
WebSphere Studio
Application Developer 5.0:
Practical J2EE Development

IGOR LIVSHIN

1208_ch00_FM 5/13/03 3:07 PM Page i

WebSphere Studio Application Developer 5.0: Practical J2EE Development
Copyright ©2003 by Igor Livshin

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN (pbk): 1-59059-120-8
Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Technical Reviewer: Jeff Miller
Editorial Directors: Dan Appleman, Gary Cornell, Martin Streicher, Jim Sumser,
Karen Watterson, John Zukowski
Assistant Publisher: Grace Wong
Project Manager: Sofia Marchant
Development Editor: Tracy Brown
Production Editor: Janet Vail
Proofreader: Lori Bring
Compositor: Diana Van Winkle, Van Winkle Design Group
Indexer: Ann Rogers
Artist and Cover Designer: Kurt Krames
Production Manager: Kari Brooks
Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY, 10010 and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, email orders@springer-ny.com, or visit
http://www.springer-ny.com. Outside the United States: fax +49 6221 345229, email
orders@springer.de, or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219,
Berkeley, CA 94710. Phone 510-549-5930, fax 510-549-5939, email info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Downloads
section.

1208_ch00_FM 5/13/03 3:07 PM Page ii

CHAPTER 9

J2EE Enterprise
Messaging

THE ENTERPRISE JAVABEAN (EJB) 2.0 and Java 2 Enterprise Edition (J2EE) 1.3 specifi-
cations now support Java Message Service (JMS). By including JMS in the J2EE
specification, Sun Microsystems added extremely important functionality to the
J2EE 1.3 environment—asynchronous communication. Before this addition, J2EE
was a strictly synchronous environment of J2EE components communicating over
the RMI-IIOP protocol.

NOTE RMI-IIOP is a Common Object Request Broker Architecture (CORBA)–
compliant version of the Java Remote Method Invocation (RMI) communi-
cation protocol that sends RMI messages via the CORBA platform and
language-independent communication protocol.

To support asynchronous communication, J2EE 1.3 also introduced a new
type of EJB bean: the Message Driven Bean (MDB). An MDB is capable of receiving
asynchronous messages in an otherwise synchronous J2EE environment. As
already mentioned, before JMS, J2EE was a synchronous environment based on
the Java RMI-IIOP communication protocol.

Asynchronous communication gives enterprise developers an alternative
form of communication with the following important advantages:

• Asynchronously communicating programs do not exchange messages
directly with each other. Subsequently, a user on each side of the communi-
cation session can continue working (sending messages) even if a program
on the opposite (receiving side) is down.

• Asynchronous communication offers reliability. Middleware packages
that support asynchronous communication provide guaranteed (assured)
message delivery even if the entire environment is down. This is an
attractive feature for applications involved in communication over the
Internet (which is not a reliable medium).

447

*1208_ch09_CMP3 5/12/03 1:27 PM Page 447

• Programs sending messages asynchronously are not locked when waiting
for a response (which is a substantial performance improvement).

JMS is not communication software but rather a set of standard Application
Programming Interfaces (APIs) for vendor-independent asynchronous communi-
cation. In that respect, JMS is similar to Java Database Connectivity (JDBC) and Java
Naming and Directory Interface (JNDI). As is the case with JDBC, which requires an
underlying database provider, JMS requires an underlying asynchronous communi-
cation middleware provider that supports the JMS standard. This is typically called
Message-Oriented Middleware (MOM).

MOM is a technology that allows programs to asynchronously communicate
by exchanging messages. To some extent, this process is similar to people communi-
cating via email. Making the same analogy, synchronously communicating programs
are similar to people communicating over the phone. Programs involved in asyn-
chronous communication are loosely coupled. In other words, it means they do not
communicate directly but via virtual channels called queues or topics.

It also means they maintain a staged store-and-forward way of communication,
which allows a program on the sending side to send messages even when a program
on the opposite side of the communication is not running at that moment. When a
program on the receiving side is up and running, the messages will be delivered to it.
To some extent, this oversimplifies the real communication process that is subject to
certain conditions, but it gives you a general idea of how this type of communication
happens.

The main advantage of JMS communication is an environment where programs
communicate using standard APIs that shield programmers from the complexities
of different operating systems, data representation, and underlying network protocols.

This chapter discusses JMS and two JMS communication methods: Point-to-
Point (P2P) and Publish/Subscribe (Pub/Sub). It also covers the structure of a JMS
message, the main JMS objects, MDBs, JMS programming, message persistence,
and JMS transaction support.

The chapter begins by discussing JMS.

Understanding JMS

Because JMS is a relatively new technology, this chapter discusses JMS pro-
gramming in detail, followed by a discussion of WSAD 5.0 JMS development. As
mentioned, JMS programs do not communicate directly. Messages are sent to
destination objects: queues or topics. Both queues and topics are staging media
objects capable of accumulating messages; however, queues and topics support
different types of message delivery corresponding to two domains of communi-
cation: P2P and Pub/Sub.

Chapter 9

448

*1208_ch09_CMP3 5/12/03 1:27 PM Page 448

Understanding the P2P Domain of Communication

The P2P domain of communication can operate as a “pull” or “push” type of
message delivery. In the P2P pull type of communication, programs communicate
using a virtual channel called a queue. On the sending side of the communication
session, a sender program “puts” a message on a queue. On the receiving side, a
receiver program periodically searches this queue looking for a message it expects
to receive and process. The pull type is a less efficient message delivery method
than the push type because it consumes resources during this repetitive checking
for the arrival of the message. It is also important to understand that when the
receiver program finds the message, it “gets” it, effectively removing it from the
queue.

Therefore, even if multiple receiver programs process the same queue, only
one receiver is capable of receiving a particular message. JMS programs can use
multiple queues, and each queue can be processed by multiple programs, but
only one program receives any specific message.

When the P2P domain of communication operates as the push type of
message delivery, a sender program works in the same way, sending a message on
a queue. However, the receiver program works differently. The receiver program
implements a Listener Interface and includes the implementation of its onMessage
callback method. In the J2EE environment, the task of listening on a specific
queue for the arrival of messages is delegated to the container. Whenever a new
message arrives on the queue, the container calls the onMessage method, passing
the message as a parameter.

The most important point of a P2P communication domain (both types of
message delivery) is that each message is received by a single program. Typically,
P2P programs are more actively involved in the communication. A sender
program can indicate to a receiver program the name of the queue to which it
expects the reply messages to be sent. It also can request confirmation or report
messages.

Understanding the Pub/Sub Domain of Communication

In the Pub/Sub domain of communication, programs communicate via a topic.
Topics as a medium of communication require the support of a Pub/Sub broker.
On the sending side, a producer program sends messages to a topic. On the
receiving side, consumer programs subscribe to the topics of interest. When a
message arrives at a topic, all consumer programs that are subscribed to the topic
receive the message as a parameter of the onMessage method.

J2EE Enterprise Messaging

449

*1208_ch09_CMP3 5/12/03 1:27 PM Page 449

This is a push message delivery method. As you can see, multiple programs can
receive a copy of the same message. Pub/Sub programs are less actively involved in
communication. A producer program that sends messages to a particular topic does
not know how many subscribers are receiving published messages (many or even
none). Subscribing to a topic is a flexible scheme of communication. The number of
subscribers to a topic changes dynamically without any change to the underlying
communication infrastructure and is completely transparent to the overall commu-
nication process.

The Pub/Sub type of communication requires support from the Pub/Sub
broker—a software package that coordinates messages to be delivered to sub-
scribers. In contrast to the P2P domain where programs use a queue as a staging
area for communication, programs involved in the Pub/Sub domain commu-
nicate directly with the special broker queues. This is why you later install the
MA0C package on top of the regular WebSphere MQ installation. (This is necessary
only if you are using WebSphere MQ as a JMS provider. MQ 5.3.1 or higher is
required.) This package is a broker software package that supports the Pub/Sub
domain of communication. (For more information, see the “Understanding JMS
Pub/Sub Programming” section.)

The QueueConnectionFactory and TopicConnectionFactory JMS objects are
factory classes that create the corresponding QueueConnection and TopicConnection
objects used by JMS programs to connect to the underlying MOM technology.

Communicating with JMS Messages

JMS-based programs communicate by exchanging JMS messages. The JMS
message consists of three parts: a header, the properties (optional), and a message
body. The header consists of header fields that contain the delivery information
and meta-data.

The properties part contains standard and application-specific fields that
message selector can use to filter retrieved messages. JMS defines a standard and
optional set of properties that is optional for MOM providers to support (see Table
9-1). The body part contains the application-specific data (the content to be
delivered to a target destination).

Table 9-1. JMS Standard Message Properties

PROPERTY TYPE DESCRIPTION

JMSXProducerTXID String Transaction within which this message

was produced

JMSXConsumerTXID String Transaction within which this message

was consumed

Chapter 9

450

*1208_ch09_CMP3 5/12/03 1:27 PM Page 450

Optional properties include JMSXUserID, JMSXAppID, JMSXProducerTXID,
ConsumerTXID, JMSXRcvTimestamp, JMSXDeliveryCount, and JMSXState. The message
headers provide information for the JMS messaging middleware that describes
such system information as the intended message destination, the creator of the
message, how long the message should be kept, and so on (see Table 9-2).

Table 9-2. JMS Header Fields

HEADER FIELD TYPE DESCRIPTION

JMSMessageID String This uniquely identifies a message and is set by the

provider. This is undetermined until after the

message is successfully sent.

JMSDeliveryMode int DeliveryMode.PERSISTENT or NON_PERSISTENT.

This is a tradeoff between reliability and

performance.

JMSDestination Destination This contains where the message is sent and is set

by a message provider. The destination can be a

queue or a topic.

JMSTimestamp long This is set by the provider during the send process.

JMSExpiration long This is the time the message should expire. This

value is calculated during the send process. It can

take a value of 0, meaning no expiration.

JMSPriority int This is the priority of the message. A priority of 0 is

the lowest priority, and 9 is the highest priority.

JMSCorrelationID String This links a response message with a request

message. The responding program typically copies

JMSMessageID to this field.

JMSReplyTo Destination This is used by a requesting program to indicate a

queue where a reply message should be returned.

JMSType String This indicates the type of message. The available

types are as follows:*

MapMessage contains a set of name-value pairs,

where the name is a string and the value is a

primitive Java type.

TextMessage contains a serialized Java object.

BytesMessage contains a byte stream in the

message body.

JMSRedelivered boolean This indicates that the message was delivered, but

the program did not acknowledge its receipt.

* Of all these types, TextMessage is the most widely used because of its simplicity and
because of its ability to encapsulate Extensible Markup Language (XML) data.

J2EE Enterprise Messaging

451

*1208_ch09_CMP3 5/12/03 1:27 PM Page 451

JMS defines several types of body parts depending how this part is coded. You
indicate the type of the body in the JMSType header field with the following pos-
sible values:

TextMessage: This contains the java.lang.String object. This is the simplest
message format. You can set XML documents as TextMessage.

ObjectMessage: This contains a serializable Java object, which is built based on
the serializable Java class.

MapMessage: This contains a set of name-value pairs of elements. It is typically
used to transfer keyed data. To set the element of the message, you use setter
methods such as setInt, setFloat, setString, and so on. On the receiving side,
you use the corresponding getter methods such as getInt, getFloat,
getString, and so on.

BytesMessage: This contains an array of primitive bytes. It is typically used
when there is a need to send the message in the application’s native format.

StreamMessage: This contains a stream of primitive Java types such as int, char,
double, and so on. Primitive types are read from the message in the same
order they are written. Similar getter and setter methods are provided to
manipulate the message elements: writeInt and readInt, writeString and
readString, and so on.

You create the JMS message object by using a JMS session object (discussed in
the “Using the JMS QueueConnection Object” section). The following are
examples of creating different message types:

TextMessage textMsg = session.createTextMessage();

MapMessage mapMsg = session.createMapMessage();

ObjectMessage objectMsg = session.createObjectMessage();

BytesMessage byteMsg = session.createBytesMessage();

The message object provides setter and getter methods for all message header
fields. The following are several examples of getting and setting values of the JMS
message header fields:

String messageID = testMsg.getJMSMessageID();

testMsg.setJMSCorrelationID(messageID);

int messagePriority = mapMsg.getJMSPriority();

mapMsg.setJMSPriority(1);

Chapter 9

452

*1208_ch09_CMP3 5/12/03 1:27 PM Page 452

The message object also provides similar setter and getter methods for
standard and application-specific property fields. The following are several
examples of getting and setting values of the JMS message standard and appli-
cation-specific property fields:

int groupSeq = objectMsg.getIntProperty("JMSGroupSeq");

objectMsg.setStringProperty("FirstName", "Joe");

JMS provides a set of APIs for setting and getting the content of the message’s
body part. Listing 9-1 shows several examples of how to work with different types
of message bodies.

Listing 9-1. Working with Different Types of Message Bodies

Text Message

TextMessage textMsg = session.createTextMessage();

textMsg.setText("This is the text type message");

Map Message

MapMessage mapMsg = session.createMapMessage();

mapMsg.setInt(BookCatalogNumber, 100);

mapMsg.setString(BookTitle, "WinSocks 2.0");

mapMsg.setLong(BookCost, 50.00);

String bookTitle = mapMsg.getString("BookTitle");

Object Message

ObjectMessage objectMsg = session.createObjectMessage();

Book book = new Book("WinSocks 2.0");

objectMsg.setObject(book);

BytesMessage

NOTE The class of the object placed in the ObjectMessage type must
implement the Serializable interface.

The BytesMessage type contains a stream of uninterrupted bytes. The receiver
of the message provides interpretation of the message bytes. You should use this
message type for communication that requires the proprietary interpretation of
message data.

J2EE Enterprise Messaging

453

*1208_ch09_CMP3 5/12/03 1:27 PM Page 453

Understanding JMS P2P Programming

In a JMS P2P domain, a sending application puts a message on a queue. Depending
on the nature of communication, the sending application can expect a reply
message (a request-reply pattern). In other situations, the sending application
does not need an immediate reply (a send-and-forget pattern). If a reply message
is necessary, the sending application indicates to the receiving application (in the
message header field called JMSReplyTo) the name of a local queue where it expects
to receive the reply message.

In the request-reply pattern, the sending application can function in two
ways. In a pseudo-synchronous way, the application is blocked while waiting for
the arrival of the reply message. In an asynchronous way, the application is not
blocked and can perform other processing. Later, it can check the reply queue for
the expected reply message. Listing 9-2 shows a fragment of the JMS code that
sends a message.

Listing 9-2. Sending a Message

import javax.jms.Message;

import javax.jms.TextMessage;

import javax.jms.QueueConnectionFactory;

import javax.jms.QueueConnection;

import javax.jms.QueueSender;

import javax.jms.QueueSession;

import javax.jms.Queue;

import javax.jms.JMSException;

import javax.naming.InitialContext;

import javax.naming.Context;

public class MyJMSSender

{

private String requestMessage;

private String messageID;

private int requestRetCode = 1;

private QueueConnectionFactory queueConnectionFactory = null;

private Queue requestQueue = null;

private Queue responseQueue = null;

private QueueConnection queueConnection = null;

private QueueSession queueSession = null;

private QueueSender queueSender = null;

private TextMessage textMsg = null;

Chapter 9

454

*1208_ch09_CMP3 5/12/03 1:27 PM Page 454

// Some code here

// some code here

public int processOutputMessages(String myMessage)

{

// Lookup Administered Objects

try {

InitialContext initContext = new InitialContext();

Context env = (Context) initContext.lookup("java:comp/env");

queueConnectionFactory =

(QueueConnectionFactory) env.lookup("tlQCF");

requestQueue = (Queue) env.lookup("tlReqQueue");

responseQueue = (Queue) env.lookup("tlResQueue");

queueConnection = queueConnectionFactory.createQueueConnection();

queueConnection.start();

queueSession = queueConnection.

createQueueSession(true, 0);

queueSender = queueSession.createSender(requestQueue);

textMsg = queueSession.createTextMessage();

textMsg.setText(myMessage);

textMsg.setJMSReplyTo(responseQueue);

// Some processing here

// Some processing here

queueSender.send(textMsg);

queueConnection.stop();

queueConnection.close();

queueConnection = null;

}

catch (Exception e)

{

// do something

}

return requestRetCode = 0;

}

}

Let’s examine Listing 9-2. The first thing a JMS program needs to do is find the
location of the JNDI naming context. If the program is developed under WSAD
and is a part of a J2EE project, the location of the JNDI namespace is maintained

J2EE Enterprise Messaging

455

*1208_ch09_CMP3 5/12/03 1:27 PM Page 455

by the WSAD test server and is known to the runtime environment. In this case, it
is sufficient to instantiate an instance of the InitialContext class by simply calling
its default constructor:

InitialContext initContext = new InitialContext();

A program that runs outside WSAD or a program using a non-WSAD JNDI
namespace—Lightweight Directory Access Protocol (LDAP), for example—has to
provide some help in locating the JNDI namespace. This is done by specifying the
INITIAL_CONTEXT_FACTORY class and PROVIDER_URL as parameters of the Properties or
Hashtable object and then using this object as an input parameter to the Initial-
Context constructor method. You will now see several examples of creating the
InitialContext object. Listing 9-3 is an example of locating the WSAD Initial-
Context object with a program running outside WSAD.

Listing 9-3. Locating the WSAD InitialContext Object with a Program Running
Outside WSAD

Properties props = new Properties();

props.put(Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.websphere.naming.WsnInitialContextFactory");

props.put(Context.PROVIDER_URL, "iiop://localhost/");

InitialContext initialContext = InitialContext(props);

NOTE Replace localhost with the hostname of your server where the JNDI
server is located.

Listing 9-4 shows an example of locating the file-based JNDI InitialContext.

Listing 9-4. Locating the File-Based JNDI Context

Hashtable hashTab = new Hashtable ();

hashTab.put(Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.fscontext.RefFSContextFactory");

hashTab.put(Context.PROVIDER_URL, "file://c:/temp");

InitialContext initialContext = InitialContext(hashTab);

Chapter 9

456

*1208_ch09_CMP3 5/12/03 1:27 PM Page 456

Listing 9-5 shows an example of locating the LDAP-based JNDI
InitialContext.

Listing 9-5. Locating the LDAP JNDI Context

Hashtable hashTab = new Hashtable ();

hashTab.put(Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.ldap.LdapCtxFactory");

hashTab.put(Context.PROVIDER_URL,

"file://server.company.com/o=provider_name, c=us");

InitialContext initialContext = InitialContext(hashTab);

The next step is to do a lookup for the subcontext java:comp/env. This is the
J2EE-recommended JNDI naming subcontext where the environment variables
are located. In this subcontext, the JMS program expects to find JMS-administered
objects such as QueueConnectionFactory objects and Queue objects:

Context env = (Context) initContext.lookup("java:comp/env");

The following code fragment locates the JMS-administered object necessary
for your program to operate:

queueConnectionFactory =

(QueueConnectionFactory) env.lookup("QCF");

requestQueue = (Queue) env.lookup("requestQueue");

Next, you use the QueueConnectionFactory object to build the QueueConnection
object:

queueConnection = queueConnectionFactory.createQueueConnection();

Using the JMS QueueConnection Object

The JMS QueueConnection object provides a connection to the underlying MOM (in
this case, to the WebSphere MQ queue manager). A connection created this way
uses the default Java binding transport to connect to the local queue manager.
For an MQ client (an MQ program running on a machine without the local queue
manager), the QueueConnectionFactory object needs to be adjusted to use the client
transport:

QueueConn.setTransportType(JMSC.MQJMS_TP_CLIENT_MQ_TCPIP);

J2EE Enterprise Messaging

457

*1208_ch09_CMP3 5/12/03 1:27 PM Page 457

The QueueConnection object is always created in the stop mode and needs to be
started:

queueConnection.start();

Once a connection is built, you use the createQueueSession method of the
QueueConnection object to obtain a session. The QueueSession object has a single-
threaded context and is not thread-safe. Therefore, the session object and objects
created based on the session are not thread-safe and must be protected in a multi-
threaded environment. The method takes two parameters. This is the statement
that builds the QueueSession object:

queueSession =

queueConnection.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);

The first is a boolean parameter that specifies the JMS transaction type—in
other words, whether the queue session is transacted (true) or nontransacted
(false). The JMS transaction type is primarily used to regulate the message
delivery mechanism and should not be confused with the EJB transaction type
(NotSupported, Required, and so on), which determines the transaction context of
the EJB module itself. The second parameter is an integer that determines the
acknowledge mode. It determines how the message delivery is confirmed to the
JMS server.

If the queue session is specified as transacted (true), the second parameter is
ignored because the acknowledgment in this case happens automatically when
the transaction is committed. If the transaction is rolled back, no acknowledgment
will be performed, the message is considered undelivered, and the JMS server will
attempt to redeliver the message. If multiple messages participate in the same
session context, they are all processed as a group. Acknowledgment of the last
message automatically acknowledges all previously unacknowledged messages.
Similarly with rollback, the entire message group is considered undelivered with
the JMS server attempting to redeliver them again.

This is how it works beneath the surface: When the sender sends a message,
the JMS server receives the message. If the message is persistent, it writes the
message to a disk first and then it acknowledges the message. Starting from this
point, the JMS server is responsible for delivering the message to the destination.
It will not remove the message from the staging area until it gets a client acknowl-
edgment. For non-persistent messages, acknowledgment is sent as soon as the
message is received and kept in memory.

Chapter 9

458

*1208_ch09_CMP3 5/12/03 1:27 PM Page 458

If the queue session is specified as nontransacted (false), then the second
parameter defines the acknowledgment mode. The available values are
AUTO_ACKNOWLEDGE, DUPS_OK_ACKNOWLEDGE, and CLIENT_ACKNOWLEDGE:

• It is typical to use the AUTO_ACKNOWLEDGE mode for nontransacted sessions.
For transacted sessions, AUTO_ACKNOWLEDGE is always assumed.

• The DUPS_OK_ACKNOWLEDGE mode is a “lazy acknowledgment” message
delivery. It reduces the network overhead by minimizing work done to
prevent message duplicates. You should only use it if duplicate messages are
expected and there is logic in place to handle them.

• With the CLIENT_ACKNOWLEDGE mode, message delivery is explicitly acknowl-
edged by calling the acknowledge method on the message object.

With the AUTO_ACKNOWLEDGE mode, acknowledgment is typically done at the end
of the transaction. The CLIENT_ACKNOWLEDGE mode allows the application to speed
up this process and make an acknowledgment as soon as the processing is done,
well before the end of the transaction. This type of acknowledgment is also useful
when a program is processing multiple messages. In this case, the program can
issue an acknowledgment when all required messages are received.

For a nontransacted session, once a message is successfully put on a queue,
it immediately becomes visible to the receiving program and it cannot be rolled
back. For a transacted session, the JMS transacted context ensures that messages
are sent or received as a group in one unit of work. The transacted context stores
all messages produced during the transaction but does not send them to the desti-
nation.

Only when the transacted queue session is committed are the stored mes-
sages sent to the destination as one block and become visible to the receiving
program. If an error occurs during the transacted queue session, messages that
have been successfully processed before the error occurred will be undone. A
queue session defined as transacted always has a current transaction; no begin
statement is explicitly coded. As always, there is a tradeoff—transacted sessions
are slower than nontransacted.

J2EE Enterprise Messaging

459

*1208_ch09_CMP3 5/12/03 1:27 PM Page 459

NOTE You should not confuse the transacted and nontransacted JMS
QueueSession modes with the corresponding property of the Java method
that implements the JMS logic. The method property TX_REQUIRED indicates
that the method runs within a transaction context. This ensures that a
database update and a message placement on the queue would be executed
as a unit of work (both actions committed or rolled back). By the way, when
a container-managed transaction is selected, a global two-phase commit
transaction context will be activated. (See the “Understanding Two-Phase
Commit Transactions” section for more information.)

In this case, the Datasource participating in the global transaction should be
built based on the XA database driver. You will see an example of this type of pro-
cessing in Chapter 10.

On the other hand, indicating true as the first parameter of the
createQueueSession method establishes the JMS transaction context; multiple
messages are treated as a unit of work. On the receiving side, multiple received
messages are not confirmed until queueSession.commit() is issued, and when it
is issued, it confirms receiving all messages uncommitted up to this point. On
the sending side, all messages put on the destination queue are invisible until the
sending program issues the session.commit statement.

Handling a Rollback

As already mentioned, for an abended transaction, a received message is sent back
to the original queue. The next time the receiving program processes the queue, it
will get the same message again, and the most likely scenario is that the trans-
action will again abend, sending the message back to the input queue. That
creates a condition for an infinite loop.

To prevent this, you can set the Max_retry count on the listening port. After
exhausting Max-retry, the message will no longer become available for selection
by the receiving program or for a delivery in a push mode session. In addition, in a
push mode, redelivered transactions will have a JMSRedelivered flag set. A program
can check this flag by executing the getJMSRedelivered method on the message
object. Messages are sent using a QueueSender JMS object. QueueSender is created by
using the createSender method on the QueueSession object. A separate QueueSender
is built for each queue:

queueSender = queueSession.createSender(requestQueue);

Chapter 9

460

*1208_ch09_CMP3 5/12/03 1:27 PM Page 460

Next, you create a message (in this case, a TextMessage type) and set its content
based on the string myMessage (passed to the method as an input parameter):

textMsg = queueSession.createTextMessage(myMessage);

You also specify the receiving queue where the receiving program should send
a reply message:

textMsg.setJMSReplyTo(responseQueue);

Finally, with the Sender object, you send a message and then stop and close
the connection:

queueSender.send(textMsg);

queueConnection.stop();

queueConnection.close();

After the message is sent, you can recover the message ID assigned by JMS to a
message (by getting the value of the JMSMessageID header field). Later, you can use
this value to find a reply message that matches your request messageID:

String messageID = message.getJMSMessageID();

With the JMS connection pooling in place, the closed session is not discarded
but simply returned to the pool of available connections for reuse.

Closing JMS Objects

Garbage collection does not close a JMS object in a timely manner, which could
lead to a problem when a program tries to create many short-lived JMS objects. It
also consumes valuable resources. Therefore, it is important to explicitly close all
JMS objects when they are no longer needed:

if (queueConn != null)

{

queueConn.stop();

queueConn.close();

queueConn = null;

}

J2EE Enterprise Messaging

461

*1208_ch09_CMP3 5/12/03 1:27 PM Page 461

Closing a queue connection should automatically close all dependent objects
created based on the connection. If this is not the case with your JMS provider,
explicitly close all the open JMS objects in the order shown in Listing 9-6.

Listing 9-6. Closing JMS Objects

if (queueReceiver != null)

{

queueReceiver.close();

queueReceiver = null;

}

if (queueSender != null)

{

queueSender.close();

queueSender = null;

}

if (queueSession != null)

{

queueSession.close();

queueSession = null;

}

if (queueConn != null)

{

queueConn.stop();

queueConn.close();

queueConn = null;

}

Receiving Messages

On the receiving side, the processing logic is similar to the sending side.
Messages are received by the JMS QueueReceiver object, which is built based on
the QueueSession object created for a specific queue. The important difference is
how QueueReceiver receives messages. The QueueReceiver object can receive mes-
sages in a pseudo-synchronous or in an asynchronous way. Listing 9-7 shows the
code fragment of the pseudo-synchronous way of receiving messages.

Chapter 9

462

*1208_ch09_CMP3 5/12/03 1:27 PM Page 462

Listing 9-7. A Pseudo-Synchronous Way of Receiving Messages

import javax.jms.Message;

import javax.jms.TextMessage;

import javax.jms.QueueConnectionFactory;

import javax.jms.QueueConnection;

import javax.jms.QueueSender;

import javax.jms.Queue;

import javax.jms.Exception;

import javax.naming.InitialContext;

public class MyJMSReceiver

{

private String responseMessage;

private String messageID;

private int replyRetCode = 1;

private QueueConnectionFactory queueConnectionFactory = null;

private Queue inputQueue = null;

private QueueConnection queueConnection = null;

private QueueSession queueSession = null;

private QueueReceiver queueReceiver = null;

private TextMessage textMsg = null;

public void processIncomingMessages()

{

// Lookup Administered Objects

InitialContext initContext = new InitialContext();

Context env = (Context) initContext.lookup("java:comp/env");

queueConnectionFactory =

(QueueConnectionFactory) env.lookup("tlQCF");

inputQueue = (Queue) env.lookup("tlQueue");

queueConnection = queueConnectionFactory.createQueueConnection();

queueConnection.start();

queueSession = queueConnection.createQueueSession(true, 0);

queueReceiver = queueSession.createReceiver(inputQueue);

// Wait one second for the arrival of a message

TextMessage inputMessage = queueReceiver.receive(1000);

// Some processing here

// Some processing here

J2EE Enterprise Messaging

463

*1208_ch09_CMP3 5/12/03 1:27 PM Page 463

queueConnection.stop();

queueConnection.close();

}

}

Let’s examine Listing 9-7. The message is received by the QueueReceiver object
executing the receive method. This method has one parameter that indicates the
wait interval (in milliseconds). In Listing 9-7, the QueueReceiver object waits for
one second before it expires, gets unblocked, and returns control to the program.
If the wait-interval parameter is specified, the QueueReceiver object is blocked for
the specified interval, waiting for the arrival of a message. If no message arrives
during the wait interval, the QueueReceiver object times out without getting a
message and returns control to the program.

There is a “no wait” version of this method where the QueueReceiver checks for
the message and immediately returns control to the program if no message is
available. The following is the example:

TextMessage message = queueReceiver.receiveNoWait();

If the wait-interval parameter is not specified, the QueueReceiver waits indefi-
nitely for the message. This version of the receive method should be used with
great care because the program can be locked indefinitely:

TextMessage message = queueReceiver.receive();

Regardless of the variations in the wait-interval parameter, this is a pull
method of message delivery, which (as mentioned) is quite inefficient. In addition
to just being inefficient, it is inappropriate for the J2EE EJB layer and cannot be
used inside EJB components for reasons discussed shortly. However, this type of
processing is suitable for processing inside servlets, JavaServer Pages (JSP), and
stand-alone Java JMS applications.

The second way of receiving messages is asynchronous. To do this, the
QueueReceiver object must register a MessageListener class by using the
setMessageListener(class_name) method of the QueueReceiver object. The
class_name parameter can point to any class that implements the onMessage
interface method. In this example, it is the same class (indicated by the this
parameter). Listing 9-8 shows a code example where the onMessage method is
implemented in the same class (the try/catch blocks are not shown here for
simplicity).

Chapter 9

464

*1208_ch09_CMP3 5/12/03 1:27 PM Page 464

NOTE The upcoming receiving message listings are not suitable for the EJB
components. These code fragments are suitable for processing inside servlets,
JSPs, and stand-alone Java JMS applications.

Listing 9-8. Example of the Listener Class

import javax.jms.Message;

import javax.jms.TextMessage;

import javax.jms.QueueConnectionFactory;

import javax.jms.QueueConnection;

import javax.jms.QueueReceiver;

import javax.jms.Queue;

import javax.jms.Exception;

import javax.naming.InitialContext;

public class MyListenerClass implements javax.jms.MessageListener

{

private int responseRetCode = 1;

private boolean loopFlag = true;

private QueueConnectionFactory queueConnectionFactory = null;

private Queue responseQueue = null;

private QueueConnection queueConnection = null;

private QueueSession queueSession = null;

private QueueSender queueSender = null;

public void prepareEnvironment(String myMessage)

{

// Lookup Administered Objects

InitialContext initContext = new InitialContext();

Context env = (Context) initContext.lookup("java:comp/env");

queueConnectionFactory =

(QueueConnectionFactory) env.lookup("tlQCF");

responseQueue = (Queue) env.lookup("tlResQueue");

queueConnection = queueConnectionFactory.createQueueConnection();

queueSession = queueConnection.createQueueSession(true, 0);

queueReceiver = queueSession.createReceiver(responseQueue);

queueReceiver.setMessageListener(this)

queueConnection.start();

}

J2EE Enterprise Messaging

465

*1208_ch09_CMP3 5/12/03 1:27 PM Page 465

public void onMessage(Message message)

{

// We expect the text message type

if (message instanceof TextMessage)

{

String responseText = "Confirmed. " +

((TextMessage) message).getText();

// When a message that starts from the @ character arrives, it stop the loop

// and the MessageListener terminates.

if (responseText.charAt(0) == '@')

{

loopFlag = 1; // Terminate processing;

}

else

{

// Continue processing message

// We know the Reply Queue here and don't need this field.

// It is used here to show how a queue to send the reply

// message to can be obtained

Destination replyToQueue = message.getJMSReplyTo();

// Set the reply message

TextMessage responseMessage =

responseSession.createTextMessage(responseText);

// Form a CorrelationID equal to the MessageID, so the client

// can map the response record to his/her original request.

messageID = message.getJMSMessageID();

responseMessage.setJMSCorrelationID(messageID);

//Set the message destination

responseMessage.setJMSDestination(replyToQueue)

queueSender.send(responseMessage);

}

}

}

// Keep the listener alive

while(loopFlag)

{

// Yield control to other tasks (sleep for 2 seconds)

System.out.println("Inside the listener loop");

Thread.currentThread().sleep(2000);

}

Chapter 9

466

*1208_ch09_CMP3 5/12/03 1:27 PM Page 466

// Terminate processing when the loopFlag field is set to false.

queueConn.stop();

queueConnection.close();

} // End of the MyListenerClass

When a MessageListener object is registered, a new thread is created that
implements the MessageListener logic. You need to keep this thread alive, so you
run a while loop that sleeps for a specified number of seconds (two seconds, in
this case) to yield the processor control to other tasks. When it wakes up, it checks
the monitored queue and goes back to sleep. Whenever a message arrives on a
queue that is monitored by the registered MessageListener object, JMS invokes the
MessageListener object and calls its onMessage(message) method, passing the
message as a parameter.

This is a push method of message receiving. It is more efficient but still inap-
propriate inside EJB components. The following section discusses why both
methods of receiving messages are inappropriate to use inside the EJB compo-
nents and then shows the solution. Although this is discussed in the P2P domain,
the same considerations apply to the Pub/Sub domain as well.

Using JMS Message Driven Beans (MDBs)

Earlier in this chapter (when discussing the JMS receive processing logic), you
learned that the code listings are not suitable for EJBs, but they are suitable for
servlets, JSPs, and stand-alone Java applications. This is because there are several
technical issues involved with the receiving side of the JMS processing. Typically,
JMS programs are developed using two interaction patterns:

Send-and-forget: The JMS client program sends a message but does not need
a reply. From a performance point of view, this is the best pattern because the
sender does not need to wait for the request to be processed and can contin-
ue processing.

Synchronous request-reply: The JMS client program sends a message and
waits for a reply. Such interaction under JMS is done by executing a pseudo-
synchronous receive method (already discussed). There is an issue here, how-
ever. If your EJB module operates under a transaction context (which is typi-
cally the case), you cannot perform request-reply processing in one transac-
tion. The reason is that when the sender submits a message, the receiver can
get it only when the sender commits the transaction. Therefore, within a sin-
gle transaction, it is impossible to get a reply because within the uncommit-
ted transaction context the receiver will never get the message and will not be
able to reply. The solution is that request-reply must always be performed as
two separate transactions.

J2EE Enterprise Messaging

467

*1208_ch09_CMP3 5/12/03 1:27 PM Page 467

There is an additional problem on the receiving side of the communication
that is specific to EJBs. With asynchronous communication, you never know when
to expect the reply. The main idea of asynchronous communication is that you can
continue working on the sending side even if the receiving side is not currently
active. The request-reply mode presumes that an EJB component (say, a session
bean) should wait for a response after sending a message to a particular desti-
nation. J2EE is actually a component-based transaction-processing environment
designed for processing a large number of short-lived tasks. It is not intended for
tasks being blocked for a substantial period waiting for a response.

To solve this problem, Sun Microsystems developed and added to the EJB 2.0
specification a new type of EJB bean, the MDB. The MDB was specifically designed
to handle the problems of processing JMS asynchronous messages (on the
receiving side) with the EJB components. The solution was to remove the task of
listening for a message’s arrival from an EJB component and delegate it to a con-
tainer. Thus, MDB components run under the control of the container. The
container works as a listener on a particular queue or topic on behalf of an MDB.
When a message arrives on that queue or topic, the container activates this MDB
and calls its onMessage method (passing the arrived message as a parameter).

MDBs are asynchronous components, and they work differently than the rest
of EJB components (session and entity beans) that are synchronous. MDBs do not
have Remote and Home Interfaces because they cannot be activated by clients.
MDBs are activated only by the arrival of messages. Another important aspect of
MDBs is the way in which they run under the transaction and security contexts.
Because MDB components are completely decoupled from their clients, they do
not use the client’s transaction and security contexts.

Remote clients that send JMS messages can potentially run in different envi-
ronments that are not J2EE environments (they can be just Java programs). They
might not have any security or transaction context. Therefore, the transaction and
security contexts of the sender are never propagated to the receiver MDB compo-
nents. Because MDBs are never activated by clients, they can never execute under
the client’s transaction context. Therefore, the following transaction attributes
have no meaning for MDBs: Supports, RequiresNew, Mandatory, and None. These
transactional attributes imply propagation of the client transaction context. Only
two transactional attributes, NotSupported and Required, can be used with MDBs.
MDB components with the NotSupported attribute process messages without any
transaction context.

MDBs (as EJB beans) may participate in two types of transactions: bean-
managed or container-managed transactions. Of all the MDB methods, only the
onMessage method can participate in the transaction context. If a developer selects
an MDB to participate in the bean-managed transaction context, then the MDB is
allowed to begin and end a transaction inside the onMessage method. The problem
with this assignment is that the received message stays outside of the transaction

Chapter 9

468

*1208_ch09_CMP3 5/12/03 1:27 PM Page 468

context that always starts inside the onMessage method (too late for the message to
be a part of it). In this case, you should handle messages in a rollback situation
manually.

If a developer selects an MDB to participate in the container-managed trans-
action context, the entire scenario works differently. With the Required transactional
attribute selected, the container starts a transaction at the time it receives a message;
therefore, the message becomes part of the transaction, and it can be acknowledged
whether the transaction is committed or returned to the sending queue if the trans-
action is rolled back.

Transaction rollback could happen in two situations: The program can explicitly
call the setRollBackOnly method or throw a system exception within the onMessage
method (remember that throwing the application exception does not trigger the
rollback). In the case of transaction rollback, the message will be returned to the
original queue, and the listener will send the message for processing again. Typically,
this will create an indefinite loop and cripple the application. The Max_retries
attribute, set during configuration of the listener port, controls the number of times
the listener is allowed to retrieve the re-sent message. After that, the listener will stop
processing messages (not a good solution).

WebSphere MQ, when used as the JMS provider, has a better solution. You can
configure it to stop delivering the message after the specified number of attempts
and send it to a specified error queue or Dead.Letter.Queue. Remember that MDBs
are stateless components, meaning they do not maintain any state between dif-
ferent method invocations. They also have no identity of the client because they
are never called by clients. MDB execute anonymously. All MDB components
must implement the javax.ejb.MessageDrivenBean and javax.jms.MessageListener
interfaces.

In addition to the onMessage method, MDBs have several callback methods—
methods called by a container:

• The ejbCreate method is called by a container to create the MDB instance.
Some initialization logic can happen here.

• The setMessageDrivenContext method is called by the container when the
bean is first added to the pool of MDB beans. This is typically used to
capture the MessageDrivenContext and save it in a class variable, for example:

public void setMessageDrivenContext

(java.ejb.MessageDrivenContext mdbContext)

{

messageDrivenContext = mdbContext;

}

J2EE Enterprise Messaging

469

*1208_ch09_CMP3 5/12/03 1:27 PM Page 469

• The ejbRemove method is called when the container moves the bean from
the pool to no state. Typically, cleanup processing happens here.

Typically, it is not recommended to perform the business logic inside the
onMessage method. It is a best practice to delegate other EJB components to perform
these tasks. You will see an example of this type of delegation in Chapter 10.

The MDB container automatically handles the concurrency of processing
multiple messages. Each MDB instance processes one message and is never called
for processing another message until the onMessage method returns control to the
container. When multiple messages need to be concurrently processed, the con-
tainer activates multiple instances of the same MDB.

Starting from WebSphere 5.0, full support of MDBs is provided by the devel-
opment environment (WSAD 5.0) and the runtime environment (WAS 5.0).
Listing 9-9 shows a conceptual fragment of the MDB code example.

Listing 9-9. Conceptual Fragment of the MDB Code

package some-package

import javax.jms.Message;

import javax.jms.MapMessage;

import javax.naming.InitialContext;

import java.util.*;

public class LibraryNotificationBean implements javax.ejb.MessageDrivenBean,

javax.jms.MessageListener

{

MessageDrivenContext messageDrivenContext;

Context jndiContext;

public void setMessageDrivenContext(MessageDrivenContext msgDrivenContext)

{

messageDrivenContext = msgDrivenContext;

try

{

jndiContext = new InitialContext();

}

catch(NamingException ne)

{

throw new EJBException(ne);

}

}

Chapter 9

470

*1208_ch09_CMP3 5/12/03 1:27 PM Page 470

public void ejbCreate()

{

}

public void onMessage(Message notifyMsg)

{

try

{

MapMessage notifyMessage = (MapMessage) notifyMsg;

String bookTitle = (String) notifyMessage.getString("BookTitle");

String bookAuthor = (String) notifyMessage.getString("BookAuthor");

String bookCatalogNumber = (String)

notifyMessage.getString("bookCatalogNumber");

Integer bookQuantity = (Integer)

notifyMessage.getInteger("BookQuantity");

// Do some processing (call EJB components)

}

catch (Exception e)

{

throw new EJBException(e);

}

}

public void ejbRemove()

{

try

{

jndiContext.close();

jndiContext = null;

}

catch(NamingException ne)

{

// Do nothing

}

}

}

J2EE Enterprise Messaging

471

*1208_ch09_CMP3 5/12/03 1:27 PM Page 471

Regulating Message Persistence

Messages can be persistent and nonpersistent. A single queue can hold both per-
sistent and nonpersistent messages. Persistent messages are written to a disk and
are recoverable if the system goes down. As usual, there is a performance cost for
persistence. Persistent messages are about seven percent slower. One way of con-
trolling the persistence of messages is to use the queue property when defining a
queue: DEFINE TYPE (name) [property]. If the persistent property is not set explicitly,
the system will use a default. The JMS application can also define persistence:

• PERSISTENCE(QDEF): Persistence is inherited from the queue default.

• PERSISTENCE(PERS): Messages are persistent.

• PERSISTENCE(NON): Messages are nonpersistent.

You can also regulate message persistence by setting the value of the message
attribute header JMSDeliveryMode to DeliveryMode.PERSISTENT or
DeliveryMode.NON_PERSISTENT. Messages processed under the transacted session
must always be persistent.

Using Message Selectors

JMS provides a mechanism for selecting a subset of messages on a queue by fil-
tering out all messages that do not meet the selection condition. The selector can
refer to message header fields as well as message property fields. The following are
examples of using this facility:

QueueReceiver queueReceiver =

queueSession.createReceiver(requestQueue, "BookTitle = 'Windows 2000'");

QueueBrowser queueBrowser =

queueSession.createBrowser(requestQueue,

"BookTitle = 'Windows 2000' AND

BookAuthor = 'Robert Lee'");

Notice that the strings (such as Windows 2000) are surrounded by single quotes
inside double quotes.

Chapter 9

472

*1208_ch09_CMP3 5/12/03 1:27 PM Page 472

Understanding JMS Pub/Sub Programming

Programming for the Pub/Sub domain is similar to the P2P domain. The main dif-
ference is in the destination objects. Messages in the Pub/Sub domain are published
to (similar to sent) and consumed from (similar to received) JMS objects called
topics. Topics function as virtual channels and encapsulate a Pub/Sub destination
object.

In the P2P mode, a message (sent to a queue) can be received by only one
message consumer. In the Pub/Sub domain, a message producer can publish a
single message on a topic that can be distributed and consumed by many message
consumers. More than that, a message producer and its message consumer are so
loosely coupled that a producer does not need to know anything about the message
consumers. Both message producers and message consumers only need to know a
common destination (which is a topic of conversation).

A message producer is called a publisher, and a message consumer is called a
subscriber. All messages published by a publisher for a specific topic are distributed
to all subscribers of that topic. A subscriber receives all messages for which it has
subscribed. Each subscriber receives its copy of the message. Subscriptions can be
durable or nondurable. Nondurable subscribers receive only messages that have
been published after they have subscribed.

Durable subscribers are able to disconnect and later reconnect and still
receive messages that have been published while they were disconnected. Durable
subscribers in the Pub/Sub domain (with some level of approximation) are similar
to persistent messages/queues in the P2P domain. Publishers and subscribers
never communicate directly. The Pub/Sub broker functions as a message cop,
delivering all published messages to their subscribers.

NOTE Starting from WebSphere MQ 5.2, WebSphere MQ with the MA88
and MA0C extensions can function as JMS Pub/Sub brokers. In addition,
WebSphere MQ Integrator can function as a Pub/Sub broker. Starting from
MQ 5.3, MA88 became part of the base package, so you need to install only
MA0C on top of the MQ 5.3 installation. For MQ JMS, for Pub/Sub to work
correctly, you must create a number of system queues on the queue manager
that runs the Pub/Sub broker.

J2EE Enterprise Messaging

473

*1208_ch09_CMP3 5/12/03 1:27 PM Page 473

The MQ JMS MA0C extension provides a procedure that builds all the nec-
essary Pub/Sub system queues. This procedure is called MQJMS_PSQ.mqsc, and it
resides in the <MQ-Install-Directory>\java\bin directory. To build the system
queues required by the Pub/Sub domain, enter the following command from
this directory:

runmqsc < MQJMS_PSQ.mqsc

and press Enter.
You can arrange topic names in a tree-like hierarchy. Each topic name in the

tree is separated by a slash (/)—for example, Books/UnixBooks/SolarisBooks. You
can use wildcards within topics to facilitate subscribing to more than one topic.
This is an example of a wildcard used within the topic hierarchy: Books/#.

Listing 9-10 shows a code fragment of JMS Pub/Sub coding (the try/catch
blocks are not shown for simplicity). In this example, subscribers of the Books/
UnixBooks/SolarisBooks topic will receive all messages sent to the SolarisBooks
topic, and subscribers of the Books/# topic will receive all Books messages
(including messages sent to the UnixBooks and SolarisBooks topics).

Listing 9-10. Seeing JMS Pub/Sub in Action

import javsx.jms.*;

import javax.naming.*;

import javax.ejb.*;

public class PublisherExample implements javax.ejb.SessionBean

{

private TopicConnectionFactory topicConnFactory = null;

private TopicConnection topicConnection = null;

private TopicPublisher topicPublisher = null;

private TopicSession topicSession = null;

private SessionContext sessionContext = null;

public void setSessionContext(SessionContext ctx)

{

sessionContext = cts;

}

public void ejbCreate() throws CreateException

{

InitialContext initContext = new InitialContext();

// Look up the topic connection factory from JNDI

Chapter 9

474

*1208_ch09_CMP3 5/12/03 1:27 PM Page 474

topicConnFactory =

(TopicConnectionFactory)

initContext.lookup("java:comp/env/TCF");

// Look up the topics from JNDI

Topic unixBooksTopic = (Topic)

initContext.lookup("java:comp/env/UnixBooks");

Topic javaBooksTopic = (Topic)

initContext.lookup("java:comp/env/JavaBooks");

Topic linuxBooksTopic = (Topic)

initContext.lookup("java:comp/env/LinuxBooks");

Topic windowsBooksTopic = (Topic)

initContext.lookup("java:comp/env/WindowsBooks");

Topic allBooksTopic = (Topic)

initContext.lookup("java:comp/env/AllBooks");

// Create a connection

topicConnection = topicConnFactory.createTopicConnection();

topicConn.start();

// Create a session

topicSession =

topicConn.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);

}

public void publishMessage(String workMessage, String topicToPublish)

{

// Create a message

TextMessage message = topicSession.createTextMessage(workMessage);

// Create topic publishers and send messages

if ((topicToPublish.toLowerCase()).equals("java"))

{

TopicPublisher javaBooksPublisher =

topicSession.createPublisher(javaBooksTopic);

javaBooksPublisher.publish(message);

}

if ((topicToPublish.toLowerCase()).equals("unix"))

{

TopicPublisher unixBooksPublisher =

topicSession.createPublisher(unixBooksTopic);

J2EE Enterprise Messaging

475

*1208_ch09_CMP3 5/12/03 1:27 PM Page 475

unixBooksPublisher.publish(message);

}

if ((topicToPublish.toLowerCase()).equals("linux"))

{

TopicPublisher linuxBooksPublisher =

topicSession.createPublisher(linuxBooksTopic);

linuxBooksPublisher.publish(message);

}

if ((topicToPublish.toLowerCase()).equals("windows"))

{

TopicPublisher windowsBooksPublisher =

topicSession.createPublisher(windowsBooksTopic);

windowsBooksPublisher.publish(message);

}

TopicPublisher allBooksPublisher =

topicSession.createPublisher(allBooksTopic);

allBooksPublisher.publish(message);

}

public void ejbActivate()

{

}

public void ejbPassivate()

{

}

public void ejbRemove()

{

// Clean up code fragment

if (javaBooksPublisher != null)

{

javaBooksPublisher.close();

javaBooksPublisher = null;

}

if (unixBooksPublisher != null)

{

unixBooksPublisher.close();

Chapter 9

476

*1208_ch09_CMP3 5/12/03 1:27 PM Page 476

unixBooksPublisher = null;

}

if (linuxBooksPublisher != null)

{

linuxBooksPublisher.close();

linuxBooksPublisher = null;

}

if (windowsBooksPublisher != null)

{

windowsBooksPublisher.close();

windowsBooksPublisher = null;

}

if (allBooksPublisher != null)

{

allBooksPublisher.close();

allBooksPublisher = null;

}

if (topicSession != null)

{

topicSession.close();

topicSession = null;

}

if (topicConnection != null)

{

topicConnection.stop();

topicConnection.close();

topicConnection = null;

}

}

This code is straightforward and does not need additional explanation. The
only original part is how you publish a message for different topics. For each spe-
cific topic, you create a corresponding publisher and use it to publish a message
on this topic.

J2EE Enterprise Messaging

477

*1208_ch09_CMP3 5/12/03 1:27 PM Page 477

If an MDB only receives messages and delegates future message processing
to business components (meaning that there is no message sending or publishing
logic inside the MDB), the code for the MDB is identical to the P2P domain of pro-
cessing (see Listing 9-9). The only change for using the same MDB is that you must
change the listener port from listening on a queue to listening on a topic. You will
see the example of this dual usage in Chapter 10.

Understanding Two-Phase Commit Transactions

For enterprise-level processing, you typically operate under a transaction context
to control the integrity of the JMS and non-JMS processing of the business logic
(committing or rolling back all steps as a unit of work). The transaction context is
especially important when (in addition to placing a message on a queue) you also
need to place a record on a database (two-phase commit—all or nothing).

To support two-phase commit, the JMS specification provides an XA version
of the following JMS objects: XAConnectionFactory, XAQueueConnectionFactory,
XASession, XAQueueSession, XATopicConnectionFactory, XATopicConnection, and
XATopicSession. In addition, you must use XA versions of other resources involved
in the global transaction. Specifically, for JDBC resource, you must use the JDBC
XADatasource. Finally, the JTA TransactionManager coordinates the global trans-
action. Listing 9-11 shows the steps necessary to establish a global transaction.

Listing 9-11. Setting a Global Transaction

// Obtain the JTA TransactionManager from the JNDI namespace.

TransactionManager globalTxnManager =

jndiContext.lookup("java:comp/env/txt/txnmgr");

// Start the global transaction

globalTxnManager.begin();

// Get the transaction object

Transaction globalTxn = globalTxnManager.getTransaction();

// Obtain the SA Datasource

XADatasource xaDatasource =

jndiContext.lookup("java:comp/env/jdbc/datasource");

Chapter 9

478

*1208_ch09_CMP3 5/12/03 1:27 PM Page 478

// Obtain the connection

XAConnection jdbcXAConn = xaDatasource.getConnection();

// Obtain the XAResource from the XA connection

XAResource jdbcXAResource = jdbcXAConn.getXAResource();

// Enlist the XAResource in the global transaction

globalTxn .enlist(jdbcXAResource);

// Obtain XA Queue Connection Factory

XAQueueConnectionFactory xaQueueConnectionFactory =

JndiContext.lookup("java:comp/env/jms/xaQCF")

// Obtain XA Queue Connection

XAQueueConnection xaQueueConnection =

XaQueueConnectionFactory.createXAQueueConnection();

// Obtain XA Queue Session

XAQueueSession xaQueueSession = xaQueueConnection.createXAQueueSession();

// Obtain XA Resource from session

XAResource jmsXAResource = xaQueueSession.getXAResource();

// Enlist the XAResource in the global transaction

globalTxn .enlist(jmsXAResource);

// --- some work ---

// Commit global transaction

globalTxn.commit();

Summary

This chapter introduced you to JMS, the new J2EE 1.3 asynchronous messaging
standard. It discussed the advantages of the asynchronous communication, the
two JMS domains (P2P and Pub/Sub), MDBs, JMS transactions, and two-phase
commit global transactions. In the next two chapters, you will see examples of
JMS programming with WSAD 5.0.

J2EE Enterprise Messaging

479

*1208_ch09_CMP3 5/12/03 1:27 PM Page 479

