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2.1 � Clinical Manifestations and Epidemiology  
of HIV Infection of the Nervous System

Although the widespread use of HAART has significantly improved neurological 
outcomes in individuals infected with HIV-1, a relatively high risk (~30%) for 
developing neurocognitive dysfunction caused by HIV replication within cellular 
reservoirs (macrophages/microglia) in the CNS remains (McArthur 2004; Roc 
et al. 2007; Sacktor 2002). Furthermore, damage to the peripheral nervous system 
(PNS) in HIV-infected individuals is probably equally prevalent, reflecting the 
effects of antiretroviral drug toxicity and persistent HIV replication in similar 
peripheral cellular reservoirs (Keswani et al. 2002; McArthur 2004). HIV-associated 
neurocognitive disorders (now collectively referred to as HAND) can present with 
a spectrum of severity: HIV-associated dementia (HAD) and less severe forms that 
have been categorized by selective criteria based upon both behavioral and neurop-
sychological test performance, minor cognitive motor disorder (MCMD), HIV-
associated mild neurocognitive disorder (MND), and asymptomatic neurocognitive 
impairment (ANI) (Antinori et al. 2007).

Generally, HAD manifests as a subcortical dementia characterized by psycho-
motor slowing, behavioral changes, and deficits in memory, abstraction, informa-
tion processing, verbal fluency, decision-making, and attention; also, its progression 
is relatively slow (years). These cognitive impairments suggest pathological 
involvement of the fronto-striato-thalamo-cortical circuits (Woods et al. 2004), and 
recent studies have demonstrated that synaptic and dendritic damage within the 
hippocampus and putamen is highly correlated with the degree of cognitive impair-
ment (Moore et al. 2006). Moreover, pathological studies have demonstrated that 
the mere presence of antemortem neurocognitive impairment is predictive of the 
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pathological diagnosis of HIV encephalitis at death (positive predictive value = 95%) 
(Cherner et al. 2002). Despite the strong correlations between structural brain damage 
and the severity of neurocognitive impairment in HIV infection, these clinical defi-
cits are not absolutely irreversible. The milder HAND disorders do not uniformly 
progress to HAD nor do those with HAD always present as milder disorders (Ellis 
et  al. 2007). Furthermore, a significant number of individuals with HAD (up to 
22%), irrespective of the use of HAART, can revert to normal or greatly improved 
cognitive function, for as yet undefined reasons (McArthur 2004; Sacktor 2002).

To date, however, the most obvious factor altering the natural history of cognitive 
dysfunction in HIV infected individuals is HAART. Prior to the widespread use of 
HAART in the United States (1996), approximately 20% of HIV-positive individuals 
suffered from HAD and up to 40% suffered from milder HAND disorders (McArthur 
2004; Sacktor 2002; Sacktor et al. 2001). Since then, however, the incidence of HAD 
has decreased (~8%), while its prevalence has increased slowly, possibly due to 
increased survival and associated vulnerability of the aging brain to effects of even 
low-level HIV replication (Becker et al. 2004; Bhaskaran et al. 2008; McArthur 2004; 
Sacktor 2002; Sacktor et al. 2001; Valcour and Paul 2006; Valcour et al. 2004). This 
longer life expectancy may also partly explain the trend of increased presentation 
of HAD in individuals with CD4 T-cell counts greater than 200 cells/mm3, which was 
rare during the pre-HAART era, when cognitive dysfunction was much more fre-
quently associated with severe immunosuppresion (Bhaskaran et al. 2008; Ellis et al. 
1997) or generally poor health associated with anemia and low weight (McArthur 
et al. 1993) (Sacktor et al. 2001). Within HIV infected populations of sub-Saharan 
Africa (Uganda), the prevalence of HAD has been estimated at 31% (72% in this 
cohort were HAART-naïve) (Wong et al. 2007), which is near the pre-HAART preva-
lence of HAD in the United States. Improvement in HAND with HAART administra-
tion has been documented in cohort studies in North America, Europe, Australia, 
and elsewhere (d’Arminio Monforte et al. 2004; Dore et al. 2003; Gray et al. 2001; 
May et al. 2007; Robertson et al. 2004; Sacktor et al. 2003; Sacktor et al. 2000; von 
Giesen et al. 2002), including sub-Saharan Africa (Sacktor et al. 2006).

If our experience in developed countries accurately predicts the natural history 
of HAND in post-HAART individuals in other such regions of the world, we can 
anticipate persistence of at least milder HAND syndromes throughout these regions 
of the world as in developed countries. It appears that the major changes in the natu-
ral history of HAND syndromes in the post-HAART era are slower and more vari-
able progression, less predictable progression to death, and significant improvement 
in some subsets of patients. In addition, concern about the increasing incidence of 
peripheral neuropathy, because of the prolonged use of nucleoside reverse tran-
scriptase inhibitors (NRTs) common to HAART regimens, is increasing (Cherry 
and Wesselingh 2003), and a concern about neurotoxicity of HAART in the brain 
has been raised (Schweinsburg et al. 2005). Thus, the natural history of neurologi-
cal complications of HIV infection is changing in the post-HAART era (Brew 
2004) and effective treatment will most likely require additional preventative 
adjunctive therapies to HAART and continued efforts at reducing neurotoxicity of 
antiretroviral compounds.
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2.2 � Biology of HIV Infection and Invasion of the Brain

HIV and the related simian immunodeficiency virus (SIV) are retroviruses that 
when introduced into non-natural hosts cause profound CD4 T-lymphocyte 
depletion, chronic immune activation, fatigue of T-cell responses and, eventually, 
immune failure. Efficient infection of cells by HIV requires surface co-expression 
of chemokine receptors (primarily CXCR4 and CCR5 on T-lymphocytes and CCR5 
(rarely CXCR4) on macrophages) and the CD4 receptor. Binding of native HIV 
envelope glycoprotein (gp120) trimers to CD4 occurs first, and results in a gp120 
conformational rearrangement that exposes the chemokine receptor binding site on 
gp120, allowing it to engage the chemokine receptor (Doms 2004). After this bind-
ing of gp120 to the chemokine receptor, the noncovalently associated fusion pep-
tide, gp41, is exposed and inserted into the target cell membrane in the process of 
fusion, which delivers the infectious particle to the target cell cytoplasm for com-
pletion of the replication cycle (reverse transcription, integration, and production of 
new infectious virions).

Replication of HIV within the CNS appears to drive neuropathogenesis of 
HAND, although defining the relationships between virus replication (cellular tar-
gets, genotype/phenotype of neurotropic strains, regional distribution, level of 
replication) and stages of either structural damage or neurocognitive dysfunction 
has been difficult. Based on neuropathological studies that demonstrate predomi-
nant HIV (or SIV in macaques) expression in perivascular macrophages, entry of 
HIV into the CNS appears to occur via infected circulating monocytes (Budka 
1991; Wiley et  al. 1986; Williams et  al. 2001), and this can occur early (within 
1–2 weeks) after virus enters into the host (Davis et al. 1992; Gray et al. 1993). 
Monocytes (infected and noninfected) can pass through capillary endothelial cells 
via classical transendothelial migration, a process involving movement through 
endothelial intercellular junctions (diapedesis, reviewed in (Maslin et  al. 2005)), 
and possibly also through transcellular migration (pinocytosis (Liu et  al. 2002) 
(Lossinsky et  al. 1991)) through the endothelial cell (although the later is 
controversial).

The process of monocyte recruitment and migration into the CNS during HIV 
infection is regulated by a complex cascade of selective induction of multiple adhe-
sion molecules on both monocytes and endothelial cells (EC) (reviewed in (Maslin 
et  al. 2005)). Several adhesion molecules (E-selectin on monocytes; sialomucin 
CD34, VCAM-1, ICAM-1, P-selectin glycoprotein ligand-1 (PSGL-1 (Marshall 
et al. 2003)) on EC and others) can function to promote initial monocyte adhesion 
(rolling, loose adhesion) to ECs and several of these are induced by proinflamma-
tory cytokines such as TNFa and IL-8 and (Baumheter et  al. 1993). Infection of 
monocytoid cells is associated with increased expression of VLA-4 (a4B1 integrin), 
which then more strongly tethers these cells to EC via binding to VCAM (Birdsall 
et  al. 1994). Expression of each of these is induced by beta chemokine CCL-2/
MCP-1 (monocyte chemoattractant protein-1). Further strengthening of monocyte 
adhesion is enhanced by binding of monocyte LFA-1 to EC ICAM-1 (van Buul and 
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Hordijk 2004), and diapedesis through EC/EC junctions is promoted by homophilic 
PCAM/PCAM interactions and CD99/CD99 interactions between moncocytes and 
EC (Mamdouh et  al. 2003; Schenkel et  al. 2002). Expression of each of these 
adhesion molecules is regulated by chemokines and/or cytokines involved in 
inflammatory responses in the CNS (Meager 1999).

Chemokine expression by EC (CCL2 CXCL1, IL-8, CXC3CL1) can also selectively 
bind monocytes through chemokine receptor binding with cytokines expressed on 
the EC surface (Ebnet et al. 1996; van Buul and Hordijk 2004; Weber et al. 1999). 
Some of these chemokines are tethered to the EC surface by heparin sulfate proteo-
glycans, and CX3CL1 itself is normally directly tethered to the EC surface (Goda 
et al. 2000). Monocytes expressing high levels of the fractalkine receptor CXC3CR1 
(CD14lo/CD16hi) can preferentially bind to EC expressing fractalkine (CX3CL1), 
while CD14hi/CD16lo monocytes preferentially bind to EC expressing the CCR2/
MCP-1 receptor (Ancuta et al. 2003; Geissmann et al. 2003; Maslin et al. 2005). 
Notably, Pulliam et al. (1997) have shown that increased expression of CD16 on 
peripheral monocytes is associated with the presence of HAD, consistent with the 
hypothesis that immune activation of peripheral monocytes during HIV infection is 
associated with increased monocyte trafficking into the CNS and an effector action 
of these cells in the pathogenesis of HAD (Gartner 2000). A more recent study 
involving a distinct patient cohort confirmed high monocyte CD16 expression in 
AIDS patients with and without HAD, and further demonstrated that elevated 
plasma levels of lipopolysaccharide (LPS) and activated monocytes are indeed 
associated with HAD (Ancuta et al. 2008). Infected monocytes that migrate into the 
brain can accumulate within the endothelial cell basement membrane to differenti-
ate into macrophages (Nottet et  al. 1996). These perivascular macrophages are 
generally thought to become the major CNS reservoirs for HIV replication, from 
which sheds virus subsequently infects other macrophages (Rempel et al. 2008).

The HIV strains that have been isolated from CSF and brain tissue, as well as 
functional envelope sequences amplified from these tissue compartments nearly 
uniformly express the characteristics of preferred use of the CCR5 chemokine 
coreceptor and tropism for macrophages (Gorry et al. 2001; Ohagen et al. 2003; 
Peters et  al. 2004; Peters et  al. 2007). The tropism of HIV within the CNS and 
throughout peripheral tissues is determined primarily by the cellular coexpression 
of the CD4 and CCR5 (and/or CXCR4) receptors. The published literature indi-
cates that, for all naturally occurring primary HIV-1 envelopes, this binding of 
gp120 to chemokine receptors requires the initial binding of gp120 to CD4 to 
“uncover” the chemokine receptor binding site followed by binding of the “trig-
gered” envelope to CCR5 or CXCR4 (discussed in (Edwards et al. 2001)). In con-
trast, some naturally-occurring SIV strains express gp120 that can bind directly to 
chemokine receptors in the absence of CD4 (Borsetti et  al. 2000; Edinger et  al. 
1999). Furthermore, gp120 expressed by some laboratory-adapted (cell line pas-
saged) HIV strains such as IIIB/LAI and others can acquire the ability to bind 
chemokine receptors in the absence of CD4 through mutation (LaBranche et  al. 
1999). For this reason, the source of gp120 proteins (naturally occurring vs. laboratory-
adapted) and virions used in in vitro studies of gp120/target cell interactions is critical 
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for validating the biological relevance of such model systems, particularly those 
involving HIV neuropathogenesis.

Despite several reports of detection of HIV genomic sequences in neurons 
in vivo (Bagasra et al. 1996; Torres-Munoz et al. 2008; Torres-Munoz et al. 2001) 
and a plausible infection mechanism mediated by chemokine receptors (CXCR4 or 
CRR5) and independent of CD4 in neurons (Rottman et  al. 1997; Sanders et  al. 
1998), the body of work showing lack of viral protein and RNA in neurons gener-
ally supports the absence of productive HIV infection of neurons in vivo (Achim 
et  al. 1994; Glass et  al. 1995; Takahashi et  al. 1996; Williams et  al. 2001). The 
absence of infection of neurons supports an indirect mechanism of neuronal injury 
through release of soluble neurotoxins from infected and/or activated macrophages/
microglia and astrocytes, although released viral proteins (gp120, Tat) might also 
directly contribute (reviewed in (Mattson et al. 2005)).

2.3 � HIV Neuropathogenesis: Human and Primate Studies

The pathological hallmark of HIV infection in the brain, termed HIV encephalitis, 
is characterized by the presence of myelin pallor, reactive astrocytosis, infiltration of 
predominantly monocytic cells, and multinucleated giant cells (MNGC), which are 
the unique effect of HIV-driven fusion of macrophages/microglia (Budka 1989; 
Navia et al. 1986; Wiley and Achim 1994). Postmortem studies have demonstrated 
that morphological changes in neurons (dendritic simplification and vacoulization, 
loss of synaptic density) and loss of neurons are commonly found in the brains of 
HAND patients ((Asare et  al. 1996; Everall et  al. 1994; Masliah et  al. 1992a; 
Masliah et al. 1992b; Masliah et al. 1997; Sa et al. 2004; Wiley et al. 1991), reviewed 
in (Ellis et al. 2007)). Damage appears to occur early in the basal ganglia, thalamus, 
and central white matter (Navia et al. 1986; Petito 1988), where HIV antigen is com-
monly detected (Kure et al. 1990a; Kure et al. 1990b; Park et al. 1990) but degenera-
tion ultimately involves the entire brain. Several of these studies have focused on 
specific brain regions and neuronal subtypes. The type of neuronal damage observed 
includes the following: loss of dendritic arborizations of the dentate granule and hilar 
basket cells, CA3 and CA1 hippocampal pyramidal cells (Sa et al. 2004), and frontal 
cortical and hippocampal interneurons (Fox et al. 1997; Masliah et al. 1992b), as 
well as dropout of neurons in frontal, temporal, and parietal cortex (Everall et al. 
1994; Wiley et al. 1991). One study reported loss of oxytocin-producing neurons in 
the paraventricular hypothalamic nucleus in a study of 20 AIDS patients (4 with 
suspected HAD), although opportunistic brain infections were present in most of 
these patients, making a direct relationship between HIV replication and neurode-
generation unclear (Purba et  al. 1993). Thus, neuronal damage induced by HIV 
infection of the brain affects multiple brain regions and neuronal subtypes, but the 
factors that determine neuronal vulnerability are only partially understood.

Because pathological features of HAND determined postmortem do not provide a 
picture of how damage is acquired over time, investigators have focused on the use 
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of neuroimaging analyses of infected individuals and pathological and neu-
roimaging analyses of SIV-infected macaques to study early effects of brain infec-
tion. Two macaque models (Macaca mulatta, rhesus; Macaca nemestrina, pigtail) 
of SIV infection have been effectively used for studying the virus-triggered path-
ways of neurodegeneration that lead to cognitive dysfunction, and for characteriz-
ing early events in pathogenesis. Several groups studying the pigtail SIVE model 
use an immunosuppressing viral swarm (SIV/Delta B670) either with or without 
co-infection with a CNS-adapted molecularly cloned SIV strain, SIV/17E-Fr to 
induce SIVE (Bonneh-Barkay et al. 2008; Mankowski et al. 2002). Use of the SIV/
Delta B670 swarm alone results in a somewhat variable and delayed neurodegen-
eration, similar to the natural history of HAND in humans, while coinfection with 
SIV/17E-Fr typically produces SIVE in up to 90% of inoculated animals within 
3  months (Mankowski et  al. 2002). The rhesus model typically involves use of 
either SIVmac251 swarm (a dual macrophage- and T-cell line-tropic swarm) or 
SIVmac239 (a molecular T-cell line-tropic clone of SIVmac251), which induce 
SIVE in ~30% of inoculated animals in 2  years (Fuller et  al. 2004; Lentz et  al. 
2008). These models have shown that SIV infection is associated with infection of 
perivascular macrophages, robust astrocytosis, multinucleated giant cell formation, 
infiltration of CD4+ and CD8+ T cells (CD4+ T cells predominate), and natural 
killer (NK) cells (Mankowski et al. 2002). An initial burst of SIV replication occurs 
within the CNS, followed by a period of relative quiescence, and subsequent reac-
tivation of virus replication in the end stages of AIDS and SIVE. Furthermore, CSF/
plasma ratios of CXCL2/MCP-1 are consistently higher throughout the course of 
infection in those animals eventually developing SIVE (Mankowski et al. 2002).

In the SIV-rhesus macaque model, similar to HIV infection in humans, entry 
into the brain is observed early after systemic virus inoculation (7 days for SIV 
entry) (Chakrabarti et al. 1991). Using calbindin as a neuronal marker specific for 
GABAergic neurons, and synaptophysin as a marker for presynaptic membranes, 
investigators showed that macaques sacrificed 14  days after infection sustained 
significant damage to GABAergic neuronal cell bodies and synapses in the frontal 
cortex (Gonzalez et al. 2000). Fragmentation and shrinkage of calbindin-immuno-
reactive neurons and loss of synaptophysin were even more prominent in macaques 
sacrificed 2 years after infection, indicating that damage to these neurons occurs 
early and probably throughout the chronic course of infection. In addition, reactive 
astrogliosis marked by enhanced GFAP expression was also noted early in infec-
tion and throughout the disease course, although at least one HIV study has shown 
that the degree of astrogliosis does not correlate with the presence or severity of 
neuronal damage (Masliah et al. 1992a).

Early neuronal damage detected by immunohistochemistry has been confirmed 
by brain magnetic resonance spectroscopy (MRS) analysis of the neuronal marker 
N-acetylaspartate (NAA) (commonly expressed as an NAA/creatine ratio; NAA/
Cr) in the acute and chronic phases of infection in SIV-infected macaques (Fuller 
et al. 2004; Greco et al. 2004; Lentz et al. 2005; Lentz et al. 2008; Williams et al. 
2005). In a macaque model involving CD8+ T lymphocyte depletion along with 
SIV inoculation, Williams et al. (2005) demonstrated a reduction in NAA/Cr in the 
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frontal cortex within 10 weeks of infection in animals developing SIV encephalitis 
(SIVE). Neuronal damage was confirmed by quantitative immunohistochemical 
studies that showed a significant loss of synaptophysin in the frontal cortex. There 
was a biphasic increase in the percentage of circulating CD14+ monocytes that co-
expressed CD16 as well as the CD14lo/CD16hi monocyte subset, which occurred 
immediately (7–14  days) after infection and again prior to or with the onset of 
AIDS. The early monocyte increase occurred concomitantly with the initial 
decrease in NAA, and the CD14lo/CD16hi monocyte subset consistently harbored 
SIV proviral DNA. A follow up study by Lentz et al. (2008) also showed a decrease 
in both GABA/Cr and Glutamate/Cr ratios in SIV-infected macaques with and 
without SIVE, indicating injury to inhibitory and excitatory neurons, respectively. 
Other studies have shown that an increase in the myoinositol (MI)/Cr ratio (marker 
of astrocytic activation) often occurs prior to an NAA/Cr decrease (Greco et  al. 
2004), indicating an early CNS inflammatory response prior to neuronal injury. 
Interestingly, antiretroviral drug administration had a significant effect on the NAA/
Cr decrement, which was at least partially reversible by administration of non-CNS 
penetrating antiretroviral drugs 28  days after infection, although whether this is 
associated with a recovery of synaptophysin expression is unclear. In all animals 
studied, no structural changes were detected by conventional Magnetic resonance 
imaging (MRI) at any time point. These studies suggest that MRS can detect early 
neuronal damage in SIV infection of the CNS, similar to studies in HIV-infected 
individuals, and that antiretroviral therapy that reduces systemic virus replication 
and monocyte activation in the circulation can attenuate neuronal damage. However, 
the effects of long-lived SIV replication within the CNS compartment are more 
difficult to address in these short-term studies.

Similarly, in HIV-infected individuals, several studies using brain MRS have 
demonstrated changes in brain metabolites occurring early in infection that corre-
late with worsening neurological function. Brain NAA/Cr ratios have been found to 
be significantly reduced in HAD patients, indicating neuronal loss (Chang et  al. 
1999a; Chang et al. 1999b; Chang et al. 2003; Meyerhoff et al. 1993; Tracey et al. 
1996). Increases in glial-associated metabolites such as choline and myoinositol 
(which are elevated during gliosis or membrane turnover that occurs with glial 
activation) were more sensitive in detecting clinically milder disease early in infection 
(Chang et al. 1999a; Yiannoutsos et al. 2004)). Increases in choline and myoinositol 
reverted with response to HAART (Chang et al. 1999b), indicating that virus repli-
cation, both within and outside of the CNS, contribute to glial activation. HAART 
is able to partially reverse neurologic impairment in HAD, and HAART regimens 
that express higher CNS penetration are more effective in reducing cerebrospinal 
fluid (CSF) viral loads and improving neurological performance (Ances and Ellis 
2007; Letendre et al. 2004; Marra et al. 2003). Together with the aforementioned 
macaque MRS studies, these studies suggest that suppression of virus replication 
within the peripheral circulation and CNS compartments are necessary for maxi-
mum protection against neuronal damage, probably by decreasing virus-induced 
glial cell activation and trafficking. They also suggest that macaque SIV models can 
be very useful for testing neuroprotection treatment approaches.
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In both HIV infection and SIV infection elevations of CCL2 in the cerebrospinal 
fluid (CSF) tend to precede the development of signs of neurological dysfunction, 
consistent with a proposed role for CCL2 in promoting neurodegeneration through 
enhancement of monocyte trafficking and establishing a resident population of 
infected macrophages within the CNS (Zink et al. 2001) (Williams et al. 2001).

2.4 � Mechanisms of HIV-Induced Neurodegeneration: 
Neurotoxicity of HIV Proteins

One of the predominant hypotheses of how infected microglia and macrophages 
can directly mediate neurotoxicity is by the release of viral proteins such as gp120 
and Tat, which then bind to receptors on neurons (Brenneman et al. 1988; Mattson 
et al. 2005). Neurotoxicity resulting from exposure to recombinant gp120 has been 
confirmed in multiple in vitro model systems (Alirezaei et al. 2007; Bennett et al. 
1995; Brenneman et al. 1988; Dawson et al. 1993; Dreyer et al. 1990; Dreyer et al. 
1999; Lannuzel et al. 1995; Meucci and Miller 1996), although the mechanisms by 
which such toxicity is induced remain controversial (Bachis and Mocchetti 2004; 
Gonzalez-Scarano and Martin-Garcia 2005; Kaul et  al. 2001). Using Scatchard 
analyses, Hesselgesser et  al. (1998) demonstrated binding of gp120 (HIV IIIB 
strain) to human neuronal CXCR4 (kD = 54 nM), which was associated with induc-
tion of apoptosis.

Several other studies have indirectly addressed gp120/chemokine receptor inter-
actions in neurotoxicity model systems. Zhang et al. (2003) demonstrated the ability 
of anti-gp120 antibodies and antibodies against CCR5 and CXCR4 to reduce (20–
80%) gp120 toxicity in exposed, non-differentiated human neuronal cells. Meucci 
et al. (1998) showed that anti-gp120 (IIIB) antibodies reduced toxicity of recombi-
nant gp120 by 45% in purified primary rat hippocampal neurons co-cultured with an 
astrocyte feeder layer. Zheng et al (Zheng et al. 1999a) examined the ability of viri-
ons from laboratory-passaged X4 HIV strains (MN, IIIB, Lai) and several R5 strains 
(JR-FL, Bal, ADA, DJV, MS-CSF) to induce apoptosis in human fetal neurons in 
mixed neuronal/glial cultures. Surprisingly, virions from each strain induced neu-
ronal apoptosis (X4 virions more so than R5 virions) in a manner that was blocked 
by an anti-CXCR4 antibody. These and other similar studies suggest that complex 
interactions between gp120 and cellular surface binding moieties in cultured cells 
can lead to effects that may or may not be linked to gp120/chemokine receptor bind-
ing in neurons. In support of indirect effects of gp120 on neuronal survival, Kaul and 
Lipton (Kaul and Lipton 1999) provided evidence that gp120 neurotoxicity in pri-
mary rat neuronal cultures depends upon the presence of macrophages/microglia, 
through which gp120 can induce neurotoxin release after engaging chemokine 
receptors (and CD4) (reviewed in (Kaul et al. 2001)). Signaling initiated by gp120/ 
macrophage chemokine receptor interactions is thought to result in activation of the 
p38 MAPK proapoptotic pathway, because pharmacologic inhibition of p38 MAPK 
can abrogate gp120-induced apoptosis (Kaul and Lipton 1999).
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There are also reports of gp120 interacting directly with the N-methyl-d-
aspartate receptor (NMDAR) in neurons and activating death pathways (Fontana 
et al. 1997; Gemignani et al. 2000; Pattarini et al. 1998; Pittaluga et al. 1996; Xin 
et al. 1999). These studies indicate that gp120 and peptide-fragments of gp120 are 
able to bind to NMDA receptors at the glycine-binding site (on the NR1 subunit) to 
activate the receptor and induce release of neuropeptides or neurotransmitters. 
However, it is not clear whether such gp120 effects are associated with neurotoxicity 
(Gemignani et  al. 2000). It thus seems likely that selected recombinant gp120  
proteins can induce neurotoxicity by several mechanisms: direct toxic effects medi-
ated by interactions with neuronal receptors and indirect effects mediated through 
interactions with glial cells.

In addition to gp120, the HIV-1 transactivating protein, Tat, is thought to be 
released by virus producing cells either during lysis or by active secretion (Chang 
et al. 1997; Ensoli et al. 1993). Similar to addition of gp120, addition of recombi-
nant Tat protein to neuronal cultures can induce neuronal apoptosis (Kruman et al. 
1998; Magnuson et  al. 1995; Nath et  al. 1996; New et  al. 1998). Tat, (86–104 
amino-acids in length in its naturally occuring two-exon form; 72 amino acids in 
length in the laboratory-adapted IIIB strain (one exon), has been shown to be 
released from HIV-infected T lymphocytic cell lines, and it can be detected in the 
serum of a minority of HIV-infected individuals (Ensoli et al. 1990; Westendorp 
et  al. 1995). In our review of the literature, we found no clear evidence of the 
release of Tat by HIV-infected primary macrophages in vitro. A study by Tardieu 
et al. (1992) demonstrated Tat immunoreactivity in the human U937 monocytic cell 
line after infection with HIV-1 in co-cultures with primary human neuronal/glial 
cell populations. Although release of Tat from the infected U937 cells was not 
demonstrated, immunhistochemical labeling demonstrated Tat and gp120 expres-
sion associated with the extension of necrosis in neurons and astrocytes, which 
suggested the possibility of release of both Tat and gp120 by the infected U937 
cells. In other studies, Tat transcripts and Tat protein have been identified in the 
brains of patients with HAD or those with HIV encephalitis (Hudson et al. 2000; 
Nath et al. 2000; Wesselingh et al. 1993; Wiley et al. 1996).

Soluble Tat protein has been shown to bind via its basic region (located at amino 
acid position 48–57) to heparan sulfate proteoglycans on cell surfaces or in extra-
cellular matrix, where it is protected from degradation (Chang et al. 1997). Binding 
to heparin or heparinase results in the release of Tat from the extracellular matrix 
and allows it to bind to integrins (Barillari et al. 1993). Tat can also bind to the low 
density lipoprotein receptor-related protein (LRP) on neurons (Chang et al. 1997; 
Eugenin et al. 2007; Evans et al. 2007; Liu et al. 2000), and such binding prevents 
LPR-mediated clearance of its natural ligands, which include amyloid precursor 
protein, amyloid beta protein, apolipoprotein E4, and alpha-2-macroglobulin. The 
accumulation of these natural ligands in the extracellular space of the brain has 
been shown in other neurodegenerative diseases, which suggests a possible mecha-
nism by which Tat could induce extracellular protein deposition in the brain.

Although Tat may directly interact with receptors on neurons, the major pathway 
for Tat-mediated neurotoxicity in vitro is thought to occur through a direct interaction 
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with neuronal membranes, resulting in depolarization (Nath 2002). By causing an 
initial release of calcium from intracellular IP

3
 sensitive pools, Tat can activate non-

NMDA-glutamate and NMDA receptors and induce calcium influx into neurons 
(Haughey et al. 1999; Kruman et al. 1998; Li et al. 2004; Magnuson et al. 1995). 
Tat-induced disruption of calcium homeostasis can result in the production of reac-
tive oxygen species (ROS), leading to oxidative stress, mitochondrial dysfunction 
and apoptosis (Mattson et al. 2005). Thus, as for gp120, there are multiple mecha-
nisms by which Tat could potentially induce neurotoxicity, although nearly all of 
the published studies have focused on direct effects on neurons. Nonetheless, indirect 
neuromodulating effects of Tat could be mediated through Tat modulation of glial 
cell cytokine and chemokine production (induction of CCL2, CXCL8, CXCL10, 
CCL3, CCL4 and CCL5), inhibition of astrocyte glutamate scavenging, and disrup-
tion of the blood–brain barrier (reviewed in King et  al. (2006)). The ability of 
recombinant Tat to induce expression of multiple chemokines from glia suggests a 
mechanism by which HIV replication in the CNS (with release of Tat) could modu-
late multiple steps in neurodegeneration through effector functions of induced 
chemokines (monocyte transendothelial migration, glial cell activation, and direct 
neurotoxicity).

2.5 � Mechanisms of HIV-Induced Neurodegeneration:  
Roles for Chemokines and Chemokine Receptors

Chemokines and chemokine receptors expressed within the CNS have central roles 
in HIV neuropathogenesis, from the function of chemokine receptors in mediating 
infection in the macrophage/microglial reservoir (Collman and Yi 1999; Doms 
2000; Martin-Garcia et al. 2002) to other possible pathogenic effects of chemokine 
receptor-mediated signaling activation in neurons and glia, which are supported by 
a rapidly growing body of published studies. Studies of cerebrospinal fluid (CSF) 
in cohorts of HAND patients have revealed significant elevations of CCL2/MCP-1 
and CXCL10/IP-10 (Cinque et al. 2005; Kelder et al. 1998; Mankowski et al. 2004) 
and elevated levels of CCL2 in SIV infected macaques that develop SIVE (Zink 
et  al. 2001). Because neurons express multiple chemokine receptors (Coughlan 
et  al. 2000; Horuk et  al. 1997; Lavi et  al. 1997; Meucci et  al. 2000; Miller and 
Meucci 1999; Rottman et  al. 1997), they are potentially functionally altered by 
exposure to induced chemokines during HIV/SIV infection. Alpha chemokines, 
which bind CXCR chemokine receptors, are normally expressed in all major cell 
types in the brain (macrophages/microglia, astrocytes, neurons, endothelial cells) 
and, upon binding to their cognate receptor, they induce signaling through a G

i
 

protein-dependent decrease in cyclic AMP and an increase in intracellular calcium. 
Among those found at elevated levels in the brain or CSF of individuals with HAD 
are CXCL12/SDF-1 alpha and CXCL10 (Rostasy et al. 2003) (Cinque et al. 2005). 
On the other hand, beta chemokines (which bind CCR receptors) are expressed at 
relatively low levels under physiological conditions in the normal brain. CXCL12/
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SDF-1 alpha, an alpha chemokine that binds CXCR4, is produced by macrophages, 
astrocytes, and neurons in the brain, and an increase in CXCL12 transcripts has 
been found in the brain tissue of individuals with HIV encephalitis (Zhang et al. 
1998). Signaling in neurons via CXCL12 exposure has been shown to produce 
either neuroprotective or neurotoxic responses, depending upon the experimental 
conditions (Kaul and Lipton 1999; Khan et al. 2008; Zheng et al. 1999b). It has 
been shown to enhance synaptic transmission, induce AKT/protein kinase B, or 
activate caspase-3 under different conditions (Kaul and Lipton 1999; Zheng et al. 
1999b). CXCL12 can undergo proteolytic cleavage by matrix metallic proteinases 
(specifically MMP-2) (McQuibban et al. 2001), which changes its coreceptor speci-
ficity from CXCR4 to CXCR3 and also enhances its neurotoxicity (Zhang et  al. 
2003) (Vergote et al. 2006). Activation of CXCR3 in neurons by its natural ligand 
CXCL10 results in elevations in intracellular calcium and activation of caspase-3 
leading to neuronal apoptosis (Sui et al. 2004; Sui et al. 2006).

CNS beta chemokine expression is also altered in HIV infection and these 
chemokines may also result in a protective or a destructive milieu (Schmidtmayerova 
et al. 1996). Among the beta chemokines that are expressed at increased levels during 
HIV infection of the CNS are CCL2, MIP-1 alpha, MIP-1 beta, and RANTES/CCL5 
(Kelder et al. 1998), although the association of MIP-1 alpha, MIP-1 beta and CCL5 
with HAND is unclear (Letendre et al. 1999). In vitro studies show that MIP-1 alpha/
beta can protect hippocampal neurons from gp120-induced apoptosis (Kaul and 
Lipton 1999; Meucci et al. 1998). CCL5 also protects neurons against gp120-induced 
damage, although CCL2 does not (Meucci et  al. 1998). In contrast, the beta 
chemokine CCL2 appears to have a detrimental effect in CNS infection. Elevated 
CSF CCL2 expression is associated with an increased risk of HAND (Kelder et al. 
1998; Ragin et al. 2006; Sevigny et al. 2004; Sevigny et al. 2007). This increased risk 
might reflect CCL2’s role as a potent monocyte chemoattractant in the CNS 
(Gonzalez et al. 2002; Monteiro de Almeida et al. 2006). Its expression induced in 
microglia activated by interferons and in astrocytes activated by IL-1beta and TNF-
alpha (Andjelkovic et al. 2000; McManus et al. 2000). Of interest, it has been sug-
gested that the neuroprotective effects of RANTES are mediated by the induction of 
CCL2 (Eugenin et al. 2003). Collectively, these results suggest that the fluctuations 
in the ambient chemokine concentrations within the brain during the course of HIV 
infection have varied effects in neurons, both temporally and regionally, depending 
upon the local neuronal subpopulations that are exposed to activated/infected glia.

Finally, the unique chemokine, fractalkine/CX3CL1, which belongs to the Cx3C 
chemokine family, is also elevated in the CSF of individuals with HAND (Pereira 
et al. 2001). The tethering of CX3CL1 to EC cells in the brain can mediate mono-
cyte attachment, which could promote transendothelial migration of monocytes to 
the CNS, suggesting a role in enhancing HIV neuropathogenesis (Ancuta et  al. 
2003; Geissmann et al. 2003; Maslin et al. 2005). However, several studies have 
demonstrated a neuroprotective function of CXCL1 against neuronal excitotoxicity 
(Deiva et al. 2004; Limatola et al. 2005; Mizuno et al. 2003). Thus, as for alpha and 
beta chemokines, CXCL3 could play a role in both neuroprotective and neurotoxic 
cascades induced by HIV replication in the CNS.
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2.6 � Mechanisms of HIV-Induced Neurodegeneration:  
Roles for Excitotoxins and N-Methyl-d-Aspartate 
Receptors

In addition to the enhanced expression of chemokines, enhanced expression of other 
potential neurotoxic factors such as excitatory amino acids, which include glutamate, 
quinolinic acid (QUIN), cysteine, and the amine N-Tox is associated with mac-
rophage/microglia activation (Brew et al. 1995; Giulian et al. 1990; Giulian et al. 
1993; Giulian et al. 1996; Yeh et al. 2000). Glutamate, which is the major excitatory 
neurotransmitter in the CNS, has been reported to be elevated in the CSF of HIV-
infected individuals (Ferrarese et al. 2001), although this has been disputed (Espey 
et al. 2002; Espey et al. 1999). Because the concentration of glutamate in the synap-
tic cleft must be kept within a physiological range to avoid sustained toxic activation 
of neuronal glutamate receptors and excessive calcium influx (excitotoxicity) (Hyrc 
et al. 1997; Rothman 1984), altered glutamate homeostasis is thought to be a major 
pathway of neurodegneration in inflammatory brain diseases such as HIV infection 
(Kaul et al. 2001). Glutamate, QUIN, and N-Tox are all released (to varying levels) 
by HIV infected macrophages, and each of these has the potential to induce excito-
toxicity through N-methyl-d-aspartate (NMDA) receptor activation (Giulian et al. 
1990; Jiang et al. 2001; O’Donnell et al. 2006). Therefore, the distribution and func-
tion of NMDAR within CNS neuronal populations is likely a major determinant of 
neuronal vulnerability to HIV-induced damage.

The NMDAR, a subtype of glutamate receptor, is a voltage and ligand-gated 
calcium ion channel that generates excitatory postsynaptic currents through calcium 
influx into the neuron. Functional NMDAR are heteromeric assemblies of four 
subunits of at least 2 types: two NMDA-R1 (or NR1) subunits and two NMDA-R2 
(or NR2) subunits. The subunit composition of NMDAR varies throughout neu-
ronal development, and, to some degree, within different brain regions (Lynch and 
Guttmann 2001; Lynch and Guttmann 2002). The 8 variants of NR1 are derived 
from 1 gene via alternative splicing (Goebel et al. 2005) whereas 4 separate genes 
encode NR2 subunits (NR2A, NR2B, NR2C, and NR2D). Two variants of subtype 
NR3 also exist but their expression is not required for a functional NMDAR. NR1 
subunits bind glycine, and NR2 subunits bind glutamate and quinolinic acid. The 
different NR2 subunits have different pharmacologic and biophysical properties 
and thus variations in the type of NR2 subunit can confer distinct properties to the 
receptor (Lynch and Guttmann 2001; Lynch and Guttmann 2002). For example, 
quinolinic acid activates NR2A- and NR2B-containing receptors but not those con-
taining NR2C or NR2D. Furthermore, although all four NR2 subunits can bind 
glutamate with equal affinity, NR2A and NR2B trigger greater excitotoxicity than 
NR2C and NR2D. NR2 subtypes also have different specificities for pharmacologic 
inhibitors, which have been effectively used to distinguish which NR subunits are 
responsible for functional responses in NMDAR.

The distribution of NMDAR subtypes offers one explanation for regional brain 
vulnerability to HIV-associated injury. Neonatal brain predominantly expresses 
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NR2A, NR2B, and NR2D subunits and, in some regions, NR2C, over the course of 
development (Monyer et  al. 1994). In the adult rat brain, NR2A is ubiquitously 
expressed, whereas NR2B is restricted to the forebrain, and NR2C is largely 
restricted to the cerebellum (Kohr 2006). Notably, regions such as the hippocam-
pus, striatum, and forebrain, which have high expression of NR2B, are often the 
areas demonstrating neuronal death in HIV infection whereas areas such as the 
cerebellum with NR2C expression are relatively spared (Archibald et  al. 2004; 
Conti et al. 1999; Everall et al. 1999). This suggests a role of specific NR2 subtypes 
in HIV-mediated neuronal excitotoxicity.

Our group examined the role of NMDAR subtypes in determining susceptibility 
to HIV-induced neurotoxicity and found that neurons become vulnerable to injury 
from exposure to HIV-infected macrophages only after establishing functional 
NMDAR expression (O’Donnell et  al. 2006). We established an in  vitro model 
utilizing embryonic rat hippocampal neuronal cultures exposed to supernatants 
from HIV-infected macrophages and we found that neuronal death occurred only 
with the appearance of NR2A and NR2B subtypes as the neurons matured. As 
shown previously by others (Giulian et al. 1996; Jiang et al. 2001), we confirmed 
that the neurotoxic factor(s) released from the infected macrophages are of low 
molecular weight (<3 kD), and are heat- and protease-resistant excitotoxins that act 
through NMDAR. Furthermore, blockade of neurotoxicity at different neuronal 
developmental stages could be achieved using antagonists to specific NMDAR 
subunits (to either NR2A or NR2B) and this protection was consistent with the NR 
subtype expression profile of the cultured neurons. For example, inhibitors specific 
for NR2B/NR2B homodimers (Ifenprodil and Ro25-6981) were most effective 
earlier in the maturation process when NR2A was not heavily expressed. Neuronal 
protection in more mature cultures (with increased expression of NR2A and NR2B) 
required use of inhibitors that blocked both NR2B/NR2B homomeric receptors and 
NR2A/NR2B heteromeric receptors.

In addition to glutamate, other amines released by activated macrophages that 
act at the NMDAR, such as quinolinic acid (QUIN), may also contribute to excito-
toxity in HIV infection. Like glutamate, QUIN levels are shown to be elevated in 
CSF and brain parenchyma of HIV-infected patients and those with other CNS 
infections (Heyes et al. 1991; Heyes et al. 2001) (Achim et al. 1993). The accumu-
lation of these excitatory amines points to malfunctioning glia cells since microglia 
are predominate producers of QUIN while both microglia and astrocytes regulate 
extracellular glutamate levels. QUIN and glutamate are metabolically processed by 
microglia and astrocytes and inflammatory mediators can alter the normal process-
ing of these amines resulting in their accumulation in the extracellular space. QUIN 
is produced via the kynurenine pathway from the substrate l-tryptophan, and the 
key regulatory enzyme in this pathway, idoleamine 2, 3-dioxygenase (IDO), is 
upregulated in inflammatory states by cytokines such as IFN-gamma. In the brain, 
IDO is expressed by microglia, astrocytes, endothelial cells, and neurons. 
Macrophages/microglia are key QUIN producers because they express all enzymes 
of the pathway leading to QUIN production, whereas astrocytes predominantly 
have enzymes that shift production away from QUIN to other metabolites such as 
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kynurenic acid, an antagonist of QUIN, and kynurenine (Guillemin et  al. 1999) 
(Heyes 1996). Bruce Brew and colleagues have proposed a model of QUIN metab-
olism in the brain where astrocytes play a neuroprotective role by minimizing 
production of QUIN (Guillemin et al. 2001; Guillemin et al. 2005). Thus, interac-
tions between astrocytes and macrophages/microglia likely regulate extracellular 
QUIN concentrations, which, like glutamate, directly induce neuronal cell responses 
through NMDAR during HIV infection.

Although it is as yet unclear whether chemokines have a direct effect on gluta-
mate or QUIN metabolism, NMDAR expression, or NMDAR function, several 
studies have demonstrated that NMDAR-dependent excitotoxic neuronal injury 
results in a rapid and robust increase in CCL2 expression, in rat brain, and periph-
eral nerve (Galasso et al. 2000) (Kleinschnitz et al. 2004). A concomitant increase 
in CCR2 expression also occurs, suggesting a mechanism for recruitment of mono-
cyte/macrophages to areas of exicitotoxic injury, such as that seen in HIV infection. 
Along these lines, QUIN also up-regulates chemokine (CCL2, CXCL12, CCR5, 
CXCL8) and chemokine receptor expression (CXCR3, CCR5, CCR3) in astrocytes 
(Croitoru-Lamoury et al. 2003). This also supports the hypothesis that excitotoxic 
injury induced by HIV promotes activation of multiple chemokine-mediated path-
ways that promote either further injury or that initiate protective responses to such 
injury. Further studies of the ability of chemokines and NMDAR ligands (gluta-
mate, QUIN) expressed within the CNS to cross-modulate each other’s receptor 
expression and function could yield novel information about how chemokines 
influence the progression of excitotoxic injury in HAND and other neurodegenera-
tive diseases.

The potential for NMDAR antagonists to protect the CNS against HAND has 
recently been investigated in a multicenter therapeutic trial (ACTG) of Namenda 
(memantine), which is currently FDA-approved for use in Alzheimer’s disease 
(Schifitto et al. 2007). Although no clinically beneficial effect in neuropsychologi-
cal test performance was observed during the 16-week treatment phase, there was 
a significant increase in the NAA/Cr ratio in the frontal white matter and parietal 
cortex in treated individuals, suggesting a potential neuroprotective effect. Further 
investigations of agents that block pathways (e.g., oxidative stress, glutamate and 
QUIN production) to neuronal excitotoxic injury and therapeutic trial designs that 
include longer duration trials (6 months or greater) are likely to follow (Bandaru 
et al. 2007; Brew et al. 2007; Clifford 2008; Evans et al. 2007).

2.7 � Other Links Between Chemokines and Excitotoxic  
Injury: Glutamate Release

Besides the clear role for chemokines in modulating recruitment of cells into the CNS 
in HIV infection, and the potential role for chemokines to directly modulate neu-
ronal signaling, recent evidence has suggested a link between CNS chemokine 
expression and enhancement of excitotoxic injury through enhancement of glutamate 
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release. Bezzi et al. (2001) demonstrated that CXCL12 rapidly (seconds) induces 
the release of glutamate from astrocytes in rat hippocampal brain slices in a calcium-
dependent manner. Detailed characterization of this release process revealed that it 
most likely occurs by inhibition of quantal-like glutamate exocytosis, which is 
independent of glutamate transporter (EAAT) reversal or osmotic damage, but 
which is dependent upon TNFa. Other studies have confirmed that CXCL12 can 
induce glutamate release in hypothalamic and substantia nigra neurons (Guyon and 
Nahon 2007; Guyon et al. 2006), and modulate neuronal GABA release (Guyon 
et al. 2006). These interesting studies are the first reports of a direct link between 
neuronal chemokine production and enhancement of glutamate-mediated excito-
toxicity, and they clearly extend previous observations of neuronal toxicity medi-
ated by direct chemokine/neuronal signaling by CXCL10 (Sui et al. 2004; Sui et al. 
2006) and CXCL12 (Kaul and Lipton 1999; Vergote et al. 2006; Zheng et al. 1999a; 
Zheng et al. 1999b). Additional studies are needed to more thoroughly define the 
abilities of chemokines to alter neurotransmitter metabolism in the CNS to better 
understand the mechanisms by which chemokines can modulate excitotoxic injury 
in HAND.

2.8 � Therapeutic Considerations

There is no doubt that HAART has changed the nature of HIV-infection and altered 
it from a uniformly fatal disease to a chronic, and often disabling, infection. 
Likewise, CNS manifestations of HIV-infection have also been modified by 
HAART. The severity of neurocognitive impairment has been lessened but not to a 
point where it has no impact on the quality of life, as even minor impairment can 
negatively affect survival. As systemic eradication of the virus is likely not possible 
in the near future, we are faced with addressing when and what types of therapies 
to initiate. The current guidelines for administering HAART recommend deferring 
therapy for asymptomatic patients until CD4 T + cell counts drop below 350. 
HAART is recommended for patients with symptoms or a history of an AIDS-
defining illness (which includes HAD) and asymptomatic patients with CD4 T+ 
cell counts less than 200. These recommendations for deferred therapy are in con-
trast to early treatment recommendations to begin therapy soon after diagnosis. 
These newer recommendations take into consideration the increased likelihood of 
resistance with longer periods of unnecessary treatment, the negative side effects of 
HAART, many of which are not minor, offset with the longer life expectancy 
imparted by HAART. Because the virus enters into the CNS early in infection, this 
deferred therapy allows for virus replication in the CNS undoubtedly with con-
comitant neuronal damage that occurs with inflammation. It is unclear whether 
damage incurred during this period is a contributory reason/factor to why despite 
the HAART therapy, less severe HAND syndromes are still pervasive among those 
individuals receiving HAART. Perhaps there exists a threshold level of tolerable 
damage that may be reversible, and beyond this damage may result in neurological 
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symptoms. If so, is there a role for adjunctive neuroprotective agents (NMDAR 
antagonists, chemokine modulators, antioxidants, others) before or after initiation 
of HAART?
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