
2 Fortran Concepts and Terms

• A Program is an organized collection of program units. There must be exactly one
main program, and in addition there may be modules, external subprograms, and
block data units. Elements described by means other than Fortran may be included.

• A Module provides a means of packaging related data and procedures, and hiding
information not needed outside the module. There are several intrinsic modules.

• The Data Environment consists of the data objects upon which operations will be
performed to create desired results or values. These objects may have declared and
dynamic types; they may have type parameters, and they may possess attributes
such as dimensionality. They need not exist for the whole execution of the program.
Allocatable objects and pointer targets may be created when needed and released
when no longer needed.

• Program Execution begins with the first executable construct in the main program
and continues with successive constructs unless there is a change in the flow of con-
trol. When a procedure is invoked, its execution begins with its first executable con-
struct. On normal return, execution continues where it left off. Execution may occur
simultaneously with input/output processes.

• The Definition Status of a variable indicates whether or not the variable has a
value; the value may change during execution. Most variables are initially unde-
fined and become defined when they acquire a value. The status also may become
undefined during execution. Pointers have both an association status and a defini-
tion status. Allocatable objects have both an allocation status and a definition status.

• Scope and Association determine where and by what names various entities are
known and accessible in a program. These concepts form the information backbone
of the language.

This chapter introduces the basic concepts and fundamental terms needed to un-
derstand Fortran. Some terms are defined implicitly by the syntax rules. Others, such as
“associated” or “present” are ordinary English words, but they have a specific Fortran
meaning.

One of the major concepts involves the organization of a program. A program con-
sists of program units; program units consist of Fortran statements. Some statements
are executable; some are not. In general, the nonexecutable statements define the data
environment, and the executable statements specify the actions taken. This chapter pre-
sents the high-level syntax rules for a Fortran program. It also describes the order in
which constructs and statements may appear in a program and concludes with an ex-
ample of a short, but complete, Fortran program.

J.C. Adams et al., The Fortran 2003 Handbook,
DOI: 10.1007/978-1-84628-746-6_2, © Springer-Verlag London Limited 2009

12 Chapter 2

While there is some discussion of language features here to help explain various
terms and concepts, Chapters 3–16 contain the complete description of all language
features.

2.1 Program Organization

A collection of program units constitutes an executable program. A Fortran program
must have one main program and may have any number of the other program units.
Program units may serve as hosts for smaller scoping units. Information may be hid-
den within part of a program or communicated to other parts of a program by various
means. The programmer may control the parts of a program in which information is
accessible.

With the introduction of C interoperability in Fortran 2003, it is possible to include,
with much greater ease and portability, external procedures and other entities defined
by a means other than Fortran. A processor has one or more companion processors. A
companion processor is a processor-dependent mechanism by which global data and
procedures may be referenced or defined. It may be the Fortran processor itself, or it
may be another Fortran processor. If a procedure is defined by means of a companion
processor that is not the Fortran processor itself, the standard refers to the C function
that defines the procedure. Although the procedure need not be defined by means of
the C programming language, the interoperability mechanisms are designed to mesh
well with C.

2.1.1 Program Units

A Fortran program unit is one of the following:

main program
module
external subprogram
block data

A Fortran program may consist of only a main program, although usually there are
also modules and/or external subprograms which may be subroutine or function sub-
programs. These program units contain constructs and statements that define the data
environment and the steps necessary to perform calculations. Each program unit has
an END statement to terminate the program unit. Each has a special initial statement as
well, but the initial statement for a main program is optional. For example, a program
might contain a main program, a module, and a subroutine:

program task
 . . .
 call calc (z)
 . . .
end program task

Fortran Concepts and Terms 13

module info
 . . .
end module info

subroutine calc(x)
 use info
 . . .
end subroutine calc

An ideal Fortran program would consist of a main program and several modules;
that is, there would be no external subprograms. This is the best model for packaging
and encapsulation (2.2.5). Subroutine and function subprograms are a fundamental
part of the language. They may be module, internal, or external subprograms.

The interface of a procedure supplies information about the name and type (if a
function) of the procedure, as well as information about its arguments. A program is
more robust if the interfaces of procedures are known when the procedures are in-
voked. This is inherently the case for internal procedures, module procedures, and all
of the intrinsic procedures. In addition, the interfaces of procedures defined in other
languages must be described to the Fortran system as C function interfaces (15.6).

The main program could be defined in a language other than Fortran, but it is usu-
ally the language of the main program that determines the program’s primary nature.
For example, a Fortran main program with some elements specified in another lan-
guage is still a Fortran program; whereas, if the main program is specified in C but
there is access to Fortran elements, the program is generally considered to be a C pro-
gram. Interlanguage communication is described in 15.

Because all except the most trivial of programs will make use of subroutines and
functions in some form, it might be expected that subroutines and functions would be
described earlier, but that is not the case. Chapter 12 describes them in detail. Chapter
11 describes all program units—the main program, modules, external subprograms,
and block data program units.

Internal procedures and module procedures gain access to information in their
hosts by host association. A USE statement specifying a module can appear in a main
program, a subprogram, a module, an interface body, or a block data subprogram to
gain access to the module’s public information. This method of access is called use as-
sociation. Association is described in 16.

Figure 2-1 illustrates the organization of a sample Fortran program. The lines with
thin arrows represent internal and external subprogram references with the arrow
pointing to the subprogram. The thick solid arrows represent access by use association
with the arrow pointing to the position of a USE statement.

2.1.1.1 Main Program

The main program is required; if there are other program units, the main program acts
as a controller; that is, it takes charge of the program and controls the order in which
procedures are executed.

14 Chapter 2

2.1.1.2 Module

A module contains definitions that can be made accessible to other program units by
use association. These definitions include data definitions, type definitions, definitions
of procedures known as module procedures, and specifications of procedure interfaces.
A module procedure may be invoked by another module procedure in the module or
by other program units that access the module. Fortran 2003 introduced intrinsic mod-
ules; there were no intrinsic modules in earlier standards. These are the
ISO_FORTRAN_ENV module (13.6.1) that provides public entities relating to the envi-
ronment such as input/output units and storage sizes, the ISO_C_BINDING module
(15.3) that provides access to named constants representing kind values that are com-
patible with C types, and three IEEE modules (14.3) that provide support for excep-
tions and IEEE arithmetic.

Main program Module

Public data
entities

Private data
entities

Internal procedure

Function

Subroutine

Internal procedure

Internal procedure

Subroutine Function

Internal
procedure

Internal
procedure

Function Subroutine

Figure 2-1 Example of program packaging. The thick arrows represent use
association; the thin arrows represent procedure references.

Program

Internal procedure

Fortran Concepts and Terms 15

2.1.1.3 External Subprogram

An external subprogram (a function or a subroutine) may be used to perform a task or
calculation on entities available to the external subprogram. These entities may be the
arguments to the subprogram that are provided in the reference, entities defined in the
subprogram, or entities accessible from modules or common blocks. A CALL statement
is used to invoke a subroutine. A function is invoked when its value is needed in an
expression. The computational process that is specified by a function or subroutine
subprogram is called a procedure. An external subprogram provides one way to define a
procedure. It may be invoked from other program units of the Fortran program. Unless
it is a pure procedure, a subroutine or function may change the program state by
changing the values of data objects accessible to the procedure.

2.1.1.4 Block Data Program Unit

A block data program unit (11.5) contains data definitions only and is used to specify
initial values for a restricted set of data objects.

2.1.1.5 Compilation

Prior to the introduction of modules into Fortran, program units could be compiled in-
dependently with no need for information from any other program unit. Any informa-
tion needed in more than one program unit had to be replicated wherever it was
needed. The compiled program unit could be used in a number of applications without
the necessity of recompiling; this is called independent compilation.

If a program unit contains a USE statement, the referenced module must be avail-
able in some form when that program unit is compiled.

There are many ways to implement modules; however, most implementations re-
quire compilation of modules prior to compilation of any program units that use the
modules. The compilation often produces a file containing encoded or summarized in-
formation about the module, which is accessed when a program using the module is
compiled.

The situation regarding the availability of include files is somewhat similar, but be-
cause include files are simply inserted as text in a program, they are not usually pre-
processed in any way.

2.1.2 Procedures

A procedure specifies a task or a calculation, usually one that can be separated out from
the main flow or one that is needed in different parts of the program. A procedure may
take the form of a subroutine or a function. Every procedure has an interface that must
be unique in some way, A set of generic procedures may be identified by the same name
or symbol, but made unique by their arguments. A procedure may be defined by means
other than the Fortran language.

2.1.2.1 Internal Procedures

Main programs, module subprograms, and external subprograms may contain internal
subprograms, which may be either subroutines or functions. The procedures they de-

16 Chapter 2

fine are called internal procedures. Internal subprograms must not themselves contain
internal subprograms, however. The main program, external subprogram, or module
subprogram that contains an internal subprogram is referred to as the internal subpro-
gram’s host. Entities known in a host are available to an internal procedure by host as-
sociation. Internal procedures may be invoked within their host or within other
internal procedures in the same host. Internal procedures are described in 12.

There is also an obsolescent feature, the statement function (12.4.4), which specifies
a function by a single statement.

2.1.2.2 Procedure Interfaces

An interface provides the procedure name, the number of arguments, their types, at-
tributes, names, and the type and attributes of a function result. This information is re-
quired in some cases, such as for a dummy argument, which assumes the shape of its
actual argument (12.5.1.2). The information also allows the processor to check the va-
lidity of an invocation.

If a procedure interface is not inherently available, it may be specified in an interface
block. All program units, except block data, may contain procedure interface blocks. A
procedure interface block contains one or more interface bodies that are used to de-
scribe the interfaces of procedures that would otherwise be unknown. Interface blocks
are used for external procedures, dummy procedures, procedure pointers, abstract pro-
cedures, or type-bound procedures. An interface block with a generic specification
may be used to describe generic procedures or user-defined operators, assignment, or
input/output. Procedure interfaces are described in 12.

2.1.2.3 Generic Procedures

Fortran has the concept of a generic procedure, that is, one that can accept arguments
that have different types in different invocations. If the procedure is a function, in most
cases the type of the result is the same as that of the arguments. An example is the in-
trinsic SIN (the sine function), which can accept a real, double precision, or complex ar-
gument. A user-defined procedure also can be generic. A user defines several specific
procedures, and either collects their interfaces in an interface block with a generic
specification or lists them in a GENERIC statement in the type definition. The identifier
that appears in the generic specification or the GENERIC statement may be used to
reference the specific procedure whose arguments match those of the reference.

2.1.2.4 Procedures Defined by Other Languages

Chapter 15 describes how procedures defined by means of the C programming lan-
guage can be accessed from Fortran and how procedures defined in Fortran can be ac-
cessed from C programs. Other languages may be accommodated by these same
mechanisms. The mechanisms are not limited to C, but are described in terms of C
protocols. Some of the additions to Fortran 2003 to facilitate this process are useful in
themselves to strictly Fortran programs, such as the VALUE attribute for dummy argu-
ments (5.9.2), enumerations (4.6), and stream input/output (9.1.5.3).

Fortran Concepts and Terms 17

2.2 Data Environment

Before a calculation can be performed, its data environment must be established. The
data environment consists of data objects that possess properties, attributes, and val-
ues. The steps in a computational process generally specify operations that are per-
formed on operands (or objects) to create desired results or values. Operands may be
constants, variables, constructors, function references, or more complicated expressions
made up of these items; each operand has a data type (which may be dynamic); it may
have type parameters; and, if it is defined, it has a value. A data object has attributes in
addition to type. Chapter 4 discusses data type in detail; Chapter 5 discusses how pro-
gram entities and their attributes are declared; and Chapters 6 and 7 describe how data
objects may be used.

2.2.1 Data Type

The Fortran language provides five intrinsic data types—real, integer, complex, logical,
and character—and allows users to define additional types. Sometimes it is natural to
organize data in combinations consisting of several components of different types. Be-
cause the data describe one object, it is convenient to have a means to refer to this ag-
gregation of data by a single name. In Fortran, an aggregation of such data values is
called a structure. To use a structure, a programmer must first define the type of the
structure. Once the new type is defined, any number of structures (or objects) of that
type may be declared.

Some applications require related objects, such as a basic line plus a line of a cer-
tain style (dotted or dashed), or of a certain color, or both style and color. A base type
may be defined and then extended by adding different components. When a type is
defined, it is not necessary to specify that it may be extended. Generic procedures may
be defined (such as DRAW or ADD_TO_FIGURE) that accept as an actual argument an
object of the base type or any extension of it. Such an argument that may be of any of
these types is polymorphic.

2.2.2 Type Parameters

Both intrinsic and user-defined types may have parameters. For the intrinsic types, a
kind type parameter specifies a particular representation. In addition, the character type
has a length parameter.

Each of the intrinsic types may have more than one representation (specified by a
KIND parameter). The Fortran standard requires at least two different representations
for each of the real and complex types that correspond to “single precision” and “dou-
ble precision”, and permits more.

A type parameter for a user-defined type is also either a kind type parameter or a
length type parameter. Type parameters for user-defined types are specified in the type
definition.

Portable mechanisms for specifying precision are provided so that numerical algo-
rithms that depend on a minimum numeric precision can be programmed to produce
reliable results regardless of the processor’s characteristics. Fortran permits more than
one representation for the integer, logical, and character types as well. Alternative rep-

18 Chapter 2

resentations for the integer type permit different ranges of integers. Alternative repre-
sentations for the logical type might include a “packed logical” type to conserve
memory space and an “unpacked logical” type to increase speed of access. The large
number of characters required for ideographic languages, such as those used in Asia
with thousands of different graphical symbols, cannot be represented as concisely as
alphabetic characters and require “more precision”. For international usage Fortran
2003 encourages support of the ISO 10646 character set (1.5).

A kind type parameter value must be known at compile time and may be used to
resolve generic procedure references. A length type parameter value need not be
known at compile time; it may be used for character lengths, array dimensions, or other
sizes. If it is a deferred type parameter, indicated by a colon (:), it may change during
execution. If it is an assumed type parameter, indicated by an asterisk (*), it assumes its
value from another entity, such as an actual argument.

Examples of type declarations with parameters are:

complex (kind = HIGH) x
integer (kind = SHORT) days_of_week
character (kind = ISO_10646, len = 500) HAIKU
type MY_ARRAY (pick_kind, rows, cols) ! Type definition
 integer, kind :: pick_kind
 integer, len :: rows, cols
 real (pick_kind) :: VALUES (rows, cols)
end type MY_ARRAY
type(MY_ARRAY) AA(HIGH, i, j)

where HIGH, SHORT, and ISO_10646 are named integer constants given appropriate
values by the programmer. The length parameter for the character string HAIKU has
the value 500. AA is of type MY_ARRAY; its single component, VALUES, is a real array
of kind HIGH and dimension (i, j), where i and j are specification expressions.

2.2.3 Dimensionality

Single objects, whether intrinsic or user-defined, are scalar. Even though a structure
has components, it is technically a scalar. A set of scalar objects, all of the same type,
may be arranged in patterns involving columns, rows, planes, and higher-dimensioned
configurations to form arrays. It is possible to have arrays of structures. An array may
have up to seven dimensions. The number of dimensions is called the rank of the array.
It is declared when the array is declared and cannot change. The size of the array is the
total number of elements and is equal to the product of the extents in each dimension.
The shape of an array is the list of its extents. Two arrays that have the same shape are
said to be conformable. A scalar is conformable with any array. Examples of array dec-
larations are:

real :: coordinates (100, 100)
integer :: distances (50)
type(line) :: mondrian(10)

Fortran Concepts and Terms 19

An array is an object and may appear in an expression or be returned as a function re-
sult. Intrinsic operations involving arrays of the same shape are performed element-by-
element to produce an array result of the same shape. There is no implied order in
which the element-by-element operations are performed.

A portion of an array, such as an element or section, may be referenced as a data
object. An array element is a single element of the array and is scalar. An array section
is a subset of the elements of the array and is itself an array.

2.2.4 Dynamic Data

Data objects may be dynamic in size, shape, type, or length type parameters, but not
rank or kind type parameters. The dynamic data objects are:

polymorphic objects
pointers
allocatable objects
automatic objects

The type of a polymorphic object (5.2) may change during program execution.
Objects that may have both a dynamic type as well as a dynamic size and shape are data
pointers, allocatable variables, and dummy arguments. Automatic objects appear in
subprograms and come into existence when the subprogram is invoked.

Dynamic type was introduced in Fortran 2003. An entity that is not polymorphic
has both a declared and a dynamic type, but they are the same. The dynamic type of a
polymorphic object that is not allocated (6.7.1) or associated (7.5.5.1) is its declared
type. The CLASS keyword is used to declare polymorphic entities. An object declared
with CLASS (*) is an unlimited polymorphic object with no declared type.

Procedures and data objects in Fortran may be declared to have the POINTER at-
tribute. A procedure pointer must be a procedure entity. A data pointer must be associ-
ated with a target before it can be used in any calculation. This is accomplished by
allocation (6.7.1.2) of the space for the target or by assignment of the pointer to an ex-
isting target (7.5.5.1). A pointer assignment statement is provided to associate a pointer
with a target (declared or allocated). It makes use of the symbol pair => rather than the
single character =; otherwise, it is executed in the same way that an ordinary assign-
ment statement is executed, except that instead of assigning a value it associates a
pointer with a target. For example,

real, target :: VECTOR(100)
real, pointer :: ODDS(:)
 . . .
ODDS => VECTOR(1:100:2)

The pointer assignment statement associates ODDS with the odd elements of VECTOR.
The assignment statement

ODDS=1.5

20 Chapter 2

defines each odd element of VECTOR with the value 1.5. Later in the execution se-
quence, the pointer ODDS could become associated with a different target by pointer
assignment or allocation, as long as the target is a one-dimensional, default real array.
Chapter 7 describes the pointer assignment statement.

If a pointer object is declared to be an array, its size and shape may change dynam-
ically, but its rank is fixed by the declaration. If a pointer target is polymorphic, the
pointer must be of a type that is compatible with the target, or both the pointer and tar-
get must be declared unlimited polymorphic. An example of pointer array declaration
and allocation is:

real, pointer :: lengths (:)
allocate (lengths (200))

A variable may be declared to have the ALLOCATABLE attribute. Space must be
allocated for the variable before it can be used in any calculation. The variable may be
deallocated and reallocated with a different type, length type parameters, and shape as
the program executes. As with a pointer, the rank is fixed by the declaration. An allo-
catable variable cannot be made to point to an existing named object; the object always
must be created by an ALLOCATE statement. An example of allocatable array declara-
tion and allocation is:

real, allocatable :: lengths (:)
allocate (lengths (200))

The similarities of these examples reflect the similarity of some of the uses of allocat-
able arrays and pointers, but there are differences. Pointers may be used to create dy-
namic data structures, such as linked lists and trees. The target of a pointer can be
changed by reallocation or pointer assignment; the new target must be of the same
rank but may have different extents in each dimension. The attributes of an allocatable
variable can be changed only by deallocating and reallocating the variable. There is a
MOVE_ALLOC intrinsic function that can be used if the values of the elements of an
allocatable array are to be preserved when its size is changed. Use of allocatable vari-
ables generally leads to more efficient execution than use of the more flexible pointers.

Only pointers and allocatable objects may be allocated or deallocated. It is possible
to inquire whether an object is currently allocated. Chapter 5 describes the declaration
of pointers and allocatable objects; Chapter 6 covers the ALLOCATE and DEALLO-
CATE statements; Chapter 13 and Appendix A describe the ASSOCIATED intrinsic in-
quiry function for pointers and the ALLOCATED intrinsic inquiry function for
allocatable variables. Chapter 15 describes dynamic interoperable objects.

Automatic data objects, either arrays or character strings (or both), may be de-
clared in a subprogram. These local data objects are created on entry to the subpro-
gram and disappear when the execution of the subprogram completes. These are
useful in subprograms for temporary arrays and characters strings whose sizes are dif-
ferent for each reference to the subprogram. An example of a subprogram unit with an
automatic array TEMP is:

Fortran Concepts and Terms 21

subroutine SWAP_ARRAYS (A, B)
real, dimension (:) :: A, B
real, dimension (size (A)) :: TEMP

TEMP = A
A = B
B = TEMP

end subroutine SWAP_ARRAYS

A and B are assumed-shape array arguments; that is, they take on the shape of the ac-
tual arguments. TEMP is an automatic array that is created the same size as A on entry
to subroutine SWAP_ARRAYS. SIZE is an intrinsic function.

2.2.5 Packaging and Encapsulation

The packaging of a fair-sized program is an important design consideration when a
new Fortran application is planned. The most important benefit of packaging is infor-
mation hiding. Entities can be kept inaccessible except where they are actually needed.
This provides some protection against inadvertent misuse or corruption, thereby im-
proving program reliability. Packaging can make the logical structure of a program
more apparent by hiding complex details at lower levels. Programs are therefore easier
to comprehend and less costly to maintain. The Fortran features that provide these
benefits are

• user-defined types

• internal procedures

• modules

 The accessibility of a user-defined type in a module may be public, private, or
protected. In addition, even if the type is public, it may have private components. A
type definition has a type-bound procedure part in which the procedures bound to that
type are specified.

Internal procedures may appear in main programs, module subprograms, and ex-
ternal subprograms; they are known only within their host. The name of an internal
procedure must not be passed as an argument. The Fortran standard further restricts
internal procedures in that an internal procedure must not itself be the host of another
internal procedure. However, statement functions may appear within an internal pro-
cedure.

Modules provide the most comprehensive opportunities to apply packaging con-
cepts including several levels of organization and hiding (5.8). The entities specified in
a module (types, data objects, procedures, interfaces, etc.) may be made available to
other scoping units; may be made available, but protected from corruption outside the
module; or may be kept private to the module. Thus modules provide flexible encapsu-
lation facilities for entities in an object-oriented application. The procedures, men-
tioned in a type definition (4.4.2) and referred to as type-bound procedures (4.4.11),
generally appear as module procedures in the module that contains the type definition.

22 Chapter 2

In addition to the usual capabilities of procedures, these type-bound procedures may
specify

• defined operators

• defined assignment

• defined input/output

• finalization

Finalization is accomplished by a final procedure that is invoked automatically just be-
fore an object of the type is destroyed by deallocation, the execution of a RETURN or
END statement, or some other means.

Of course, more than one type definition may appear in a module, so if there is a
need for communication among separate but related objects, the module provides the
appropriate means for permitting and controlling access to information.

2.3 Program Execution

During program execution, constructs and statements are executed in a prescribed or-
der. Variables become defined with values and may be redefined later in the execution
sequence. Procedures are invoked, perhaps recursively. Space may be allocated and lat-
er deallocated. The targets of pointers may change. The types of polymorphic variables
may change.

2.3.1 Execution Sequence

Program execution begins with the first executable construct in the main program. An
executable construct is an instruction to perform one or more of the computational ac-
tions that determine the behavior of the program or control the flow of the execution of
the program. These actions include performing arithmetic, comparing values, branch-
ing to another construct or statement in the program, invoking a procedure, or reading
from or writing to a file or device. Examples of executable statements are:

read (5, *) z, y
x = (4.0 * z) + base
if (x > y) go to 100
call calculate (x)

100 y = y + 1

When a procedure is invoked, its execution begins with the first executable con-
struct after the entry point in the procedure. On normal return from a procedure invo-
cation, execution continues where it left off in the invoking procedure.

Unless a control statement or construct that alters the flow of execution is encoun-
tered, program statements are executed in the order in which they appear in a program
unit until a STOP, RETURN, or END statement is executed. Branch statements specify
a change in the execution sequence and consist of the various forms of GO TO state-
ments, a procedure reference with alternative return specifiers, EXIT and CYCLE state-

Fortran Concepts and Terms 23

ments in DO constructs, and input/output statements with branch label specifiers, such
as ERR, END, and EOR specifiers. The control constructs (IF, CASE, DO, and SELECT
TYPE) can cause internal branching implicitly within the structure of the construct. The
SELECT TYPE construct chooses a block of code based on the dynamic type of its poly-
morphic selector. Chapter 8 discusses in detail control flow within a program.

Another feature of Fortran 2003 is asynchronous input/output. It allows computa-
tion to occur in parallel with an input/output process if the processor supports parallel
processing. A WAIT statement may be used to synchronize the processes. This and oth-
er new input/output features are described in 9.

Normal termination of execution occurs if the END statement of a main program
or a STOP statement is executed. Normal termination of execution also may occur in a
procedure defined by means other than Fortran. If a Fortran program includes proce-
dures executed by a companion processor, the normal termination process will include
the effect of executing the C exit function.

2.3.2 Definition and Undefinition

Unless initialized, variables have no value initially; uninitialized variables are consid-
ered to be undefined. Variables may be initialized in type declaration statements, type
declarations, DATA statements, or by means other than Fortran; initialized variables are
considered to be defined. Some variables initialized by default initialization, such as
that specified in a type definition, are initialized when the variables come into existence,
whereas other variables such as those initialized in a DATA statement are initialized
when execution begins.

 A variable may acquire a value or change its current value, typically by the execu-
tion of an assignment statement or an input statement. Thus it may assume different
values at different times, and under some circumstances it may become undefined.
This is part of the dynamic behavior of program execution. Defined and undefined are
the Fortran terms that are used to specify the definition status of a variable. The events
that cause variables to become defined and undefined are described in 16.

A variable is considered to be defined only if all parts of it are defined. For exam-
ple, all the elements of an array, all the components of a structure, or all characters of a
character string must be defined; otherwise, the array, structure, or string is undefined.
Fortran permits zero-sized arrays and zero-length strings; these are always considered
to be defined.

Pointers have both a definition status and an association status. When execution
begins, the association status of all pointers is undefined, except for data or default ini-
tialized pointers given the disassociated status. During execution a pointer may be-
come disassociated, or it may become associated with a target. At some point the
association status may revert to undefined. Even when the association status of a point-
er is defined, the pointer is not considered to be defined unless the target with which it
is associated is defined. Pointer targets become defined in the same way that any other
variable becomes defined, typically by the execution of an assignment or input state-
ment.

Allocatable variables have a definition status and an allocation status. The allocation
status is never undefined.

24 Chapter 2

2.3.3 Scope

The scope of a program entity is the part of the program in which that entity is known,
is available, and can be used. A scoping unit is

1. a program unit or subprogram, excluding any scoping units in it

2. a derived-type definition

3. an interface body, excluding any scoping units in it

Some entities have scopes that are something other than a scoping unit. For exam-
ple, the scope of a name, such as a variable name, can be any of the following:

1. an executable program

2. a scoping unit

3. a construct

4. a statement or part of a statement

The scope of a label is a scoping unit. The scope of an input/output unit is a pro-
gram.

2.3.4 Association

Association is the concept that is used to describe how different entities in the same
scoping unit or different scoping units can share values and other properties. Argu-
ment association allows values to be shared between a procedure and the program that
calls it. Use association and host association allow entities described in one part of a
program to be used in another part of the program. Use association makes entities de-
fined in modules accessible, and host association makes entities in the containing envi-
ronment available to a contained procedure. The IMPORT statement (12.5.2),
introduced in Fortran 2003, makes entities in a host scoping unit available in an inter-
face body by host association.

Additional forms of association are inheritance association (between the entities in
an extended type and its parent), linkage association (between corresponding Fortran
and C entities), and construct association (relevant to the ASSOCIATE and SELECT
TYPE constructs). The complete description of association may be found in 16.

An old form of association, storage association, which allows two or more vari-
ables to share storage, can be set up by the use of EQUIVALENCE, COMMON, or
ENTRY statements. It is best avoided.

2.4 Terms

Frequently used Fortran terms are defined in this section. Definitions of less frequently
used terms may be found by referencing the index of this handbook or Annex A of the
Fortran 2003 standard.

Fortran Concepts and Terms 25

Entity This is the general term used to refer to any Fortran “thing”,
for example, a program unit, a procedure, a common block, a
variable, an expression value, a constant, a statement label, a
construct, an operator, an interface, a type, an input/output
unit, a namelist group, etc.

Name A name is used to identify many different entities of a program
such as a program unit, a named variable, a named constant, a
common block, a construct, a formal argument of a subpro-
gram (dummy argument), or a user-defined type (derived
type). The rules for constructing names are given in 3.

Named entity A named entity is referenced by a name without any qualifica-
tion such as an appended subscript list or substring range.

Data object A data object is a constant, a variable, or a subobject of a con-
stant. It may be a scalar or an array. It may be of intrinsic or
derived type.

Constant A constant is a data object whose value cannot be changed. A
named entity with the PARAMETER attribute is called a
named constant. A constant without a name is called a literal
constant. A constant may be a scalar or an array.

Variable A variable is a data object whose value can be defined and re-
defined. A variable may be a scalar or an array.

Local variable A variable that is in a main program, module, or subprogram
and is not associated by being: a dummy argument, in COM-
MON, a BIND(C) variable, or accessed via host or USE associa-
tion. A subobject of a local variable is also a local variable.

Subobject of a constant A subobject of a constant is a portion of a constant. The portion
referenced may depend on the value of a variable, in which
case it is neither a constant nor a variable.

Data entity A data entity is a data object or the result of the evaluation of
an expression. A data entity has a type, possibly type parame-
ters, and a rank (a scalar has rank zero). It may have a value.

Expression An expression may be a simple data reference or it may specify
a computation and thus be made up of operands, operators, and
parentheses. The type, type parameters, value, and rank of an
expression result are determined by the rules in 7.

Function reference A function reference invokes a function. It is made up of the
name of a function followed by a parenthesized list of
arguments, which may be empty. The type, type parameters,

26 Chapter 2

and rank of the result are determined by the interface of the
function and the reference.

Data type A data type provides a means for categorizing data. Each in-
trinsic and user-defined data type has—a name, a set of values,
a set of operators, and a means to represent values of the type
in a program. For each data type there is a type specifier that is
used to declare objects of the type.

Type parameter There are two categories of type parameters for types: kind and
length. For intrinsic types a kind type parameter indicates the
range for the integer type, the decimal precision and exponent
range for the real type and parts of the complex type, and the
machine representation method for the character and logical
types. The length type parameter indicates a length for the
intrinsic character type. For a derived type, the type parameters
are defined in its type definition.

Derived type A derived type (or user-defined type) is a type that is not in-
trinsic; it requires a type definition to name the type and speci-
fy its parameters and components. The components may be of
intrinsic or user-defined types. An object of derived type is
called a structure. For each derived type, a structure construc-
tor is available to specify values. Operations on objects of de-
rived type must be defined by a function. Assignment for
derived-type objects is defined intrinsically, but may be rede-
fined by a subroutine. Finalizers may be specified for derived-
type objects. Data entities of derived type may be used as pro-
cedure arguments and function results, and may appear in in-
put/output lists and other places. Derived types may be
extended by inheritance.

Ultimate component The ultimate components of a derived type entity are the low-
est-level components that have storage in the entity. They are a)
any components that are of an intrinsic type, b) any compo-
nents that have the ALLOCATABLE or POINTER attribute (the
entity has storage for the pointer or allocation descriptor, but
the object or target does not, itself, have storage in the entity),
and c) the ultimate components of any derived type compo-
nents that have neither the ALLOCATABLE nor POINTER at-
tribute. The ultimate components are subject to, for example,
storage association rules.

There is a distinction between a component of derived type
and an allocatable or pointer component of the same type. In
the first case, the elements of the derived type component are

Fortran Concepts and Terms 27

ultimate components; in the other cases only the descriptor or
pointer is an ultimate component

Inheritance Inheritance is the process of automatically acquiring entities
(parameters, components, or procedure bindings) from a parent.

Polymorphism Polymorphism is the ability to change type during program ex-
ecution. Dummy arguments, pointers, and allocatable objects
may be polymorphic.

Scalar A scalar is a single object of any intrinsic or derived type. A
structure is scalar even if it has a component that is an array.
The rank of a scalar is zero.

Array An array is an object with the dimension attribute. It is a col-
lected set of scalar data, all of the same type and type parame-
ters. The rank of an array is at least one and at most seven. An
array of any rank may be of zero size. An array of size zero or
one is not a scalar. Data entities that are arrays may be used as
expression operands, procedure arguments, and function re-
sults, and may appear in input/output lists, as well as other
places.

Subobject A subobject is a portion of a data object. Portions of a data ob-
ject may be referenced and defined (if the object is a variable)
separately from other portions of the object. Array elements
and array section are portions of arrays. Substrings are por-
tions of character strings. Structure components are portions of
structures. Portions of complex objects are the real and imagi-
nary parts. Subobjects are referenced by designators or intrin-
sic functions and are considered to be data objects themselves.

Designator Sometimes it is convenient to reference only part of an object,
such as an element or section of an array, a substring of a char-
acter string, or a component of a structure. This requires the
use of a designator which is the name of the object followed by
zero or more selectors that select a part of the object.

Selector This term is used in several different ways. A selector may des-
ignate part of an object (array element, array section, substring,
or structure component) or the set of values for which a CASE
block is executed, or the dynamic type for which a SELECT
TYPE block is executed, or the object associated with the name
in an ASSOCIATE construct.

Declaration A declaration is a nonexecutable statement that specifies the at-
tributes of a program element. For example, it may be used to
specify the type of a variable or function or the shape of an ar-

28 Chapter 2

ray. It may indicate that an entity is a data pointer or a proce-
dure pointer. Attributes that were introduced in Fortran 2003
are: ASYNCHRONOUS, which indicates that the value of the
variable may change outside the execution flow due to a
possibly simultaneous input/output process; BIND (C), which is
used to indicate data and functions that interoperate with C;
PROTECTED, which prohibits any change to the value of the
variable or the association status of the pointer outside the
module in which it is declared; VALUE, which, when applied to
a dummy argument, specifies an argument passing mechanism
useful in C interoperability; and VOLATILE, which indicates
that the value of the variable may change by means other than
the normal execution sequence

Definition This term is used in several ways. A data object is said to be
defined when it has a valid or predictable value; otherwise it is
undefined. It may be given a valid value by execution of state-
ments such as assignment or input. Under certain circumstanc-
es described in 16, it may subsequently become undefined.

Procedures and derived types are said to be defined when their
descriptions have been supplied by the programmer and are
available in a program unit.

The association status of a pointer is defined when the pointer is
associated or disassociated; otherwise, it is undefined.

Statement keyword A statement keyword is part of the syntax of a statement. Each
statement, other than an assignment statement, pointer assign-
ment statement, or statement function definition, begins with a
statement keyword. Some statement keywords appear in
internal positions within statements. Examples of these key-
words are THEN, KIND, and INTEGER. Statement keywords
are not reserved; they may be used as names.

List keyword A list keyword is a name that is used to identify an item in a
list (rather than its position) such as an argument list, type pa-
rameter list, or structure constructor list. Keywords for the ar-
gument lists of all of the intrinsic procedures are specified by
the standard (A). Keywords for user-supplied external proce-
dures may be specified in a procedure interface block. Key-
words for structure constructors and user-defined type
parameters are specified in the type definition.

Sequence A sequence is a set ordered by a one-to-one correspondence
with the numbers 1, 2, through n. The number of elements in

Fortran Concepts and Terms 29

the sequence is n. A sequence may be empty, in which case it
contains no elements.

Operator An operator indicates a computation involving one or two op-
erands. Fortran defines a number of intrinsic operators; for ex-
ample, +, –, ∗, /, ∗∗ with numeric operands, and .NOT.,.AND., .OR. with logical operands. In addition, users may
define operators for use with operands of intrinsic or derived
types.

Construct A construct is a sequence of statements starting with an ASSO-
CIATE, DO, FORALL, IF, SELECT CASE, SELECT TYPE, or
WHERE statement and ending with the corresponding termi-
nal statement.

Executable construct An executable construct is an action statement (such as a
READ statement) or a construct (such as a DO or CASE con-
struct).

Procedure A procedure is defined by a sequence of statements that ex-
presses a computation that may be invoked as a subroutine or
function during program execution. It may be an intrinsic pro-
cedure, an external procedure, an internal procedure, a module
procedure, a dummy procedure, or a statement function. If a
subprogram contains an ENTRY statement, it defines more than
one procedure.

Procedure interface A procedure interface is a sequence of statements that specifies
the name and characteristics of a procedure, the name and at-
tributes of each dummy argument, and the generic specifier by
which it may be referenced, if any.

Reference A data object reference is the appearance of the object designa-
tor in a statement requiring the value of the object.

A procedure reference is the appearance of the procedure des-
ignator, operator symbol, or assignment symbol in an execut-
able program requiring execution of the procedure.

A module reference is the appearance of the module name in a
USE statement.

Intrinsic Anything that is defined by the Fortran processor is intrinsic.
There are intrinsic data types, procedures, modules, operators,
and assignment. These may be used freely in any scoping unit.
The Fortran programmer may define types, procedures, mod-
ules, operators, and assignment; these entities are not intrinsic.

30 Chapter 2

Companion processor A companion processor is a processor that provides mecha-
nisms by which global data and procedures may be referenced
or defined—perhaps by means other than Fortran, such as the
C programming language.

Scoping unit A scoping unit is a portion of a program in which a name has a
fixed meaning. A program unit or subprogram generally de-
fines a scoping unit. Type definitions and procedure interface
bodies also constitute scoping units. Scoping units are non-
overlapping, although one scoping unit may contain another in
the sense that it surrounds it. If a scoping unit contains another
scoping unit, the outer scoping unit is referred to as the host
scoping unit of the inner scoping unit.

Association In general, association permits an entity to be referenced by
different names in a scoping unit or by the same or different
names in different scoping units. There are several kinds of as-
sociation: the major ones are name association, pointer associa-
tion, inheritance association, and storage association. Name
association is argument association, use association, host
association, linkage association, and construct association.

Inheritance association Inheritance association occurs between the inherited entities of
an extended type and the corresponding entities of its parent.

Linkage association Linkage association occurs between a module variable with the
BIND(C) attribute and the relevant C variable or between a
Fortran common block and the relevant C variable. It has the
scope of the program.

Construct association Construct association occurs between the selector in an ASSO-
CIATE or SELECT TYPE construct and the associate name of
the construct. It has the scope of the construct.

2.5 High-Level Syntax Forms

The form of a program (R201) is:

program-unit
 [program-unit] . . .

The forms for Fortran program units are shown in the first section below. The con-
structs that may appear in a program unit are shown in the subsequent sections. All
program units may have a specification part. The main program and the three forms of
subprogram (module, external, and internal) may have an execution part.

The notation used in this chapter is the same as that used to show the syntax in all
the remaining chapters; it is described in 1.3 along with an assumed syntax rule and

Fortran Concepts and Terms 31

some frequently used abbreviations for syntax terms. This is not the complete set of
rules; many lower-level rules are missing. Many of these rules may be found in the fol-
lowing chapters. The Fortran 2003 standard [7] contains the complete syntax rules.

2.5.1 Fortran Program Units

The forms of a program unit (R202) are:

main-program
module
external-subprogram
block-data

The form of a main program (R1101) is:

[PROGRAM program-name]
 [specification-part]
 [execution-part]
[CONTAINS
 internal-subprogram
 [internal-subprogram] ...]
END [PROGRAM [program-name]]

The form of a module (R1104) is:

MODULE module-name
 [specification-part]
[CONTAINS
 module-subprogram
 [module-subprogram] ...]
END [MODULE [module-name]]

The form of a module subprogram (R1108) and an external subprogram (R203) is:

subprogram-heading
 [specification-part]
 [execution-part]
[CONTAINS
 internal-subprogram
 [internal-subprogram] ...]
subprogram-ending

The form of an internal subprogram (R211) is:

subprogram-heading
 [specification-part]
 [execution-part]
subprogram-ending

The forms of a subprogram heading (R1224, R1232) are:

32 Chapter 2

[prefix] [declaration-type-spec] FUNCTION function-name &

 ([dummy-argument-list]) [suffix]
 [prefix] SUBROUTINE subroutine-name [([dummy-argument-list])] [binding-spec]

A prefix (R1228) is any combination of the keywords:

RECURSIVE
PURE
ELEMENTAL

A suffix (R1229) is one of the forms:

 RESULT (result-name) [binding-spec]
 binding-spec [RESULT (result-name)]

A binding specification (R509) is:

 BIND (C [, NAME = scalar-char-initialization-expr])

The forms of a subprogram ending (R1230, R1234) are:

END [FUNCTION [function-name]]
END [SUBROUTINE [subroutine-name]]

The form of a block data program unit (R1116) is:

BLOCK DATA [block-data-name]
 [specification-part]
END [BLOCK DATA [block-data-name]]

2.5.2 The Specification Part

The form of the specification part (R204) is:

[use-statement] ...
IMPORT [[::] import-name-list]] ...
[implicit-part]
[declaration-construct] ...

The forms of a USE statement (R1109) are:

USE [[, module-nature] ::] module-name [, rename-list]
USE [[, module-nature] ::] module-name , ONLY : [only-list]

The form of the implicit part (R206) is:

[implicit-part-statement] ...
IMPLICIT implicit-spec-list

The forms of an implicit part statement (R205) are:

Fortran Concepts and Terms 33

IMPLICIT implicit-spec-list
PARAMETER (named-constant = initialization-expr &
 [, named-constant = initialization-expr] ...)
entry-statement
format-statement

The forms of an implicit specification (R550) are:

NONE

declaration-type-spec (letter-spec-list)

The forms of a declaration construct (R207) are:

declaration-type-spec [[, attribute-spec] ... ::] entity-declaration-list
specification-statement
derived-type-definition
interface-block
enumeration-definition
entry-statement
format-statement
statement-function-statement

The forms of a declaration type specification (R502) are:

INTEGER [kind-selector]
REAL [kind-selector]
DOUBLE PRECISION
COMPLEX [kind-selector]
CHARACTER [character-selector]
LOGICAL [kind-selector]
TYPE (derived-type-spec)
CLASS (derived-type-spec)
CLASS (*)

The form of a kind selector (R404) is:

([KIND =] kind-value)

The forms of a character selector (R424) are:

(length-value [, [KIND =] kind-value])
(LEN = length-value [, KIND = kind-value])
(KIND = kind-value [, LEN = length-value])
* character-length [,]

A length value (R402) has one of the forms:

scalar-integer-expression
*
:

34 Chapter 2

A kind value (R404) has the from:

scalar-integer-initialization-expr

A character length (R426) has one of the forms:

(length-value)
scalar-integer-literal-constant

A derived-type specification (R455) has the from:

type-name [(type-parameter-spec-list)]

A type parameter specification (R456) has the from:

[keyword =] length-value

The forms of an attribute specification (R503) are:

ALLOCATABLE
ASYNCHRONOUS

BIND (C [, NAME = scalar-char-initialization-expr])
DIMENSION (array-spec)
EXTERNAL
INTENT (intent-spec)
INTRINSIC
OPTIONAL
PARAMETER
POINTER
PRIVATE
PROTECTED
PUBLIC
SAVE
TARGET
VALUE
VOLATILE

The form of an entity declaration (R504) is:

object-name [(array-spec)] [* character-length] [initialization]

The forms of initialization (R506) are:

= initialization-expr
=> function-reference

The forms of specification statements (R212) are:

ALLOCATABLE [::] object-name [(deferred-shape-spec-list)] &
 [, object-name [(deferred-shape-spec-list)]] ...
ASYNCHRONOUS [[::] variable-name-list]
BIND (C [, NAME = scalar-char-initialization-expr]) [::] bind-entity-list

Fortran Concepts and Terms 35

COMMON [/ [common-block-name] /] common-block-object-list
DATA data-statement-object-list / data-value-list / &
 [[,] data-statement-object-list / data-value-list /]
DIMENSION [::] array-name (array-spec) [, array-name (array-spec)] ...
EQUIVALENCE equivalence-set-list
EXTERNAL [::] external-name-list
INTENT (intent-spec) [::] dummy-argument-name-list
INTRINSIC [::] intrinsic-procedure-name-list
NAMELIST / namelist-group-name / namelist-group-object-list
OPTIONAL [::] dummy-argument-name-list
POINTER [::] pointer-declaration-list
PARAMETER (named-constant = initialization-expr &
 [, named-constant = initialization-expr] ...)
PROCEDURE ([procedure-interface]) [[, procedure-attribute-spec] ... ::] &
 procedure-declaration-list
PROTECTED [::] entity-name-list
PUBLIC [[::] access-id-list]
PRIVATE [[::] access-id-list]
SAVE [[::] saved-entity-list]
TARGET [::] object-name [(array-spec)] [, object-name [(array-spec)]] ...
VALUE [::] dummy-argument-name-list
VOLATILE [::] variable-name-list

The forms of a procedure interface (R1212) are:

interface-name
declaration-type-spec

The forms of a procedure attribute specification (R1213) are:

BIND (C [, NAME = scalar-char-initialization-expr])
INTENT (intent-spec)
OPTIONAL
POINTER
PRIVATE
PUBLIC
SAVE

The form of a procedure declaration (R1214) is:

procedure-entity-name [=> function-reference]

The form of a derived-type definition (R429) is:

TYPE [[, type-attribute-list] ::] type-name [(type-parameter-name-list)]
 [type-parameter-definition-statement] ...
 [private-or-sequence-statement]
 [component-definition-statement] ...
[CONTAINS

36 Chapter 2

 [PRIVATE]
 procedure-binding-statement
 [procedure-binding-statement] ...]
END TYPE [type-name]

The forms of a type attribute (R431) are:

ABSTRACT

BIND (C)
EXTENDS (parent-type-name)
PRIVATE
PUBLIC

The form of a type parameter definition statement (R435) is:

INTEGER [kind-selector] , type-parameter-attribute-spec :: &
 type-parameter-declaration-list

The forms of a type parameter attribute specification (R437) are:

KIND
LEN

The form of a type parameter declaration (R436) is:

type-param-name [= scalar-integer-initialization-expr]

The forms of a component definition statement (R439) are:

declaration-type-spec [[, component-attribute-spec-list] ::] &
 component-declaration-list
PROCEDURE ([procedure-interface]) , procedure-component-attribute-spec-list :: &
 procedure-declaration-list

The forms of a component attribute specification (R441) are:

ALLOCATABLE

DIMENSION (component-array-spec)
POINTER
PRIVATE
PUBLIC

The form of a component declaration (R442) is:

component-name [(component-array-spec)] [* character-length] [initialization]

The forms of a procedure component attribute specification (R446) are:

NOPASS

PASS [(argument-name)]
POINTER
PRIVATE
PUBLIC

Fortran Concepts and Terms 37

The form of an interface block (R1201) is:

[ABSTRACT] INTERFACE [generic-spec]
 [subprogram-heading
 [specification-part]
 subprogram-ending] ...
 [[MODULE] PROCEDURE procedure-name-list] ...
END INTERFACE [generic-spec]

The forms of a generic specification (R1207) are:

generic-name
OPERATOR (defined-operator)
ASSIGNMENT (=)
derived-type-io-generic-spec

The form of an enumeration definition (R460) is:

ENUM , BIND (C)
 ENUMERATOR [::] enumerator-list
 [ENUMERATOR [::] enumerator-list] . . .
END ENUM

2.5.3 The Execution Part

The form of the execution part (R208) is:

execution-part-construct
 [execution-part-construct] ...

The forms of an execution part construct (R209) are:

executable-construct
entry-statement
format-statement

The forms of an executable construct (R213) are:

action-statement
associate-construct
case-construct
do-construct
forall-construct
if-construct
select-type-construct
where-construct

The forms of an action statement (R214) are:

variable = expression
data-pointer-object [(bounds-list)] => data-target
data-pointer-object (bounds-remap-list) => data-target

38 Chapter 2

procedure-pointer-object => procedure-target
ALLOCATE [declaration-type-spec ::] (allocation-list [, allocate-option-list])
BACKSPACE scalar-integer-expression
BACKSPACE (position-spec-list)
CALL subroutine-name [([actual-argument-spec-list])]
CLOSE (close-spec-list)
CONTINUE

CYCLE [do-construct-name]
DEALLOCATE (allocate-object-list [, deallocate-option-list])
ENDFILE scalar-integer-expression
ENDFILE (position-spec-list)
EXIT [do-construct-name]
FLUSH scalar-integer-expression
FLUSH (flush-spec-list)
FORALL (forall-triplet-specification-list [, scalar-logical-expression]) &
 forall-assignment-statement
GO TO label
GO TO (label-list) [,] scalar-integer-expression
IF (scalar-logical-expression) action-statement
IF (scalar-numeric-expression) label , label , label
INQUIRE (inquire-spec-list)
INQUIRE (IOLENGTH = scalar-integer-variable) output-item-list
NULLIFY (pointer-object-list)
OPEN (connection-spec-list)
PRINT format [, output-item-list]
READ (io-control-spec-list) [input-item-list]
READ format [, input-item-list]
RETURN [scalar-integer-expression]
REWIND scalar-integer-expression
REWIND (position-spec-list)
STOP [scalar-character-constant]
STOP digit [digit [digit [digit [digit]]]]
WAIT (wait-spec-list)
WHERE (logical-expression) where-assignment-statement
WRITE (io-control-spec-list) [output-item-list]

The form of the ASSOCIATE construct (R816) is:

[associate-construct-name :] ASSOCIATE (association-list)
 block
END ASSOCIATE [associate-construct-name]

The form of the CASE construct (R808) is:

[case-construct-name :] SELECT CASE (case-expression)
[CASE (case-value-range-list) [case-construct-name]
 block] ...

Fortran Concepts and Terms 39

[CASE DEFAULT [case-construct-name]
 block]
END SELECT [case-construct-name]

The form of the DO construct (R825) is:

[do-construct-name :] DO [label] [loop-control]
 block
[label] END DO [do-construct-name]

The form of the FORALL construct (R752) is:

[forall-construct-name :] &
 FORALL (forall-triplet-spec-list [, scalar-logical-expression])
 [forall-body-construct] ...
END FORALL [forall-construct-name]

The form of the IF construct (R802) is:

[if-construct-name :] IF (scalar-logical-expression) THEN
 block
[ELSE IF (scalar-logical-expression) THEN [if-construct-name]
 block] ...
[ELSE [if-construct-name]
 block]
END IF [if-construct-name]

The form of the SELECT TYPE construct (R821) is:

[select-construct-name :] SELECT TYPE ([associate-name =>] selector)
 [type-guard [select-construct-name]
 block] . . .
END SELECT [select-construct-name]

The form of the WHERE construct (R744) is:

[where-construct-name :] WHERE (logical-expression)
 [where-body-construct] ...
[ELSEWHERE (logical-expression) [where-construct-name]
 [where-body-construct] ...] ...
[ELSEWHERE [where-construct-name]
 [where-body-construct] ...]
END WHERE [where-construct-name]

2.6 Ordering Requirements

Within program units, subprograms, and interface bodies there are ordering require-
ments for statements and constructs. The syntax rules above do not fully describe the

40 Chapter 2

ordering requirements. Therefore, they are illustrated in Table 2-1. In general, data dec-
larations and specifications must precede executable constructs and statements, al-
though FORMAT, DATA, and ENTRY statements may appear among the executable
statements. Placing DATA statements among executable constructs is now an obsoles-
cent feature. USE statements, if any, must appear first. Internal or module subpro-
grams, if any, must appear last following a CONTAINS statement.

In Table 2-1 a vertical line separates statements and constructs that can be inter-
spersed; a horizontal line separates statements that must not be interspersed.

2.7 Example Fortran Program

Illustrated below is a very simple Fortran program consisting of one program unit, the
main program. Three data objects are declared: H, T, and U. These become the loop in-
dices in a triply-nested loop construct (8.7) containing a logical IF statement (8.4.2) that
conditionally executes an input/output statement (9.4).

Table 2-1 Requirements on statement ordering

PROGRAM, FUNCTION, SUBROUTINE, MODULE, or BLOCK DATA statement

USE statements

IMPORT statements3

FORMAT5

and
ENTRY4

statements

IMPLICIT NONE

PARAMETER statements IMPLICIT statements

PARAMETER and
DATA statements6

Derived-type definitions,
interface blocks,7

type declaration statements,
enumeration statements,
procedure statements,
statement function statements,2,5

and specification statements

DATA statements1 Executable constructs5

CONTAINS statement8

Internal subprograms or module subprograms

END statement

1. Placing DATA statements among executable constructs is obsolescent.
2. Statement function statements are obsolescent.
3. Can appear only in interface bodies.
4. Can appear only in modules and external procedures.
5. Cannot appear in module specification parts, interface bodies, and block data subprograms.
6. Cannot appear in interface bodies.
7. Cannot appear in block data subprograms.
8. Cannot appear in internal subprograms, interface bodies, and block data subprograms.

Fortran Concepts and Terms 41

program sum_of_cubes
! This program prints all 3-digit numbers that
! equal the sum of the cubes of their digits.
implicit none
integer :: H, T, U
do H = 1, 9

 do T = 0, 9
 do U = 0, 9

 if (100*H + 10*T + U == H**3 + T**3 + U**3) &
 print "(3I1)", H, T, U
 end do

 end do
end do
end program sum_of_cubes

This Fortran program is standard conforming and should be compilable and exe-
cutable on any standard Fortran computing system, producing the following output:

153
370
371

