
Embedded Robotics

Mobile Robot Design and Applications with Embedded Systems

Bearbeitet von
Thomas Bräunl

Neuausgabe 2008. Taschenbuch. xiv, 546 S. Paperback
ISBN 978 3 540 70533 8

Format (B x L): 17 x 24,4 cm
Gewicht: 1940 g

Weitere Fachgebiete > Technik > Elektronik > Robotik

Zu Inhaltsverzeichnis

schnell und portofrei erhältlich bei

Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft.
Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm
durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr

als 8 Millionen Produkte.

http://www.beck-shop.de/Braeunl-Embedded-Robotics/productview.aspx?product=547610&utm_source=pdf&utm_medium=clickthru_lp&utm_campaign=pdf_547610&campaign=pdf/547610
http://www.beck-shop.de/trefferliste.aspx?toc=9753
http://www.beck-shop.de/fachbuch/inhaltsverzeichnis/9783540705338_TOC_001.pdf


1717

CENTRAL 
. . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PROCESSING UNIT

he CPU (central processing unit) is the heart of every embedded system
and every personal computer. It comprises the ALU (arithmetic logic
unit), responsible for the number crunching, and the CU (control unit),

responsible for instruction sequencing and branching. Modern microprocessors
and microcontrollers provide on a single chip the CPU and a varying degree of
additional components, such as counters, timing coprocessors, watchdogs,
SRAM (static RAM), and Flash-ROM (electrically erasable ROM).

Hardware can be described on several different levels, from low-level tran-
sistor-level to high-level hardware description languages (HDLs). The so-
called register-transfer level is somewhat in-between, describing CPU compo-
nents and their interaction on a relatively high level. We will use this level in
this chapter to introduce gradually more complex components, which we will
then use to construct a complete CPU. With the simulation system Retro
[Chansavat Bräunl 1999], [Bräunl 2000], we will be able to actually program,
run, and test our CPUs.

One of the best analogies for a CPU, I believe, is a mechanical clockwork
(Figure 2.1). A large number of components interact with each other, follow-
ing the rhythm of one central oscillator, where each part has to move exactly at
the right time.

Figure 2.1: Working like clockwork



Central Processing Unit

18

2

2.1 Logic Gates
On the lowest level of digital logic, we have logic gates AND, OR, and NOT
(Figure 2.2). The functionality of each of these three basic gates can be fully
described by a truth table (Table 2.1), which defines the logic output value for
every possible combination of logic input values. Each logic component has a
certain delay time (time it takes from a change of input until the corrected out-
put is being produced), which limits its maximum operating frequency.  

Gates are built by using electronically activated switches. These are transis-
tors in today’s technology, while relays and vacuum tubes have been used in
the past. However, for the understanding of the material in this chapter, we do
not need to know any further low-level details.

The layer of abstraction above gate-level is formed by so-called combinato-
rial logic circuits. These do not have any timing components, and so every-
thing can be explained as a combination of AND, OR, NOT gates.

In the following we will denote negated signals with an apostrophe (e.g. a’
for NOT a) in text, and as a dot in a gate’s input or output in diagrams (see Fig-
ure 2.3).

Figure 2.2: AND, OR, NOT gates

AND

OR

NOT

a

b

Input
a, b

Output 
a AND b

Output 
a OR b

Output 
NOT a

0, 0 0 0 1

0, 1 0 1 1

1, 0 0 1 0

1, 1 1 1 0

Table 2.1: Truth table



Logic Gates

19

2.1.1 Encoder and Decoder
A decoder can be seen as a translator device of a given binary input number. A
decoder with n input lines has 2n output lines. Only the output line correspond-
ing to the binary value of the input line will be set to “1”, all other output lines
will be set to “0”. This can be described by the formula:

Only the output line matching the binary input pattern is set to “1”.
So if e.g. n = 4 and input X is a binary 2, meaning X1=1 and X0=0, then out-

put line Y2 will be “1”, while Y0, Y1, and Y3 will be “0”.
Figure 2.3 shows a simple decoder example with two input lines and conse-

quently four output lines. Its implementation with combinatorial logic requires
four AND gates and four NOT gates. Decoders are being used as building
blocks for memory modules (ROM and RAM) as well as for multiplexers and
demultiplexers.

Encoders perform the opposite function of a decoder. They work under the
assumption that only a single one of their input lines is active at any time.
Their output lines will then represent the input line number as a binary number.
Consequently, encoders with n output lines have 2n input lines. Figure 2.4
shows the implementation of an encoder using only two OR gates. Note that
X0 is not connected to anything, as the output lines will default to zero if none
of the other X lines are active. Figure 2.5 shows the interaction between an
encoder and a decoder unit, reconstructing the original signal lines.  

Yi
1 if i X•

0 else



•= =

Figure 2.3: Decoder symbol and implementation

X0 Y0

Y1

X1

Y3

Y2

X0 Y0

Y1

X1

Y3

Y2

X0

X1

Y0

Y1

Y2

Y3

0
1
2
3

D



Central Processing Unit

20

2

2.1.2 Multiplexer and Demultiplexer
The next level of abstraction are multiplexers and demultiplexers. A multi-
plexer routes exactly one of its inputs (X1, ..., Xn) through to its output Y,
depending on the selection lines S. Each input Xi and output Y have the same
width (number of lines), and so they can either be a single line as in Figure 2.6
or can all be e.g. 8-bit wide.

The width (number of lines) of selection line S depends on the number of
multiplexer inputs n, which is always a power of 2:

Number of inputs n = 2k, with k being the width of S.
In the example in Figure 2.6, we have only two inputs, and so we need only

a single selection line to distinguish between them. In this simple case, we can
write the logic equation for a multiplexer as:

Y := S · X1 + S’ · X0

The equivalence circuit built from AND, OR, and NOT gates is shown on
the right-hand-side of Figure 2.6. 

When building a larger multiplexer, such as the four-way multiplexer in
Figure 2.7, using a decoder circuit makes the implementation a lot easier (Fig-
ure 2.7, right). For each case, the input position matching the selection lines is
routed through, which can be written in short as:

Y := XS 
A demultiplexer has the opposite functionality to a multiplexer. Here we

connect a single input X to one of several outputs Y1..Yn, depending on the

Figure 2.4: Encoder symbol and implementation

Figure 2.5: Encoder and Decoder

Y0

Y1

X0
X1
X2
X3

0
1
2
3

E
Y0

Y1

X0
X1
X2
X3

0
1
2
3

D
0
1
2
3

E
Y0

Y1

X0
X1
X2
X3

X0
X1
X2
X3



Logic Gates

21

status of the selection line S. In fact, if multiplexers and demultiplexers were
built like a mechanical pipe system, they would be the same thing – just turn-
ing it around would make a multiplexer a demultiplexer and vice versa. Unfor-
tunately, in the electronics world, it is not so easy to exchange inputs and out-
puts. Most electronic circuits have a “direction”, as it becomes clear from the
demultiplexer’s equivalence circuit made out of AND and NOT gates in Fig-
ures 2.8 and 2.9.  

The logic formula for a general demultiplexer is very similar to a decoder,
however, remember that input X and outputs Yi can be wider than a single line:

Figure 2.6: Multiplexer 2-way and implementation

Figure 2.7: Multiplexer 4-way and implementation

X1

X0

Y

S

0

1 X1

S

X0
Y

Y

S1 S0

3
2
1
0

X3

X0

X2

X1

X0

X1

X2

X3

Y

S1 S0

0 1 2 3
D

Yi
X if i S•

0 else



•= =



Central Processing Unit

22

2

2.1.3 Adder
The adder is a standard textbook example, and so we can be very brief about it.
The first step is building a half-adder that can add 2-bit input (X, Y) and pro-
duce 1-bit output plus a carry bit. It can be constructed by using an XOR and
an AND gate (Figure 2.10). 

Figure 2.8: Demultiplexer 2-way and implementation

Figure 2.9: Demultiplexer 4-way and implementation

1

0

X
Y1

Y0

S

X

S

Y1

Y0

S1 S0

0
1
2
3

X
Y0

Y1

Y2

Y3 Y3

X

S1 S0

0 1 2 3
D

Y2

Y1

Y0

Figure 2.10: Half-Adder symbol (2-bit) and implementation

Y

X
H

sum

XOR

sum

carry

X

Y



Function Units

23

Two half-adders and an OR gate are being used to build a full-adder cell. The
full-adder adds two input bits plus an input carry and produces a single bit sum
plus an output carry (Figure 2.11). It will later be used in a bit-slice manner to
build adders with word inputs, e.g. 8-bit wide. 

2.2 Function Units
Function units are essentially higher-level combinatorial logic circuits. This
means each one of them could be represented by a set of AND, OR, and NOT
gates, but using the higher level building blocks from the previous Section will
help to understand their functionality.

The adder for two n-bit numbers is the first function unit we introduce here
(Figure 2.12). Note that we draw fat lines to indicate that an input or output
consists of multiple lines (in same cases showing the numeric number next to
the fat line).

Internally, an adder is built by using n full-adder components, each taking
one input bit each from X and Y. Note that the adder’s propagation delay is n
times the propagation delay of a bit-slice full-adder component, and so the
carry bits can percolate through from right to left. 

Incrementing a counter by one is a standard operation for which it would be
useful to have a function unit available, ready to use. Figure 2.13 shows the
definition of an incrementer function unit with a single n-bit number as input
and a single n-bit output. The incrementer can easily be implemented by using
the adder for two n-bit numbers and hard-wiring one of the inputs to the hexa-

Figure 2.11: Full-Adder symbol (3-bit) and implementation

X
Y

C in

H H sum

C outA
C out C in

sum

X Y

Figure 2.12: Adder function unit and implementation

C-1A A A A
S4=C3

S4 S3 S2 S1 S0

X3 Y3 X2 Y2 X1 Y1 X0 Y0

C0C1 0C2
+

X Y

sum



Central Processing Unit

24

2
decimal value “$01”. By “hard-wiring” we mean to connect all “0” bits of the
$01 word to electric ground, and to connect the “1” bit to the supply voltage
(possibly using a pull-up resistor). 

A comparator is another very useful function unit. It takes one n-bit word as
input and has only a single output line (yes or no, 1 or 0). Since in a zero-word
all bits are equal to “0”, we can implement the zero-comparator by using a sin-
gle NOR gate that connects to all input bits (Figure 2.14). 

The one’s complement of a single input is simply the inverse of all its bits.
We can implement this function unit by using n NOT gates (Figure 2.15). 

Having function units for AND and OR is useful and their implementation
is equally simple, since each bit can be calculated independent of the other

Figure 2.13: Incrementer function unit and implementation

+1

8

8

X

+

X01

Figure 2.14: Compare with zero function unit and implementation

= 0

8

1

Figure 2.15: One’s complement and implementation

NOT

4

4



Function Units

25

bits. The implementation in Figure 2.16 uses n AND gates, each connected to
the corresponding input bits from X and Y. 

The two’s complement returns the negated value of an input number (Figure
2.17). We can implement this function unit by combining two of the function
units we have constructed before, the one’s complement (NOT) and the incre-
menter, executed one after the other. 

The subtractor shown in Figure 2.18 is another important function unit. We
can implement it with the help of the previously defined function units for add-
ing and negation. 

Figure 2.16: AND of two operands

X Y

AND

X Y
4 4

4

Figure 2.17: Two’s complement and implementation

NOT

+1

NEG

Figure 2.18: Subtractor and implementation

X Y

-
+

X Y

NEG



Central Processing Unit

26

2
For a number of cases it is important to be able to compare two input num-

bers, e.g., to check for equality, and so we define a function unit for this, hav-
ing two n-bit inputs and a single output (yes or no, see Figure 2.19). We could
implement this function unit by using the previously defined function units for
subtraction and check for equality to zero (Figure 2.19, middle). While this
would be correct in a mathematical sense, it would be a very poor choice of
implementation, both in terms of hardware components required and in the
required delay time (computation time). Checking two n-bit numbers for
equality can be more simply achieved by using n EQUIV gates (negated
XORs) for a bit-wise equality check and one AND gate (Figure 2.19, right). 

A function unit for multiplying the input number by two is another example
where we have to be careful with reusing function units that are too complex
for the task (Figure 2.20). Although, we could implement “multiply by two”
with a single adder, the operation is equivalent with a “shift left” operation,
and this we can realize with a simple reordering of the wires. No active com-
ponents are required for this solution (Figure 2.20, right). 

Performing comparisons with integer values can be quite tricky, especially
when there is a mix of unsigned and signed numbers in a system. Figure 2.21
shows a comparator that checks whether a single signed input number is less
than zero (remember that an unsigned number can never be less than zero). In
two’s complement representation, the highest bit of a signed number deter-
mines whether the number is negative or positive. The implementation in Fig-

Figure 2.19: Equality of two operands and implementations

X Y

=

X Y

-

X Y

= 0

Figure 2.20: Multiply by two and implementations

*2

4

4

+

4

4

0carry



Function Units

27

ure 2.21 takes advantage of this fact and therefore does not require any active
components either. 

We had already discussed comparing two numbers for equality, for which
we had shown a simple solution using combinatorial gates. However, when
comparing whether one input number is less than the other, we cannot get
away with this simple implementation. For this, we do have to conduct a sub-
traction and then subsequently check whether the result (as a signed number) is
less than zero (Figure 2.22, right). 

The list of function units shown in this section is not meant to be complete.
More function units can be designed and implemented using the methods
shown here, whenever a specific function is considered useful for a design.
The good thing about this additional level of abstraction is that we can now
forget about the (hopefully efficient) implementation of each function unit and
can concentrate on how to use function units in order to build more complex
structures.

Figure 2.21: Signed comparison and implementation

signed
<0

4

Figure 2.22: Comparison of two operands and implementation

<

X Y

-

X Y

signed
<0



Central Processing Unit

28

2

2.3 Registers and Memory
So far, we have been using combinatorial logic exclusively, and so a combina-
tion of AND, OR, and NOT gates, without any clock or system state. This will
change when we want to store data in a register or in memory.

The smallest unit of information is one bit (short for binary digit), which is
the information that can be held by a single flip–flop. The RS (reset/set) flip-
flop type in Figure 2.23 has inputs for setting and resetting the flip-flop (both
active-low in this case). The flip-flop’s one-bit contents will always be dis-
played at output Q, while Q’ displays the negated output. 

The RS flip-flop has now introduced the concept of a “state” to our circuits.
Depending on whether S’ or R’ was activated last, our flip-flop will have the
stored state “1” or “0” and will keep it indefinitely until either the set or reset
input will be activated again.

One drawback of the RS-type flip-flop is that the data inputs (set or reset)
are two separate lines that are “level triggered”, i.e., rising edge (also called
positive edge or low-to-high) or falling edge (also called negative edge, high-
to-low). This means any change on these lines will cause an instantaneous
change of the flip-flop contents and its output Q. However, we would like to be
able to decouple the input data (as a single data line) from an “edge-triggered”
activation line. These improvements can be achieved by linking two RS flip-
flops together, forming a D flip-flop (Figure 2.24). 

Figure 2.23: RS flip-flop and implementation

S’ Q

R’ Q’

S’

R’ Q’

Q

Figure 2.24: D flip-flop, positive and negative edge-triggered

D Q

C K

D Q

C K



Registers and Memory

29

The “D type” flip-flop shown in Figure 2.24 has a single data input line D
and one output line Q. On the rising edge of the clock input CK, the current
input of D is copied into the flip-flop and will from then on be available on its
output Q. There is also an equivalent version of the D flip-flop that switches on
the falling edge of the clock signal; we draw this version with a solid clock
arrow instead of a hollow one. 

For the D flip-flop implementation (positive edge, Figure 2.25), we use the
master–slave combination of two RS flip-flops in series (the output of FF-1 is
input to FF-2 via some auxiliary NAND gates), whose reset signals are trig-
gered by opposite clock levels (inverter to the second flip-flop’s R’ input).
This interlocking design accomplishes the transition from level-triggered
latches to edge-triggered flip-flops. However, for understanding the following
components it is more important to remember the behavior of a D flip-flop
than its actual implementation. 

A register is now simply a bank of D flip-flops with all their clock lines
linked together (Figure 2.26). That way, we can store a full data word with a
single control line (clock) signal. We use a box with digits in the register sym-
bol to denote its current contents (sort of a window to its memory contents). 

Figure 2.25: D flip-flop implementation (positive edge)

S’ Q

R’

S’ Q

R’

CK

D Q
FF-1 FF-2

Figure 2.26: Register (4-bit) and implementation

D     Q D     Q D     Q D     Q

clock

I

O

I

Register
00

clock

O

4

4



Central Processing Unit

30

2
The final components are memory modules RAM (random access memory

– read and write) and ROM (read only memory) as shown in Figure 2.27.
Memory modules come in various sizes, and so they will have different num-
bers of address lines (determining the number of memory cells) and various
numbers of data lines (determining the size of each memory cell). A typical
memory chip might have 20 address lines, which let it access 220 different
memory cells. If this memory module has eight data lines (8 bits = 1 Byte),
then the whole module has 1,048,576 Bytes, which equals 1 Megabyte (1 MB).

Both ROM and RAM modules in our notation have chip select (CS’, active
low) and output enable (OE’, active low) lines, which are required if our
design has multiple memory modules or if other devices need to write to the
data bus. Only the RAM module as an additional Read/Write’ line (read when
high, write when low) that allows data to be written back to the RAM module. 

Note that because of the complexity of memory modules, their typical delay
times are significantly larger than those of simple gates or function units,
which again limits the maximum CPU clock speed. At this level of abstraction
we do not distinguish between different types of ROM (e.g. mask-ROM vs.
flash-ROM, etc.) and RAM (e.g. SRAM vs. DRAM, etc.). It simply does not
matter for our purposes here.

2.4 Retro 
Before we proceed with the major CPU blocks, we introduce the Retro hard-
ware design and simulation system [Chansavat Bräunl 1999], [Bräunl 2000].
Retro is a tool for visual circuit design at register-transfer level, which gives
students a much better understanding of how to construct a complex digital
system and how a computer system works in detail.

Retro supplies a number of basic components and function units (as dis-
cussed in the preceding sections) that can be selected from a palette and placed
on a canvas where they will be interconnected. Components can be linked by
either a single signal line or a bus of variable size (e.g. 8, 16, 32 lines). All pal-
ette components are grouped into libraries that can be loaded into the system,
making Retro extendable with new component types. Retro can run in several

Figure 2.27: Memory modules ROM and RAM

ROM
A D

dataaddress

CS’ OE’

RAM

CS’ R/W’ OE’

A D
dataaddress



Retro

31

demo modes, displaying signal levels as colors and data in hex displays. Simi-
lar to a debugger, the simulator can be run in single-step mode and its execu-
tion can be halted at any time. Retro is implemented in Java and can run either
as an applet or as a stand-alone application.

Figure 2.28 shows a sample Retro setup with the component library palette
on the left and execution control buttons (VCR-style control buttons) on the
top. 

All synchronous circuits require a central clock, which is a component from
the palette. The clock speed can be set in relation to the components’ latencies
and to the simulated time passing. Since most synchronous circuits require a
number of timing signals derived from the central clock, the standard palette
also includes a high-level pulse generator (Figure 2.29, left). The pulse genera-
tor has a variable number of outputs, for each of which a repetitive timing pat-
tern can be specified.

The palette component for memory modules such as ROM and RAM are
more complex than other components. They allow detailed propagation delay
settings for various memory aspects and also include a tool for displaying and
changing memory contents in a window or for saving to a file. Since memory
data is stored in a separate data file and not together with the circuit design

Figure 2.28: Retro simulator with library component palette



Central Processing Unit

32

2
data, the same hardware can be used with several different programs for indi-
vidual experiments (Figure 2.29, right). 

Retro was implemented by B. Chansavat under the direction of T. Bräunl
[Chansavat, Bräunl 1999], [Bräunl 2000] and was inspired by N. Wirth’s text-
book [Wirth 1995]. 

2.5 Arithmetic Logic Unit
The first major component of any CPU is the ALU (arithmetic logic unit). It is
the number cruncher of a CPU, supplying basic arithmetic operations such as
addition and subtraction (in more advanced ALUs also multiplication and divi-
sion) and logic operations such as AND, OR, and NOT for data words of a spe-
cific width. In fact, one can imagine the ALU as a small calculator inside the
CPU.

One of the most important decisions to make when designing an ALU is
how many registers to use and how many operands to receive from memory
per instruction. For our first ALU we will use the simplest possible case: one
register and one operand per instruction. This is called a one-address machine
(assuming the operand is in fact an address – more about this later). Since here
each instruction has only one operand, we need to use some intermediate steps
when, e.g., adding two numbers. In the first step we load the first operand into
the register (which we will call accumulator from now on). In the second step,
we add the second operand to the accumulator.

ALUs that can perform this operation in a single step are called two-address
machines. Each of their instructions can supply two operands (e.g. a + b) and
the result will be stored in the accumulator. Three-address machines provide

Figure 2.29: Pulse generator component and memory contents tool



Arithmetic Logic Unit

33

an address for the result as well (e.g. c := a + b), and so there is no need for a
central accumulator in such a system. And, just for completeness, there are
also zero-address machines, where all operands and results are pushed and
popped from a stack. 

Figure 2.30 shows the basic ALU structure for a one-address machine. Only
one operand (8-bit wide) at a time comes in from memory, and so each opera-
tion (3-bit wide) is between the accumulator (i.e., the result of the previous
operation) and the operand. Also, we have made no provisions for writing a
data value back to memory. 

We already know what a register is, and so the remaining secret of ALU-1
is the central function block. Figure 2.31 reveals this black box. We are using
one large multiplexer that is being switched by the function code (also called
opcode or machine code). The 3-bit function code gives us a total of 23 = 8 dif-
ferent instructions and each of them is defined by the respective multiplexer
input. 

Figure 2.30: ALU structure

Data from memory

Function Block

Accumulator
Register

X
8

3
Function code

Load accumulator

Y
8

Figure 2.31: ALU function block

8 X 8 Y

Function Code

8

NOT

Z

AND OR +

0    1     2        3        4    5    6    7    



Central Processing Unit

34

2
• Opcode 0 simply routes the left operand through. Remember, this is

linked to the accumulator, and so effectively this instruction will not
change the accumulator contents. This is known as a NOP (short for
no operation).

• Opcode 1 negates the left operand, and so it negates the accumulator.
No memory data is used for this instruction.

• Opcodes 2, 3, and 4 perform logic AND, OR, and arithmetic addition,
respectively, between left and right operand (i.e. accumulator and
memory operand).

• Opcode 5 routes the right operand through, and the accumulator will
be loaded with the memory operand.

• Opcodes 6 and 7 are identical to opcode 0, and so from the ALU point
of view they are also NOPs.

It might seem like waste of resources to calculate all possible results (i.e.
NOT, AND, OR, ADD) for every single instruction, and then discard all but
one. However, since we need all of these operations at some stage in a pro-
gram, there is no possible savings in terms of chip space or execution time.
There may be a possible energy consumption issue, but we do not look at it
now.

We can now summarize the function of these eight opcodes in a table form
as machine code with mnemonic abbreviations (Table 2.2). 

2.6 Control Unit
The CU (control unit) is the second part of each CPU, enabling step-by-step
program execution and branching. The central register used in the CU is the
program counter. The program counter addresses the memory in order to load
opcodes and operands (immediate data or memory addresses) from memory.

No. Opcode (bin.) Operation

0 000 Z := X

1 001 Z := NOT X

2 010 Z := X AND Y

3 011 Z := X OR Y

4 100 Z := X + Y

5 101 Z := Y

6 110 Z := X

7 111 Z := X

Table 2.2: Operations for ALU-1



Central Processing Unit

35

Figure 2.32 shows a first, very simple CU structure. The program counter is
incremented by one in each step and its output is used for addressing the mem-
ory unit. This means, every instruction (opcode + operand) will be a single
word and there are no provisions for branches. Each program on this CU will
be executed line after line with no exceptions (i.e., no branching forward or
backward). 

2.7 Central Processing Unit
To build a fully functional CPU, we link together an ALU and a CU with a
memory module. In this section we will introduce a number of CPU designs,
starting with the most simple design, then successively adding more features
when building more complex CPUs.

2.7.1 CPU-1: Minimal Design
To build the first complete CPU-1, we use ALU-1 and CU-1 from the previous
two sections, linked by a ROM module (Figure 2.33). 

As has been established before, this CPU design does not allow for any
branching, and only immediate operands (constant values) are used in a single
memory word of 11 bits that combines opcode and operand. Figure 2.34 shows
the identical CPU-1 design in the Retro system (with the exception of unused
or disconnected opcodes 6 and 7). The function block shows now all internal
details, and the load signals for accumulator and program counter are wired up
to a pulse generator, driven by the central clock.

As can be verified from the multiplexer configuration, ALU-1 supports
eight opcodes, of which only the first six are being used (in the order of opcode
0..5): NOP, NOT, AND, OR, ADD, LOAD.

On the CU-1 side, the program counter (PC) always addresses the memory
module and its output is fed back via an incrementer. This means, program steps
are always executed consecutively, and branches or jumps are not possible. 

Figure 2.32: CU structure

+1

Program Counter
Register

8

Load PC (increment)

..



Central Processing Unit

36

2

Figure 2.33: CPU-1 design

Figure 2.34: CPU-1 in Retro

ROM
Data Address

AND OR +NOT

3+8= 11

+1

Program Counter
Register P

8

Accumulator
Register A

0    1     2  3     4    5    6    7    



Central Processing Unit

37

The memory module uses an unusual 11-bit data format, which further sim-
plifies the design, because operator (3-bit opcode) and immediate operand (8-
bit data) can be encoded in a single instruction, and no additional registers are
required to store them. The splitting of the two is simply done by dividing the
data bus wires coming from the memory module, while the most significant bit
of the opcode is not being used. 

The timing requirements for CPU-1 are minimal. Since only two registers
need to be triggered, all we need are two alternating signals, derived from a
master clock. First the accumulator gets triggered, then the program counter is
incremented (see Figure 2.35). 

Table 2.3 summarizes the available instructions for CPU-1 and lists their
specific accumulator and program counter operations. 

Figure 2.35: Timing diagram for CPU-1

Master

A

P

1 2 1 2

Opcode Description Mnemonic

0 acc ← acc
pc ← pc + 1

NOP

1 acc ← NOT acc
pc ← pc + 1

NOT 

2 acc ← acc AND constant
pc ← pc + 1

AND const

3 acc ← acc OR constant
pc ← pc + 1

OR const

4 acc ← acc + constant
pc ← pc + 1

ADD const

5 acc ← constant
pc ← pc + 1

LOAD const

6 Not used

7 Not used

Table 2.3: CPU-1 opcodes



Central Processing Unit

38

2
We can now look at the software side, the programming of CPU-1. We do

this by writing opcodes and data directly into the ROM. The simple program
shown in Table 2.4 adds the two numbers 1 and 2. With the first instruction we
load constant 1 into the accumulator (code: 5 01). In the second step we add
constant 2 (code: 4 02). 

This program also shows some of the deficiencies of CPU-1’s minimal
design:

1. Operands can only be constant values (immediate operands).
Memory addresses cannot be specified as operands.

2. Results cannot be stored in memory.
3. There is no way to “stop” the CPU or at least bring to a dynamic halt.

This means after executing a large number of NOP instructions, the
PC will eventually come back to address 00 and repeat the program,
overwriting the result.

2.7.2 CPU-2: Double Byte Instructions and Branching
CPU-1 gave a first impression of CPU design, stressing the importance of tim-
ing and interaction between hardware and software. For this second design,
CPU-2, we would like to address the major deficiencies of CPU-1, which are
the lack of branching and the lack of memory data access (read or write).

For CPU-2, we choose an 8-bit opcode followed by an 8-bit memory
address and an 8-bit wide RAM/data bus configuration. This design choice
requires two subsequent memory accesses for each instruction. CPU-2
requires two additional registers, a code register and an address register for
storing opcode and address, respectively, which are being loaded subsequently
from memory. Figure 2.36 shows the CPU-2 schematics (top) and the Retro
implementation (bottom). 

The instruction execution sequence, defined by the timing diagram (micro-
programming) now requires several steps:

Address Opcode Operand Comment

00 5 01 LOAD 1

01 4 02 ADD 2

02 0 00 NOP

.. .. .. ..

FF 0 00 NOP

Table 2.4: CPU-1 addition program



Central Processing Unit

39

Figure 2.36: CPU-2 schematics and Retro implementation

RAM
Data (8) Address(8)

R/W’

=6

W

Function Block

Accumulator
Register A

CCode Register

Program Counter
RegisterP

+

0    1

1   0 B
Address Register AD

01
branch

=0

=7
BR



Central Processing Unit

40

2
1. Load first byte of instruction (opcode) and store it in the code register.
2. Increment program counter by 1.
3. Load second byte of instruction (address) and store it in the address register.
4. Use the address value for addressing the memory and retrieving the actual

data value, which is then passed on to the ALU.

5. Update the accumulator with the calculation result.

6. (a) If required by the opcode no. 6, write accumulator data back to memory
(b) If required by opcode no. 7, use address parameter as PC increment.

7. Increment program counter for the second time (+1 for arithmetic instruc-
tions or offset for branching).

Figure 2.37 shows the timing diagram required for CPU-2. It is important to
note that the program counter will now be incremented twice for each instruc-
tion. 

CPU-2 uses the same ALU as CPU-1, but also makes use of the previously
unused opcodes 6 and 7. As can be seen in Figure 2.36, opcode 6 is individu-
ally decoded (box “=6”) and used to write the accumulator result back to the
memory. Of course, this can only work if the timing diagram has made provi-
sions for it. In Figure 2.37, we can see that one impulse of each master cycle is
reserved to activate signal W, which is used to switch the RAM from read to
write and also to open the tri-state gate allowing data to flow from the accumu-
lator toward the RAM. The memory address for writing comes from the
address register. 

The final major addition is a conditional branch for opcode 7 (see box
“=7”). The condition is true if the accumulator is equal to zero. Therefore, a
branch will occur only if opcode 7 is used, the accumulator is equal to zero,

Figure 2.37: Timing diagram for CPU-2

0

1

2

3

4

5

6

1 2 3 4 5 6 7 1
Master

C (load code)

B (fetch operand)

A (accumulator)

W (write result)

PC (prog. counter)

AD (load address)

BR (branch)



Central Processing Unit

41

and timing signal BR is present. Signal BR overlaps (and therefore replaces)
the second increment of the program counter in the timing diagram (Figure
2.37), which again demonstrates the importance of proper timing design. Table
2.5 now shows the complete set of opcodes for CPU-2.

Interaction between CPU-2’s components can be seen best by following the
execution of an instruction, which takes seven cycles of the master clock (Fig-
ure 2.37). Assuming the PC is initialized with zero, it will address the first byte
in memory (mem[0]), which will be put on the data bus. The data bus is linked
to the code register, the address register, and (over a multiplexer) to the ALU,
but only one of them will take the data at a time. Since the first cycle activates
signal C (line 0 from the pulse generator), this triggers “load” on the code reg-
ister, and so mem[0] will be copied into it.

In the second cycle, “PC load” will be triggered (line 1). The PC’s input is
an adder with the left-hand side being the constant 1 (via a multiplexer) and the
right-hand side being the PC’s previous value (0 in the beginning). So as long
as the multiplexer is not being switched over, a pulse on “PC load” will always
increment it by 1. With the PC now holding value 1, the second memory byte
(mem[1]) is on the data bus, and at cycle 3 (line AD), it will be copied into the
address register. 

Opcode Description Mnemonic

0 acc ← acc
pc ← pc + 2

NOP

1 acc ← NOT acc
pc ← pc + 2

NOT

2 acc ← acc AND memory
pc ← pc + 2

AND mem

3 acc ← acc OR memory
pc ← pc + 2

OR mem

4 acc ← acc + memory
pc ← pc + 2

ADD mem

5 acc ← memory
pc ← pc + 2

LOAD mem

6 memory ← acc
pc ← pc + 2

STORE mem

7 (* acc unchanged *)
if acc = 0 then pc ← pc + address

else pc ← pc + 2

BEQ address

Table 2.5: CPU-2 opcodes



Central Processing Unit

42

2
Cycle 4 will activate signal B (line 4), which switches the RAM addressing

from the program counter to the current address register contents. This is
needed since each instruction in CPU-2 has an address operand instead of an
immediate (constant) operand in CPU-1 (see also opcodes in Table 2.5). With
the address register now being connected to the RAM, the data bus will have
the memory contents to which the address register points to. This value will be
selected as input for the ALU.

With the ALU’s left-hand side input being the accumulator’s old value and
the right-hand side input being set to the data bus (memory operand), the code
register selects the desired operation over the large multiplexer on top of the
accumulator. Cycle 5 then activates the accumulator’s load signal (line 5), to
copy the operation’s result.

Cycle 6 will activate signal W (line 6). In case the instruction opcode is 6
(STORE memory, see Table 2.5), the RAM’s output enable line will be acti-
vated (see box “=6” and NAND gate) and the accumulator’s current value is
written back to the RAM at the address specified by the address register. In
case the current instruction is not a STORE, the RAM’s write enable and the
tri-state gate will not be activated, and so this cycle will have no effect.

Cycle 6 also activates signal BR (line 3), to not to waste another cycle. This
flips CU-2’s adder input from constant “+1” to the address register contents,
but only if either the instruction’s opcode is 7 (BEQ, branch if equal) and the
current accumulator contents is equal to zero (see box “=0”).

Finally on cycle 7, the program counter is updated a second time, either by
“+1” (in case of an arithmetic instruction) or by adding the contents of the
address register to it (for the BEQ instruction, if a branch is being executed).

This concludes the execution of one full instruction. On the next master
clock cycle, the system will start over again with cycle 1.

Example Program
Table 2.6 shows the implementation of an addition program, similar to the one
for CPU-1. However, in CPU-2 there are no constant values, instead all oper-
ands are addresses. Therefore, we first load the contents of memory cell A1
(instruction: 05 A1), then add the contents of cell A2 (instruction: 04 A2), and
finally store the result in cell A3 (instruction: 06 A3).

After that, we would like to bring the program to a dynamic halt. We can do
this with the operation BEQ -1 (in hexadecimal: 07 FF). Although each
instruction takes 2 bytes, we must decrement the program counter only by -1,
not -2. This is because at the time the data value -1 (FF) is added to the pro-
gram counter, it has only been incremented once so far, not twice.

We also have to consider that the branching instruction is conditional, and
so for the unconditional branch we need here, we have to make sure the accu-
mulator is equal to 0. Since we do no longer have constants (immediate values)
that we can load, we need to execute a LOAD memory instruction from an
address that we know has value zero before we can actually execute the branch
instruction. In the example program, memory cell A0 has been initialized to 0
before program start.



Central Processing Unit

43

2.7.3 CPU-3: Addresses and Constants
The design of CPU-3 (Figure 2.38) is extending CPU-2 by adding:

• Load operation for constants (immediate values)
• Unconditional branch operation 

Address Code Data Comment

00 05 A1 LOAD mem [A1]

02 04 A2 ADD mem [A2]

04 06 A3 STORE mem [A3]

06 05 A0 LOAD mem [A0] "0"

08 07 FF BEQ -1

Table 2.6: CPU-2 addition program

Figure 2.38: CPU-3 design



Central Processing Unit

44

2
CPU-3 still uses only eight different opcodes in total (3 bits), and so we

reduced the functionality of ALU-3 in this design. 
An additional multiplexer, controlled by opcode 0 (see box “=0”), allows

switching between feeding ALU-3 with memory output (memory operand,
direct addressing) and address register contents (constant, immediate operand).
However, this trick only works for the LOAD operation. Since the opcodes for
ADD and AND are not equal to 0, these instructions will still receive data from
memory. 

The second change is to include both conditional branching (opcode 5) and
unconditional branching (opcode 6). Note that the STORE instruction in CPU-
3 has been changed to opcode 2. A branch will now be executed either (see OR
gate in Figure 2.38) if opcode is 6 (see box “=6”) or if opcode is 5 (see box
“=5”) and the accumulator is equal to 0. 

2.7.4 CPU-4: Symmetrical Design
While CPU-3 addressed some of the deficiencies of CPU-2, its design is more
an ad hoc or makeshift solution. The redesigned CPU-4 shown in Figure 2.39
shows a much clearer, symmetrical design.   

Figure 2.39: CPU-4 design



Central Processing Unit

45

We are now using one additional bit for opcodes (4 bits), resulting in 24 =
16 instructions in total. The design is symmetrical in the way that the highest
bit (bit 3) of the opcode is used to switch between constants (immediate oper-

Opcode Description Mnemonic

0 acc ← memory
pc ← pc + 2

LOAD mem

1 memory ← acc
pc ← pc + 2

STORE mem

2 acc ← NOT acc
pc ← pc + 2

NOT

3 acc ← acc + memory
pc ← pc + 2

ADD mem

4 acc ← acc - memory
pc ← pc + 2

SUB mem

5 acc ← acc AND memory
pc ← pc + 2

AND mem

6 acc ← acc OR memory
pc ← pc + 2

OR mem

7 (* acc unchanged *)
if acc = 0 then pc ← pc + address

else pc ← pc + 2

BEQ mem

8 acc ← constant
pc ← pc + 2

LOAD const

9 Not used

10 Not used

11 acc ← acc + constant
pc ← pc + 2

ADD const

12 acc ← acc - constant
pc ← pc + 2

SUB const

13 acc ← acc AND constant
pc ← pc + 2

AND const

14 acc ← acc OR constant
pc ← pc + 2

OR const

15 (* acc unchanged *)
pc ← pc + address

BRA addr

Table 2.7: CPU-4 opcodes



Central Processing Unit

46

2
ands) and memory operands; therefore two versions of each instruction exist.
All opcodes for CPU-4 are listed in Table 2.7. The instructions belong into two
groups, instructions with opcodes 0..7 use memory data (direct address), while
instructions with opcodes 8..15 use constants (immediate data) instead. The
distinction between memory and constant values is made by bit 3 in each
opcode. The same bit line is used to distinguish between conditional branch
(opcode 7) and unconditional branch (branch always, opcode 15). Bits 4..7 of
each opcode byte are not used in CPU-4, but could be utilized for extensions.

As can be seen in Figure 2.39, bit no. 3 is split from the code register output
and used to switch the multiplexer between immediate (constant) and direct
(memory) operands for every opcode. This symmetric design is characteristic
for good CPU designs and highly appreciated by assembly programmers and
compiler code generators.

A similar solution for including conditional and unconditional branches as
in CPU-3 has been implemented. Here, opcodes 7 and 15 have been selected,
as they correspond to each other with respect to opcode bit no. 3 and always
use an immediate address parameter, never a value from memory.

Example Program
As example program we selected the multiplication of two numbers by

repeated addition (see Table 2.8). The program expects the two operands in
memory cells $FD and $FE and will place the result in $FF. 

Addr. Code data Mnemonic Comment

00 08 00 LOAD #0 Clear result memory cell ($FF)

02 01 FF STORE FF

04 00 FD LOAD FD Load first operand ($FD) ..

06 07 FF BEQ -1 .. done if 0 (BEQ -1 equiv. to 
dynamic HALT)

08 0C 01 SUB #1 Subtract 1 from first operand

0A 01 FD STORE FD

0C 00 FE LOAD FE Load second operand ($FE) and 
add to result

0E 03 FF ADD FF

10 01 FF STORE FF

12 0F F1 BRA -15 Branch to loop (address 4)

Table 2.8: CPU-4 program for multiplying two numbers in memory



References

47

First, the result cell is cleared. Then, at the beginning of a loop, the first
operand is loaded. If it is equal to zero, the program will terminate. For halting
execution, we use a branch relative to the current address –1. This will engage
the CPU in an endless loop and effectively halt execution.

If the result is not yet zero, 1 is subtracted from the first operand (which is
then updated in memory) and the second operand is loaded and subsequently
added to the final result. The program ends with an unconditional branch state-
ment to the beginning of the loop.

2.8 References
BRÄUNL, T. Register-Transfer Level Simulation, Proceedings of the Eighth In-

ternational Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems, MASCOTS 2000, San
Francisco CA, Aug./Sep. 2000, pp. 392–396 (5)

CHANSAVAT, B., BRÄUNL, T. Retro User Manual, Internal Report UWA/CIIPS,
Mobile Robot Lab, 1999, pp. (15), web: http://robotics.ee.uwa.
edu.au/retro/ftp/doc/UserManual.PDF

WIRTH, N. Digital Circuit Design, Springer, Heidelberg, 1995


