weights of the eggs differ from the rolling of a die in that we do not have
discrete outcomes; the weight of an egg is therefore classified as a continuous
random variable. Examples of continuous random variables encountered in
the description of fibre networks are the area or volume of inter-fibre voids
and the lengths of the fibrous ligaments that exist between fibre crossings.

2.2.1 Characterising Statistics

Given sample data from a system, e.g. the outcomes, xi of n rolls of a die or
the weights of n eggs, we may use statistics to characterise the population.
The most common statistics to characterise the distribution are familiar to
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most of us through the handling of experimental data. We define them here
for completeness.

Mean: The mean value of the sample data is given by the sum of all the data
divided by the number of observations. For data x1, x2 . . . xn we denote
the mean x̄ and this is given by

x̄ =
n∑

i=1

xi

n
. (2.1)

The mean is often termed the expectation or, in every-day language, the
average.

Mode: The mode is the value within our sample data that occurs with the
greatest frequency. For discrete data, this is found by inspection; for con-
tinuous data the mode is estimated from a histogram of the data as the
mid point of the tallest column.

Median: The median is occasionally used instead of the mean for the charac-
terisation of data that has a histogram that is not symmetric about the
mean; such data is described as skewed. The median is found by sorting
the data by magnitude and selecting the middle observation such that
half the observations are numerically greater than the median and half
are numerically smaller.

Variance: The variance of our data is the mean square difference from the
mean, i.e. it is the expected value of (xi − x̄)2. It is denoted σ2(x) and
given by

σ2(x) =
n∑

i=1

(xi − x̄)2

n
. (2.2)

For small samples of data, Equation 2.2 will underestimate the variance
because, for a sample of size n, each observation can be independently
compared with only (n− 1) other observations, biasing the calculation of
the variance. Accordingly, the unbiased estimate of the variance is given
by

σ2(x) =
n∑

i=1

(xi − x̄)2

n− 1
, (2.3)

and this is typically applied for samples with n less than about 20.
Standard Deviation: The standard deviation is the square root of the variance

and it is denoted σ(x). It is often preferred to the variance as it has the
same units as the original data.

σ(x) =
√
σ2(x) =

√√√√ n∑
i=1

(xi − x̄)2

n
(2.4)
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The unbiased estimate is given by

σ(x) =
√
σ2(x) =

√√√√ n∑
i=1

(xi − x̄)2

n− 1
. (2.5)

Coefficient of Variation: The coefficient of variation is the standard deviation
relative to the mean. We denote it CV (x) and it is given by

CV (x) =
σ(x)
x̄

. (2.6)

Note that the coefficient of variation is dimensionless and is often reported
as a percentage.

We classify the mean, mode and median as measures of location; they pro-
vide a measure of the magnitude of the numbers we can expect to characterise
our distribution. The variance, standard deviation and coefficient of variation
are classified as measures of spread; they provide a measure of how widely
distributed the data are in our sample or population and thus can be used to
inform how representative our measures of location are of the distribution as
a whole.

Using Characterising Statistics

We illustrate the calculation of these characterising statistics with Mathematica
by generating a sample of data representing rolls of a pair of unbiased dice us-
ing the command RandomInteger. This function generates pseudorandom
integers with equal probability, so the command RandomInteger[] will give
an output of either 0 or 1 with the probability of each outcome being 1

2 . To
represent the roll of a fair six-sided die we use RandomInteger[1,6].

Consider first the outcomes of rolling a pair of unbiased dice 20 times. The
outcomes of the experiment are recorded in the following graphic:

In fact, these dice rolls were simulated in Mathematica using RandomInteger
with the following input:

SeedRandom�1�

pairs � RandomInteger��1, 6�, �20, 2��
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which gives the output in list form which corresponds to our graphic:

Out[2]= ��5, 3�, �5, 1�, �2, 1�, �1, 3�, �1, 1�, �4, 6�, �3, 1�,

�4, 5�, �5, 2�, �4, 4�, �5, 2�, �5, 3�, �2, 2�, �5, 6�,

�5, 6�, �1, 4�, �4, 1�, �1, 3�, �4, 2�, �2, 4��

Note the use of the command SeedRandom. By including this line, Mathematica
uses the same random seed for each evaluation and we obtain the same value
for pairs each time we evaluate the code. Each pair of numbers is identified
in Mathematica by its location in the list, so we can refer to these using the
command Part or the assignment [[ ]], e.g. ,

In[3]:= Part�pairs, 4�

pairs��8��

Out[3]= �1, 3�

Out[4]= �4, 5�

The values obtained by summing the numbers shown on each pair of dice rep-
resent the random variable of interest. For the ith pair of random numbers,
we obtain their sum using Total[pairs[[i]]], and we use the command
Table to carry this out for all i:

In[5]:= rolls � Table�Total�pairs��i���, �i, 1, 20��

Out[5]= �8, 6, 3, 4, 2, 10, 4, 9, 7, 8, 7, 8, 4, 11, 11, 5, 5, 4, 6, 6�

To compute the mean of our dice rolls we need to apply Equation 2.1 and
compute the sum of all observations and divide this by the number of observa-
tions. Mathematica has a built-in command Mean to carry out this calculation:

In[6]:= Mean�rolls�

Out[6]=
32

5

The result is displayed as an improper fraction, because Mathematica has car-
ried out computations on random integers. To convert to the corresponding
numerical value, we use N:

In[7]:= N���

Out[7]= 6.4
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where the symbol % refers to the last output. To compute the variance we
require the mean square difference from the mean, as given by Equation 2.3.
We might compute this explicitly using,

In[8]:= Total��rolls � Mean�rolls�	^2� � 19

N���

Out[8]=
644

95

Out[9]= 6.77895

though again, Mathematica has the specific command Variance to handle
this for us:

In[10]:= Variance�rolls�

Out[10]=
644

95

Inevitably, the standard deviation is given by,

In[11]:= StandardDeviation�rolls�

N���

Out[11]= 2
161

95

Out[12]= 2.60364

and is the square root of the variance:

In[13]:= TrueQ
StandardDeviation�rolls� 	 Variance�rolls� �

Out[13]= True

Importantly in Version 6, Mathematica always uses Equations 2.3 and 2.5 to
calculate the variance and standard deviation when handling lists. Note that
to generate the square root operator in Mathematica we use Ctrl +2, though
we could obtain the square root of the variance using any of the following:
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Sqrt�Variance�rolls��

Variance�rolls�^�1 � 2	

Variance�rolls�1�2

Power�Variance�rolls�, 1 � 2�

where in the third example, the superscript is generated using Ctrl +6.
For completeness, we calculate the remaining measures of location and

spread for our data, as given earlier in this section:

In[14]:= Median�rolls�

Commonest�rolls� �
 Commonest � mode 
	

CVrolls � StandardDeviation�rolls� � Mean�rolls�

N�CVrolls�

Out[14]= 6

Out[15]= �4�

Out[16]=

805

19

16

Out[17]= 0.406819

The use of the command Median is an intuitive choice, but we note that
the command Mode is used in Mathematica in conjunction with commands
associated with equation solving and other operations; thus we compute the
mode using the command Commonest. Note that the output of this command
is a list enclosed in braces, { }, in our case this list has length 1, though this
need not be the case. Note also the use of the comment enclosed between
starred brackets, (* *); anything between these characters is not evaluated.

If we change the first line of our code to SeedRandom[2] we obtain a
different set of observations:

In[18]:= SeedRandom�2�

pairs � RandomInteger��1, 6�, �20, 2��

rolls � Table�Total�pairs��i���, �i, 1, 20��;

Out[19]= ��6, 2�, �3, 3�, �6, 3�, �2, 6�, �6, 1�, �1, 5�, �4, 5�,

�1, 2�, �2, 6�, �2, 6�, �5, 5�, �1, 1�, �5, 5�, �2, 3�,

�4, 4�, �1, 2�, �1, 5�, �3, 3�, �2, 6�, �5, 4��

and the output of rolls has been suppressed by ending this line of code
with a semi-colon. Calculating the mean, variance and standard deviation as
before we have,
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In[21]:= N�Mean�rolls��

N�Variance�rolls��

N�StandardDeviation�rolls��

Out[21]= 6.95

Out[22]= 5.31316

Out[23]= 2.30503

On first inspection, it is clear that the calculated mean, variance and stan-
dard deviation for our two sets of simulated dice rolls are different. This arises
because we have only a limited set of data available to characterise the dis-
tribution, i.e. we are considering the statistics of two samples that we hope
are representative of the population from which they are drawn. Using differ-
ent values of SeedRandom we have generated independent samples from the
population of dice rolls where the probabilities of a given number being shown
on the face of each dice are equal. Of course, we might pool the results of our
two samples to provide a better estimate of the statistics that characterise the
distribution:

In[24]:= SeedRandom�1�

pairs � RandomInteger��1, 6�, �20, 2��;

rolls1 � Table�Total�pairs��i���, �i, 1, 20��;

SeedRandom�2�

pairs � RandomInteger��1, 6�, �20, 2��;

rolls2 � Table�Total�pairs��i���, �i, 1, 20��;

pooledrolls � Join�rolls1, rolls2�;

Note here that the name pairs is used twice, so values arising from the
first evaluation are overwritten in the Mathematica kernel by those from the
second evaluation. The command Join concatenates the specified lists. The
characterising statistics for the pooled data are given in the usual way:

In[31]:= Length�pooledrolls�

N�Mean�pooledrolls��

N�Variance�pooledrolls��

N�StandardDeviation�pooledrolls��

Out[31]= 40

Out[32]= 6.675

Out[33]= 5.96859

Out[34]= 2.44307
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and we observe that our new estimate of the mean is precisely the mean of our
two estimates from the independent samples. The estimates of the variance,
and hence the standard deviation, lie between those of the two samples, but
are not the mean of these estimates as they are calculated on the basis of the
new estimate of the mean and a larger sample with n = 40.

Mathematica can handle very large lists very comfortably, so we get a much
improved estimate of the characterising statistics using larger n:

In[35]:= SeedRandom�1�

n � 1 000 000;

pairs � RandomInteger��1, 6�, �n, 2��;

rolls �

Table�Total�pairs��i���, �i, 1, Length�pairs���;

Mean�N�rolls��

StandardDeviation�N�rolls��

Out[39]= 7.00089

Out[40]= 2.41501

Note the placing of the command N such that the calculations are performed
on numerical rather than integer values of the random variable. This speeds
up the calculations as illustrated by use of the command Timing, which
gives the output as a list where the first term is the time taken in seconds for
Mathematica to perform the calculation:

In[41]:= StandardDeviation�rolls� �� Timing

N�StandardDeviation�rolls�� �� Timing

StandardDeviation�N�rolls�� �� Timing

Out[41]= �7.1,
3 375016153

37037

125
�

Out[42]= �8.142, 2.41501�

Out[43]= �0.09, 2.41501�

So for this example, the calculation of the standard deviation is almost 80
times faster when performed numerically.

Using our list of length 1 million, we can track the dependence of our cal-
culation of the mean and standard deviation on the size of our sample. To do
this, we compute the mean and standard deviation for samples of increasing
length, n using the command Take to extract elements from the list and the
command Table to do this for different n. In the example that follows we
compute the mean for samples of length between 100 and 100,000 in steps
of 100. The output of meanrollsn is a list of sublists, each of length 2,
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where the first element is the size of the sample, n and the second element is
the mean of that sample. Using ListPlot we are able to visualise the quality
of our estimate of the mean as we increase the sample size.

In[44]:= meanrollsn � Table��n, Mean�N�Take�rolls, n����,

�n, 100, 100 000, 100��;

ListPlot�meanrollsn, PlotRange � All,

AxesLabel � �"n", "Mean"��

Out[45]=

20 000 40 000 60 000 80 000 100 000
n

6.95

7.00

7.05

Mean

We use similar code to calculate the standard deviation for different n:

In[46]:= stdrollsn �

Table��n, StandardDeviation�N�Take�rolls, n����,

�n, 100, 100 000, 100��;

ListPlot�stdrollsn, PlotRange � All,

AxesLabel � �"n", "Standard deviation"��

Out[47]=

20 000 40 000 60 000 80 000 100 000
n

2.40

2.42

2.44

2.46

2.48

Standard deviation

From inspection of the graphical outputs generated using ListPlot we can
be reasonably confident that a sample size of some tens of thousands will
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provide us with a reasonable estimate of the characterising statistics for our
distribution. When dealing with a sample of size 1 million, we might consider
that the statistics of our sample approach those of the population. As yet,
though, we do not know precisely the characterising statistics for the popu-
lation from which our samples are drawn. Referring back to our simulation
of 1 million rolls, we might reasonably assume that the mean of the popu-
lation is 7 and the standard deviation is about 2.42. Note that if we used
SeedRandom[2] to simulate a million rolls of a pair of dice, our estimate of
the mean would change in the 4th decimal place, whereas that of the stan-
dard deviation would differ in the third. We will now consider how we can
use probability theory to obtain robust measures of location and spread for
statistical populations.

Theoretical Determination of Characterising Statistics

Numerical approaches of the type used so far are often referred to as Monte
Carlo methods and are very useful when theoretical approaches do not lend
themselves to closed form solutions. Very often however, statistical theory does
allow us to make precise statements about the properties of distributions. We
consider first theory describing the problem of rolling a single die and proceed
to consider the case of rolling a pair of dice, which we have just considered.

Consider first the rolling of a fair six-sided die. The only possible out-
comes are the integers 1 to 6 and each outcome has probability 1

6 . Since the
family of possible outcomes is limited to these values, we have a discrete
random variable and, since all outcomes have the same probability, our ran-
dom variable has a discrete uniform distribution. For random integers x with
xmin ≤ x ≤ xmax the probability of a given xi is given by

P (x) =

⎧⎨
⎩

0 if x < xmin
1

1+xmax−xmin
if xmin ≤ x ≤ xmax

0 otherwise
(2.7)

In Mathematica the discrete uniform distribution is input as

In[1]:= DiscreteUniformDistribution��xmin, xmax��

Out[1]= DiscreteUniformDistribution��xmin, xmax��

and the probability function is input using

In[2]:= PDF�DiscreteUniformDistribution��xmin, xmax��, x�

Out[2]=
1

1 � xmax � xmin
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which corresponds to the second interval of the piecewise function given by
Equation 2.7. Note that Mathematica is aware of the definition of the distri-
bution for arbitrary x:

In[3]:= PDF�DiscreteUniformDistribution��1, 6��, x�

Table�PDF�DiscreteUniformDistribution��1, 6��, x�,

�x, 0, 8��

PDF�DiscreteUniformDistribution��1, 6��, 2.2�

Out[3]=
1

6

Out[4]= �0,
1

6
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6
, 0, 0�

Out[5]= 0

Of course, Mathematica’s functions are well defined and have been fully
tested. However, when deriving our own probability functions later, we will
frequently check that we have accounted for all possible outcomes by ensuring
that the probability function sums to 1:

In[6]:= Sum�PDF�DiscreteUniformDistribution��xmin, xmax��, x�,

�x, xmin, xmax��

Out[6]= 1

Having reassured ourselves of this, we can compute the mean using

x̄ =
xmax∑

x=xmin

xP (x) (2.8)

Note that whereas when handling data, the mean was calculated as the sum
of all observations divided by the number of observations, here we compute
the product of the value of the observation xi and its frequency of occurrence
and sum the result for all possible x. We input this as:

In[7]:= xbar � Sum�

x PDF�DiscreteUniformDistribution��xmin, xmax��, x�,

�x, xmin, xmax��

Out[7]=
xmax � xmin

2

Similarly, to compute the variance we require,

x̄ =
xmax∑

x=xmin

(x− x̄)2P (x) (2.9)
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which we compute using

In[8]:= Sum��x � xbar	2

PDF�DiscreteUniformDistribution��xmin, xmax��, x�,

�x, xmin, xmax�

Out[8]=
1

12
�xmax � xmin	 �2 � xmax � xmin	

For distributions that are predefined in Mathematica we can compute these
statistics directly, though the output of the command Variance requires
some manipulation to yield the same form as given by the summing method:

In[9]:= Mean�DiscreteUniformDistribution��xmin, xmax���

Variance�DiscreteUniformDistribution��xmin, xmax���

Factor���

Out[9]=
xmax � xmin

2

Out[10]=
1

12

�1 � �1 � xmax � xmin	2�

Out[11]=
1

12
�xmax � xmin	 �2 � xmax � xmin	

In the case of our six-sided die, we have xmin = 1 and xmax = 6 and the
mean and variance are given by

In[12]:= Mean�DiscreteUniformDistribution��1, 6���

Variance�DiscreteUniformDistribution��1, 6���

Out[12]=
7

2

Out[13]=
35

12

and we observe that the mean, or the expected value, is not a possible outcome.
This is an important property of discrete random variables and will shall
encounter it in other contexts as we develop theory describing the structure
of stochastic fibrous materials.

We return now to the two-dice problem that we considered numerically
earlier. The possible outcomes and their probabilities are summarised in
Table 2.1. It is immediately clear that the distribution of outcomes is symmet-
rical about 7, which is the mode of our distribution. We require a probability
function that describes our random variable and by inspection we note that
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Face
value Permutations Probability

2 1 1
36

3 2 2
36

= 1
18

4 3 3
36

= 1
12

5 4 4
36

= 1
9

6 5 5
36

7 6 6
36

= 1
6

8 5 5
36

9 4 4
36

= 1
9

10 3 3
36

= 1
12

11 2 2
36

= 1
18

12 1 1
36

Table 2.1. Permutations and probabilities for outcomes of rolling a pair of unbiased
six-sided dice

the probabilities on the right of our graphic are given by1

P (x) =
{

6−|7−x|
36 if 2 ≤ x ≤ 12

0 otherwise
(2.10)

To input this to Mathematica we introduce two new commands. Firstly,
instead of assigning a variable name to the function, we use the function
SetDelayed which we input as := such that the right-hand side of our in-
put is not evaluated until called. We also use the command Piecewise to
assign probability zero for all x outside the applicable range of our function.

In[14]:= P�x�� :�

Piecewise����6 � Abs�7 � x�	 � 36, 2  x  12��, 0�

We should check that our probability function yields the required probabilities:

In[15]:= Table�P�x�, �x, 0, 14��

Out[15]= �0, 0,
1

36
,

1

18
,

1

12
,
1

9
,

5

36
,
1

6
,

5

36
,
1

9
,

1

12
,

1

18
,

1

36
, 0, 0�

and check also that we have considered all probabilities:

1 In the general case, the random variable Y = X1 +X2 with 1 ≤ X1, X2 ≤ Xmax

whereX1 andX2 are independent discrete random variables taking integer values,
has probability function,

P (Y ) =
Xmax − |Xmax + 1 − Y |

X2
max

.
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In[16]:= Sum�P�x�, �x, 2, 12��

Out[16]= 1

The mean, variance and standard deviation are given by

In[17]:= xbar � Sum�x P�x�, �x, 2, 12��

xvar � Sum��x � xbar	2 P�x�, �x, 2, 12�

xstd � xvar

N���

Out[17]= 7

Out[18]=
35

6

Out[19]=
35

6

Out[20]= 2.41523

By using the probability function for the outcomes of rolling a pair of
unbiased-six sided dice, we are able to make precise statements about the
characterising statistics of our distribution. The expected outcome, i.e. the
mean, is 7; since this outcome has the highest probability and the distribu-
tion is symmetrical about the mean, the mode and median are 7 also. The
standard deviation of the distribution is

√
35/6. We observe that these the-

oretical measures agree rather closely with those obtained for a million dice
rolls.

2.3 Common Probability Functions

In the last section we encountered the discrete uniform distribution and iden-
tified the Mathematica commands to call this distribution and to generate its
probability function, its mean, and its variance. The discrete uniform distri-
bution is one of the simplest distributions we are likely to encounter; we have
a finite number of permissible outcomes in an interval, and these have equal
probability. Before considering continuous random variables, where the num-
ber of outcomes in an interval is infinite, we introduce some more probability
functions that characterise the distributions of discrete random variables and
which we shall use extensively in modelling the structure of fibrous materials.

2.3.1 Bernoulli Distribution

The Bernoulli distribution is used to characterise random processes where
there are only two possible outcomes. The classical example of such a process is
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the tossing of a coin where the outcomes ‘heads’ or ‘tails’ each have probability
1
2 , though other examples include observations by researchers of whether cars
travelling in rush-hour are occupied by the driver only or by the driver and
passengers or whether a random point within a block of sandstone lies with a
void or in the solid phase of the material. In this latter case, the probability
that the point lies in a void is its porosity, ε and the probability that the point
lies within the solid is (1 − ε).

By convention, we denote the outcomes 0 and 1 and often these are taken to
classify the outcomes as ‘failure’ and ‘success’, respectively. If the probability
of success is 0 ≤ p ≤ 1, then the probabilities of success and failure are given
by

P (0) = 1 − p (2.11)
P (1) = p , (2.12)

which can be written as,

P (n) = pn (1 − p)1−n . (2.13)

We call the Bernoulli distribution in Mathematica using

BernoulliDistribution�p�

To obtain the probability function we use

In[1]:= PDF�BernoulliDistribution�p�, n�

Out[1]=
1 � p n � 0

p n � 1

which corresponds to Equation 2.13, but it is expressed in piecewise form.
Note that the piecewise function given in the output uses the notation ‘==’
for ‘equals’; the single equals sign, ‘=’, as used so far, allows us to set a value
to the variable name preceding it.

The mean and variance of the Bernoulli distribution are given by

In[2]:= Mean�BernoulliDistribution�p��

Variance�BernoulliDistribution�p��

Out[2]= p

Out[3]= �1 � p	 p

The appropriate graphical representation of a discrete probability function is a
bar chart, which we generate using the command BarChart. This command
is not loaded by default when the Mathematica kernel is launched, so we must
call the required package using the command Needs. The following code calls
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the package BarCharts and generates a list of Bernoulli probabilities for the
case where the probability of success p = 0.7. This list is then plotted as a bar
chart with appropriate axis labels. Note that the last line unsets the value of
parameter p.

In[4]:= Needs�"BarCharts`"�

p � .7;

Pn �

Table�PDF�BernoulliDistribution�p�, n�, �n, 0, 1��;

BarChart�Pn, BarLabels � �0, 1�,

AxesLabel � �"n", "P�n	"��

p �.

Out[7]=

0 1
n0.0

0.1

0.2

0.3

0.4
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0.6

0.7

P�n�

2.3.2 Binomial Distribution

Consider now an extension to the examples we considered when introducing
the Bernoulli distribution. If we toss a coin m times, observe m cars to see if
they are carrying passengers, or select m points at random from within the
volume of a block of sandstone to identify if they are in the solid or void phase,
we may be interested in how many of these m Bernoulli trials have a partic-
ular outcome, i.e. how many result in ‘success’ or ‘failure’. The distribution
describing this discrete random variable is the binomial distribution. Denot-
ing the number of successes 0 ≤ x ≤ m for Bernoulli trials with probability
of success p, it has probability function,

P (x) =
(
m
x

)
(1 − p)m−x px (2.14)

where
(
m
x

)
is the binomial coefficient,
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m
x

)
=

m!
x! (m− x)!

(2.15)

and it is invoked using Binomial[m,x] in Mathematica.

To obtain the binomial probability function in Mathematica we use

In[9]:= PDF�BinomialDistribution�m, p�, x�

Out[9]= �1 � p	m�x px Binomial�m, x�

The mean and variance of the binomial distribution are given by

In[10]:= Mean�BinomialDistribution�m, p��

Variance�BinomialDistribution�m, p��

Out[10]= m p

Out[11]= m �1 � p	 p

To plot the probability function, we again use BarChart. To aid investi-
gation of the influence of parameters p and m on the distribution, we define
a function bar[p , m ] using SetDelayed (:=).

In[12]:= bar�m�, p�� :� BarChart�Table�

PDF�BinomialDistribution�m, p�, x�, �x, 0, m��,

BarLabels � Range�0, m�, AxesLabel � �"x", "P�x	"��

Note that we have nested several Mathematica commands, neatening the code;
note also the command Range which is used here to generate a list represent-
ing the labels on the abscissa. This is required because by default BarChart
labels the first bar, ‘1’, the second ‘2’, etc., yet for our data, the first bar repre-
sents the probability of outcome zero, the second the probability of outcome 1,
etc.

Now, we could investigate the influence of parameter p, representing the
probability of success in a trial, by evaluating, for example,

bar�10, .2�

bar�20, .5�

etc. and generate several bar charts for comparison. As we have mentioned
earlier however, Mathematica allows us to alter variables interactively using
the command Manipulate. We generate a bar chart of the probability func-
tion for the binomial distribution with two associated sliders allowing us to
vary p and m using,
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In[14]:= Manipulate�bar�m, p�, ��p, .5�, 0, 1�, �m , 10, 100, 5��

Out[14]=

p

m

0 1 2 3 4 5 6 7 8 9 10
x0.00

0.05

0.10

0.15

0.20

0.25
P�x�

Moving the slider for parameter m increases the number of bars in our chart,
but seemingly has a limited influence on its shape. When moving the slider
for parameter p however, we observe a significant change in the shape of the
distribution, moving from a positive skew as p approaches zero, through ap-
parent symmetry around p = 1/2, to a negative skew as p approaches 1. This
behaviour is easily understood. When p is close to 1, successful trials are far
more likely than unsuccessful trials and vice versa when p is close to zero.
Accordingly, we expect that P (x) will exhibit a maximum close to mp.
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Out[14]=

p

m

0 1 2 3 4 5 6 7 8 9 10
x0.0

0.1

0.2

0.3

P�x�

Out[14]=

p

m

0 1 2 3 4 5 6 7 8 9 10
x0.0

0.1

0.2

0.3

P�x�
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We quantify the asymmetry of the distribution by its skewness.

Sk(x) =
∑

(xi − x̄)3 P (x)
σ3(x)

(2.16)

such that for Sk(x) > 0 the distribution exhibits a longer tail to the right
than to the left and vice versa for Sk(x) < 0; when Sk = 0 the distribution is
symmetrical about the mean. For our binomial distribution, we have

In[15]:= Skewness�BinomialDistribution�m, p��

Out[15]=
1 � 2 p

m �1 � p	 p

such that the distribution exhibits symmetry when p = 1/2, has a positive
skew when p < 1/2 and a negative skew when p > 1/2. We observe also that
the influence of p on the magnitude of skewness, and hence on the length of
the tails of the distribution, diminishes as m increases. We observe behaviour
consistent with this if we return to the bar chart that we generated with
Manipulate and move the sliders to vary p and m.

2.3.3 Poisson Distribution

The Poisson distribution has probability function

P (x) =
e−x̄ x̄x

x!
for x = 0, 1, 2, 3, . . . (2.17)

where x̄ is the mean of the random variable x. It arises as a limiting case of
the binomial distribution when the number of independent trials m is large
and the probability of success p is small such that mp = x̄.

The binomial coefficient, and hence the probability distribution function
for the binomial distribution can be expressed in terms of the Euler gamma
function, Gamma:

In[16]:= FunctionExpand�PDF�BinomialDistribution�m, p�, x��

Out[16]=
�1 � p	m�x px Gamma�1 � m�

Gamma�1 � m � x� Gamma�1 � x�

The Euler gamma function is an example of a ‘special function’ that we shall
encounter in several contexts as we develop our models. It satisfies,

Γ (z) =
∫ ∞

0

tz−1 e−t dt . (2.18)
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The arguments to Gamma can take any value, but in the special case of integer
arguments, the gamma function returns the factorial, such that

Γ (z + 1) = z! for z = 0, 1, 2, 3 . . .

The Mathematica command FullSimplify is able to reduce many expres-
sions containing special functions to simpler forms, particularly if the second
argument provides some assumptions, e.g.

In[17]:= FullSimplify��, �x, m� � Integers && 0  x � m�

Out[17]=
�1 � p	m�x px m�

�m � x	� x�

Note that in the above example, we use the symbol ∈, input as Esc el Esc ,
to specify that the variables x and m are elements of the domain Integers;
the inequality ≤ is input using ‘<=’.

We have noted that the Poisson distribution arises from the binomial dis-
tribution when mp = x̄ and for large m, so we substitute x̄/m for p and
take the limit as m→ ∞. To perform the substitution, we use the command
ReplaceAll, which we input as ‘/.’ To input the arrow for the limit, we
use ‘->’, so we do,

In[18]:= � �. p � �xbar � m	

Limit��, m � ��

Out[18]=



xbar

m
�
x

1 � xbar

m
�
m�x

m�

�m � x	� x�

Out[19]=
��xbar xbarx

x�

This last expression is the probability function for the Poisson distribution as
given by Equation 2.17 and we note that the probability of observing a given
integer x depends only on the expected value x̄. We can call this probability
function directly using

In[20]:= PDF�PoissonDistribution�xbar�, x�

Out[20]=
��xbar xbarx

x�
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and we note that the mean and variance of the Poisson distribution are equal:

In[21]:= Mean�PoissonDistribution�xbar��

Variance�PoissonDistribution�xbar��

Out[21]= xbar

Out[22]= xbar

It follows that the coefficient of variation is 1/
√
x̄.

Many physical phenomena are described rather well by the Poisson distri-
bution [53] and it is often considered to be the standard model for random
processes. We shall use the distribution several times in the models we derive
in the following chapters and will consider it to model pure random processes.
Thus, if we partitioned the random networks shown in Figure 1.3 into say
10×10 square regions, we expect the number of fibre centres occurring within
these regions to be distributed according to the Poisson distribution and so
to have variance equal to the mean. The expected number of fibre centres in
such regions will be the same for the disperse and clumped networks, but the
variance of the number of fibre centres within regions would be less than the
mean for the disperse cases, and greater than the mean in the clumped cases.

2.4 Common Probability Density Functions

So far, we have considered some of the more common statistical distributions
that may be used to characterise discrete random variables. The functions
that we have studied give the probability of a given outcome, say x, such
that the probability 0 ≤ P (x) ≤ 1. In Section 2.2 we observed that many ran-
dom variables are not discrete, but are continuous. A property of a continuous
random variable is that the probability of it having a given value x is infinites-
imal, though the probability that x lies in a given interval is finite and lies
between 0 and 1. The mathematical functions used to describe distributions
of continuous variables are called probability density functions, whereas those
describing the distributions of discrete random variables are called probability
functions, or probability distribution functions. If we denote the probability
density function of a continuous random variable x, f(x), then the probability
that x lies in the range x1 ≤ x < x2 is

P (x1 ≤ x < x2) =
∫ x2

x1

f(x) dx . (2.19)

If x is defined in the domain xmin ≤ x < xmax, then∫ xmax

xmin

f(x) dx = 1 . (2.20)
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The probability that x < X is called the cumulative distribution function. It
is given by

F (X) =
∫ X

xmin

f(x) dx . (2.21)

The mean is given by

x̄ =
∫ xmax

xmin

x f(x) dx , (2.22)

and the variance is given by

σ2(x) =
∫ xmax

xmin

(x− x̄)2 f(x) dx . (2.23)

It is instructive to compare Equations 2.22 and 2.23 with Equations 2.8
and 2.9, respectively. We proceed by considering some common probability
density functions encountered frequently in subsequent chapters.

2.4.1 Uniform Distribution

As expected, the uniform distribution is the continuous analogue of the
discrete uniform distribution, which we considered in Section 2.2.1. Thus,
whereas previously for the discrete random variable xmin ≤ x ≤ xmax we
required

xmax∑
i=xmin

P (x) = 1 ,

for the continuous random variable distributed uniformly in the same domain
we require, ∫ xmax

xmin

f(x) dx = 1 .

Accordingly, the uniform distribution has probability density given by

f(x) =
{

1
xmax−xmin

if xmin ≤ x ≤ xmax

0 otherwise.
(2.24)

We obtain this probability density function in Mathematica using

In[23]:= PDF�UniformDistribution��xmin, xmax��, x�

Out[23]= μ 1

xmax�xmin
xmin � x � xmax
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The mean and variance are

In[24]:= Mean�UniformDistribution��xmin, xmax���

Variance�UniformDistribution��xmin, xmax���

Out[24]=
xmax � xmin

2

Out[25]=
1

12
�xmax � xmin	2

In the following plots of the probability density function we use the option
Exclusions -> None to connect the discontinuities in the function.

In[26]:= GraphicsGrid�

��Plot�PDF�UniformDistribution��1, 2��, x�,

�x, 0, 3�, Exclusions � None�,

Plot�PDF�UniformDistribution��1, 1.5��, x�,

�x, 0, 3�, Exclusions � None����

Out[26]=
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The plot on the right is generated for the uniformly distributed random vari-
able in a domain where (xmax − xmin) < 1 such that f(x) > 1. This is an
important feature of probability density functions, whereas probabilities must
be between 0 and 1, probability densities can exceed 1.

2.4.2 Normal Distribution

Most of us have encountered the classical bell-shaped normal, or Gaussian,
distribution. It describes the distribution of data arising in many physical and
biological contexts very well. The normal distribution is fully defined by its
mean, μ and variance σ2 and has probability density given by

f(x) =
1√

2π σ
e−

(x−μ)2

2 σ2 . (2.25)
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We call the probability density function, mean and variance in Mathematica
in the usual way:

In[27]:= PDF�NormalDistribution�Μ, Σ�, x�

Mean�NormalDistribution�Μ, Σ��

Variance�NormalDistribution�Μ, Σ��

Out[27]=
�

�
�x�Μ	2

2 Σ2

2 Π Σ

Out[28]= Μ

Out[29]= Σ2

The distribution is defined in the domain −∞ < x <∞ and it is symmetrical
about the mean:

In[30]:= Plot�PDF�NormalDistribution�0, 1�, x�, �x, �4, 4�,

AxesLabel � �"x", "Probability density, f�x	"��

Out[30]=

�4 �2 2 4
x

0.1

0.2

0.3

0.4

Probability density, f �x�

We have already noted that the normal distribution is often found to
describe distributions encountered in a wide variety of contexts. This very
convenient property of many random variables can be attributed to the cen-
tral limit theorem. Here we state the central limit theorem in simple terms
following Chatfield [14]; detailed discussion and proof of the theorem are given
by, e.g. Papoulis [119], pp. 278–284.

Consider the random variable

x =
(x1 + x2 + . . . xn)

n
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where the xi are drawn from independent and identical distributions with
mean μ and variance σ2. The central limit theorem states that the distribution
of x is approximately normal with mean μ and variance σ2/n and that as n
increases, so does the quality of the approximation. Importantly, the source
distribution of the xi does not need to be specified; the central limit theorem
applies for any source distribution.

The following Mathematica code illustrates the central limit theorem by
plotting the histogram of 50,000 independent x where the source distribution
is a uniform distribution on the interval {-1, 1} which has mean μ = 0 and
variance 1/3. With each histogram, we plot the probability density function
of the normal distribution with the same mean and variance 1/(3n).

In[31]:= Σ � StandardDeviation�UniformDistribution���1, 1���;

Needs�"Histograms`"�

H�n�� :�

Show
Histogram�Mean�RandomReal���1, 1�, �n, 50 000���,

HistogramCategories � 50, HistogramScale � 1�,

Plot
PDF
NormalDistribution
0, Σ � n �, x�,

�x, �1, 1�, PlotStyle � Thickness�.015���

GraphicsArray���H�1�, H�2��, �H�3�, H�10����

Σ � .

Out[34]=
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The graphic in the top left shows the histogram for our source uniform distri-
bution, which is manifestly not well approximated by the normal distribution.
On the top right, we see the histogram for the case when n = 2. Here, each
of our values of x is the mean of two values drawn randomly from the uni-
form distribution; the resultant histogram exhibits a symmetrical triangular
distribution. On the bottom left, n = 3 and we can see quite clearly that the
approximation of the histogram to the normal distribution is improving. In



42 2 Statistical Tools and Terminology

the final case considered here, as shown on the bottom right, n = 10 and the
approximation is very good. Of course, our example is rather static, but it
is simple to generate a Manipulate object to investigate the influence of n
interactively.

Manipulate�H�m�, �m, 1, 20, 1��

The code that we have used to demonstrate the central limit theorem
introduces a few Mathematica commands. Histogram operates on a one-
dimensional list to count the occurrences of data in intervals, the width of
which are determined by the maximum and minimum values occurring in
the list and the number of categories; we have specified this using the option
HistogramCategories, but if this is not specified, the number of cate-
gories are chosen automatically. The option HistogramScale -> 1 scales
the heights of the bars so that the area under the histogram is 1, allowing direct
comparison with a plot of a probability density function, as we have done here.
The uniformly distributed random data in the interval {-1, 1} are generated
using RandomReal as opposed to the command RandomInteger used ear-
lier. Here we have specified an interval, though if we input RandomReal[ ]
then we would obtain uniformly distributed random numbers between 0 and 1.
We have encountered the command Mean earlier, but here we take advantage
of the way that it operates on a list. In our example, Mean operates on a
list consisting of n sublists, each of length 50,000, and computes the mean of
the ith value of each of these sublists to generate a new list of length 50,000,
where each element represents a value of x. The manner in which Mean oper-
ates on a list of sublists is perhaps best understood by examining the following
example:

In[36]:= Mean���a, b, c�, �d, e, f�, �g, h, i���

Out[36]= �
1

3
�a � d � g	,

1

3
�b � e � h	,

1

3
�c � f � i	�

We will make considerable use of Mathematica’s advanced list handling ca-
pabilities when applying Monte Carlo techniques to the modelling of fibre
networks, and by understanding precisely how they work, we are able to op-
timise our code, reducing evaluation times considerably.

2.4.3 Lognormal Distribution

The random variable x has a lognormal distribution if the random variable y =
log(x) is normally distributed with mean μ and variance σ2. The probability
density for the lognormal distribution is given by

f(x) =

{
1√

2 π σ x
e−

(log(x)−μ)2

2 σ2 if x ≥ 0
0 otherwise.

(2.26)
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It is obtained using one of the variable transform formulae. We shall encounter
variable transform formulae for the sums and products of independent random
variables repeatedly in subsequent chapters. The simplest variable transform
formula allows us to obtain the probability density of y = g(x) if the proba-
bility density of x is f(x). We state it as follows:

f(y) = f(g(x))
∣∣∣∣d yd x

∣∣∣∣ . (2.27)

The second term on the right-hand side of Equation 2.27 is called the Jaco-
bian and takes account of the change in the domain of the random variable
such that the resultant probability density integrates to 1 over its domain.
Note that to perform this variable transformation, we require the relationship
between y and x to be one-to-one, i.e. each value of y is associated with only
one value of x. We are interested in the variable y = log(x) which is indeed
one-to-one so we perform the change of variable by doing,

In[37]:= y � Log�x�;

PDF�NormalDistribution�Μ, Σ�, y� D�y, x�

y �.

Out[38]=
�

�
��Μ�Log�x�	2

2 Σ2

2 Π x Σ

Which is the probability density function for the lognormal distribution as
given by Equation 2.26. We call this probability density in Mathematica using

PDF�LogNormalDistribution�Μ, Σ�, x�

The probability density is defined in the domain 0 ≤ x ≤ ∞ and it exhibits a
positive skew.

In[40]:= Plot�PDF�LogNormalDistribution�1, 1�, x�, �x, 0, 20�,

AxesLabel � �"x", "Probability density, f�x	"��
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Out[40]=
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x
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0.20

Probability density, f �x�

We obtain the mean and variance in the usual way and from these can cal-
culate the coefficient of variation using PowerExpand in conjunction with
FullSimplify:

In[41]:= Mean�LogNormalDistribution�Μ, Σ��

Variance�LogNormalDistribution�Μ, Σ��

FullSimplify�PowerExpand�Sqrt��� � ����

Out[41]= �Μ�
Σ2

2

Out[42]= �2 Μ�Σ2

�1 � �Σ2

�

Out[43]= �1 � �Σ2

We observe then that the mean and variance of the lognormal distribution
are defined in terms of those of the normal distribution, μ and σ2, respectively,
and that the coefficient of variation depends only on σ.

We have just seen that the normal distribution arises as a consequence of
the central limit theorem when considering the sum of several xi drawn from
independent and identical distributions. The central limit theorem provides
also the explanation for the occurrence of the lognormal distribution. Consider
the product of n independent positive random variables xi:

x = x1 x2 . . . xn

The random variable y = log(x) is given by

y = log(x) = log(x1) + log(x2) + . . .+ log(xn)



2.4 Common Probability Density Functions 45

Since random variables arising as the sum of independent random variables
exhibit a normal distribution, we may state that the random variable y =
log(x) exhibits a normal distribution and thus the random variable x exhibits
a lognormal distribution.

2.4.4 Exponential distribution

The random variable x with mean x̄ is said to have an exponential distribution
if its probability density is given by

f(x) =
{

1
x̄ e

− x
x̄ if x ≥ 0

0 otherwise. (2.28)

In Section 3.3.2 we will show that the exponential distribution arises as the
distribution of intervals between random events as described by the Poisson
distribution. For now, we note that the probability density given by Equa-
tion 2.28 is a weighted form of the probability of zero events in a point Poisson
process where the discrete random variable is the occurrence of events in an
interval.

We obtain the exponential probability density and its mean and variance
in Mathematica using,

In[44]:= PDF�ExponentialDistribution�1 � xbar�, x�

Mean�ExponentialDistribution�1 � xbar��

Variance�ExponentialDistribution�1 � xbar��

Out[44]=
��

x

xbar

xbar

Out[45]= xbar

Out[46]= xbar2

Note that since the variance of the distribution is the square of the mean,
the exponential distribution has constant coefficient of variation cv(x) = 1.
Accordingly, the shape of the distribution is unaltered by the mean which acts
as a scaling parameter.

In[47]:= Plot�PDF�ExponentialDistribution�1�, x�, �x, 0, 5�,

AxesLabel � �"x", "Probability density, f�x	"�,

PlotRange � All�
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Out[47]=
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2.4.5 Gamma Distribution

The random variable x is said to have a gamma distribution if its probability
density is given by

f(x) =
(
α

β

)α
xα−1

Γ (α)
e−α x/β , (2.29)

where the term Γ (α) represents the Euler gamma function, which we en-
countered on page 35. We obtain the probability density, mean, variance and
coefficient of variation as previously:

In[48]:= PDF�GammaDistribution�Α, Β � Α�, x�

Mean�GammaDistribution�Α, Β � Α��

Variance�GammaDistribution�Α, Β � Α��

PowerExpand
 � � ���

Out[48]=

�
�
x Α

Β x�1�Α 

Β

Α
�

�Α

Gamma�Α�

Out[49]= Β

Out[50]=
Β2

Α

Out[51]=
1

Α

So, in the form given in Equation 2.29, the distribution has mean x̄ = β and
coefficient of variation cv(x) = 1/

√
α.
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Although the probability density for the gamma distribution is convention-
ally expressed in terms of parameters α and β, it can be expressed equally
well in terms of the mean and coefficient of variation:

In[52]:= PDF�GammaDistribution�1 � cv2, xbar cv2, x

Mean�GammaDistribution�1 � cv2, xbar cv2

Variance�GammaDistribution�1 � cv2, xbar cv2

PowerExpand
 � � ���

Out[52]=

�
�

x

cv2 xbar x
�1�

1

cv2 
cv2 xbar�
�

1

cv2

Gamma� 1

cv2


Out[53]= xbar

Out[54]= cv2 xbar2

Out[55]= cv

The mean x̄ = β acts as a scaling parameter for the gamma distribution and
the coefficient of variation cv(x) = 1/

√
α controls its shape. We illustrate

the influence of the coefficient of variation on the shape of the distribution
by comparing plots of the probability density for distributions with unit mean:

In[56]:= PlotPDF�cv�� :�

Plot�PDF�GammaDistribution�1 � cv2, cv2, x,

�x, 0, 5�, PlotRange � �All, �0, 2��,

PlotLabel � Row��"cv �", cv��

GraphicsArray���PlotPDF�0.25�, PlotPDF�0.5��,

�PlotPDF�1�, PlotPDF�2����

Out[57]=
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We observe that the distribution exhibits a positive skew and this increases
with the coefficient of variation:

In[58]:= PowerExpand�Skewness�GammaDistribution�1 � cv2, cv2

Out[58]= 2 cv

Note that the distribution exhibits a maximum only when cv(x) < 1 and
decreases monotonically otherwise.

The gamma distribution includes the exponential distribution as a special
case when α = 1:

In[59]:= TrueQ�GammaDistribution�1, Β� 	

ExponentialDistribution�1 � Β��

Out[59]= True

Recall that the coefficient of variation of the exponential distribution is 1
and that of the gamma distribution is 1/

√
α. This means that if a random

variable has a gamma or exponential distribution, then processes that change
the mean will change the standard deviation proportionately and a plot of the
standard deviation against the mean will be linear with gradient cv(x). Hwang
and Hu [69] provide a proof that for independent positive random variables
x1, x2, . . . , xn with a common continuous probability density function, this
property of the sample mean x̄ and coefficient of variation cv(x) being inde-
pendent is equivalent to the xi being drawn from a gamma distribution. Such
linearity is common in experimental data characterising the void structure of
fibrous materials and Johnston [72, 73] proposes that the gamma distribution
describes the pore size distribution of stochastic porous materials in general.

It turns out that the sum of n independent exponential random variables
is a gamma distribution. This is consistent with our remarks concerning the
central limit theorem on page 41. The central limit theorem gives cv(x, n) =
1/
√
n such that as n increases, cv(x, n) decreases. Recall that the skewness of

the gamma distribution is twice the coefficient of variation, so as n increases
the distribution becomes increasingly symmetrical and thus, the sum of our
independent exponential random variables approaches a normal distribution.
As a rule of thumb, we note that the probability densities of the normal and the
gamma distribution are similar for coefficients of variation less than about 0.2.
Another useful property of the gamma distribution is that products of gamma
distributions are themselves well approximated by the gamma distribution.
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Figure 2.1. Simulated data for typical weight and height distributions of men

2.5 Multivariate Distributions

So far we have considered the distributions of single random variables and
those arising from combinations of several independent distributions. Very
often, we need to consider distributions of dependent random variables. For
example, if we recorded the heights and weights of students at a university
we would expect both variables to exhibit a normal distribution. Equally, we
might expect taller students to be heavier than shorter students, but we would
not be surprised to find tall students who were lighter than average or short
students who were heavier. Thus, we would expect a scatter plot of weight
against height for male students to look something like Figure 2.1.

Our example considers two random variables, height and weight, which
exhibit a degree of interdependence. As such, we classify the distribution as
being bivariate. Since the distributions of height and weight both exhibit a
normal distribution, then the data in Figure 2.1 exhibit a bivariate normal dis-
tribution. We shall consider this distribution in more detail shortly, but first
we note that bivariate distributions often occur in stochastic fibrous materials
and in the fibres from which they are formed. For example, the length and
diameter of wool fibres [94], man-made mineral fibres [67, 150] and wood-pulp
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fibres [85] are often distributed according to bivariate distributions including
the bivariate lognormal distribution and the distributions of mass and thick-
ness in near-random fibre mats are well described by the bivariate normal
distribution [36, 37].

To handle bivariate distributions, we require some additional statistical
descriptors. The covariance is a measure of the association between random
variables. For the random variables x and y it is given by

Cov(x, y) =
1

n− 1

n∑
i=1

(xi − x̄) (yi − ȳ) , (2.30)

and it is easy to show that

Cov(x, y) = x y − x̄ ȳ . (2.31)

The units of covariance are the product of those of the constituent variables x
and y. The covariance of the random variables kx x and ky y is

Cov(kx x, ky y) = kx ky Cov(x, y) , (2.32)

and the variance of the sum of the random variables x and y is

σ2(x+ y) = σ2(x) + 2Cov(x, y) + σ2(y) . (2.33)

Often, we seek to standardize the covariance so that it is dimensionless. It
is convenient to do this by dividing (xi − x̄) and (yi − ȳ) by their standard
deviations σ(x) and σ(y), respectively. The resultant expression gives the cor-
relation between the variables, −1 ≤ ρ ≤ 1:

ρ =
1

n− 1

n∑
i=1

(xi − x̄)
σ(x)

(yi − ȳ)
σy

(2.34)

=
Cov(x, y)
σ(x)σ(y)

, (2.35)

where ρ is called the correlation coefficient.
Negative covariance and correlation tells us that as the value of one vari-

able increases, so that of the other decreases; positive correlation tells us that
an increase in one variable is associated with an increase in the other; if the
variables are independent, then the correlation and covariance are zero2. The
size of the correlation coefficient tells us the degree of scatter in a plot such
as Figure 2.1, so can be interpreted as providing a measure of the range of
spread of x and y about a regression line. Often the square of the correla-
tion coefficient, is reported for experimental data; this parameter, typically
denoted r2, is called the coefficient of determination.

2 The converse is not necessarily true [119].
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2.5.1 Bivariate Normal Distribution

As we might expect given our earlier discussion, the bivariate distribution
encountered most frequently is the bivariate normal, or Gaussian, distribution.
The bivariate normal distribution arises when the random variables x and y
both exhibit a normal distribution and are correlated. This means that if we
select any xi from a bivariate normal distribution, then we expect the range
of yi that can be associated with it to be constrained to an extent depending
on the correlation ρ. We state then that x and y have joint probability density.

For the bivariate normal distribution, the joint probability density of x
and y with correlation coefficient ρ is

f(x, y) =
1

2π σ(x)σ(y)
√

1 − ρ2
e
− z

2 (1−ρ2) (2.36)

where

z =
(x− x̄)2

σ2(x)
− 2 ρ (x− x̄)(y − ȳ)

σ(x)σ(y)
+

(y − ȳ)2

σ2(y)

In Mathematica we obtain the joint probability density function in this
form using the command MultinormalDistribution which is in the
MultivariateStatistics package:

In[60]:= Needs�"MultivariateStatistics`"�

FullSimplify�PDF�MultinormalDistribution��xbar, ybar�,

��Σx2, Ρ Σx Σy�, �Ρ Σx Σy, Σy2��, �x, y�,

�Σx, Σy� � 0 && �Σx, Σy� � Reals

Out[61]=
�

�y�ybar	2 Σx2�2 �x�xbar	 �y�ybar	 Ρ Σx Σy��x�xbar	2 Σy2

2 
�1�Ρ2� Σx2 Σy2

2 Π 1 � Ρ2 Abs�Σx� Abs�Σy�

Note that we are considering only the bivariate normal distribution here,
but the command MultinormalDistribution will handle trivariate and
higher orders of multivariate normal distributions. Accordingly, the second
argument for an n-variate distribution is input as an n × n array known as
the covariance matrix where the elements are the covariances of the variables
with each other. From the definition of covariance Cov(x, x) = σ2(x), so the
first and last terms are simply the variances of x and y and the matrix is sym-
metrical. Mathematica returns the mean and variance of the bivariate normal
distribution as two element lists, and the covariance as a matrix in the same
form as it was input:
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In[62]:= Mean�MultinormalDistribution�

�xbar, ybar�, ��Σx2, Ρ Σx Σy�, �Ρ Σx Σy, Σy2��

Variance�MultinormalDistribution��xbar, ybar�,

��Σx2, Ρ Σx Σy�, �Ρ Σx Σy, Σy2��

Covariance�MultinormalDistribution�

�xbar, ybar�, ��Σx2, Ρ Σx Σy�, �Ρ Σx Σy, Σy2��

Out[62]= �xbar, ybar�

Out[63]= �Σx2, Σy2�

Out[64]= ��Σx2, Ρ Σx Σy�, �Ρ Σx Σy, Σy2��

The joint probability density is represented by a surface. Here we gener-
ate this for a bivariate normal distribution with mean x̄ = ȳ = 0, variances
σ2(x) = 1, σ2(y) = 1

4 and correlation ρ = 0.8. Note the use of the command
Clear to unset several variables; this command may also be used to clear
functions which have been previously defined.

In[65]:= Σx � 1;

Σy � 1 � 2;

Ρ � 0.8;

Plot3D�PDF�MultinormalDistribution��0, 0�,

��Σx2, Ρ Σx Σy�, �Ρ Σx Σy, Σy2��, �x, y�,

�x, �4, 4�, �y, �2, 2�, PlotRange � All,

AxesLabel � �"x", "y", "f�x,y	"�

Clear�Σx, Σy, Ρ�

Out[68]=

�4
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The fraction of the distribution which lies in the interval (x+Δx, y+Δy)
is

P (x, y) =
∫ x+Δx

x

∫ y+Δy

y

f(x, y) dy dx , (2.37)

and the joint probability density integrates to unity (cf. Equation 2.20):∫ ∞

−∞

∫ ∞

−∞
f(x, y) dy dx = 1 . (2.38)


