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4  Puck’s action plane fracture criteria 

4.1  Fiber fracture criteria 

Fiber fracture is primarily caused by a stressing σ|| which acts parallel to 
the fibers. For (σ1, σ2, τ21)-combinations the use of a simple maximum 
stress formulation is recommendable. Such a formulation was already pro-
posed by Puck in 1969 [Puck 1969, Puck and Schneider 1969]. It ex-
presses the physical idea that fiber fracture under multiaxial stresses in 
a UD-lamina occurs when its stress parallel to the fibers σ1 is equal to or 
exceeds the stress necessary for a fracture under uniaxial stress σ1. From 
this hypothesis follows the simple FF-condition 
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If σ1 is a tensile stress, the strength R||
t is used in (Eq. 14). If σ1 is a 

compressive stress, R||
c is used instead. Strengths are always defined as 

positive values. This is the reason for using the “-” sign at R||
c in (Eq. 14). 

If σ1 reaches the fracture stress σ1fr (= R||
t or –R||

c) the fracture condition is 
fulfilled. 

(Eq. 14) can easily be transformed to a fracture criterion being formu-
lated with the stress exposure fE,FF: 
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(Eq. 15)

For a preliminary analysis this simple fracture criterion is sufficient. 
However, for a precise analysis a more sophisticated formulation can be 
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useful which takes into account secondary effects, too. These effects are 
discussed in the following: 

A uniaxial σ2-stress (or σ3-stress, respectively) leads – due to a Pois-
son’s effect – to an additional micro-mechanical strain in fiber direction ε1. 
The effect is enlarged locally by the circumstance that the stress in the 
matrix is inhomogeneously distributed and effectively larger than the 
transverse stress σ2 (σ3, respectively) on the lamina-level. 

This effect of stress and strain magnification can best be explained using 
the common model of serial springs. If a thin UD-lamina (which consists 
alternately of fibers and matrix) is stressed transverse to the fiber direction, 
the load is – on an intersection without fibers – carried by the matrix alone. 
On a neighboring intersection, the load is carried by the fiber alone [Puck 
and Schneider 1969]. From this simple model follows that the stress σ2 is 
the same in fiber and matrix and that the micro-mechanical strain is differ-
ent due to the different Young’s moduli. However, close to the interface 
between fiber and matrix there is additional biaxial strain in the matrix. 
This effect is taken into account by the use of a magnification factor mσ,f. 
Puck proposes mσ,f = 1.3 for GFRP and mσ,f = 1.1 for CFRP16 [Puck 1996, 
Fischer 2003]. 
Puck based his more sophisticated FF-condition on the following fracture 
hypothesis [Puck 1996, Puck and Schürmann 1998, Puck and Schürmann 
2002]: 

Fiber fracture of a UD-lamina under combined stresses will occur when 
in the fibers the same stress σ1f is reached which is acting in the fibers at 
an FF of the lamina caused by uniaxial tensile stress σ1

t or a uniaxial com-
pressive stress σ1

c respectively. 
The starting point is the strain ε1f of the fibers caused by the combined 

stresses σ1, σ2, σ3: 
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Using ν||⊥f/E⊥f = ν⊥||f/E||f, and ε1f = ε1, the stress σ1f in the fibers acting in 
their longitudinal direction can be calculated from 

 1 || 1 2 3( )    f f f fE mσσ ε ν σ σ⊥= ⋅ + ⋅ ⋅ +  (Eq. 17) 

                                                      
16  The value for CFRP is smaller because the transverse Young’s modulus of 

carbon fibers is lower than that of glass fibers. 
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From (Eq. 17) a new fracture condition can be derived. First ε1 and the 
fiber stress σ1f are replaced by the elastic law of the UD-lamina and the 
fracture resistance R|| f of the fibre, respectively: 
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   ; |||||||||||| eEReER ff ⋅=⋅=  with e|| = fracture strain from 
uniaxial σ1 of both fiber and 
UD-lamina 

(Eq. 19) 

Based on this the FF-condition for the UD-lamina is: 
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(Eq. 20) 

This fracture condition (Eq. 20) is homogeneous of grade 1 and can thus 
easily be transformed to a formulation for the stress exposure fE,FF:  
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(Eq. 21)

Here, fE,FF is the FF-stress exposure of the UD-lamina, ν⊥|| is the major 
Poisson’s ratios of the UD-lamina, and ν⊥||f the major Poisson’s ratio of the 
fiber. In general the definition of the Poisson’s ratios is a well known 
source of misunderstandings, because there are different definitions used. 
In the US for instance, it is common standard to define the indices of ν the 
other way round (the first index for the direction of the stress which leads 
to the Poisson effect). 

In the above Equations E|| is the longitudinal modulus of the lamina par-
allel to the fibers and E||f the longitudinal modulus of the fibers. mσf is 
a magnification factor for the transverse stress in the fibers (GFRP mσf ≈ 1,3 
and for CFRP mσf ≈ 1,1). Puck has found that in case of plane (σ1, σ2, τ21)-
stress, the results of (Eq. 15) and (Eq. 21) differ only by a few percent. 
However, the influence of transverse stresses on FF can become important 
in the region of combined σ2<0 and σ3<0 of similar magnitude, where |σ2| 
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and |σ3| can exceed the transverse compressive strength R⊥
c by a factor of 

up to 3 or 4 [Kopp 2000]). 
The maximum stress criteria (Eq. 15) and (Eq. 21) presented above were 

put into question by Hart-Smith [Hart-Smith 1998a, Hart-Smith 1998b] 
who proclaimed that the fracture stress σ1fr is considerably reduced in the 
presents of high transverse strains with a different algebraic sign compared 
to the strain in fiber direction ε1. Hart-Smith based this on some experi-
mental work [Hart-Smith 1984]. However, this hypothesis has – at least for 
monotonously increasing loads – been disproved by sophisticated experi-
mental work [Fischer 2003; Mannigel 2007] which approves the appropri-
ateness of maximum stress criteria. 

A further aspect to be considered is the influence of shear stresses on the 
fiber fracture. Whereas tensile stressing in fiber direction σ||

t leads unques-
tionably to fiber rupture, the fracture mode is not as obvious in the case of 
compressive stressing σ||

c. In principle, several forms of fiber fracture are 
possible. The dominant failure mode is kinking of the fibers due to shear 
stresses in the fiber [Schürmann 2004; Pinho et al 2006]. Consequently, 
longitudinal shear stressing of the UD-lamina τ⊥|| reduces the compressive 
fracture strength σ1

c
fr. In [Puck 1996] and [Fischer 2003] pure empirical 

formulations are given to account for this effect. Mannigel [Mannigel 2007] 
quantified the effect for the first time by intensive experimental investiga-
tions. He found that for relatively small shear stresses there is no influence 
of τ21 on the fiber fracture. If the shear stress surpasses a threshold and leads 
to microdamage, the compressive fracture strength is significantly reduced. 
Mannigel found a linear (degressive) influence of the shear stress on the 
compressive fracture strength above the threshold. A calibration can be 
made with the experimental results published in [Mannigel 2007]. 

A further influence on the fiber fracture which is not taken into account 
by the maximum stress criteria (Eq. 15) and (Eq. 21) is the effect IFF has. 
Especially under cyclic loading IFF reduces the fiber fracture stress σ1fr 
considerably. However, the UD-lamina can in this case no longer been 
used as an isolated model. Instead, IFF in adjacent lamina influences FF 
[Knickrehm 2000]. In this case a more sophisticated analysis of the grad-
ual failure process is necessary. 

4.2  Inter fiber fracture (IFF) criteria 

4.2.1  Motivation 

The major motivation for the development of Puck’s Inter Fiber Fracture 
criteria is experimental evidence. Fracture criteria are used to predict the 
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strength of a material for arbitrary states of multiaxial stress with the 
preliminary knowledge of only some easy to measure strength values. 
One can best compare different criteria by taking experimental results 
that do exhibit some kind of “uncommon” or special material behavior. 
For carbon (squares) and glass fiber reinforced plastics (circles) Fig. 23 
shows such test results obtained in a large German research project 
[Cuntze et al. 1997]. 

Some remarkable observations can be made here: 

• The stresses σ2
t and τ21 interact. That means that – when σ2

t and τ21 act at 
once – fracture occurs before σ2

t = R⊥
t or τ21 = R⊥|| respectively are reached. 

• Shear fracture is impeded by moderate transverse compressive stress 
σ2

c. In other words: Higher shear stress τ21 can be sustained without 
fracture, when τ21 and moderate σ2

c act simultaneously. 
• A third aspect becomes obvious when looking at Fig. 24: When σ2

c and 
τ21 act simultaneously and the ratio |σ2

c/τ21| exceeds a certain value, 
fracture occurs under an angle θfp ≠ 0°. The fracture angle increases 
with growing stress ratio |σ2

c/τ21| and reaches approximately ±54° for 
pure transverse compressive stress (see Fig. 8). 

The real failure envelope is not symmetric to any vertical line. This is 
clearly illustrated by the fracture curve in Fig. 24 and cannot be modeled by 
conventional global failure criteria. Besides, these criteria cannot calculate 
the fracture angle nor do they explain the effects observed and explained 
above. However, the understanding of these effects is crucial for the devel-
opment of reasonable failure criteria. Of special interest is in this context 
the analysis of the fracture angle under pure transverse compression σ2

c. 
Fracture occurs on a plane inclined by approximately ±54° to the action 
plane of σ2

c. A simple sketch of the Mohr circle shows what stresses act on 
this fracture plane (Fig. 25). This shall be derived in detail: 

 

Fig. 23. Fracture limits for (σ2, τ21)-stress combinations 
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Fig. 24. Fracture curve (σ2, τ21) 

On the action plane of σ2
c (θ = 0°) pure transverse compression 

(σn
c = σ2

c, τnt = 0) is acting. On this plane no fracture can occur. On a per-
pendicular plane (θ = 90°) there is no stress at all. On all other planes with 
0°< θ < 90° combinations of a transverse compressive stress σn

c(θ) and 
a transverse shear stress τnt(θ) are acting. Under θ = 45° the maximum 
shear stress τnt max = τnt(45°) is reached. It has the same value as σn

c(45°) 
acting on the same plane and the magnitude is just half that of σ2. Under 
54° – on the fracture plane – the shear stress τnt(54°) is just slightly smaller 
than τnt max. However, the transverse compressive stress σnt(54°) which 
impedes fracture is considerably smaller than the corresponding value un-

 

Fig. 25. Fracture under uniaxial compressive stress σ2
c 
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der 45°. This fact explains why the fracture angle is greater than ±45°. This 
is in accordance with the observation that higher shear stresses can be sus-
tained in the presence of moderate transverse compression. 

The analysis of the fracture behavior which will be presented here, 
works with the stresses on the action plane and not with the lamina stresses 
σ2, σ3, τ23, τ31, τ21. This is a fundamental fact and leads to the approach to 
formulate fracture criteria using the stresses of the action plane. These 
fracture criteria will be presented and explained in the next sections. Be-
fore this, the fracture hypotheses those criteria are based on, are discussed. 
Besides, the basic strengths and some inclination parameters needed for 
calibration are presented. 

4.2.2  Different IFF-fracture modes 

The different kinds of IFF described above for the (σ2, τ21)-fracture curve 
lead to the differentiation of three IFF-fracture modes, namely Mode A, 
Mode B and Mode C defined as follows: 

• Mode A: Transverse tensile stressing σ⊥
t or longitudinal shear stressing 

τ⊥|| cause – acting either alone or in combination – fracture. In the case 
of a 2D-state of stress with σ1, σ2, τ21 the cracks run in thickness direc-
tion and thus in the common action plane of the lamina stresses σ2 and 
τ21. The fracture surfaces are separated from each other due to the ten-
sile stressing. This leads from a macroscopic point of view to a degrada-
tion of both the Young’s modulus E⊥ and the shear modulus G⊥||. 

• Mode B: Fracture is caused by longitudinal shear stressing τ⊥||. This 
fracture occurs on the action plane of the external shear stress τ21. In 
contrast to Mode A, the transverse normal stressing σ⊥

c which acts on 
the fracture plane simultaneously with τ⊥|| is a compressive stressing! 
Thus the crack does not open and the fracture surfaces are pressed on 
each other17. Consequently the degradation of stiffness due to IFFMode B 
is much less significant than that due to IFFMode A. An IFFMode B occurs as 
long as the ratio of the compressive stress at fracture and the transverse 
compressive strength |σ⊥

c
fr/R⊥

c| is smaller than roughly 0.4. 
• Mode C: If the ratio of the compressive normal stressing at fracture and 

the transverse compressive strength |σ⊥
c
fr/R⊥

c| exceeds roughly 0.4, the 
action plane of the external shear stress τ21 is no longer the fracture 
plane. Instead fracture occurs on a plane inclined by an angle |θfp| ≠ 0° 
to the action plane of σ2 and τ21. The fracture angle |θfp| increases in the 
case of a plane state of stress (σ1, σ2, τ21) from 0° at the threshold 

                                                      
17  Thermal tensile stresses in the matrix might lead to a separation of the fracture 

surfaces nonetheless. 
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between Mode B and Mode C to roughly |54°| for pure transverse com-
pression (τ21 = 0). IFFMode C implies the risk of delamination between the 
broken layer and adjacent layers. 

In a more general 3D state of stress a forth fracture mode can occur: 

• Mode A*: On the fracture plan acts a combination of σ⊥
t, τ⊥⊥ and τ⊥||. 

4.2.3  Fracture hypotheses 

4.2.3.1  Mohr’s fracture hypothesis 

Fiber fracture (FF) is – in the sense as it used here – defined as the simul-
taneous breaking of thousands of filaments. FF of a UD-lamina is regarded 
as final failure of the affected lamina. Inter fiber fracture (IFF) on the other 
hand is defined as a macroscopic crack which runs parallel to the fibers 
and separates an isolated UD-layer into two pieces. Usually, such a macro-
scopic separation is preceded by micro-mechanical damage of the matrix 
or the fiber/matrix-interface, respectively. 

Fiber reinforced composites (FRP) used in lightweight construction 
usually show brittle fracture behavior concerning both FF and IFF. This 
means that fracture occurs suddenly on a certain fracture plane without 
any major plastic deformation. This characteristic material behavior is 
especially distinctive for σ⊥

t- and τ⊥⊥-stressing. In both cases brittle frac-
ture occurs on the plane with the highest tensile stress (compare Fig. 26). 
Paul [Paul 1961] called materials with such a behavior “intrinsically brit-
tle”. The compressive strength of such materials (here: R⊥

c) is much 
higher than (usually twice the value of) the tensile strength (here: R⊥

t). 
Uniaxial compression leads to shearing on a plane which is inclined to the 
direction of the compressive stressing (compare Fig. 26). This fracture is 
caused by the transverse shear stressing (here: τ⊥⊥) acting on the inclined 
fracture plane. 

The described brittle fracture in FRP-structures has been known for dec-
ades now. Nevertheless, most commercial Finite-Element-programs still 
work with global strength criteria like that of Tsai/Wu [Tsai 1992], which 
are in principle all based on the von Mises yielding criterion. Those global 
strength criteria can only be regarded as pure interpolating formulae. They 
are not based on a failure hypothesis and thus do not consider the true ma-
terial behavior. All stresses are put into one formula not regarding whether 
the single stress causes FF or IFF. 

Obviously, yielding criteria are not adequate for FRP-failure analysis. 
Because of the brittle material behavior of FRP, failure analysis should 
instead be based on the ideas of Mohr [Mohr 1900] and Coulomb 
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[Coulomb 1776]. Mohr’s fracture hypothesis for brittle materials is the 
following: 

The fracture limit of a material is determined by the stresses on the 
fracture plane. 

The cited original work refers to brittle isotropic material (for instance 
cast iron). 

4.2.3.2  Puck’s fracture hypotheses 

Most failure conditions in use are pure mathematical interpolation functions 
with no physical basis. Puck, however, based his fracture criteria on a reason-
able understanding of the brittle fracture, formulated in his fracture hypothe-
ses. He works with the stresses σn, τnt and τn1 which are acting on a common 
fiber parallel action plane of a UD-lamina. The two shear stresses τnt and τn1 
can be combined to one resulting shear stress τnψ (see (Eq. 4) and Fig. 18). 
Puck’s fracture hypotheses are the following: 

1. Inter Fiber Fracture on a plane parallel to the fibers is caused by the 
stresses σn and τnψ acting on the fracture plane. 

2. If σn is a tensile stress it promotes fracture together with the shear stress 
τnψ or even alone for τnψ = 0.   
In contrast to that σn impedes fracture if it is a compressive stress by rai-
sing the fracture resistance of the fracture plane against shear fracture 
with increasing compressive stress σn. 

Experimental experience has shown, that transverse shear stressing τ⊥⊥ 
causes a fracture not in the action plane of τ⊥⊥ but in the plane of the ten-
sile principal stress which has the same magnitude as τ⊥⊥. Therefore, a rule 
has been formulated by Puck for the case of combined stresses σ2, σ3, τ23 
or σII, σIII respectively: 

If the UD-lamina is just stressed in the plane of transverse isotropy (only 
stresses σ2, σ3, τ23) fracture occurs either as tensile fracture due to σn as the 
highest normal stress or as shear fracture due to τnt – impeded by a trans-
verse compressive stress σn. Which of the two kinds occurs depends on the 
ratios of the stresses σ2, σ3, τ23. 

This additional rule might not be valid for composites with an unusually 
small ratio between transverse compressive and transverse tensile strength 
R⊥

c/R⊥
t < 2. Experimental results for thermoplastic FRP (TP-FRP) like 

PEEK (Polyetheretherketon) show however, that for those thermoplastic 
materials the rule is valid just as for thermoset FRP18 [Kuhnel 2008]. 

                                                      
18  These investigations show, too, that for PEEK the ratio R⊥

c/R⊥
t is larger than 2,5. 
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If there is a UD-material with an extraordinary low ratio R⊥
c/R⊥

t it is ex-
pected that the rule just mentioned is not fulfilled. τ⊥⊥-stressing would 
instead lead to a mixed mode fracture of combined σ⊥

t-stressing and τ⊥⊥-
stressing. 

4.2.4  Fracture resistance of the action plane 

In almost all failure criteria the used mathematical functions are calibrated 
by using the maximum sustainable stresses for uniaxial tensile or compres-
sive stresses and pure shear stresses. The absolute values of these stresses 
are given by the so called “strengths” R. For stress based fracture criteria 
of UD-composites the so called basic strengths 

 R||
t, R||

c, R⊥
t, R⊥

c, R⊥⊥, R⊥|| 

are used for calibration. All these are given as positive values, also the 
compressive strengths. This is a source of misunderstanding and mistakes, 
because in fracture criteria sustainable stresses have to be used. As com-
pressive stresses have a negative sign, the corresponding maximum sus-
tainable uniaxial stresses are for a UD-composite “-R⊥

c” and “-R||
c”. 

The basic strengths correspond to the fracture limit under pure σ||, σ⊥, 
τ⊥⊥ or τ⊥|| stressing, respectively. These fracture limits are measured with-
out giving any attention to the kind of failure (failure by yielding, brittle 
fracture, crushing etc.). Thus, R⊥⊥ is defined as the transverse shear stress-
ing τ⊥⊥ leading to failure in the absence of all other stresses. However, 
experimental experience shows that in this case in brittle material fracture 
takes place on a plane inclined by 45° to the action plane of the applied τ⊥⊥ 
(compare Fig. 26). On this plane pure transverse tension σ⊥

t is acting. This 
is not considered when conventional failure criteria are used. The shear 
strength R⊥⊥ is calculated by dividing the applied shear load by the area it 
has been applied on. 

In the same way as R⊥⊥, the transverse compressive strength R⊥
c corre-

sponds to σ⊥
c stressing leading to failure in the absence of all other 

stresses. However, it has been proved that by no means fracture occurs on 
the action plane of the σ⊥

c-stressing but on a plane inclined by some ±54° 
(see above). On this plane transverse shear stressing τ⊥⊥ is dominant and 
responsible for IFF. But this experience is also not considered when the 
transverse compressive strength R⊥

c has to be determined. R⊥
c is also 

found by dividing the applied transverse compressive failure load by the 
area of the cross-section of the specimen. 
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Fig. 26. Stressings of the UD-lamina causing IFF and corresponding fracture 
planes 

As long as a failure criterion is formulated with stresses defined in the 
natural coordinate system of the layer (x1, x2, x3) the basic strengths are the 
usual calibration parameters. Puck’s IFF-criteria, however, are formulated 
with the stresses of the action plane (σn, τnt, τn1). Consequently, the corre-
sponding fracture resistances of the action plane (defined as RA in order to 
distinguish them from the basic strengths R) are needed. 

Instead of employing the standard form of a failure condition 

 1),,,,,,,,,,,( ||||||213123321 =⊥⊥⊥⊥⊥ RRRRRRF ctctτττσσσ  (Eq. 22) 

a IFF-fracture condition is formulated in the form 

 ( ) 1,,),(),(),( ||1 =⊥⊥⊥⊥
AAtA

fpnfpntfpn RRRF θτθτθσ . (Eq. 23) 

Looking on (Eq. 23) it is important to remember that the stresses σn(θ), 
τnt(θ), τn1(θ) are the three stresses which in the most general case are acting 
simultaneously on one and the same action plane19. The action plane which 
is inclined by θ = θfp is the fracture plane because on this action plane the 
risk of fracture is the highest one. 

                                                      
19  That σn, τnt, τn1 have the same action plane can be seen from the index “n” of 

all three stresses. 
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If all three stresses σn, τnt, τn1 act simultaneously on an action plane, 
they represent a combined stressing consisting of a σ⊥-stressing, a τ⊥⊥-
stressing and a τ⊥||-stressing. 

In order to answer the question whether a certain combination of σn, τnt, 
τn1 can be sustained by a fiber parallel action plane a fracture criterion has 
to be formulated mathematically. On the one hand it should contain the 
stresses σn, τnt, τn1 acting simultaneously on a common action plane. On 
the other hand a fracture criterion of this kind can only be calibrated by 
experimental values for the sustainable stress of the action plane, when 
a σ⊥-stressing is acting alone, when a τ⊥⊥-stressing is acting alone and 
when a τ⊥||-stressing is acting alone. This means that fracture tests have to 
be performed with uniaxial σ⊥, pure τ⊥⊥ and pure τ⊥||. 

If in such a test with – for instance – a single tensile stressing σ⊥
t the 

fracture would occur in the action plane of the applied stressing this would 
be the sustainable tensile stressing of the action plane. Puck has introduced 
the following expression: 

• “Fracture resistance of the action plane” and the corresponding sym-
bol RA. 

The definition of RA is the following: 
A fracture resistance of the action plane is the resistance (expressed in 

the dimension of a stress) by which an action plane resists its own fracture 
caused by a single stressing (σ⊥ or τ⊥⊥ or τ⊥||) acting in the action plane 
under consideration. 

This definition shows how important it is for the fracture experiments to 
check whether or not the applied σ⊥- or τ⊥⊥- or τ⊥||-stressing really leads to 
a fracture in the action plane of the applied stress. 

Some of the fracture resistances of the action plane used in (Eq. 23) are 
identical to the basic strengths as will be shown in the following. However, 
it is important to understand that the underlying question is different. The 
question is for instance 

“To which value σ⊥
t has to be increased in order to provoke failure on 

its action plane?” 

and not 

“To which value σ⊥
t has to be increased in order to provoke fracture 

(on any plane)?” 

There are three single fracture resistances to be differentiated: 
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R⊥
A t = Resistance of the action plane against its fracture due to transverse 

tensile stressing σ⊥
t acting in that plane. 

R⊥⊥
A = Resistance of the action plane against its fracture due to transverse 

shear stressing τ⊥⊥ acting in that plane. 
R⊥||

A = Resistance of the action plane against its fracture due to longitudi-
nal shear stressing τ⊥|| acting in that plane. 

In the following some examples will be given to illustrate the meaning 
of action plane fracture resistances. The first example is a pure longitudi-
nal shear stressing τ⊥|| caused by τ21 ≠ 0 in the absence of all other stresses. 
This will obviously occur in a test with a pure longitudinal shear stressing 
realized by applying – for instance – a pure shear stress τ21 in absence of 
all other stresses. In this case a shear stress τn1 = τ21·cosθ is acting on 
a plane inclined by the angle θ to the x2-plane on which τ21 is acting. Ob-
viously, for all angles θ ≠ 0° the shear stress τn1 is smaller than τ21. Frac-
ture must therefore occur on the action plane of τ21 (θfp = 0°) and therefore 

 |||| ⊥⊥ = RRA  (Eq. 24) 

This means that the action plane fracture resistance R⊥||
A is identical to 

the longitudinal shear strength R⊥||. 
Transverse tension – for instance σ2

t – normally leads in the absence of 
other stresses to fracture in its action plane, too, and therefore: 

 ttA RR ⊥⊥ =  (Eq. 25) 

This, however, is not as evident as in the case of pure longitudinal shear. 
In the case of transverse tension σ2

t there is a combination of transverse 
tension (σ⊥

t = σ2cos2θ) and transverse shear (τ⊥⊥ = −0.5 σ2sin2θ) on planes 
θ ≠ 0. If the resistance of the action plane against τ⊥⊥ shear fracture would 
be considerably smaller than that against transverse tension a different frac-
ture angle θfp ≠ 0° would occur. 

The third relevant fracture resistance R⊥⊥
A cannot as easily be deter-

mined as R⊥|| and R⊥
t. When applying a pure τ23 stress to a unidirectional 

layer in the absence of any other stress there are three planes on which just 
one stressing is acting: 

• θ = 0°:  action plane of τ23 (τ⊥⊥-stressing) 
• θ = 90°: action plane of τ32 (τ⊥⊥-stressing) 
• θ = 45°: action plane of the principal tensile stress (σ⊥

t-stressing) result-
ing from τ23 and being of same magnitude as τ23 and τ32. 
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According to Puck’s hypotheses fracture occurs on the plane with the 
highest stress exposure. Fracture tests on UD-specimens loaded by τ⊥⊥ 

show fracture under θfp = 45°. This leads to the clear conclusion that the 
fracture resistance R⊥

A t against transverse tension is smaller than the frac-
ture resistance R⊥⊥

A against transverse shear. In other words: With a trans-
verse shear test not R⊥⊥

A but instead the resistance against transverse ten-
sion R⊥

A t is measured. 
In fact there is no way to measure R⊥⊥

A for intrinsically brittle fiber rein-
forced plastics directly. However, the unidirectional compression test of-
fers an indirect way for the determination of R⊥⊥

A as long as the hypothesis 
for pure transverse stressing (compare chapter “Fracture hypotheses”) is 
valid. If just σ2

c is applied, a fracture angle of θfp ≈ ±54° results. On this 
fracture plane a combination of transverse shear τ⊥⊥ and transverse com-
pression σ⊥

c is acting. According to fracture hypothesis 2, a transverse 
compressive stress adds an additional fracture resistance to the “intrinsi-
cal” fracture resistance R⊥⊥

A. This additional fracture resistance can be 
calculated by the used mathematical fracture condition. In this way the test 
result can be corrected in order to find R⊥⊥

A. Thus, the calculated value of 
R⊥⊥

A depends on the fracture model used. Therefore this R⊥⊥
A is perhaps 

not the “real” value of the material property R⊥⊥
A but it can be used for the 

fracture model by which it has been calculated. At least it is guaranteed 
that by using this same fracture model in a fracture analysis for the special 
case of uniaxial compression the result will be (σ2)fr = −R⊥

c with R⊥
c being 

the real transverse compressive strength. 
The example of longitudinal shear is well suited to explain again the dif-

ference between a fracture resistance (of the action plane) and a conven-
tional basic strength. The stress τ21 is acting on the x2-plane parallel to the 
fibers and the corresponding shear stress τ12 of the same magnitude is act-
ing on the x1-plane. This shear stress on the x1-plane is correctly addressed 
as τ12. However, there is just one strength parameter R⊥|| and it does not 
contain the information about the fracture plane. This could be either the 
x2- or the x1-plane or even another plane. The corresponding fracture resis-
tances of the two planes under consideration differ, however, considerably. 
Namely, the fracture resistance (R⊥||

A) of the x2-plane – parallel to the fi-
bers – is much smaller than the fracture resistance R||⊥

A of the x1-plane 
perpendicular to the fibers. This phenomenon can easily be understood: On 
the x2-plane the stressing τ⊥|| provokes Inter Fiber Fracture. The fracture 
plane runs parallel to the fibers whereas a fracture on the x1-plane would 
be a Fiber Fracture (shear off of the fibers)! 
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Obviously it makes no sense to talk about a resistance of the action 
plane against fracture due to transverse compressive stressing σ⊥

c because 
a compressive stress cannot produce a fracture in its own action plane. 
Summing up this, there are three action plane fracture resistances to be 
differentiated: 

R⊥
A t = Resistance of the action plane against its fracture due to transverse 

tensile stressing σ⊥
t acting in that plane. For structural UD-material 

under normal temperature and humidity conditions it can be ex-
pected that R⊥

At = R⊥
t is valid, 

R⊥⊥
A = Resistance of the action plane against its fracture due to transverse 

shear stressing τ⊥⊥ acting in that plane. Attention has to be paid to 
the fact that R⊥⊥

A ≠ R⊥⊥, 
R⊥||

A = Resistance of the action plane against its fracture due to longitudi-
nal shear stressing τ⊥|| acting in that plane. For elementary reasons 
R⊥||

A = R⊥||. 

Experience has shown that most mechanical engineers are not familiar 
with the difference between “strength” and “action plane fracture resis-
tance”. It could be helpful to realize the different underlying question. 
Dealing with strengths the underlying question is 

“To which value can a certain stressing (for instance uniaxial stressing 
σ⊥

t) be increased until failure occurs somewhere (and somehow) in the 
evenly stressed volume of the test specimen?” 

Dealing with action plane fracture resistances the underlying question 
is: 

“To which value can a certain stressing be increased until a fracture 
occurs on the action plane in which the evenly applied stressing is 
acting?” 

4.2.5  Visualization of the stress/strength problem 

Preliminary remark: 
The content of the following chapter is not required to be read by some-
body who is interested in the application only of the algorithms of Puck’s 
laminate failure analysis. However, it is strongly recommended to have 
a look on the astonishing possibilities of the visualization because they 
present a much better understanding of the results of the mathematical 
treatment of the physical problems which is explained in the subsequent 
chapters. But the reader being in a hurry may continue with the chapter 
“Universal 3-D-formulation of the action plane related IFF-criteria”. 
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4.2.5.1  Mohr’s Circles and Fracture Envelopes 

Within a failure analysis independently of the kind of material the engineer 
has to complete two tasks: First the stresses of the material caused by the 
loads have to be calculated and in a second step these stresses have to be 
compared to the failure limit. If the material fails by brittle fracture, 
Mohr’s circles are helpful for the first task and Mohr’s envelope for the 
second one. 

Because of the fact that Puck’s IFF hypotheses are based on the ideas of 
Mohr [Mohr 1900] and Coulomb [Coulomb 1776] one can partially use 
these classical solutions. However, it must be recognized that the ap-
proaches of Mohr and Coulomb are valid only for macroscopically iso-
tropic materials. In the isotropic case fracture due to an arbitrary three di-
mensional state of stress can be treated as a 2D-problem. Any stress 
combination leading to fracture can be visualized by means of the well 
known Mohr’s circle and Mohr’s envelope. 

The reason for this opportunity of simplification is the isotropy and the 
validity of Mohr’s fracture hypothesis for brittle fracture. Any 3D-stress 
combination (σ1, σ2, σ3, τ23, τ31, τ21)

20 – to use the coordinates which are 
established for the UD-lamina (compare Fig. 16) – can be transformed to 
an equivalent (σa, σb, σc) stress state without any shear stresses on the ac-
tion planes of σa, σb, σc where σa, σb and σc are the so called principal 
stresses. If σb > σa by σb < σa being the intermediate principal stress, frac-
ture depends according to Mohr only on the major and minor principal 
stresses σb and σc (Fig. 27). In the (σ, τ)-diagram Fig. 27 points on the 
circumference of a circle with the coordinates σ and τ present the stresses 
σ and τ on section planes through the material, the normal of which is per-
pendicular to one of the three axes a, b or c, that means perpendicular to 
one of the three principal stresses. It can be shown theoretically that the 
stresses σ and τ of all other section planes are given by points located in 
the hatched areas of Fig. 27. 

Therefore the highest shear and normal stresses occurring in the material 
under the given stresses depend only on the two extreme principal stresses. 
In Fig. 27 σb and σc are chosen as the extreme principal stresses for de-
monstration. However, depending on the load case it could be any other 
pair of the three principal stresses σa, σb, σc too. The axes a, b, c of the 
Cartesian coordinate system in which the acting stress combination can be 
presented for the isotropic material changes its spatial orientation depend-
ing on the actual stress state (σ1, σ2, σ3, τ23, τ31, τ21). That means that gen-
                                                      
20  The additional corresponding shear stresses follow from τ23=τ32, τ31=τ13, 

τ21=τ12. 
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erally the directions a, b, c in which the principal stresses σa, σb, σc are 
acting do not coincide with any of the chosen axes x1, x2, x3 of the original 
reference coordinate system for the actual stress combination (σ1, σ2, σ3, 
τ23, τ31, τ21), see Fig. 28. 

If there is isotropy there is no difficulty in working with a coordinate 
system with axes a, b, c of the principal stresses σa, σb, σc which for differ-
ent states of stress has a different spatial orientation and there is also no 
problem to work with an unlimited number of coordinate systems for the 
axes of the principal stresses. However, obviously such versatility does not 
exist for transversely-isotropic materials like the UD-lamina where the 
fixed direction of the fibers prevents such a procedure. When dealing with 
transversely-isotropic material a change of the direction of coordinate axes 

 

Fig. 27. System of the three Mohr-circles for isotropic material 

 

Fig. 28. The stresses σ and τ given by the coordinates of a point on the largest 
circle in Fig. 27 are acting on a potential fracture plane which is parallel to σa. 
The direction of σ and τ is perpendicular to σa 
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is at least possible in the plane of transverse isotropy which is perpendicu-
lar to the fixed axis parallel to the fibers. 

4.2.5.2  Mohr’s circle and Mohr’s envelop for a transversely-isotropic 
UD-lamina under plane (σ2, σ3, τ23)-stress 

In a UD-lamina the stresses σ2, σ3, τ23 which are acting on action planes 
being parallel to the fixed fiber direction x1 are the only stresses to which 
Mohr’s circle can be applied effectively. Transverse isotropy allows to 
switch over from the (x2, x3)-coordinate system to a (xn, xt)–coordinate 
system. 

In order to get familiar with the derivation and application of Mohr’s 
circle, a plane (σ2, σ3, τ23) stress state will be investigated now. The 
stresses acting on the plane which is inclined by an angle θ to the x3-axis 
(compare Fig. 33) can be determined by (Eq. 1) and (Eq. 2). Using the well 
known theorems for “sin” and “cos” (Eq. 1) and (Eq. 2) gives the form 

 ( ) ( ) ( ) θτθσσσσθσ 2sin2cos
2
1

2
1

233232 ⋅+⋅−++=n  (Eq. 26) 

 ( ) ( ) θτθσσθτ 2cos2sin
2
1

2332 ⋅+⋅−−=nt  (Eq. 27) 

These equations look already like the mathematical description of a cir-
cle using the angle 2θ as a parameter. This can be confirmed in the follow-
ing way: Rearrangement of terms, squaring of (Eq. 26) and adding up of the 
squared form of (Eq. 27) finally leads to the following expression: 

 ( ) ( ) [ ] ( )
2 2

2 2
n 2 3 nt 2 3 23

1 1( )
2 2

⎡ ⎤ ⎡ ⎤σ θ − σ +σ + τ θ = σ −σ + τ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (Eq. 28) 

(Eq. 28) confirms the very welcome opportunity for the visualization of 
stress transformation because (Eq. 28) is the mathematical description of 
a circle with the center on the σn-axis at 0.5(σ2+σ3) and the radius 

( )
2

2
2 3 23

1
2
⎡ ⎤σ −σ + τ⎢ ⎥⎣ ⎦

. This circle is illustrated in Fig. 29. 

Figure 29 presents a graphical procedure by which the stresses σII and 
σIII can be determined if σ2, σ3 and τ23 are known. 
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Fig. 29. Mohr circle for {σ2, σ3, τ23} 

On planes characterized by the angles ϕ and (ϕ+90°) there is no shear 
stress τnt. The corresponding normal stresses σn(ϕ) and σn(ϕ+90°) are des-
ignated by σII and σIII and are called “extreme normal stresses of the trans-
versely-isotropic plane”. In general they are not real principal stresses. 
This is explained later. 

It is important to realize that for instance an angle ϕ in the real material 
with a mathematically positive sense of rotation corresponds to an angle of 
2ϕ with a mathematically negative sense of rotation in the Mohr-circle! 

The “extreme normal stresses σII and σIII of the transversely isotropic 
plane” and the angle ϕ (compare Fig. 29) can also very easily be found in 
the usual analytical way by setting τnt = 0 in (Eq. 27). It is 

 
32

232arctan2
σ−σ

τ=ϕ  (Eq. 29) 

and with (Eq. 26) 

 ( ) ( ) ϕτ+ϕσ−σ+σ+σ=σΙΙ 2sin2cos
2
1

2
1

233232  (Eq. 30) 

 ( ) ( ) ϕτ−ϕσ−σ−σ+σ=σΙΙΙ 2sin2cos
2
1

2
1

233232 . (Eq. 31) 

With known extreme normal stresses σII and σIII the stresses σn(Θ) and 
τn(Θ) on planes inclined to the direction of σII by the angle Θ can be calcu-
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lated with (Eq. 32) and (Eq. 33). These equations correspond to (Eq. 26) and 
(Eq. 27). 

 ( ) ( ) ( ) Θ−++=Θ ΙΙΙΙΙΙΙΙΙΙ 2cos
2
1

2
1

n σσσσσ  (Eq. 32) 

 ( ) ( ) Θ−−=Θ ΙΙΙΙΙ 2sin
2
1

nt σστ  (Eq. 33) 

Mohr’s circle as shown in Fig. 30 is based on (Eq. 32) and (Eq. 33). The 
coordinates σn and τn of a point P at a radian distance of 2Θ from σII are the 
stresses acting on a plane inclined by Θ to the action plane of σII (compare 
Fig. 30). The centre of the circle has a distance of 0.5(σII+σIII) = 0.5(σ2+σ3) 
from the point of origin. The radius of the circle is 0.5(σII-σIII). The term 
(σII-σIII) can be negative or positive. To make sure that the graphical con-
struction is in line with (Eq. 32) and (Eq. 33) (positive radius), the sense of 
rotation and the starting point of the Θ-measurement has to be adapted in 
a way that σn(Θ) and τn(Θ) are correct by means of magnitude and alge-
braic sign, see sketch on the bottom of Fig. 30. 

All Mohr’s circles for arbitrary states of stress have their centers on the 
σn – axis. Each point on the circumference of such a circle with coordi-
nates σn and τnt belongs to a certain section through the material with an 
angle Θ (in reality). The stress vector belonging to such a section has its 
starting point in the origin of the (σn, τnt)-coordinate system and its tip 
touches the point (σn(Θ), τnt(Θ)) on the circumference of Mohr’s circle. 

No vector tip belonging to a vector representing a sustainable state of 
stress can exceed a certain fracture limit of the material. Therefore Mohr 

 

Fig. 30. Mohr circle and derivation of stresses on inclined planes 
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has not only provided the helpful visualization of stresses acting on in-
clined action planes by Mohr’s circle but he has also tried to draw a frac-
ture limit of the material as a curve in the (σn, τnt)-diagram. This is called 
“Mohr’s envelope”, see Fig. 31. It envelops all sustainable stress combina-
tions. Obviously no Mohr’s circle for sustainable stress can exceed this 
envelope; it can at the most touch it. 

It is important to realize that if the contact point of a Mohr’s circle with 
the Mohr-envelope is found, not only the combined stresses σn and τnt on 
the fracture plane but as well the fracture angle θfp can be found in the 
diagram, see for instance Fig. 31. 

For a UD-lamina the fracture envelope is chosen by Puck as a parabola 
in the area of σn < 0 and an ellipse in the area of σn > 0. At σn = 0 the curve 
might have a sharp bend or – more mathematically spoken – a discontinu-
ity in terms of gradient. 

According to the fracture hypotheses discussed in detail in the chapter 
“Fracture hypotheses”, there is (as far as IFF is concerned) either tensile 
fracture or shear fracture in a UD-lamina stressed by (σ2, σ3, τ23, 0, 0). 
Consequently, on the fracture plane there is either a σn > 0 (pure σ⊥

t) 
stressing or a combination of σn < 0 and τnt ((σ⊥

c, τ⊥⊥)-stressing). A com-
bined (σ⊥

t, τ⊥⊥)-stressing or a pure τ⊥⊥-stressing on the fracture plane are 
both not possible according to the additional “rule” given with the two 
fracture hypotheses (compare chapter “Fracture hypotheses”). 

Under these conditions, all Mohr circles describing states of stress 
which lead to tensile fracture touch the fracture envelope at the same point, 

 

Fig. 31. Mohr’s circles for special stress states and Mohr’s fracture envelope 
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namely T(R⊥
t, 0) (compare Fig. 31). In a (σII, σIII)-diagram the correspond-

ing fracture curve for tensile fracture consists of two straight lines, running 
at a distance of R⊥

t parallel to the σII- and σIII-axes (compare Fig. 32). This 
corresponds to Paul’s [Paul 1961] findings for intrinsically brittle materi-
als. In the first quadrant of the (σII, σIII)-diagram tensile fracture occurs as 
a consequence of σII (θfp = 0°) – in the case of σII > σIII – or as a conse-
quence of σIII (θfp ± 90°) in the case of σIII > σII. For the straight fracture 
lines σII = R⊥

t and σIII = R⊥
t Paul introduced the term “tensile cut offs”. In 

the 2nd and 4th quadrant, either tensile or shear fracture can occur. What 
fracture occurs depends on the ratio σII/σIII. In the 3rd quadrant, where both 
σII and σIII are compressive stresses fracture is always a shear fracture. 
However, the fracture plane is not the plane with the highest shear stress-
ing (θfp = ±45° with τnt = 0.5|(σII-σIII)|; in Mohr’s circle straight above and 
below the centre point at ±2θfp = ±90°). Instead, the fracture angle deviates 
by ≈ ±5° to ±10° from the plane with the highest shear stress. This be-
comes understandable when regarding the normal stress σn

c acting simul-
taneously to τnt. This compressive normal stress is reduced considerably 
when the angle deviates a bit from ±45°, whereas the shear stress τnt stays 
nearly the same (compare Fig. 25). Knowing that compressive normal 
stress impedes shear fracture, this explains why the observed angle of 
shear fracture is not ±45° but somewhat larger. This has been experimen-
tally confirmed with uniaxial compression tests, see Fig. 8. 

Figure 31 shows that the fracture envelope and the Mohr’s circles have 
no points of contact between the points T (R⊥

t, 0) and S (point of transition 

 

Fig. 32. (σII, σIII) fracture curves resulting from Mohr’s fracture envelope 
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from tensile fracture to shear fracture). The dashed circle in Fig. 31 marks 
the “circle of transition” from tensile to shear fracture. For this special 
(σII, σIII)-compression/tension stress combination there can either occur 
a shear fracture or a tensile fracture. Also the circle for pure transverse 
shear shows contact only in T, that means R⊥⊥ = R⊥

t is to be expected. 
The course of the fracture envelope between the points T and S does not 

seem to be relevant for the states of stress treated so far. There are no con-
tact points on it. It is a so called “dead branch” of the fracture envelope. 
However, from the following paragraph it will become clear, that the 
course of the (σn, τnt) fracture curve between T and S has an influence on 
the fracture envelope for 3D-stressings (σn, τnt, τn1), the so called Master 
Fracture Body (MFB). Such a 3D-stressing is present as soon as there is 
longitudinal shear τϖ1, that means τ21 and/or τ31 too. 

4.2.5.3  From Mohr’s circle to Puck’s cosine-shaped cylinder 

The idea of Mohr’s circles and Mohr’s envelope is used now as the basis 
for a corresponding procedure for transversely-isotropic materials with the 
most general 3D-state of stress. Figure 33 shows all stresses and their cor-
rect designation of a UD-lamina. The stress σ1 leads to a fiber parallel 
stressing σ||, whereas both the stress σ2 and the stress σ3 cause a transverse 
stressing σ⊥. The stress τ23 = τ32 leads to a transverse shear stressing τ⊥⊥ 
and τ21 and τ31 both lead to a longitudinal shear stressing τ⊥||. That means 
that obviously all three fracture resistances R⊥

At, R⊥⊥
A, R⊥||

A of the fiber 
parallel action plane will now generally influence the IFF-process. 

In order to get to visualization also of the most general stress situation 
one must try not to use more than three variables. For this reason one 
should combine as much stresses as possible in “resulting” stresses. The 

 

Fig. 33. Stresses of the UD-lamina and stresses on a possible (IFF)-fracture plane 
which is parallel to the fibers 
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longitudinal shear stresses τ12 and τ13 and their corresponding stresses τ21 
and τ31 are quite special in this respect. Figure 34 shows that τ12 and τ13 are 
in fact components of only one longitudinal shear stress τ1ϖ. The two com-
ponents are τ12 = τ1ϖcosϖ and τ13 = τ1ϖsinϖ. Adequate equations can also 
be written with the corresponding stresses τ21, τ31 and τϖ1 (this is the stress 
provoking IFF in its fiber parallel action plane). Implicitly the fact that the 
longitudinal shear stresses can easily be united in one stress means: there 
does exist only one relevant longitudinal shear stress and this is τϖ1. As 
long as only τω1 acts in the absence of any other stress, IFF will occur in 
the plane in which the resulting longitudinal shear stress τϖ1 is acting as 
soon as τϖ1 = R⊥|| is reached. The fracture plane is orientated perpendicular 
to the direction of τ1ϖ as shown in Fig. 34. 

It is important to note that the stresses σII and σIII are only true principal 
stresses like σb and σc respectively, if there is no longitudinal shear τϖ1. In 
this special case σ1, σII, σIII are real principal stresses. As soon as τϖ1 ≠ 0, 
there is longitudinal shear on the action plane of σII and/or σIII. The action 
plane of “true” principal stresses is however free of any shear stresses. 

Obviously the combined action by which the stresses σII, σIII and τϖ1 
cause an IFF will depend on the direction of the shear stress τϖ1 compared 
to the directions of the normal stresses σII and σIII. But due to the transverse 
isotropy of the UD-lamina (with respect to the x1-axis) not the absolute 

 

Fig. 34. Uniting τ12 and τ13 to τ1ϖ and τ21 and τ31 to τϖ1 
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values of the angles ϖ and ϕ are relevant for the risk of fracture. Instead, 
the difference δ between ϖ and ϕ is relevant (see Fig. 35): 

 ϕ−ω=δ . (Eq. 34) 

Because of the meaning of ω and φ (see Fig. 35 and (Eq. 29) δ can be 
written as: 

 31 23

21 2 3

21arctan arctan
2

τ τδ= −
τ σ −σ

. (Eq. 35) 

Longitudinal shear stress τϖ1 cannot be eliminated like a transverse 
shear stress τ23 by the introduction of stresses like σII and σIII. Thus, in the 
general case fracture has to be calculated for a (σ1, σII, σIII, 0, τω1) state of 
stress. 

For the moment it is assumed that just as in the case of isotropic material 
(with σa being the intermediate principal stress) the fiber parallel stress σ1 
has no influence on the fracture angle Θfp and no influence on the magnitude 
of the fracture stresses σII, σIII, τω1 at IFF – this is at least correct as long as 
σ1 is considerably smaller than ≈ 50 % of the fiber fracture strength |R|||. 

In the particular case that the longitudinal shear τϖ1 acts alone 
(σII = σIII = 0), fracture occurs in the action plane of τϖ1 which is turned by 
the angle difference δ = ϖ-ϕ with respect to the action plane of σII (compare 
Fig. 35). In a further special case, τϖ1 acts on the fracture plane of the tensile 
fracture provoked by (σII, σIII) alone. In this case, the longitudinal shear 
simply “helps” provoking fracture without changing the fracture angle. The 

 

Fig. 35. Combining σ2, σ3, τ23 to σII and σIII and τ12 and τ13 to τ1ϖ; definition of 
angle δ 
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common presence of σII, σIII and τϖ1 leads to a combined (σ⊥
t, 0, τ⊥||) mode 

of fracture, that means a Mode A-fracture. 
The tensile fracture occurs on the action plane of σII or that of σIII (de-

pending on which of both stresses is larger). If, however, the action plane 
of τω1 is neither equal to that of a tensile σII nor that of a tensile σIII, frac-
ture will sometimes occur on a plane which is not the action plane of any 
of the 3 stresses σII, σIII, τϖ1. On the actual fracture plane there will then be 
a (σ⊥

t, τ⊥⊥, τ⊥||) stress combination, called a Mode A*-fracture. This is 
a major difference to the fracture behavior of brittle isotropic material, 
where a comparable stressing (a combination of a tensile stress σt and 
a shear stress τ) on the fracture plane is not possible. 

It seems necessary to have a closer look on the stress distribution. In 
general, a (σII, σIII, τϖ1) stress state leads to a stressing σn(θ), τnt(θ), τn1(θ) 
on all planes (parallel to the fiber direction). The maximum of τn1 with the 
magnitude of τn1 = τϖ1 occurs on a plane inclined by the angle δ to the  
action plane of σII, see Fig. 36. On planes inclined by ±90° to the plane of 
τn1 = τϖ1 the longitudinal shear τn1 is zero. In between these extreme incli-
nations of the fiber parallel action plane τn1 follows a cosine function, com-
pare (Eq. 3). 

A rotation of the fiber parallel action plane by ±90° (in the real material) 
corresponds to a rotation of ±180° in the Mohr’s circle. This leads to an 
illustration of the state of stress as a Mohr’s circle with a “cosine-half-
wave” on top of the Mohr’s circle. The amplitude of the cosine-function is 
τn1 = τω1 (compare Fig. 36). The maximum of τn1 is – with respect to the 
σII-axis – rotated by the angle δ in reality and 2δ in the Mohr’s circle 
respectively. 

 

Fig. 36. Mohr’s circle with longitudinal shear τn1 representation for UD-lamina 



 4.2 Inter fiber fracture (IFF) criteria 63 

 

Fig. 37. Spatial vector fan for combined (σ2, τ21)-stressings: a) for σ2 < 0; b) for 
σ2 > 0 

In addition to (Eq. 32) and (Eq. 33) there is now an additional equation 
for the longitudinal shear τn1 in dependence of the angle Θ: 

 ( ) ( ) ( )δττδττ ω −Θ+=−Θ=Θ coscos 2
31

2
2111n  (Eq. 36) 

A stress vector (σn(Θ), τnt(Θ), τn1(Θ)) in Fig. 36 reaches from the center 
of origin to a point P on the cosine-half-wave. The infinite number of tips 
of all stress vectors (acting on planes −90° ≤ (Θ-δ) ≤ +90°) of a given (σ2, 
σ3, τ23, τ31, τ21) state of stress form together the cosine-half-wave in 
Fig. 36. All these vectors form a spatial “vector fan”, special examples of 
which are shown in Fig. 37. 

The fracture limit for all stress vectors is now no longer an enveloping 
fracture limit curve in the (σn, τnt)-plane, but a surface in the (σn, τnt, τn1)-
space. This fracture envelope comprises all cosine-half-waves and corre-
sponding stress vectors which do not lead to fracture. In order to differen-
tiate this fracture envelope from other well known envelopes for instance 
in the (σ1, σ2, τ21)-space, the envelope in the (σn, τnt, τn1)-space is called 
Master Fracture Body (MFB) (compare Fig. 38). 

The visualization of the stress state on any fiber parallel action plane by 
the cosine-half-waves and the visualization of the (σn, τnt, τn1)-fracture 
limit by the Master Fracture Body (MFB) are very helpful both for the 
interpretation of the results of a fracture analysis of special stress states 
and quite generally for a deeper understanding of the background and the 
results of Puck’s criteria. 
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Fig. 38. IFF-Master Fracture Body [Lutz 2006] 

It helps for instance to understand that on the surface of the MFB at cer-
tain places “dead areas” appear [Ritt 1999]. One of these dead areas con-
tains the “dead branch” between the points S and T in Fig. 31. Stress 
points (σn, τnt, τn1) in “dead areas” symbolize (σn, τnt, τn1)-stresses on the 
fracture plane which never occur (The cosine half wave is unable to get in 
contact with these parts of the surface of the MFB). 

All steps of the application of Puck’s action plane fracture criteria can be 
visualized from Fig. 38. In order to answer for instance the question “what 
stress combinations are sustainable?” for a given (σ2, τ21)-stress combination, 
one steps into the (σn, τnt, τn1)-stress space where the Master Fracture Body 
(MFB) is given. Here, one has to find the point on the MFB-surface where the 
cosine shaped stress line touches the MFB. 

What the algorithm of the fracture analysis really performs is the follow-
ing procedure: Every (σn, τnt, τn1) stress vector on any inclined section is 
elongated (stretched) in its original direction by the so called stretch factor 
fS = (fE)−1 the way that the tip of the vector just gets in contact with the 
MFB-surface. The (σn, τnt, τn1)-vector which needs the minimal stretch fac-
tor fSmin is the one which in reality leads to IFF. For (σ2, τ21)-combinations 
Puck has found an analytical solution. For the general (σ1, σ2, σ3, τ23, 
τ31, τ21)-stress combinations fast numerical search procedures have been 
developed. In Fig. 38 the cosine line in the tensile region of σn has a contact 
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point on the line “τnt = 0”, which means θfp = 0°. In the compressive region 
the contact point can be in an area where all 3 stresses σn, τnt, τn1 exist. This 
means that θfp ≠ 0° is possible. It is interesting to see in Fig. 38 how the frac-
ture curve on the (σ2, τ21)-plane is represented in the MFB. Surprisingly the 
stress σn on the fracture surface is constant (σn = −R⊥⊥

A) in the whole area of 
oblique fractures (θfp ≠ 0°), see part (c) to (d) of the corresponding fracture 
curves. 

4.2.6  Universal 3-D-formulation of the action plane 
related IFF-criteria 

4.2.6.1  Preliminary remarks 

The action plane related IFF-criteria are valid for arbitrary combinations of 
the stresses σ1, σ2, σ3, τ23, τ31, τ21. The influence stresses parallel to the 
fibers (σ1) have on IFF is assumed to be negligible as long as σ1 is much 
smaller than the fiber parallel strength R||. Thus, that influence is neglected 
in a first approach and will be discussed later (compare chapter “Influence 
of stresses σ1 acting parallel to the fibers on IFF”). 

Puck’s approach is based on the hypothesis that the stresses acting on 
a fracture surface provoke fracture, this was first proposed by Hashin 
[Hashin1980]. Consequently, Puck’s criteria are formulated with the stres-
ses σn(θ), τnt(θ), τn1(θ) (compare Fig. 18) which can easily be calculated 
from the stresses σ2, σ3, τ23, τ31, τ21 (see (Eq. 1), (Eq. 2), (Eq. 3)). 

The stresses σn(θ), τnt(θ), τn1(θ) depend on the angle θ of the plane un-
der consideration or in other words of their action plane. The same is true 
for the risk of fracture. On a plane with θ = θ1 the risk of fracture might be 
higher than on a plane θ = θ2. Eventually, when the lamina stresses are 
increased to the fracture limit the lamina will suffer IFF on a fracture plane 
θ = θfp. On this plane the risk of fracture is highest and here the stresses 
σn(θ), τnt(θ), τn1(θ) reach first the fracture limit. 

A measure for the likelihood of fracture is the stress exposure fE(θ) on 
the action plane. In fact, the plane with the highest stress exposure will be 
the fracture plane (fE(θ) = [fE(θ)]max = fE⏐θ=θfp). If the stresses of the UD-
lamina (σ2, σ3, τ23, τ31, τ21) are multiplied by the smallest stretch factor 
fSmin = 1/[fE(θ)]max the lamina will suffer IFF exclusively on that fracture 
plane. All other planes remain intact. 

For the general 3D-state of stress, the fracture plane has to be found 
numerically. That means that the stresses σn(θ), τnt(θ), τn1(θ) need to be 
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calculated for all planes with angles −90°≤ θ ≤ 90° and that for all these 
angles the stress exposure fE(θ) needs to be calculated, see Fig. 39. This is 
done by inserting the stresses into an IFF-criterion formulated with the 
stresses of the action plane σn(θ), τnt(θ), τn1(θ). The procedure is usually 
done in 1°-steps leading to 180 calculations. With modern computers that 
is no problem. Nevertheless, it makes sense to reduce the numerical effort 
as far as possible. 

Figure 40 illustrates the course of the angle dependent stress exposure 
fE(θ) as a function of the angle θ of the action plane for a selected state of 
stress (σ1 = σ2 = σ3 = τ21 = 0; τ23 = τ31). As a result of the fracture analysis 
one gets a fracture angle θfp = 58° and a stress exposure fE = 0.5. This cor-
responds to the global maximum of the bold curve in Fig. 40. If the 
stresses are multiplied by the stretch factor fS = 1/fE = 2, for θ = 58° fE = 1 
is reached in this case. The thin curve in Fig. 40 illustrates the curve fE(θ) 
resulting from multiplying the stresses by (fS(θfp) = 1/fE(θfp)). 

Originally in 1993, Puck proposed the following IFF-condition for com-
pressive stress σn

c: 
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Fig. 39. Search for the fracture plane 
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Fig. 40. Stress exposure fE(θ) for a τ23/τ31-combination 

With the inclination of the (σn, τnt)- and (σn, τn1)-curves at the point σn = 0: 
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Here, the classical quadratic additive approach was chosen for the interac-
tion of the two shear stresses τnt and τn1. The two denominators fulfill 
Puck’s second hypothesis stating that a compressive stress σn

c (a stress 
with a negative value) adds an additional fracture resistance −p⊥⊥

cσn(θfp) to 
R⊥⊥

A and −p⊥||
cσn(θfp) to R⊥||

A, respectively. 
At this point one should recall the correct meaning of this statement: It 

does not mean that adding an additional compressive stress σ2
c reduces the 

IFF-stress exposure fE = [fE(θ)]max
21! It does only mean that the stress ex-

posure on the action plane fE(θ) under consideration decreases, if |σn
c| on 

this plane grows. This implies that on other planes – with a different angle 

                                                      
21  Even though that might be true in some cases. 
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θ – where the same state of stress leads to different stresses σn(θ), τnt(θ), 
τn1(θ) the stress exposure might increase. 

Another important aspect is the difference between a conventional frac-
ture body written in σ2, σ3, τ23, τ31, τ21 (and σ1, if fiber fracture is covered, 
too) on the one hand and the Master Fracture Body (MFB) describing which 
stress-combinations (σn, τnt, τn1) lead to fracture on their action plane. 

Again, the difference can well be illustrated regarding the simple exam-
ple of plane stress (σ3 = τ23 = 0). Figure 24 shows the fracture curve for the 
(σ2, τ21)-stress combination. The curve is closed indicating that any stress 
ratio σ2/τ21 leads to fracture, if the magnitude of the stresses is sufficiently 
high. Figure 41 shows schematically the corresponding Master Fracture 
Body (MFB) in the (σn, τnt, τn1)-space. Additionally, a cross section as 
described by (Eq. 37) and an arbitrary longitudinal section of the (MFB) 
are shown. 

Comparing the fracture curve in the (σ2, τ21)-diagram and the longitudi-
nal section of the MFB ((σn, τnψ)-diagram) several misunderstandings and 
misinterpretations are possible as long as the subject has not been fully 
understood. First thing to recognize is that any longitudinal section of the 
MFB has no intersection with the σn-axis in the area of σn < 0. At first 
glance that seems to be in contrast both to common sense and the (σ2, τ21)-
fracture curve: Does transverse compression not lead to fracture? 

 

Fig. 41. Master Fracture Body in the (σn, τnt, τn1)-space 
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Of course, it does! But not on the action plane of the transverse com-
pressive stress σ2! A single transverse compressive stress does never ever 
provoke fracture on its action plane. That is, why the MFB is open to  
the negative σn-axis. For pure transverse compression σ2

c fracture does 
occur on a plane inclined by ±54°. That means, that first the stresses 
σn(θ = ±54°) and τnt(θ = ±54°) have to be calculated. In the case of pure 
(σ2, τ21)-loading (Eq. 1) simplifies to  

 0,cos 233
2

2 ==⋅= τσθσσ forn  (Eq. 40) 

 2 3 23sin cos , 0nt forτ σ θ θ σ τ= − ⋅ = =  (Eq. 41) 

 0,cos 31211 =⋅= τθττ forn  (Eq. 42) 

For pure transverse compression the longitudinal shear stress τ21 and 
consequently τn1 are zero. Thus on the fracture plane θfp = ±54° just σn and 
τnt are acting. The magnitude of these stresses can be calculated with 
(Eq. 40) to (Eq. 42) and is also illustrated in Fig. 25. 

This simple example might help to understand the procedure the concept 
of action plane related fracture criteria implies. The criteria are formulated 
with the stresses of the action plane. For all possible action planes with 
inclination angles θ between −90° and +90° the stress exposure fE(θ) is 
calculated and the plane with the highest stress exposure determined. This 
plane is the fracture plane (compare Fig. 39 and Fig. 40). 

The fracture condition (Eq. 37) mirrors well the mechanics and the  
material behavior. However, it is not very well suited for the numerical 
search of the fracture plane as explained below. 

If a state of stress σn(θ), τnt(θ), τn1(θ) does not lead to fracture on the 
plane examined, the expression on the left hand side of (Eq. 37) is smaller 
than “1”. Fracture will occur on this plane if all three stresses are multi-
plied by the reciprocal value of the stress exposure [1/fE(θ)], the so called 
stretch factor fS. This magnification factor leading to the value “1” on the 
left hand side of (Eq. 37) is unknown at first and must be calculated. How-
ever, if fS is introduced as a factor for σn, τnt, τn1 in (Eq. 37), a 4th grade 
equation for fE results. This equation cannot easily be solved. Thus, 
(Eq. 37) seems to be unsuitable for the calculation of fE(θ). 

Geometrically (Eq. 37) describes a fracture body with elliptical cross 
sections for σn

c = const. (compare Fig. 41). Of course the fracture body can 
also mathematically be described by its longitudinal sections, the so called 
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contour lines. By this means the numerical effort for the search of the frac-
ture plane can considerably be reduced. The simple reason for that is the 
following: 

The direction of the stress vector does not change when it is stretched by 
the stretch factor fS. This means that the ratios between the three stresses 
σn(θ):τnt(θ):τn1(θ) remain constant. Geometrically, the extension of the 
stress vector takes place within a longitudinal section characterized by the 
ratio τn1(θ)/τnt(θ) = tanψ (Fig. 41). This means, that fE(θ) can relative eas-
ily be calculated, if the fracture body is mathematically defined by its lon-
gitudinal sections. 

In the following the mathematical derivation of the fracture condition is 
given. Here, of course, a distinction of the cases transverse tension (σn > 0) 
and transverse compression (σn < 0) is necessary. 

4.2.6.2  Fracture condition for tensile stress σn 

The longitudinal section of the MFB characterized by τnt = 0 (ψ = 90°) is 
well known from experimental experience. This special section is the same 
as the (σ2, τ21)-fracture curve. Fracture occurs on the common action plane 
of σ2 and τ21, thus σn(θfp) = σ2 and τn1(θfp) = τ21. In the region of tensile 
stress σn on the fracture plane this fracture curve can well be fitted with an 
elliptical function having a slightly negative inclination at σn = 0, τn1 = R⊥|| 
and hitting the σn-axis perpendicularly at σn = R⊥

t, τn1 = 0. 
Puck assumes that all other longitudinal sections (ψ = const.) can be de-

scribed with similar curves. The resultant shear stress for such a section is 
derived from the two stresses τnt(θ) and τn1(θ) with common action plane 
(compare Fig. 18): 

 )()()( 2
1

2 θτθτθτ ψ nntn +=  (Eq. 43) 

Now, the problem can be treated as 2-dimensional with the two stresses 
σn(θ) (in the following abbreviated with σn) and τnψ(θ) (abbreviated with 
τnψ) similar to that of the classical fracture envelope of Otto Mohr, com-
pare Fig. 31. Defining the fracture resistance of the action plane against 
a resultant shear stress τnψ as RA

⊥ψ (see Fig. 41), the fracture condition 
formulated as an elliptic equation results to be: 
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The constants c1 and c2 can be determined by boundary conditions: For 
τnψ = 0 the expression σn = R⊥

A t must result. This leads to 

 121 =+ cc  (Eq. 45) 

At the intersection with the τnψ-axis the fracture curve takes the value 
R⊥ψ

A and the inclination shall be by definition 
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Implicit differentiation of (Eq. 44) at the point σn = 0, τnψ = RA
⊥ψ gives: 
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That leads eventually to the fracture condition: 
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4.2.6.3  Fracture condition for compressive stress σn 

In principle several mathematical functions might be adequate to model 
the Master Fracture Body in the zone of negative σn. 

Up to a stress magnitude |σ2
c| ≈ 0,4R⊥

c (This is the region of θfp = 0) the 
experimentally determined (σ2, τ21)-fracture curve can well be modeled by 
a parabola. The mentioned experimental experience and the fact that Otto 
Mohr himself has assumed that the increase in sustainable shear stress 
caused by a superimposed compressive stress σn would grow less than 
linearly with σn led Puck to a general parabolic approach for σn< 0. A suit-
able parabola can be formulated as follows: 
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Here, the inclination at σn = 0 shall be by definition: 
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 (Eq. 50) 

Differentiation of (Eq. 49) at σn = 0, τnψ = 0 gives with (Eq. 50): 
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All this leads finally to the following fracture condition for compressive 
stress σn on the fracture plane: 
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In (Eq. 48) and (Eq. 52) there are still the fracture resistances RA
⊥ψ and 

the inclination parameters p⊥ψ as unknown parameters. Consequently, he 
next paragraphs deal with the definition of reasonable values for these 
parameters. 

4.2.6.4  Description of the cross section of the MFB at σn = 0, 
determination of R A⊥ψ 

Figure 41 is helpful for the interpretation of the parameter RA
⊥ψ. In fact, 

the fracture resistance RA
⊥ψ is – at the point σn = 0 – the distance from the 

point of origin to the surface of the MFB under the angle ψ. This angle ψ 
characterizes the longitudinal section and depends on the ratio of τnt and 
τn1. For ψ = 0° (τnψ = τn0° = τnt, τn1 = 0) the fracture resistance is RA

⊥⊥ and 
for ψ = 90° (τnψ = τn90° = τn1, τnt = 0) it is RA

⊥||. 
Considerations based on micro-mechanics suggest that these two fracture 

resistances (RA
⊥⊥ and RA

⊥||) are not equal but of very similar magnitude. 
Thus, the classical elliptic approach for intermediate values RA

⊥ψ seems to 
be appropriate: 
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Here, the additional index “0” indicates that all stresses are taken at 
σn = 0. With the correlations τnt0 = τnψ0cos ψ and τn10 = τnψ0sin ψ (Eq. 53) 
leads to: 
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However, the normal stress σn has no influence on ψ. For all values of 
σn the following correlations are valid:  
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Thus, (Eq. 53) is generally valid for all σn: 
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With (Eq. 57) the Master Fracture Body is defined by a transverse sec-
tion (σn = 0) and an infinite number of longitudinal sections ψ = const. 
((Eq. 48) and (Eq. 52)). The only parameter left to be defined is the incli-
nation of the longitudinal sections at σn = 0 (compare Fig. 41). Guidelines 
concerning the choice of values for the inclination parameters can be found 
in the next paragraphs. 

In the case τnt = τn1 = 0 it does not matter which value is taken for 
p⊥ψ

t/RA
⊥ψ since this coefficient can be (in the special case of no shear 

stress) eliminated from (Eq. 48). The fracture condition of the action plane 
for negative σn (Eq. 52) is not defined for τnt = τn1 = 0, because there is no 
fracture on a plane with pure transverse compression. In this case fracture 
takes place on another action plane. 

4.2.6.5  Rearrangement of the fracture condition for searching 
the fracture plane 

To use the action plane related fracture condition 

 ( ) 1)(),(),( 1 =fpnfpntfpnF θτθτθσ  (Eq. 58) 
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first the fracture angle θfp needs to be determined. The fracture plane (and 
with this the fracture angle θfp) is characterized as the action plane with the 
maximum “local” stress exposure: fE(θfp) = [fE(θ)]max with –90° ≤ θ ≤ 90°. 
It is better to use the stress exposure and not the reciprocal stretch factor 
fS = 1/fE(θ) for the numerical search of the fracture plane, because on 
planes being free of stress, [1/fE(θ)] equals “∞” whereas fE(θ) equals “0” 
which poses no numerical problems. 

Assuming that the stresses τnψ(θ) and σn(θ) in (Eq. 48) and (Eq. 52) do 
not yet cause fracture, they must be multiplied by fS or divided by fE(θ)  
in order to lead to fracture (on this very plane) and to fulfill the fracture con-
dition. Keeping this in mind, it is obvious that the fracture conditions 
(Eq. 48) and (Eq. 52) lead to quadratic equations for fE(θ), because the 
stresses occur just in the first and second order in the fracture conditions. 
The solution of these quadratic equations can be explicitly determined, see 
(Eq. 12). The resulting expression for fE(θ) is homogeneous of first grade 
concerning the stresses. This means that the stress exposure fE(θ) grows 
linearly with the stresses. Thus the stress exposure is a direct measure of the 
risk of fracture. 

In Fig. 42 all equations needed for the described numerical search of the 
fracture plane are summarized.  

 

Fig. 42. Equations needed for the numerical search of the fracture plane 
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Fig. 43. Derivation of the relation between R⊥⊥
A and R⊥

c 

The equation for R⊥⊥
A in Fig. 42 can be derived geometrically from 

Fig. 43. The coordinates of the point P in Fig. 43 are  
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For these coordinates not only the equation of Mohr’s circle for uniaxial 
compression is valid, but also the equation for the parabolic envelope: 
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In point P circle and parabola have the same slope:  
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From (Eq. 61) and (Eq. 62) follows: 
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4.2.6.6  Choice of inclination parameters pt
⊥ψ and p c⊥ψ 

The parameters p⊥||
t and p⊥||

c (ψ = 90°) can be deduced from the (σ2, τ21)-
fracture curve (compare Fig. 24). This is possible due to the fact, that the 
fracture angle θfp is zero for both σ2 > 0 and σ2 < 0. Thus, the stresses on 
the fracture plane are σn = σ2 and τn1 = τ21. 

Those – experimentally determined – values for the parameters p⊥||
t and 

p⊥||
c usually lie between 0.25 and 0.35 (Table 1). Quite often experimental 

results are best fit to (Eq. 48) and (Eq. 52) respectively, if p⊥||
t is chosen 

slightly higher than p⊥||
c. Generally speaking, values between 0.2 and 0.35 

lead to reasonable fracture curves (Puck et al. 2002). Table 1 shows typical 
values for unidirectional layers with thermosetting matrix. They represent 
mean values resulting from two major experimental projects [Cuntze et al. 
1997; Kopp2000]. 

Corresponding validated data for p⊥⊥
c and p⊥⊥

t (ψ = 0°) do not exist, be-
cause the (τnt, σn)-fracture curve is experimentally non-accessible in the 
region σn ≈ 0 [Puck 1996, Ritt 1999]. However, p⊥⊥

c can indirectly be 
drawn from transverse compression fracture tests recording the fracture 
angle θfp. Here the following equation holds:  

 1
cos2

1
2 −

⋅
=⊥⊥

fp

cp
θ

 (Eq. 65) 

As stated before, for both GFRP and CFRP one obtains – under uniaxial 
transverse compression – fracture angles slightly above 50° from experi-
ments. In this case values greater than p⊥⊥

c = 0.21 result from (Eq. 65). 
However, it should be recognized that the measurement of fracture angles 
is very difficult and that results scatter considerably [Cuntze et al. 1997; 
Kopp2000]. Moreover, (Eq. 65) is very sensitive even to marginal changes 
of the fracture angle θfp under pure transverse compression. Thus, it cannot 
be recommended to use (Eq. 65) for fitting p⊥⊥

c and it must be accepted for 
the moment that no experiments are available for the validated determina-
tion of p⊥⊥

c and p⊥⊥
t. 

At first glance it seems logical to choose p⊥⊥
t and p⊥⊥

c identical to p⊥||
t 

and p⊥||
c, respectively, because both τ⊥|| and τ⊥⊥ are shear stressings in 

a plane parallel to the fibers. In fact, this approach is reasonable. However, 
from a micro-mechanical point of view τ⊥||- and τ⊥⊥-stressing lead to dif-
ferent stress distributions in the matrix. In the first case the shear stressing 
is oriented parallel to the fibers, in the latter case it is transverse. This has 
consequences for the micro-cracking preceding IFF, too. Consequently the 
values for R⊥|| and R⊥⊥

A are slightly different for both cases. Likewise, for 
p⊥||

c and p⊥⊥
c similar but not necessarily equal values can be expected. The 
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same is valid for p⊥||
t and p⊥⊥

t. However, there is no reason for p⊥||
c = p⊥||

t 
since in the corresponding longitudinal cut through the master fracture 
body σn changes its fracture mode from impeding IFF-formation (σn < 0) 
to promoting IFF-formation (σn > 0). 

Evaluating all available information it is hereby recommended to use the 
set of parameters given in Table 1. 

Table 1. Inclination parameters for typical FRP [Cuntze et al. 1997; Kopp 2000; 
Puck et al. 2002] 

ϕ = 60 % p⊥||
t 

[−] 
p⊥||

c 
[−] 

p⊥⊥
t 

[−] 
p⊥⊥

c 
[−] 

GFRP/ 
Epoxy 

0.3 0.25 0.20 to 
0.25 

0.20 to 
0.25 

CFRP/ 
Epoxy 

0.35 0.3 0.25 to 
0.30 

0.25 to 
0.30 

In order to keep the MFB at all points continuously differentiable an in-
terpolation is necessary for all longitudinal sections ψ ≠ 0° and ψ ≠ 90°. 
This is done as follows: 
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 (Eq. 66) 

with 
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=  (Eq. 67) 

 ψψ 22 cos1sin −=  (Eq. 68) 

4.2.6.7  Limits of validity of the recommended inclination parameters 

There is one last factor of relevance with regard to the choice of the incli-
nation parameters p⊥⊥

t and p⊥⊥
c. This is due to the fracture mechanism of 

brittle materials subjected to a pure τ23-stress (Fig. 44). 
Intrinsically brittle materials subjected to a pure τ23-stress always fail 

due to the principal normal stress σn = σII occurring on a fracture plane 
which is inclined towards the direction of the τ23-stress by θfp = 45° [Paul 
1961]. 
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Fig. 44. Fracture due to pure τ23-stress 

The fracture criterion will only predict this behavior and not a ‘mixed 
mode fracture’ due to simultaneously acting τnt- and σn

t-stresses, if the 
following condition is complied [Cuntze et al. 1997]: 

 A

t

t

A
t

R
R

R
Rp
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⊥

⊥

⊥⊥
⊥⊥ −≤  (Eq. 69) 

This has also been shown by numerical studies [Ritt 1999]. In case of 
p⊥⊥

c = p⊥⊥
t = p⊥⊥ – as proposed above – and applying the equation in 

Fig. 42 to replace R⊥⊥
A one gets 
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rrrr

p   (Eq. 70) 

with r = R⊥
c/R⊥

t. 
In accordance with Table 1 usually p⊥⊥ = 0.25 is chosen for GFRP and 

p⊥⊥ = 0.3 for CFRP. Under terms of (Eq. 70) this does not cause any prob-
lems for CFRP as long as R⊥

c/R⊥
t ≥ 3 holds, which is a valid assumption for 

most CFRP having a thermosetting matrix. As long as R⊥
c/R⊥

t ≥ 2.8 holds, 
p⊥⊥ = 0.25 is applicable. For most but not for all GFRP having a thermoset-
ting matrix this ratio will not be undercut. For the remaining exceptional 
cases it makes sense to determine the value of p⊥⊥ according to (Eq. 70). 
However, in accordance with Table 1 no values lower than p⊥⊥ = 0.2 (corre-
sponding to R⊥

c/R⊥
t = 2.65) should be used since otherwise unrealistic trans-

verse compression fracture angles θfp
c would be calculated from (Eq. 65). 
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If in case of R⊥
c/R⊥

t < 2.65 the lower limit p⊥⊥ = 0.2 is chosen one has to 
accept that the calculation procedure incorporating (Eq. 48) and (Eq. 52) 
will not lead to a fracture angle of θfp = 45° for a pure τ23-stress. In other 
words the fracture criterion will indicate a ‘mixed mode fracture’ due to 
simultaneously acting shear stress τnt- and tensile σn-stress. 

However, all FRP known to the author have a ratio of R⊥
c/R⊥

t > 2.65. 
This applies according to latest measurements to carbon fiber reinforced 
PEEK (R⊥

c
 = 270 N/mm2; R⊥

t = 90 N/mm2) and glass fiber reinforced 
Polyamid12 (R⊥

c
 = 141 N/mm2; R⊥

t = 42 N/mm2), too. 
But – on the other hand – it can be expected that for a material with an un-

usually low ratio R⊥
c/R⊥

t a mixed mode fracture and the corresponding frac-
ture angle θfp ≠ 45° resulting from Puck’s fracture criteria will really occur. 

4.2.7  Analytical 2-D-formulation for plane states of stress 

In thin laminates there are often no considerable stresses present in thick-
ness direction. In this case a 2D stress and strength analysis is sufficient 
and no numerical search of the fracture plane is required. The equations for 
the stresses on the action plane σn, τnt and τn1 (compare (Eq. 1), (Eq. 2), 
(Eq. 3)) simplify to: 

 ( ) θσθσ 2
2 cos⋅=n  (Eq. 40) 

 ( ) θθσθτ cossin2 ⋅⋅−=nt  (Eq. 41) 

 ( ) θτθτ cos211 ⋅=n  (Eq. 42) 

This case has been discussed before and used for the explanation of the dif-
ferent IFF fracture modes (compare chapter “Different IFF-fracture modes” 
and Fig. 19). Figure 45 illustrates again the (σ2, τ21)-fracture curve and the 
correspondent lines on the surface of the Master Fracture Body (MFB). 
For deriving the analytical 2D-formulation of the IFF-criterion a separate 
inspection of the three IFF-Modes is useful. 

If σ2 is a tensile stress, the fracture occurs on the plane perpendicular to 
the x2-axis (θfp = 0°) and the fracture mode is Mode A. The stresses on the 
fracture plane are identical to the stresses σ2, τ21 of the UD-lamina: 
σn = σ2, τnt = 0 and τn1 = τ21. The IFF-criterion for σn ≥ 0 (Mode A, com-
pare Fig. 42) can therefore be written with the stresses σ2 and τ21: 
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Fig. 45. (σ2, τ21)-fracture curve and its derivation from the Master-Fracture-Body 

For σn < 0 the IFF-criterion in Fig. 42 has the general form 
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The angle θfp of the fracture plane is unknown in first place. However, as 
long as the ratio of the transverse stress at fracture and the transverse com-
pressive strength |σ2/R⊥

c| does not exceed a critical value of roughly 0.4 
the fracture angle equals zero (θfp = 0) just as for transverse tensile stress. 
The fracture mode is Mode B and the fracture condition (Eq. 72) can also 
be written with the stresses σ2 and τ21. In this case the transverse shear 
stress is zero (τnt = 0), the inclination parameter p⊥ψ

c = p⊥||
c and the shear 

strength of the action plane RA
⊥ψ = R⊥|| (compare Fig. 41). 
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 (Eq. 73) 

The fact that the transverse compressive strength R⊥
c does not occur in 

(Eq. 73) reflects that IFFMode B is a pure shear fracture on the action plane of 
τ21. This shear fracture is impeded by the compressive stress σ2

c acting 
simultaneously to τ21 on the fracture plane. Higher shear stress τ21 can 
be sustained in the presence of a compressive stress σ2

c. This means that 
the fracture resistance of the action plane (θ = 0°) is increased by in-
creasing |σ2

c|. 
If |σ2

c| exceeds a critical value, the fracture resistance of the plane with 
θ = 0° is no longer the lowest of all action planes. Consequently, fracture 
takes place on a different plane with θ ≠ 0°. The critical value for |σ2

c| is 
R⊥⊥

A, the fracture resistance of the action plane against transverse shear 
stressing. The point |σ2

c| = R⊥⊥
A marks the transition point to Mode C. The 

shear stress reached at this point is τ21,c. Thus the point 

 2 21, ||; 1 2A c
cR R pσ τ⊥⊥ ⊥ ⊥⊥= − = ⋅ +  (Eq. 74) 

marks on the fracture curve the transition from Mode B to Mode C. This 
will be explained in more detail in the following. 

To find an analytical solution in σ2 and τ21 for the fracture condition in 
Mode C is much more difficult than to formulate the (σ2, τ21)-fracture con-
ditions for Mode A and Mode B. In a first step the extremum problem 
d(fE)/dθ = 0 has to be solved. How the problem has been tackled by Puck 
can be found in [Puck 1996, Puck and Schürmann 1998]. 

For mathematical simplification Puck coupled the two (usually inde-
pendent) parameters p⊥||

c and p⊥⊥
c in the following way: 
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Constraining the free choice of parameters by this means does not consid-
erably change the results of fracture analysis nor does it lead to contradic-
tions or a confinement of the physical basis of Puck’s criteria [Puck 1996]. 

As a provisional result he found a surprising correlation of the fracture 
angle θfp and the normal stress [σn(θfp)]fr at fracture [Puck 1996, Puck and 
Schürmann 1998] 

 ( ) ( ) 2 A
n fp 2 fpfrfr

cos R⊥⊥
⎡ ⎤σ θ = σ ⋅ θ = −⎣ ⎦  (Eq. 76) 

That means that for the entire range of (σ2, τ21)-combinations which 
cause fracture by Mode C the stress [σn(θfp)]fr on the fracture plane is con-
stant and can be calculated from [σn(θfp)]fr = ─R⊥⊥

A = ─R⊥
c / [2(1+ p⊥⊥

c)] 
≈ ─0.4 R⊥

c. That means that all fracture points (σ2, τ21)fr on the Master 
Fracture Body are located on the boundary of a cross section of the MFB. 
This is the curve (c)  (d) in Fig. 45. 

With these results the analytical solution in (σ2, τ21) for the fracture cri-
terion of Mode C is 
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 (Eq. 77) 

Using (Eq. 77) in order to formulate cos² θfp = ─R⊥⊥
A /(σ2) fr the follow-

ing relationship for the fracture angle θfp is found 
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 (Eq. 78) 

This relation is very useful. For instance it allows to calculate the frac-
ture angle without having calculated the fracture stress (σ2)fr first. It de-
pends only on the ratio of τ21/σ2. Further it demonstrates that θfp does not 
change if R⊥⊥

A and R⊥|| are decreased by the same factor for instance by 
a weakening factor ηw1 which will be dealt with in the next Section. 
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4.3  Extensions to the IFF-criteria 

The following two chapters are in main parts identical to the corresponding 
chapters of the annex to VDI 2014 Part 3 [VDI 2006]. These chapters of 
the VDI 2014 have been written by Alfred Puck and Günther Lutz and the 
use of this work is authorized by VDI. 

4.3.1  Inclusion of stresses not acting on the fracture plane 
in the action-plane-related inter-fiber fracture criteria 

The action-plane-related strength criteria for inter-fiber fracture (IFF) – 
Fig. 42 and also (Eq. 71), (Eq. 73) and (Eq. 77) – are based on Mohr’s hy-
pothesis. According to this, only the stresses σn(θfp), τnt(θfp) and τn1(θfp) 
acting on the parallel-to-fiber fracture plane (angle of inclination θfp) are  
of decisive importance for fracture stresses at IFF. All parallel-to-fiber sec-
tion planes are in principle potential fracture planes for IFF. Their angles  
of inclination θ  (definition of θ in Fig. 18) vary between θ = −90° and 
θ = +90°, where the section planes with θ = −90° and θ = +90° are identi-
cal. The fracture plane which is to be expected is determined by finding the 
section plane with the highest stress exposure fE(θ)max dependent on the 
angle of intersection (The stress exposure is defined in Fig. 21 and Fig. 22). 
The search for the angle of the fracture plane was analytically anticipated 
when equations (Eq. 71), (Eq. 73) and (Eq. 77) were set up. If the equations 
of Fig. 42 are used, the section plane with the highest IFF stress exposure 
fE(θmax) = fE(θfp) must be found by a numerical search of the intersection-
angle range from θ = −90° to θ = +90°. 

If the fracture plane has been identified in this way, the stresses (σ2, σ3, 
τ23, τ31, τ21)fr when the IFF occurs may be obtained by dividing the compo-
nents of the given stress (σ2, σ3, τ23, τ31, τ21) by the stress exposure fE(θfp) 
present on the fracture plane. This therefore means that it does not matter 
whether the stresses σn(θ), τn1(θ), τnt(θ) acting on other sections with an-
gles θ ≠ θfp bring about relatively high or low IFF stress exposures. On 
account of the gradual development of an IFF due to progressive formation 
of micro cracks and for probabilistic reasons, it is, however, to be expected 
that there are stress states where the Mohr approach gives results which in 
dimensioning calculations would tend to be on the non-conservative side. 
This problem will be the subject of chapter 4.3.1.2. 

According to Mohr’s hypothesis, even the parallel-to-fiber stress σ1 does 
not have any influence on the IFF since it does not act on a parallel-to-fiber 
section plane and thus does not act on a potential fracture plane for IFF. 
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Micromechanical aspects do mean that even in this case a correction will  
be needed. Chapter 4.3.1.1 will deal with a correction of this kind. 

4.3.1.1  Inclusion of a parallel-to-fiber stress σ1 in the action-plane 
IFF conditions 

Physical considerations 
According to Mohr’s hypothesis, the stress σ1 does not have any influence 
on the IFF due to the fact that the action plane of σ1 is perpendicular to 
the plane which is acted on by the stresses σn, τn1 and τnt which are of 
decisive importance to the IFF. However, a series of effects appear to 
make it necessary to include a σ1 term in the IFF criteria which reduces 
‘IFF strength’ somewhat [Puck 1996]. The most essential effect may be 
the following one. FF is taken to mean the fracture of a very large number 
of elementary fibers which in turn causes a lamina to loose some of its 
load-bearing capacity in the fiber direction over a ‘macro-region’. Statisti-
cal laws, however, state that in the event of tensile stress σ1 some elemen-
tary fibers will already have ruptured before the FF limit of the UD lamina 
at |σ1| = R||

t has been reached. In the case of compressive stress σ1 it is 
possible that individual bundles of fibers could already start kinking be-
fore total fracture occurs when |σ1| = R||

c. Occasional ‘micro fiber frac-
tures’ cause local damage in the UD lamina which takes the form of 
debonding at fiber matrix interfaces and of micro-fractures in the matrix 
material. They weaken the fiber matrix cohesion and thus also reduce its 
resistance to IFF. 

Analytical treatment 
In order to include in IFF analysis the weakening effect resulting from σ1 
in a way which is appropriate to the physical circumstances, the action-
plane-fracture resistances R⊥

t, R⊥⊥
A, R⊥|| are multiplied by a degradation 

factor ηw1 (w = weakening, =̂1  weakening due to σ1). A factor of this kind 
can be used not only in the tensile range but also in the compressive range 
of σ1. For the sake of simplicity it is assumed that the ‘weakening factor’ 
ηw1 has the same numerical value for all three action plane-fracture resis-
tances R⊥

t, R⊥⊥
A, R⊥||. This assumption has the effect that the inclination of 

the fracture plane given by the fracture plane angle θfp and the IFF fracture 
mode connected with it are not affected by the weakening which is now 
solely dependent on σ1, since σ1 does not depend on θ. Searching the 
fracture angle can be carried out in the same way as before neglecting 
an influence of σ1. 
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Reducing the fracture resistances results in an increased stress exposure 
factor. Therefore the stress exposure factor fE1

 when taking into account 
the influence of σ1 becomes: 
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E η

f
f 0
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=  (Eq. 79) 

As in [Puck 1996, Puck and Schürmann 2002] the weakening which in-
creases progressively with 1σ  is described by a fracture curve in the form 
of a segment of an ellipse, Fig. 46. Previously ηw1 had always to be calcu-
lated iteratively but now a closed solution has been found. The section of 
the ellipse starts at “s ⋅ R||” and ends at the FF-limit namely at |σ1| = R||. 
Here, at the FF-limit the weakening factor ηw1 reaches its minimum “m”. 
Both parameters “s” and “m” can be chosen independently between 0 and 
1 resulting in an excellent adaptability to experiments, especially as the 
parameter pairs s and m can be set differently in the tension area and in the 
compression area of σ1 (see Fig. 46). 

Under the given assumptions the following formula for the
weakening factor ηw1 has been derived: 
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(Eq. 80) 

 

Fig. 46. Form of a (σ1, σ2)-fracture curve with influence of σ1 on the IFF ex-
pressed as a function of parameters s and m 
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fE(FF) is the FF-stress exposure factor, which is calculated by using the 
FF-condition |σ1| = R|| given in (Eq. 14). The stress exposure factor fE0

 is 
the IFF exposure without an influence of σ1 (The subscript 0 indicates that 
σ1 = 0). If weakening due to (m+p) effects is not taken into account, then 
what should be used for fE0

 are the stress exposure values fE calculated 
with the aid of (Eq. 71), (Eq. 73) and (Eq. 77) or the fracture criteria from 
Fig. 42 with measured basic strengths and with the guide values given in 
Table 1, chapter 4.2.6.6 for the inclination parameters. When (m+p) effects 
are in-cluded, what should be used for fE0

 is the value of fEm+p
 according to 

(Eq. 88) and using the corrected basic strengths R⊥
t
cor, R⊥

c
cor, R⊥||cor, and the 

corrected parameter pc
⊥||cor. 

The range of validity of the weakening factor ηw1 is given by 

 m
(FF)f
f

s
1

E

E0 ≥≥  (Eq. 81) 

Beyond this region there is either no damage or no IFF occurs before the 
FF-limit is reached. In the later case it makes no sense to talk about an IFF-
stress exposure factor. Instead, there is just a FF-stress exposure factor. This 
is because FF usually results in an extensive destruction of the fiber-matrix-
composite. Thus there is no such thing as an independent IFF anymore. 

So far there are no reliable experimentally determined values for the 
parameters s and m available [Kaiser Kuhnel Obst 2004]. Thus assumed 
values must be chosen. It is recommended to use s = 0.5 and m = 0.5 both 
at σ1 > 0 and at σ1 < 0. With these values ηw1 becomes 
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In principle, one might doubt whether the weakening by ηw1 could influ-
ence the fracture angle θfp. Thus, the question whether there is such an influ-
ence or not is discussed in the following. For doing so, the expression for ηw1 
documented in (Eq. 80) needs to be examined further. Based on the assump-
tion that IFF will occur on the action plane with a maximum of the stress ex-
posure fE1

 (including weakening by σ1), roots of d(fE1
(θ))/dθ have to be ex-

amined: 
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 (Eq. 83) 
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Here, fE(FF) does not depend of θ and is therefore not of interest for the 
search for an extremum.  
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This means, that the stress exposure fE1
 including the weakening effect 

of σ1 has an extremum at the same point as the stress exposure fE0
 calcu-

lated without weakening by σ1. Now the question left to be answered is 
whether there are further extrema, namely a solution for  

 ( )( )
1E

f 0d c
dc

= . (Eq. 85) 

The result for (Eq. 85) is  

 2 1c
a

= − . (Eq. 86) 

This means, that there is no real solution. There are no further extrema 
of the stress exposure apart from those which are valid for the stress expo-
sure without weakening by σ1, too. 

4.3.1.2  Inclusion of stresses ( ) ( ) ( )θτ,θτ,θσ n1ntn  which act on 
parallel-to-fiber planes but not on the fracture plane 

Physical fundamentals 
The effects which are examined will first be presented by taking the exam-
ple of a (σ2, τ31)-stress combination, where σ2 is to be a tensile stress. Ac-
cording to Mohr’s hypothesis, with (σ2, τ31)-combinations of this kind there 
either occurs a σ⊥-tensile fracture on the action plane of σ2 – in other words, 
at θfp = 0° when σ2 = R⊥

t – or a τ⊥||-shear fracture on the action plane of τ31 – 
in other words, at θfp = ±90° and this when τ31 = R⊥||. Which fracture actu-
ally does occur depends on where the (σ2, τ31)-stress state vector intersects 
the fracture curve which, according to Mohr’s hypothesis, consists of the 
two straight lines σ2 = R⊥

t and τ31 = R⊥|| (fracture curve for (σ2, τ31), see 
Fig. 47). If we had a uniaxial 2σ -stress state, then a stress σn(θ) = σ2⋅cos2θ 
and τnt(θ) = –σ2⋅sinθ⋅cosθ would act on the sections adjacent to the fracture 
plane at angles of inclination θ ≠ 0°. 

We will now consider a (σ2, τ31)-vector which meets the straight line 
σ2 = R⊥

t close to its intersection with the straight line τ31 = R⊥||. In this case 
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the angle of the fracture plane according to Mohr will clearly also be 
θfp = 0°. But if stresses σ2 and τ31 are present simultaneously, in addition to 
σn(θ) and τnt(θ) a transverse/longitudinal shear stress τn1(θ) = τ31⋅sinθ will 
occur on sections at an angle °≠ 0θ . With this, as θ = −90° and θ = +90° 
is approached and provided τ31/R⊥|| is only a little less than σ2/R⊥

t, there 
follows an IFF stress exposure fE(θ) which is almost as high as that on the 
action plane at θfp = 0° (see standardized stress exposure fE’(θ) in Fig. 48). 
For the combination of σ2 with τ31 which we are considering, the IFF stress 
exposure over the whole range between θ = −90° and θ = +90° will not be 
much lower than on the action plane itself. 

Micromechanical studies show that an IFF does not simply happen sud-
denly for no particular reason. Once the IFF stress exposure fE’ (standard-
ized to fEmax = 1) exceeds a threshold value of about fE’ ≈ 0.5, instances of 

 

Fig. 47. Fracture curves for three stress combinations: (a) (σ2, τ31), (b) (σ2, σ3) and 
(c) (σ2, τ21). The thin lines represent the starting curves for ηm+p-correction, 
calculated using the equations given in Fig. 42 with corrected basic strength 
values and corrected parameter p⊥||

c
cor according to (Eq. 91): R⊥

t
cor = 48.57 N/mm2, 

R⊥
c
cor = 204.82 N/mm2, R⊥||cor = 82.16 N/mm2, p⊥||

t = 0.35, p⊥||
c
cor = 0.45, p⊥⊥

t = 
p⊥⊥

c = 0.275. The thick lines represent the result curves of an ηm+p-correction ac-
cording to (Eq. 87), (Eq. 88), (Eq. 89) and (Eq. 90). 
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micro-damage to the fiber/matrix composite will already occur which in-
crease progressively as stress increases. In the case of transverse/longitu-
dinal shear stressing τ⊥||, these are the familiar 45° micro cracks (hackles) 
which are stopped at fibers and cause often tiny delaminations there 
(see Fig. 49). It is only when micro-fractures have exceeded a certain mag-
nitude that the IFF will suddenly occur. 

In the case of the (σ2, τ31)-combination under consideration here, not 
only micro-fractures resulting from σ2 but also those resulting from τ31 
develop simultaneously – the case is different with a uniaxial σ2 stress. 
The latter type of micro-fractures due to τ31 further weakens the fi-
ber/matrix composite as compared with the situation with uniaxial σ2-
stress. The micro-fractures have a weakening effect on all sections with 
inclination angles between θ = −90° and θ = +90°. They also reduce the 
transverse tensile strength which in the end is still available on the frac-
ture plane when IFF happens at θfp = 0°. It is therefore to be expected that 
σ2 in combination with a relatively high τ31 stress will not reach at IFF that 
fracture stress which is obtained in the uniaxial transverse tension test with 
σ2 = R⊥

t. 

 

Fig. 48. Standardized stress exposure curves fE’(θ) (parameters from Fig. 47); 
a) Left-hand side of diagram for different (σ2, τ31)-stress combinations; right-hand 
side for (σ2, σ3)-stress combinations. The complete fE

’(θ)-curves for (σ2, τ31)- and 
(σ2, σ3)-stress combinations are symmetrical to the fE’ axis at θ = 0°. b) For differ-
ent (σ2, τ21)-stress combinations. The triangular area marked in the figure gives an 
impression of the magnitude of the reference sum Sref 
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As a further example let us examine a biaxial (σ2, σ3)-transverse  
tensile stress. In this case a tensile fracture occurs at θfp = 0° if σ2 > σ3  
or at θfp = ±90° if σ3 > σ2. If σ2 = σ3 = σ were the case, the same  
stress would prevail at all sections at any angle θ  due to the relation 
σ(θ) = σ2⋅cos2θ + σ3⋅sin2θ = σ and thus the intersection-angle-dependent 
stress exposure fE(θ) would be equally high on every section plane with θ 
between −90° and +90°. In this special individual case Mohr’s hypothesis 
predicts that IFF will occur simultaneously on all section planes with 
angles of θ between −90° and +90°. At what angle fracture will actually 
take place in a biaxial transverse tension test with two stresses of equal 
magnitude depends on contingencies, e. g. on the distribution of flaws. 

We will now pass on to a (σ2, σ3)-combination where σ3 = 0.95⋅σ2. In 
this case the stress exposure fE(θ) is nearly the same in all sections with 
angles θ between −90° and +90° (see again the standardized stress expo-
sures f´E(θ) in Fig. 48). For this reason a more massive instance of micro-
damage is to be expected before the IFF occurs than would be the case 
with uniaxial transverse tensile stress. 

A real fiber/matrix composite in addition always contains flaws – for 
example, in the form of curing cracks, flat air entrapments, or local imper-
fections in the bonding between fiber and matrix which often cover only 
a part of the circumference of the fibers. Flaws of this kind have a ‘sense 
of direction’. For example, a curing crack will have an especially strength-
reducing effect when a tensile stress σn perpendicular to the crack plane 
occurs. In the case under consideration, in which σ3 is only 5% less than 

 

Fig. 49. Occurrence of matrix cracks [Puck 1992]; a) τ21 shear stress leads to cracks 
under 45° (so called hackles) which are stopped at the fibers and are cause of paral-
lel to fiber mini delaminations. b) With σ2 tensile stress cracks are particularly 
encouraged where there are flaws and can spread along the fibers without hin-
drance. c) σ1 stress results in cracks occurring at the tip of broken individual fibers 
and running transverse with respect to the fiber until stopped at adjacent fibers. 
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σ2, the stress exposure fE(θ) is theoretically at its maximum at θfp = 0°. 
There is nevertheless a high probability that with a different angle of incli-
nation θ  of the section plane, a particularly serious flaw will trigger the 
IFF despite the somewhat lower theoretical stress exposure fE(θ) found 
there. This is a probabilistic effect. It makes prediction of the angle of the 
fracture plane uncertain and causes the fracture stresses at IFF to be some-
what lower than those calculated on the basis of Mohr’s hypothesis. 

In both examples there is a mixture of the effects of microdamage and 
of probabilistic effects; they cannot be treated separately. Generalizing, 
these examples permit us to arrive at the following conclusion. It is to be 
expected that the effects of microdamage and probabilistics reduce the 
magnitude of fracture stresses when the IFF occurs will rise the more 
parallel-to-fiber sections at different angles θ there are for which rela-
tively high values of the stress exposure factor fE(θ) can be calculated – 
or, to put it another way, the ‘rounder’ the ‘stress exposure curve’ fE(θ) 
will be. A clear picture of which situation of this kind exists with the stress 
state to be investigated can be obtained by examining the entire stress ex-
posure curve fE’(θ) calculated using Mohr’s equations of Fig. 42 (see stan-
dardized stress exposures in Fig. 48). The stress combination σ2 = σ3 > 0 
has been recognized as being an extreme case where at any section the 
value for fE’(θ) is equally high. 

Analytical treatment 
Micromechanical failure analyses and mathematical methods from prob-
abilistics cannot be used in component design. A calculation method will 
therefore be presented below whereby it is possible, with minimal effort, to 
estimate the effects of micro-damage and probabilistics (in abbreviated 
form: (m+p) effects) with the aid of a phenomenological approach on 
physical foundations and which is applicable in engineering practice. This 
method will be referred to as ηm+p correction. It is a slightly modified 
form of the approach which appears in [Puck 1996]. The ηm+p-correction is 
based on the following assumptions: 

The fracture plane at IFF appears at the angle of intersection θfp for 
which, according to Mohr’s hypothesis the maximum stress exposure 
fE(θ)max = fE(θfp) is calculated from the fracture criteria in Fig. 42. 

The fracture stresses at IFF are obtained by correcting the fracture 
stresses calculated from fE(θfp) by Mohr’s hypothesis to lower stresses 
using a correction factor of ηm+p < 1. (Correspondingly, the IFF stress ex-
posures calculated by Mohr are corrected to higher values by dividing the 
Mohr stress exposures by ηm+p). 
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Expressed formally (see also Fig. 47a): 
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{σ}m+p  =  fracture stress vector taking (m+p) effects into account, 

{σ}fr
Mohr  =  fracture stress vector without taking (m+p) effects into account, 

{σ} =  vector of the effective stress state, 
ηm+p  = correction factor of the fracture stresses for taking (m+p) ef-

fects into account, 
fEm+p = stress exposure of the fracture plane taking (m+p) effects into 

account, 
fE(θfp) =  stress exposure of the fracture plane without taking (m+p)-

effects into account. 

As will be explained later, {σ}fr
Mohr and fE(θfp) have to be calculated by 

using corrected strengths R⊥
t
cor, R⊥

c
cor, R⊥||cor. The reason for this is the 

following. Experimentally determined strengths values are “real” values. 
This means that effects of micro-damage and probabilistics have already 
influenced these values. The analytical procedure of the ηm+p-correction 
should therefore not a second time degrade these values. In other words: 
When operating the ηm+p-procedure and applying the ηm+p-correction to the 
case of uniaxial transverse tension, to the case of uniaxial transverse com-
pression and to pure longitudinal shear the results should be the experi-
mental values for R⊥

t, R⊥
c and R⊥||. This is achieved in the following way: 

Before starting a fracture analysis with ηm+p-correction the experimentally 
determined values R⊥

t, R⊥
c and R⊥|| are divided by ηm+p belonging to uniaxial 

tensile stressing, uniaxial compressive stressing and pure longitudinal shear 
stressing respectively. The appropriate factors ηm+p for correcting R⊥

t, R⊥
c 

and R⊥|| are calculated from (Eq. 89) and (Eq. 90) by using the corrected 
strengths R⊥

t
cor, R⊥

c
cor and R⊥||cor. These are not known at the beginning. This 

is no problem as far as R⊥
c
cor and R⊥||cor are concerned, because when normal-

izing fE to fE’ the chosen values for these strengths are cancelled from the 
equation. This is different for uniaxial tension, where fE is dependent on 
R⊥

t
cor and R⊥⊥

A
cor. In this case a few iterations are necessary. 

Later on, perhaps also the sustainable strengths for uniaxial σ⊥
t and σ⊥

c or 
pure τ⊥|| are calculated in the course of a general fracture analysis including 
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(m+p) effects. This is done now automatically by multiplying the corrected 
strengths R⊥

t
cor, R⊥

c
cor and R⊥||cor.with just those ηm+p by which R⊥

t, R⊥
c and 

R⊥|| had been divided before. Therefore, the results of these ηm+p-corrections 
are just the experimentally determined strengths R⊥

t, R⊥
c and R⊥||. 

The dependence of the (m+p) correction factor ηm+p on the “roundness” 
of the standardized stress exposure curve fE’(θ) can be quantified by means 
of the following evaluation of the stress exposure curve fE’(θ)with the aid 
of a “summation” formula. In the fracture analysis of a general three-
dimensional stress state, during the necessary numerical search for the 
fracture plane angle the intersection-angle-dependent IFF stress exposure 
fE(θ) from °−= 90θ  to °+= 90θ  is calculated with the aid of the frac-
ture criteria in Fig. 42 in small angular increments Δθ  (in most cases with 

°= 1Δθ ). The result is a large number of fE(θ)-values which represent 
points of the stress exposure curve fE(θ). To ensure that all possible stress 
states are treated alike, the stress exposure curves are standardized in such 
a way that at point θ = θfp the stress exposure factor has a value of 1. The 
standardized stress exposure curve fE’(θ) is then valid for just that magni-
tude of the stresses which according to the fracture criteria in Fig. 42 
would produce fracture and this is true for any kind of stress combination. 

It follows from the foregoing that section planes with fE’(θ)-values close 
to 1 are of much greater importance than those with fE’(θ) values which are 
considerably smaller. For this reason, as already occurs in [Puck 1996], 
standardized fE’(θ) values below a threshold fE’thr = 0.5 are not taken into 
consideration. On the basis of equation (10.5) in [Puck 1996], the follow-
ing sum is obtained with the standardized fE’(θ) values: 

 ( )( )thr

89 ' '
E E

90
S f θ f Δθ

+ °

− °
≈ − ⋅∑ , only for ( )

thr

' '
E Ef θ f≥ . (Eq. 89) 

(The limits −90° and +89° apply to the angular increment °=1Δθ  
which was used). 

This summing (with a zero line shifted by fE’thr) results in high fE’(θ) values 
being weighted considerably more heavily than low values – for example,  
a value fE’(θ) = 0.9 is weighted four times higher than a value fE’(θ) = 0.6. 
For the extreme case which we mentioned of σ2 = σ3 > 0, when fE’(θ) = 0.5 
the maximum S value of Smax = (1−0.5)⋅180° = 90° is obtained. 

If the summation formula (Eq. 89) is applied to the standardized stress 
exposure curves fE’(θ) for the basic stressings, uniaxial transverse tension 
σ⊥

t, uniaxial transverse compression σ⊥
c and pure transverse/longitudinal 

shear τ⊥|| (see Fig. 17), we obtain values for the corresponding sums S⊥
t, 
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S⊥
c, S⊥|| which will lie between 30° and 40°. S⊥|| = 39.24° is a material-

independent fixed value while S⊥
c depends on the inclination parameter 

p⊥⊥
c and has a value of approximately °≈⊥ 36Sc . For S⊥

t we find material 
dependent values with S⊥

t ≈ 33°. 
Taking the value S which corresponds to a given stress state and slightly 

modifying equation (10.6) in [Puck 1996], we obtain the following for the 
(m+p)-correction factor: 

 
refmax

ref
maxpm SS

SSΔ1η
−

−−=+   (Eq. 90) 

for Δmax ≤ 0.25 with Smax = 90° and Sref = 30°. 
It is necessary to introduce a reference value Sref in order to obtain a rea-

sonable sensitivity of ηm+p to the differences in the S values occurring with 
different stress states. Experience shows that there is no S value of any 
stress state which is less than the value Sref = 30°. The variable Δmax is the 
relative difference between the fracture stress vector calculated according 
to Mohr and that corrected by ηm+p 

when σ2 = σ3 > 0. Values for Δmax 
should lie between 0.15 and 0.25. Selection of a value for Δmax results in 
a ‘calibration’ of the ηm+p-correction factor. 

Applications 
In common practice of the design and dimensioning of fiber composite 
components, fracture criteria are used for calculating the IFF stress expo-
sure (and FF stress exposure) at some locations of the component which are 
regarded as critical. In what follows, however, entire fracture curves for 
IFF will be presented. Fracture curves of this kind reveal in which stress 
states ηm+p-correction is important and in which it is not. In Fig. 47a it can 
be seen that with the (σ2, τ31)-combinations, ηm+p-correction is very impor-
tant in the first quadrant. With the (σ2, σ3)-combinations (Fig. 47b), a very 
noticeable influence also occurs in the first quadrant of the (σ2, σ3)-fracture 
curve. In the case where σ2 = σ3, this yields the utilized “calibration value” 
Δmax = 0.25 used with ηm+p-correction. In the fourth (and second) quadrants, 
on the other hand – that is, where σ2 > 0 and σ3 < 0 – only a relatively mi-
nor effect of the ηm+p-correction is found. At σ3 = −σ2 the fracture stress at 
IFF calculated with ηm+p is even a little higher than that calculated on the 
basis of Mohr’s hypothesis (σ2 = −σ3 = R⊥

t). This results from the fact that 
for the pure transverse/transverse shearing stressing τ⊥⊥ which is here pre-
sent the corresponding sum has the value S⊥⊥ = 31.45°, and this is some-
what less than S⊥

t = 32.45° for uniaxial transverse tension stressing σ⊥
t. 
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To date there has been a lack of credible experimental results for (σ2, τ31)- 
and (σ2, σ3)-stress combinations. 

The situation is entirely different for the (σ2, τ21)-stress combinations 
shown in Fig. 47c. The (σ2, τ21)-fracture curve is the only one which has 
adequate experimental backing not only for CFRP but also for GFRP 
[Cuntze et al. 1997]. An outstandingly good mathematical model is ob-
tained with equations (Eq. 71), (Eq. 73) and (Eq. 77) or the fracture criteria in 
Fig. 42 using inclination parameters from Table 1, chapter 4.2.6.6. Before 
proceeding further, it is important to bear in mind the fact that the effects of 
ηm+p-effects on IFF strength are basically already included in experimen-
tally determined fracture stresses, as also in the test results from which the 
modeled (σ2, τ21)-fracture curve (thick line in Fig. 47c) is obtained. If one 
wished to generate mathematically a (σ2, τ21)-fracture curve which in-
volved use of ηm+p-correction, then the experimentally obtained (σ2, τ21)-
fracture curve which was modeled using the measured basic strengths R⊥

t, 
R⊥

c, R⊥|| and inclination parameters from Table 1 is not the starting curve 
for the ηm+p-correction procedure but represents rather the result curve. 

If it is exclusively plane (σ1, σ2, τ21)-stress states which have to be in-
vestigated, then the question of the unknown starting curve for an ηm+p-
correction is irrelevant since the mathematically modeled, experimentally 
determined (σ2, τ21)-fracture curve is being used directly for fracture 
analysis. On the other hand, use of ηm+p-correction is advisable in those 
cases where it is necessary, during dimensioning of FRP components, to 
also analyze load application zones in which spatial stresses σ3, τ32, τ31 of 
a similar magnitude to σ2 and τ21 occur. To ensure that absolutely consis-
tent calculation results are obtained here, it is, of course, necessary that the 
same parameters be used uniformly in the fracture criteria in Fig. 42 for all 
stress states which occur – in other words, even for the (σ1, σ2, τ21)-stress 
states prevailing in undisturbed areas. For this reason the parameters must 
be known which are appropriate for the (σ2, τ21)-starting curve which is 
itself as yet unknown. 

Since in the case of the (σ2, τ21)-stress combinations the result curve is 
known and the starting curve is required, an inversion of the ηm+p-
correction, as it were, is now necessary. The corrected basic strengths 
R⊥

t
cor, R⊥

c
cor, R⊥||cor for the starting curve are obtained by ‘inverting’ the 

ηm+p-correction: the measured values R⊥
t, R⊥

c, R⊥|| are not multiplied but are 
instead now divided by the ηm+p-value which is associated with the corre-
sponding basic stressing. (Comment: These corrected basic strengths of 
course apply not only to the (σ2, τ21)-stress state but of course also to any 
stress state.) Since the sum values S⊥

t, S⊥
c, S⊥|| of the basic stressings are 
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only a little higher than the reference value Sref = 30°, the correction they 
need remains less than 5%. In the range of high compressive stress values 
|σ2| with at the same time high values of τ21, sum values up to around 
S ≈ 60° are however reached in the vicinity of the transition point between 
Mode B (θfp = 0°) and Mode C (θfp ≠ 0°) (see Fig. 24). This results in 
ηm+p-corrections up to approximately 12%, see Fig. 48b and Fig. 47c. 

The required starting curve of the (σ2, τ21)-stress combination cannot be 
obtained as a whole from the known result curve simply by inverting the 
ηm+p-correction. The reason for this lies in the complex nature of the ηm+p-
correction which is only to be carried out numerically on a point by point 
basis and which makes impossible a closed mathematical formulation of 
the required starting curve. What is needed, however, is a (σ2, τ21) starting 
curve formulated using the equations in Fig. 42, since only these equations 
happen to be available for the fracture analysis of general three-
dimensional stress states. For this reason, an acceptable approximated 
starting curve which is described using the equations in Fig. 42 must be 
found by selecting suitable parameters. What acceptable means is that 
when a ηm+p-correction of this starting curve has been carried out correctly, 
a (σ2, τ21)-fracture curve is obtained as the result which will deviate only to 
an acceptable extent from the known modeled experimental (σ2, τ21)-
fracture curve. 

By iterative selection of different inclination parameters p⊥||
c
cor for the 

(σ2, τ21)-starting curve and reviewing to what extent the required accep-
tance is thereby achieved, the following result is obtained. If a corrected 
inclination parameter p⊥||

c
cor = 0.45 is chosen for the required starting curve 

of the ηm+p correction when the calibration value Δmax = 0.25 is used, what 
is obtained as the result of a correctly performed ηm+p-correction is a (σ2, 
τ21)-fracture curve which comes very close to the experimental curve mod-
eled in the usual way using the equations in Fig. 42. (Modeling of the ex-
perimental curve was carried out using the basic strengths for CFRP 
R⊥

t = 48 N/mm2, R⊥
c = 200 N/mm2, R⊥|| = 79 N/mm2 [Soden et al. 1998] 

and the inclination parameters p⊥||
t = 0.35, p⊥||

c = 0.30, p⊥⊥
t = p⊥⊥

c = 0.275 
according to [Puck Kopp Knops 2002]). 

If, in response to one’s own experimental results, one wishes to use 
a value different from the value Δmax = 0.25 used in the example and also, 
within the permitted limits [Puck Kopp Knops 2002], to diverge from the 
guideline value p⊥||

c = 0.3 given in Table 1, you can proceed iteratively as 
described above to obtain a corrected parameter p⊥||

c
cor provided you have 

a computer program which can display (σ2, τ21)-fracture curves. If this is 
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not the case, the following extrapolation formula may be used within a re-
stricted range of p⊥||

c and Δmax: 

c
||

max
c

||

c
cor||

p
Δ0.61

p
p

⊥⊥

⊥ ⋅+=  

for 0.25Δ0.15 max ≤≤  and 0.35p0.25 c
|| ≤≤ ⊥ . 

(Eq. 91) 

Comment 
It has been shown that depending on whether you work with or without 
ηm+p-correction, you will have to analyze the stress exposure curve fE(θ) by 
using different inclination parameters p⊥||

c
cor or p⊥||

c respectively which may 
differ according to (Eq. 91) by a factor of up to 1.6. If shear stresses τ21 
and/or τ31 occur in the stress state under investigation, by calculating with 
and without ηm+p-correction you will therefore obtain angles of the fracture 
plane θfp which differ somewhat. In the case of (σ2, τ31)-stress combina-
tions the differences are from 1° to 5°. With (σ2, τ21)-stress combinations 
similar differences are found, provided the angles of the fracture plane 
|θfp| ≥ 30°. Considerably greater differences occur in the vicinity of the 
transition point from mode B to mode C (see Fig. 24). But here any state-
ments about the angle of the fracture plane which actually occurs will be 
tainted with a high degree of uncertainty anyway: this is due to the prob-
abilistic effects which occur and which can be expected due to the flat 
course of the standardized stress exposure curve. This has been shown in 
experiments as well [Kopp 2000]. All in all, these deviations are not prob-
lematic in the fracture analysis. 

4.3.2  Calculation of the stretch factor L
Sf  of the load-

determined stresses when residual stresses are present 

4.3.2.1  Basic considerations 

In the following the procedure to be used when calculating the stretch fac-
tor fS

L of the (changing) load-determined lamina stresses σ1
L, σ2

L, τ21
L 

when (constant) residual stresses σ1
r, σ2

r, τ21
r are simultaneously present 

will be explained for the case of a (σ1, σ2, τ21) stress state. This procedure 
is based on Puck’s action-plane fracture criteria for IFF and takes into con-
sideration the weakening influence of the parallel-to-fiber stress σ1. The 
formulae required for the procedure are given. 
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The fracture conditions are the starting point for IFF when there is no 
influence from σ1. These are (see equations (Eq. 71), (Eq. 73) and (Eq. 77)): 

IFF mode A 
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 (Eq. 71) 

IFF mode B 
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IFF mode C 
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(Eq. 92) 

(Eq. 92) is equivalent to (Eq. 77). The following coupling of inclination 
parameters was used in deriving equation (Eq. 92): 
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For this reason AR⊥⊥  needs to be calculated using equation (Eq. 94): 
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The fracture conditions for IFF – equations (Eq. 71), (Eq. 73) and (Eq. 77) 
((Eq. 92) respectively) – describe in the (σ1, σ2, τ21) stress space the 
circumferential surface of a ‘cylindrical’ fracture body (see Fig. 50) whose 
constant cross-sectional contour is the fracture curve for (σ2, τ21) stress 
combinations shown in Fig. 45 which has been completed symmetrically 
with respect to the σ2 axis. This body extends to infinity in both the posi-
tive and negative σ1 directions; its real importance ceases, however, no 
later than at the two fiber fracture limits at σ1 = R⊥

t and σ1 = −R⊥
c. 

Any influence of σ1 on the IFF is taken into account by introducing 
a weakening factor ηw1 < 1 (see above) in the case of the strengths R⊥

t, R⊥
c, 
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R⊥|| which are of primary, decisive importance to the IFF. These strengths 
do not weaken until a threshold value of σ1 is passed. This value must be 
determined on the basis of experimental experience and is given as a frac-
tion of the stress (σ1)fr = R||

t or (σ1)fr = (−R||
c) leading to fiber fracture. In 

chapter 4.3.1.1 an ellipse has been selected for the course of the weakening 
factor ηw1 as a function ηw1(σ1). In order to obtain a closed solution for fS

L, 
and that in the form of the solution of a quadratic equation, it will be nec-
essary to linearize the function for ηw1 (see equation (Eq. 95) and Fig. 51). 
Weakening of the strengths R⊥

t, R⊥
c, R⊥|| increases as FF stress exposure 

fE,FF increases; in other words, the weakening factor ηw1 becomes smaller 
as fE,FF increases. Here the following linear equation is used: 

 FFEwww f ,
'

111 0
⋅−= ηηη  (Eq. 95) 

ηw1,0 is a hypothetical value of ηw1 when σ1 = 0, and ηw1’ is the slope of 
the straight line for ηw1 according to equation (Eq. 95). 

By definition, the stress exposure fE, FF is the ratio of the acting stress 
and the stress leading to fracture (cf. discussion). Accordingly, from the FF 
condition equation (Eq. 15) we obtain: 
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,
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fr
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fr
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R for

σ σ

σ σ
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⎨

= − <⎪⎩

 (Eq. 96) 

 

Fig. 50. Creation of the (σ1, σ2, τ21) fracture body for IFF. a) (σ1, σ2, τ21) fracture 
body for IFF without σ1 influence according to (Eq. 71), (Eq. 73) and (Eq. 92). 
This fracture body which theoretically extends to infinity in both the positive and 
negative σ1 direction is of practical relevance only between the fiber fracture lim-
its at σ1 = R||

t and σ1 = (−R||
c). b) IFF fracture body calculated with weakening σ1 

influence using (Eq. 101), (Eq. 102) and (Eq. 103). c) Valid remaining fracture 
body as intersection of the bodies in accordance with a) and b) and following 
removal of the invalid parts 
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Fig. 51. Course of the weakening factor ηw1 as a function of σ1 or as a function of  
fE,FF in the range –R||

c ≥ σ1 ≤ R||
t or 0 < fE,FF < 1.0 respectively. In order to ap-

proximate the ellipse with parameters s = m = 0.5 as recommended in chapter 
4.3.1.1, the values ηw10

 = 1.6 and η’w1 = 1 are chosen (S = M = 0.6). 

The reason for using different signs with R||
t and (−R||

c) lies in the 
international convention whereby compressive stresses are expressed as 
negative values while all strengths (even compressive strengths) are 
expressed as positive values. 

Now, with the aid of the weakening factor ηw1 = ηw1(σ1) which we in-
troduced in the case of the three strengths R⊥

t, R⊥
c, R⊥|| a description is 

obtained of that (conical) part of the fracture body whose surface equation 
depends not only on σ2 and τ21 but also on σ1 (Fig. 50b). 

To do so, it is necessary to select numerical values for the two parameters 
ηw10 and η’w1 in the linear equation (Eq. 95) for the weakening factor ηw1. In 
chapter 4.3.1.1 the “starting point” of the “elliptical” weakening was defined 
by the value s and the minimum value of the weakening factor at the FF limit 
by the value m. If the corresponding values for the linearized course of 
ηw1(fE,FF) are designed by S and M this delivers the following relationships: 

 
10

1
1w

S M
S

η − ⋅=
−

 (Eq. 97) 

 
1

1
1w

M
S

η −′ =
−

 (Eq. 98) 

In chapter 4.3.1.1 the recommendation was made, should experimental 
results be lacking, that the values s = 0.5 and m = 0.5 should be selected 
when ηw1 has an elliptical course. A good approximation to this ellipse may 
be obtained by using S = 0.6 and M = 0.6 for the straight line. On the basis 
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of (Eq. 97) this yields ηw10 = 1.6 and on the basis of (Eq. 98) ηw1’ = 1.0. 
From this we obtain the course of the weakening factor ηw1 shown in 
Fig. 51 as a function of σ1 or fE, FF. (In principle even different pairs of val-
ues (S and M) can be used for the ranges σ1 > 0 and σ1 < 0.) 

By applying an equally high weakening factor ηw1 to all three strengths 
R⊥

t, R⊥
c, R⊥|| which have a decisive influence on IFF we obtain (σ2, τ21) 

fracture curves which represent a geometrically similar reduction by 
a factor ηw1 < 1 of the (σ2, τ21) fracture curve shown in Fig. 45 which was 
completed symmetrically to the σ2 axis. As a consequence, therefore, of 
the linear equation for ηw1(σ1), in the (σ1, σ2, τ21) stress space we find 
a fracture body for IFF which has the shape of a double cone (Fig. 50b). Its 
cross sections perpendicular to the σ1 axis are geometrically similar. 

The “cylindrical” fracture body shown in Fig. 50a and the double-coni-
cal fracture body intersect each other at σ1 = S⋅R||

t and σ1 = S⋅(−R||
c) in two 

sections which are vertical with respect to the σ1 axis. The validity of the 
cylindrical fracture body extends from the coordinates origin as far as 
these intersection planes. The conical circumferential surfaces of the dou-
ble-conical fracture body for IFF as shown in Fig. 50b are valid in the 
range between the intersection planes and the planes at σ1 = R||

t and 
σ1 = −R||

c which are vertical to the σ1 axis and assigned to FF. 
Calculation of the desired stretch factor fS

L for the load-determined 
stresses σ1

L, σ2
L, τ21

L – from the geometrical point of view – requires de-
termination of the point where the resulting stress vector {σ} makes con-
tact with the valid range of the surface of the (σ1, σ2, τ21) fracture body for 
IFF (Fig. 50c). The resulting stress vector {σ} comes from the “geometri-
cal sum” of the residual stress vector {σ}r and the load stress vector {σ}L 
elongated (stretched) by the factor fS

L. The shape of the (σ1, σ2, τ21) frac-
ture body as shown in Fig. 50c and the requirement that the load-
determined vector {σ}L may only be stretched in its specified direction 
means that there is only one possible point of contact between the vector 
and the surface of the fracture body. In most cases this point of contact will 
be located on the cylindrical or conical part of the circumferential surface 
applicable to IFF. It can, however, also be located on one of the two “end 
faces” which are valid for FF. 

4.3.2.2  Derivation of the formulae required for calculating L
Sf  

In the fracture conditions for IFF – equations (Eq. 71), (Eq. 73) and 
(Eq. 92) – the same weakening factor ηw1(σ1) is used with the strengths 
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R⊥
t, R⊥

c, R⊥||. Using IFF stress exposure fE1
 with weakening due to σ1 we 

therefore have as fracture condition with weakening: 

 ( ) ( )
( )

0

1

2 21
2 21 1

1 1

,
, , 1E

E
W

f
f

σ τ
σ τ σ

η σ
= =  (Eq. 99) 

 or also ( ) ( )
0 2 21 1 1,E Wf σ τ η σ=  (Eq. 100) 

For the three IFF modes this therefore yields: 

For mode A 
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 (Eq. 101) 

For mode B 
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For mode C 
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with 
( )0 1

' 1
1 1

1
WW W

fr

ση η η
σ

= − ⋅ , 

where ( )1 ||
t

fr Rσ =  for 1 0σ >  

and ( )1 ||
c

fr Rσ = −  for 1 0σ < . 

The validity ranges of fracture conditions (Eq. 101) to (Eq. 103) are the 
same as those for equations (Eq. 71), (Eq. 73) and (Eq. 77) (see also Table 3). 
In the equations (Eq. 101) to (Eq. 103) the stresses 2σ and 21τ  are the 
stresses at the fracture limit. 

The strengths R⊥
t, R⊥

c, R⊥|| appearing in equations (Eq. 101) to (Eq. 103) 
are the “unweakened” strengths. For the stresses (σ1, σ2, τ21) occurring in 
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them we use the stress components corresponding to the contact point of 
the resultant fracture vector { } { } { }r LL

fr Sfσ σ σ= + : 

 r L L
1 1 S 1fσ = σ + σ , (Eq. 104) 

 r L L
2 2 S 2fσ = σ + σ , (Eq. 105) 

 r L L
21 21 S 21fτ = τ + τ . (Eq. 106) 

In this way we obtain equations whose only unknown is the desired 
stretch factor L

Sf  of the load-determined stresses. After necessary reformu-
lation, which in particular includes the removal of the root expressions, we 
obtain for each of the modes A, B, C a quadratic equation for L

Sf  to which 
can be applied the known solution formula: 

 ( )21 4
2

L
Sf l qc l

q
= − − . (Eq. 107) 

Quantities q and l are the coefficients of the quadratic terms or of the linear 
terms of L

Sf , and in c are grouped the corresponding (constant) terms 
which are independent of L

Sf . Table 2 shows quantities q, l and c in each 
case for IFF modes A, B and C. 

4.3.2.3  Procedure for calculating L
Sf  and evaluation of results 

With this task the starting situation is generally the following. The compo-
nent design process came up with a laminate whereby specification of fiber 
directions and fiber quantities has been brought to a stage whereby the next 
step is to try to improve the laminate structure with regard to homogenizing 
the “safety” to IFF in the individual laminae. The load-determined stresses 
which need to be taken into account here in most cases relate to the maxi-
mum loading to be expected when the component is in service. With this 
maximum loading an addition safety margin with respect to IFF is to be 
provided and generally a larger safety margin with respect to FF. When 
considerable residual stresses are present, it is not possible on the basis  
of calculated stress exposure values fE1

 to come to any useful conclusions 
regarding these safety margins for the individual lamina, instead this is 
entirely possible on the basis of the stretch factors L

Sf  of the load-
determined stresses. 
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Before commencing with determining L
Sf  with regard to IFF, it appears 

to be advisable to clarify whether an IFF can even occur in the lamina un-
der consideration or whether a FF will appear first before an IFF. 

From the simple FF condition given in (Eq. 14) it follows that it is 
solely stress 1σ  which is responsible for the FF. At FF: 

 ( ) ( )
1 ( ) 11

,
1 1

1
r L L

S FF
E FF

fr fr

f
f

σ σσ
σ σ

+ ⋅
= = = . (Eq. 108) 

where (σ1)fr = R||
t for 1 0σ >  

and (σ1)fr = −R||
c for 1 0σ < . 

If σ1
r and σ1

L have the same sign, σ1 = σ1
r+f S

L
(FF)⋅σ1

L can also only have 
the same sign. If σ1

r and σ1
L have different signs, it can be assumed that σ1

r 
alone will not yet cause a FF. This is because a FF due solely to σ1

r must not 
even be permitted and will have already been ruled out by the designer’s pre-
dimensioning. Should a stress f S

L
(FF)⋅σ1

L with a different sign appear in addi-
tion to σ1

r, then as it increases it will initially work in opposition to the resid-
ual stress σ1

r. Not until after the “disappearance” of σ1
r will the resulting 

stress σ1 increase with the same sign as σ1
L until the FF limit at σ1 = (σ1)fr 

is reached and FF finally occurs. Consequently the decision regarding 
the quantity (σ1)fr to be used in equation (Eq. 108) can be made as follows: 

( ) t
fr R||1 =σ  for 

1
0Lσ >  

( ) c
fr R||1 −=σ  for 

1
0Lσ < . 

(Eq. 109)

The stretch factor fs(FF)
L of the load-determined stresses with regard to 

FF is thus obtained from equations (Eq. 108) and (Eq. 109): 

 
( )1 1

( )
1

r
frL

S FF Lf
σ σ

σ
−

= . (Eq. 110) 

The three components σ1
L, σ2

L, τ21
L of the load-determined stress vector 

are all increased by the same stretch factor. Once the FF limit is reached, 
the resulting stresses will therefore have these magnitudes: 

 1 1 ( ) 1
r L L

S FFfσ σ σ= + , (Eq. 111) 

 2 2 ( ) 2
r L L

S FFfσ σ σ= + , (Eq. 112) 

 21 21 ( ) 21
r L L

S FFfτ τ τ= + . (Eq. 113) 



 4.3 Extensions to the IFF-criteria 105 

With the aid of these stresses a check is made as to whether the contact 
point of the resulting stress vector (at σ1 = R||

t or σ1 = −R||
c) lies inside or 

outside the contour line of the fracture body end face as shown in Fig. 50c. 
This contour line is the intersection line of the conical circumferential sur-
face for IFF and the FF plane. It is a reduced (σ2, τ21) fracture curve for 
IFF which is geometrically similar reduced by the minimum weakening 
factor ηw1 = M valid at the FF limit. 

With stresses σ2 and τ21 calculated at the FF limit on the basis of equa-
tions (Eq. 112) and (Eq. 113) and ηw1 = M, the IFF stress exposure with σ1 
influence can be calculated from: 

 0 0

1
1

E E
E

W

f f
f

Mη
= = , (Eq. 114) 

doing so with the equation for mode A, B or C which is valid for the stress 
state under consideration (see equations (Eq. 71), (Eq. 73) and (Eq. 92)). 

If the result fE1
 = 1 were obtained from equation (Eq. 114), the contact 

point would be located exactly on the IFF curve and simultaneously in the 
plane for FF. In theory this would therefore mean that both IFF and FF 
would occur. If fE1

 < 1 is the result, the vector passes through the FF plane 
without having previously touched an IFF circumferential surface – in 
other words, a L

Sf  value cannot be calculated for IFF. 
Should the result be fE1

 > 1, this means that the vector must pierce the 
IFF circumferential surface before it reaches the FF limit. In this case L

Sf  is 
calculated for IFF using the procedure shown in the flow chart in Fig. 52. 

Instead of the sequence shown in this flow chart, the computational op-
erations and inquiries could also be carried out in a different order. What-
ever the case, it ends up to a procedure whereby arbitrary assumptions are 
made first (for example, about which IFF mode is to be expected, A, B or C 
and (σ1)fr = Rt

|| or (σ1)fr = –Rc
|| as well as an assumption as to whether a σ1 

influence is already becoming effective or not. A decision is then made on 
the basis of the computational results as to whether the assumptions made 
were justified or not. If this does not appear to be the case, L

Sf  is recalcu-
lated using modified assumptions. The procedure in the flow chart (Fig. 52) 
is that in each case the investigation is carried out for a selected mode A, B 
or C until the result is accepted or rejected. The final test is to check to see 
whether the calculated contact point actually falls within the range of valid-
ity of the equations associated with the mode under consideration. 

If the result for a mode passes in addition to all proceeding tests also this 
final one, this means that the result is the correct and only possible result, 
because only one contact point exists. 
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Fig. 52. Checks which have to be carried out during calculation of the stretch 
factor fS

L for an IFF mode A, B or C in order to decide whether the weakening 
influence of σ1 needs to be considered for the IFF modes, as well as the final 
check, whether the contact point to the fracture body surface falls within the range 
of validity of the equations for the considered IFF-mode A, B or C. 
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Table 2. Terms of equation (Eq. 107) for the calculation of L
Sf  

IFF 
mode 
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Note: Because of the parameter coupling || ||
c c Ap R p R⊥⊥ ⊥ ⊥ ⊥⊥= ⋅  according to 

(Eq. 93) AR⊥⊥  needs to be calculated using (Eq. 94): 
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 The relations given in Table 2 are also suitable for the calculation of L
Sf  

without influence of 1σ  by setting 
01 1.0wη =  and 

1
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Table 3. Range of validity of the equations for IFF modes A, B, C 

IFF mode Range of validity 

A 2 2 0r L L
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with 21 || 1 2

c

cR pτ ⊥ ⊥⊥= ⋅ +  ( cp⊥⊥ according to (Eq. 93) and AR⊥⊥  

according to (Eq. 94)) 

With the coordinates σ1, σ2, τ21 of this contact point on the fracture  
body surface, the value fE1

 = 1 for the IFF stress exposure fE1
 must result 

from equation (Eq. 99) when applying the relevant equation (Eq. 101), 
(Eq. 102) or (Eq. 103). This can be used for checking purposes. 

If a value is calculated for L
Sf  which is <1, this indicates that the IFF 

limit will have already been exceeded with the existing load stresses 

1 2 21
, ,L L Lσ σ τ  used in the calculation! 

4.4  Visualization of fracture bodies 

The visualization of fracture conditions for FRP has been treated by Kopp 
[Kopp and Michali 1999]. This visualization can very much help to see 
and comprehend the characteristics of different fracture conditions. For 
the principal understanding it is important to recall the remarks on the co-
ordinate systems in the chapter 3. 

The visualization of fracture conditions for isotropic material is not dif-
ficult at all. In this case the 6 stress components σ1, σ2, σ3, τ23, τ31, τ21 are 
substituted by 3 principal normal stresses σIP, σIIP, σIIIP. For fibrous trans-
versely isotropic materials such a change of the coordinate systems is not 
possible, as a rotation is only allowed in the so called transversely isotropic 
(x2, x3)-plane. The x1-axis must remain parallel to the fiber direction, be-
cause only for these ‘natural directions’ the basic strength parameters of 
the UD-layer are known. 
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The following investigations will only consider stresses having a direct 
influence on IFF. The fiber parallel stress σ1 is disregarded, since IFF oc-
curs in a fiber parallel plane [2, 3] and with that the fracture plane is paral-
lel to σ1. The corresponding situation for an isotropic material is that σ1 = 
σIP is neither the minimal nor the maximal principal normal stress. Accord-
ing to Mohr only the extreme values of the principal stresses σIIP and σIIIP 
do have an influence on the fracture process; for this reason fracture occurs 
parallel to the direction of σIP similar to the IFF in an UD-lamina. 

For human imagination it is necessary to restrict fracture bodies to three 
dimensions. Therefore it seems reasonable in a first step to transform the 
(σ2, σ3, τ23, τ31, τ21)-stress state in consideration of the transverse isotropy 
into a (σII, σIII, 0, τIII1, τII1)-stress state (Fig. 20). By no means σII and σIII 
are ‘real’ principal stresses σIIP and σIIIP, because also the shear stresses 
τIII1, τII1 occur on their action planes (Fig. 20). Using the following trans-
formation rule one is enabled to substitute any stress component appearing 
in a fracture condition in the way wanted:  
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(Eq. 115)

The next step is to replace the shear stresses τIII1 and τII1 by the resulting 
longitudinal shear stress τω1 as shown in (Fig. 53). The Figure clarifies that 
τ1III and τ1II are nothing else but the components of a longitudinal shear 
stress τ1ω acting on a plane perpendicular to the x1-direction [Puck 1997]: 

τ τ τ τ τ τω ω1 1
2

1
2

1
2

1
2

1= + = + =III II III II  
(Eq. 116)

The direction of τ1ω is defined by the angle δ: 

 δ
τ
τ

τ
τ

= =arctan arctan1

1

1

1

III

II

III

II
 (Eq. 117) 

δ is called the difference angle or deviation angle because its value is 
a measure for the deviation of the action planes of τω1 and σII. Stress states 
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without transversal stresses σII and σIII will lead to an IFF in the fiber par-
allel plane the resultant shear stress τω1 is acting in. In this special case the 
fracture angle is θfp = ω = arctan τ31/τ21 and fracture takes place when τω1 
has reached the longitudinal shear strength R⊥||. One can imagine that in 
general the deviation angle δ between the action planes of τω1 and σII is of 
main importance for the fracture process. It is obvious that in dependence 
of δ the interaction between the transverse extreme stresses σII, σIII and the 
resulting shear stress τω1 is more or less distinct. As an example one can 
regard a (σII > 0, 0, τω1, δ)-stress state with δ = 0° on the one hand and δ = 
90° on the other hand. In contrast to the complete interaction of σII and τω1 
for δ = 0° there is no interaction at all for δ = 90° and fracture does not 
take place as long as either σII reaches the transverse tension strength R⊥

t 
or τω1 reaches R⊥||. It is inevitable to consider δ as a parameter for the visu-
alization of fracture conditions. From an academic point of view this leads 
to an infinite number of fracture bodies in the (σII, σIII, τω1)-stress space, as 
any small change of δ might modify the fracture body slightly. For the 
comparison of different fracture conditions it is absolutely sufficient to 
make a Δδ = 22,5° grading. 

All fracture conditions visualized in this chapter were calculated with 
the same set of basic strength values published in [Cuntze et al. 1997]. If 
a criterion is complemented by additional material coefficients the sugges-
tions of the accompanying developer were fulfilled. 

 

Fig. 53. Resulting shear stress τω1 and deviation angle δ 
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4.4.1.1  Tsai,Wu-criterion 

A classical representative of a global strength criterion is the well-known 
criterion of Tsai and Wu (Tsai and Wu 1971). It is a pure interpolation 
polynomial deduced from the basic strength values of the UD-layer, not 
regarding the fact that some strength values are dominated by fiber 
strength and others by matrix or interface strength. 

The result is a smooth fracture body without any edges. Most certainly 
the fracture body does not change its shape if the influence of σ1 is ne-
glected. According to expectations the Tsai,Wu-criterion takes on the 
shape of an ellipsoid in the (σII, σIII, τω1)-stress space, too (Fig. 54). There 
is no dependence on the deviation angle δ. As σII and σIII are treated abso-
lutely equally in the invariant formulation of the criterion the fracture body 
is moreover symmetrical with regard to the (σII = σIII)-plane. Therefore 
stress states having a transverse normal stress and a longitudinal shear 
stress acting on the same plane are treated equally to those having their 
action planes perpendicular to each other. Another remarkable aspect of 
this fracture body is that it is closed for biaxial compressive stresses σII ≈ 
σIII. From a macro mechanical point of view – which is the basis of all 
strength criteria investigated here – the shear fracture due to transverse 
compression is not possible for σII = σIII as the maximum transverse shear 

 

Fig. 54. Fracture body of the Tsai,Wu-criterion 
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stress τ⊥⊥max = ½⋅(σII − σIII) always remains zero. However − because of 
micromechanical inhomogeneity − a ‘damage limit’ for biaxial transverse 
compressive stresses must be expected ([Kopp et al. 1997]). After exceed-
ing this ‘damage limit’ the micro-cracks in the matrix will reduce the 
original mechanical properties noticeably but a real material separation 
does not happen. 

4.4.1.2  Hashin-criterion 

Usually the term Hashin-criterion for IFF is related to two invariant frac-
ture conditions published in (Hashin 1980), although in the same publica-
tion an action plane related approach is discussed too, which gave Puck the 
impulse to develop his action plane related IFF-criterion (Puck 1992). As 
Hashin was aware of the importance of the sign of the normal stress σn on 
the fracture plane, his invariant formulations differentiate between the 
cases σn ≥ 0 and σn < 0. Unfortunately the fracture plane is not known 
a priori and cannot be found by using invariant formulations. Therefore 
Hashin had to define a more practical condition to delimit his fracture con-
ditions from each other. He fixed the boundary of the sections for σn ≥ 0 
and for σn < 0 in the plane σIII = −σII. However he simultaneously pointed 
out the severe physical contradictions, which result from this rather arbi-
trary boundary. 

The corresponding fracture body is composed of a paraboloid with ellip-
tical cross sections for σn < 0 and a crosswise oriented ellipsoid for σn ≥ 0. 
Both are symmetric to the (σII = σIII)-plane and intersect each other in the 

 

Fig. 55. Fracture body of the Hashin-criterion 
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(σIII = −σII)-plane in an elliptical borderline. The fracture curve for τω1 = 0 
and σn ≥ 0 contradicts to the theory of Paul (Paul 1961), which assumes no 
interactions of the principal stresses in this area, but Hashin already takes 
into account that a real fracture due to biaxial transverse compression is 
not possible. Accordingly the fracture body is not closed for σII ≈ σIII. 
Again it has to be emphasized that the Hashin fracture body is independent 
of the deviation angle δ. 

4.4.1.3  Puck criterion 

Figure 56 displays the fracture bodies of Puck’s IFF-criterion in the 
(σII, σIII, τω1)-stress space in dependence on δ. Of course all fracture bodies 
show the same base in the (σII, σIII)-plane, which has − except of the com-
pression/compression domain − the shape of Paul’s fracture envelope for 
intrinsically brittle isotropic material (Paul 1961). Comparable to Hashin’s 
approach in the third quadrant fracture due to biaxial transverse compres-
sion is not possible. 

Particularly interesting is the shape of the fracture bodies for δ = 0° and 
δ = 90°. Here the components of the fracture surface, which belong to the 
different fracture modes marked in the figure, touch each other in sharp 
edges. (A fracture mode is defined by the combination of stressings acting 
on the fracture plane (Puck 1997)). It is remarkable that Puck´s fracture 

 

Fig. 56. Fracture bodies of the action plane related criterion by Puck 
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conditions, which describe a smooth ellipsoid combined with a smooth 
paraboloid in the (σn, τnt, τn1)-stress space (compare Fig. 45), have the abil-
ity to describe so many fracture surface portions in the (σII, σIII, τω1)-stress 
space. The reason for this is given by the search of the plane with the high-
est stress exposure factor. Thereby the criterion corresponds in certain 
sections to a maximum stress criterion, whereas other stress combinations 
are assessed in the form of a mixed-mode criterion. These effects can be 
clarified excellently by means of the fracture envelopes for σII = 0 and 
σIII = 0 which have been drawn onto the fracture body for δ = 90°. 
Whereas the (σIII, τω1)-fracture envelope corresponds in its complete extent 
of validity to a mixed-mode criterion, by far the most of the (σII, τω1)-
fracture envelope corresponds to a maximum normal stress criterion or a 
maximum longitudinal shear stress criterion. The explanation for this phe-
nomenon is, that in case of a deviation angle δ = 90° the stresses τω1 = τIII1 
and σIII are acting on the same fiber parallel plane and therefore promote 
fracture together. In contrast τω1 = τIII1 is acting on a plane that is perpen-
dicular to the one σII is acting on; according to Mohr an interaction is 
therefore not possible until an inclined fracture plane occurs and the trans-
verse shear stress τnt due to high σII

c co-operates with the longitudinal 
shear stress τn1 to produce fracture. 

Passing over to deviation angles, which differ some degrees from 0° and 
90°, the sections comparable to a maximum stress criterion vanish, except 
for the (σII, σIII)-base. In case of δ = 45° the fracture body has to be sym-
metrical with regard to the (σII = σIII)-plane, as the action plane of τω1 is 
equally inclined towards the action planes of σII and σIII. 

The comparison of fracture bodies in the (σII, σIII, τω1, δ)-stress space 
clearly demonstrates the shortcomings of criteria that do not account for 
the deviation angle δ between the action planes of the transverse principal 
stress σII and the resulting longitudinal shear stress τω1. 

4.5  Summary of chapter 

This chapter is the core part of the whole book. Here the Puck criteria are 
derived and presented in all detail. It is worth to read it from the first line 
on in order to fully understand the physical background of the criteria and 
the mathematical derivation. 

Puck’s criteria are based on the concept of intrinsically brittle materials. 
As an introduction Mohr’s fracture hypotheses, the concept of principal 
stresses and the visualization in the Mohr circles are recalled and extended 
to orthotropic materials. 
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The fiber fracture criteria are presented prior to the IFF-criteria, because 
their explanation takes less space and the derivation of the criteria is sim-
pler. Puck has developed FF-criteria which take all possible influences of 
shear and transverse normal stresses into account. However, for most cases 
the most simple maximum stress criterion is still valid for FF-analysis. 

The main focus of Puck’s work has always been on Inter Fiber Fracture. 
Puck’s criteria offer not only a perfect calculation of the fracture limit and 
the stress exposure. In addition the fracture angle is calculated. With this 
additional information the differentiation between tolerable and non-
tolerable IFF becomes possible. 

The IFF-criteria are first explained in their general 3D-formulation. The 
mathematical derivation is made step by step and easy to follow. From the 
general formulation the equations for plane 2D-states of stress are derived. 
These 2D-formulations are of interest because they do not need the nu-
merical search of the fracture plane. 

Puck’s criteria are based on knowledge of the idea that fracture is 
caused by the stresses on the fracture plane. Therefore in the original for-
mulation of Puck’s criteria no influence of fiber parallel stress on IFF is 
reflected. However, as a matter of fact high σ1 stress leads to microdamage 
and reduces the strength of the material against IFF. Puck has developed a 
way to incorporate this into his criteria. In the same way he has incorpo-
rated probabilistic effects. These later developments are discussed under 
the headline “Extensions to the IFF-criteria”. Another chapter is dedicated 
to the visualization of (IFF-) criteria. This visualization is a very good 
means to illustrate the characteristics of a creation and to compare different 
criteria. This comparison is done here for the classical Tsai/Wu-criterion, 
the Hashin-criterion and the Puck criteria.  


