
Chapter 2

PRELIMINARIES

In this chapter, some definitions and basic notations of Boolean alge-
bra and reduced ordered Binary Decision Diagrams (BDDs) are given,
as far as they are used in the following chapters. First, Boolean func-
tions are defined and an important method for their decomposition is
explained. Then a formal definition of BDDs is given.

2.1 Notation
This section explains general notations used throughout this book.

Often sets and power sets are considered. The notation for the power
set of a given set M is

2M = {S|S ⊆ M}.
IN denotes the set of natural numbers not including zero, i.e.

IN = {1, 2, . . .}.
Variables which are assumed to have values in IN are most of the time
denoted by the letters i, j, k, m and n. Then, if the range of these vari-
ables is given by the context, sometimes a specification like “n ∈ IN” is
omitted for simplicity.

When giving a result which expresses a both-way implication “if and
only if” between a left and a right side of the statement, often the
notation “iff” will be used as abbreviation, e.g.

a =
√

b iff a2 = b.

Functions usually are denoted using the identifiers f , g, and h. A func-
tion f is given as a mapping from a domain X to a co-domain Y . Domain

10 ADVANCED BDD OPTIMIZATION

and co-domain are stated in advance, e.g. f : X → Y . The mapping then
is defined with an expression of the form

f(x) = an expression using x

or

(x1, x2, . . . , xk) �→ an expression using x1, x2, . . . , xk

(e.g., in the case of a function f : IN2 → IN, the function may be given
in the form (x1, x2) �→ x1 · x2).

However, in the case of captions of figures etc. a shorter notation may
be used to save space: the function above might be given in the short
form

f = x1 · x2.

This is done only if domain and co-domain are clear or given by the
context (e.g. if f above is already known to be a Boolean function, it is
clear from the short notation that f : {0, 1}2 → {0, 1}).

2.2 Boolean Functions
Let B:={0, 1} and n ∈ IN. Boolean variables, typically denoted by

Latin letters, e.g. x, y, z are bound to values in B. Variables are referred
to by subscripts which are from the set {1, 2, . . . , n}, e.g.

x1, x2, . . . , xn.

To denote the set {x1, x2, . . . , xn} of “standard” variables we use the
notation Xn. Later, in Chapter 4, also the notation X i

jX = {xi, xi+1, . . .,
xj−1, xj} will be used to refer to several subsets of Xn. The following is
an introduction of notations defining Boolean functions.

Definition 2.1 Let m, n ∈ IN. A mapping

f :Bn → Bm

is called a Boolean function. In the case of m = 1 we say f is a single-
output function, otherwise f is called a multi-output function.

These terms are used because Boolean functions are used to describe
the digital logic of a circuit. A circuit transforms inputs, i.e. a vector
of incoming Boolean signals to a vector of outputs, thereby following a
certain logic. This logic can be described by a Boolean function.

Other properties of a circuit (e.g. critical path delay or area require-
ment) need a more sophisticated representation (e.g. as BDD which is a
special form of a graph). Let f : Bn → Bm be a Boolean function. To

Preliminaries 11

put emphasis on the arity n of f , we may choose to write f (n) instead
of f . This notation will be used for functions in general, e.g. later on
we use it to denote variable orderings π(n) (see Section 2.4). Sometimes
we may even write f (n,m) to reflect the whole signature of a (Boolean)
function f .

A multi-output function f : Bn → Bm can be interpreted as a family

of m single-output functions (f
(n)
iff)1≤i≤m. The fiff ’s are called component

functions.
To achieve a standard, in this book the set of variables of a Boolean

function f (n) will always be assumed to be Xn. If not stated otherwise,
Boolean functions are assumed to be total (completely specified), i.e. there
exists a defined function value for every vector of input variables. The
Boolean functions constantly mapping every variable to 1 (to 0) are
denoted one (zero), i.e.

one : Bn → Bm; (x1, x2, . . . , xn) �→ 1,

zero : Bn → Bm; (x1, x2, . . . , xn) �→ 0.

A Boolean variable xi itself can be interpreted as a first example of a
Boolean function

xi:B
n → B; (a1, a2, . . . , ai, . . . , an) �→ ai.

This function is called the projection function for the i-th component.

Definition 2.2 The complement of a Boolean variable xi is given by
the mapping

xi: Bn → B; (a1, a2, . . . , ai, . . . , an) �→ ai

where ai = 1 iff ai = 0.

An interesting class of Boolean functions are (partially) symmetric func-
tions. Later, in Chapter 3, algorithms for BDD minimization will be
presented which exploit (partial) symmetry to reduce run time.

Definition 2.3 Let f :Bn → Bm be a multi-output function. Two vari-
ables xi and xj are called symmetric, iff

f(x1, . . . , xi, . . . , xj , . . . , xn)

= f(x1, . . . , xi−1, xj , xi+1, . . . , xj−1, xi, xj+1, . . . , xn).

Symmetry is an equivalence relation which partitions the set Xn into
disjoint classes S1, . . . , Sk called the symmetry sets. A function f is
called partially symmetric, iff it has at least one symmetry set S with
|S| > 1. If a function f has only one symmetry set set S = Xn, then it
is called totally symmetric.

12 ADVANCED BDD OPTIMIZATION

2.3 Decomposition of Boolean Functions
Definition 2.4 Let f : Bn → Bm be a Boolean function. The cofactor
of f for xi = c (c ∈ B) is the function fxff

i=c: Bn → Bm. For all
variables in Xn it is defined as

fxff
i=c(x1, x2, . . . , xi−1, xi, xi+1, . . . , xn)

= f(x1, x2, . . . , xi−1, c, xi+1, . . . , xn).

A cofactor of f is the function derived from f by fixing a variable of f
to a value in B. Formally, a cofactor of f (n) has the same arity n. In
contrast to all variables different from xi, the variable xi is not free in
the cofactor fxff

i=c. Hence the cofactor does not depend on this variable
(see Definition 2.5).

Despite the generality of the last definition covering multi-output
functions, sometimes only the cofactors of single-output functions
f : Bn → B are of interest. When a multi-output function f (n,m) =

(f
(n)
iff)1≤i≤m is given, we often consider the cofactors of the component

functions fiff only. These cofactors then are single-output functions of
arity n. A cofactor of a multi-output function f can be interpreted as a
family of cofactors of the component functions of f .

A cofactor fxff
i=c is sometimes called a direct cofactor to emphasize

that there is only one variable bound to a value in B. This opposes to
a cofactor in more than one variable. E.g., for k ≤ n, xi1 , . . . , xik ∈ XnXX
and c1, . . . , ck ∈ B, the function fxff

i1
=c1,xi2

=c2,...,xik
=ck

is a cofactor in
multiple variables. This cofactor is equivalent to several direct cofactors,
e.g. to

(fxff
i1

=c1,xi2
=c2,...,xik−1

=ck−1
)xik

=ck
.

In general it is equivalent to

(fxff
i1

=c1,xi2
=c2,...,xij−1

=cj−1,xij+1
=cj+1,...,xik

=ck
)xij

=cj

for any 1 ≤ j ≤ k. A cofactor in multiple variables is uniquely deter-
mined regardless of the order in which we fix these variables. Hence,
these cofactors can also be thought of being obtained by simultaneously
fixing all the involved variables. To obtain increased readability, some-
times a “|” sign is used to separate the function symbol from the list of
variable bindings, e.g. we write fjf |xi1

=c1
for a cofactor in a component

function fjf .

Definition 2.5 Let f : Bn → Bm be a Boolean function and let xi ∈
XnXX . Then function f is said to essentially depend on xi iff

fxff
i=0 �=�� fxff

i=1.

Preliminaries 13

The set of variables which f essentially depends on, is called the support
of f and is denoted supportn,m(f). Usually n, m are clear from the
context and hence we simply write support(f).

Formally, supportn,m is a mapping {f | f : Bn → Bm} → 2Xn . If
not stated otherwise, a given Boolean function f : Bn → Bm is always
defined over the variable set Xn and always support(f) = Xn is assumed.
The next definition characterizes cofactors of a Boolean function which
are derived by fixing at least one variable of the support of the function.

Definition 2.6 Let f : Bn → Bm be a Boolean (single or multi-output)
function over Xn. A cofactor fxff

i1
=a1,xi2

=a2,...,xik
=ak

with xi1 , xi2 , . . . ,

xik ∈ XnXX , (a1, a2, . . . , ak) ∈ Bk is called true iff

{xi1 , xi2 , . . . , xik} ∩ support(f) �=�� ∅.

Note that true cofactors of a function cannot be equivalent to the func-
tion itself.

Often it is more useful to consider a set of cofactors of a Boolean
function rather than considering just one particular cofactor. This is
reflected by the next definition.

Definition 2.7 Let f :Bn → Bm; f = (f
(n)
iff)1≤i≤m be a Boolean multi-

output function essentially depending on all its input variables and let
I ⊆ Xn. The set of non-constant cofactors of f with respect to the
variables in I is denoted cofn,m(f, I). Formally, a function cofn,m is
given as

cofn,m: {f | f : Bn → Bm} × 2Xn → 2{f |f : B
n→B

m};

(f, {xi1 , . . . , xik}) �→
{fiff |xi1

=a1,...,xik
=ak

non-constant | 1 ≤ i ≤ m, (a1, . . . , ak) ∈ Bk}

for 1 ≤ k ≤ n.

The set cofn,m(f, I) is the set of all distinct (non-constant and single-
output) cofactors of f (f is interpreted as a family of m n-ary single-
output functions) with respect to all variables in I. Note that this is not
a multiset, hence functionally equivalent cofactors are eliminated and
thus do not contribute to |cofn,m(f, I)|.

If n and m are clear from the context, we simply write cof(f, I).

14 ADVANCED BDD OPTIMIZATION

Next, we restrict this set to contain only cofactors that are true co-
factors of one of the single-output functions fiff .

Definition 2.8 Let f :Bn → Bm; f = (f
(n)
iff)1≤i≤m be a Boolean multi-

output function essentially depending on all its input variables and let
I ⊆ Xn. The set of non-constant true cofactors of f with respect to the
variables in I is denoted tcofn,m(f, I). Formally, a function tcofn,m is
given as

tcofn,m: {f | f : Bn → Bm} × 2Xn → 2{f |f : B
n→B

m};

(f, {xi1 , . . . , xik}) �→
{ fiff |xi1

=a1,...,xik
=ak

non-constant and true cofactor of fiff |

1 ≤ i ≤ m, (a1, . . . , ak) ∈ Bk }
for 1 ≤ k ≤ n.

Let fiff �=�� fjf be two distinct single-output functions in the family

(f
(n)
iff)1≤i≤m. Note that a true cofactor in fiff can be functionally equiva-

lent to a cofactor of fjf that is not true. In other words, the cofactors in
the set tcofn,m(f, I) are not required to be true in every single-output
function, it is only required that at least one such single-output function
exists.

Again if n and m are given from the context, we simply write tcof(f, I).

The following well-known theorem [Sha38] allows to decompose
Boolean functions into “simpler” sub-functions.

Theorem 2.9 Let f : Bn → Bm be a Boolean function (over Xn). For
all xi ∈ Xn we have:

f = xi · fxff
i=1 + xi · fxff

i=0. (2.1)

It is straightforward to see that the sub-functions obtained by subse-
quent application of Theorem 2.9, called the Shannon decomposition,
to a function f are uniquely determined. Note that this ensures the
well-definedness of cofactor set definitions.

2.4 Reduced Ordered Binary Decision Diagrams
Many applications in VLSI CAD make use of reduced ordered Binary

Decision Diagrams (BDDs) as introduced by [Bry86]:

Preliminaries 15

A BDD is a graph-based data structure. Redundant nodes in the
graph, i.e. nodes not needed to represent f , can be eliminated. BDDs
allow a unique (i.e. canonical) representation of Boolean functions. At
the same time they allow for a good trade-off between efficiency of ma-
nipulation and compactness. Compared to other techniques to represent
Boolean functions, e.g. truth tables or Karnaugh maps, BDDs often re-
quire much less memory and faster algorithms for their manipulation do
exist.

In the following, a formal definition of BDDs is given. We start
with purely syntactical definitions by means of Directed Acyclic Graphs
(DAGs). First, single-rooted Ordered Binary Decision Diagrams
(OBDDs) are defined. This definition is extended to multi-rooted graphs,
yielding Shared OBDDs (SBDDs). Next, the semantics of SBDDs is de-
fined, clarifying how Boolean functions are represented by SBDDs.

After that, reduction operations on SBDDs are introduced which pre-
serve the semantics of an SBDD. This leads to the final definition of
reduced SBDDs that will be called BDDs for short in this book.

Finally, some definitions and notations are given which allow to dis-
cuss various graph-oriented properties of BDDs, among them paths in
BDDs and their (expected) length.

Examples are given to illustrate the formal definitions where appro-
priate.

2.4.1 Syntactical Definition of BDDs
Definition 2.10 An Ordered Binary Decision Diagram (OBDD) is a
pair (π, G) where π denotes the variable ordering of the OBDD and G is
a finite DAG G = (V, E) (V((denotes the set of vertices and E denotes
the set of edges of the DAG) with exactly one root node (denoted root)
and the following properties:

A node in V is either a non-terminal node or one of the two terminal
nodes in {1, 0}.

Each non-terminal node v is labeled with a variable in Xn, denoted
var(v), and has exactly two child nodes in V which are denoted then(v)
and else(v).

On each path from the root node to a terminal node the variables are
encountered at most once and in the same order.

More precisely, the variable ordering π of an OBDD is a bijection

π: {1, 2, . . . , n} → Xn

16 ADVANCED BDD OPTIMIZATION

f

1

2 2

f

2 3

1

1 0

x3xx3x

x

x3xx3x

x x

1 0

x3xx3x

x x

x

x2xx2x

Figure 2.1. Representation of f = x1 · x2 + x1 · x3 by an OBDD and an unordered
BDD.

where π(i) denotes the i-th variable in the ordering. The above con-
dition “in the same order” states that for any non-terminal node v
we have

π−1(var(v)) < π−1(var(then(v)))

iff then(v) is also a non-terminal node and

π−1(var(v)) < π−1(var(else(v)))

iff else(v) is also a non-terminal node.

Even though this might look a bit “over-formal”, the notation is required
in the following to prove the correctness of the algorithms.

Example 2.11 In Figure 2.1 two different types of binary decision dia-
grams are depicted. Solid lines are used for the edges from v to then(v)
whereas dashed lines indicate an edge between v and else(v). In both
diagrams the variables in {x1, x2, x3} are encountered at most once on
every path. Whereas the right diagram is not ordered since the variables
are differently ordered along distinct paths, the left one respects the or-
dering π(1) = x1, π(2) = x2, π(3) = x3. Both diagrams represent the
function f : B3 → B; (x1, x2, x3) �→ x1 · x2 + x1 · x3, as will be explained
in a later section.

Where appropriate, we will speak of an OBDD over Xn to put empha-
sis on the set of variables used as node labels. However, if not stated
otherwise, an OBDD is always assumed to be an OBDD over Xn.

Note that OBDDs are connected graphs, as all nodes must be con-
nected via at least one path to the (only) root node: to see this, assume
the graph consists of more than one connected component. But then,

Preliminaries 17

due to the graph being finite and acyclic, there must exist a second root
node for the second component graph. This contradicts the assumption
that the graph is single-rooted. Let root ∈ V denote the one root node
of the OBDD.

Formally, a function var: V \ {1,0} → Xn maps non-terminal nodes
to variables and functions then: V \ {1,0} → V \ {root} and else: V \
{1,0} → V \ {root} map non-terminal nodes to child nodes. Both func-
tions are well-defined and total. If not stated otherwise, we will consider
surjective functions var, i.e. every variable in Xn appears as label in the
OBDD. This corresponds to the convention to consider Boolean func-
tions which essentially depend on every variable in Xn. In general none
of these functions is required to be injective, i.e. several nodes can have
the same label and share the same child nodes. Let G = (V, E) be the
underlying graph of an OBDD (. . . , G) and let v ∈ V \ {1,0}. We call
then(v) the 1-child and else(v) the 0-child of v.

For an edge e ∈ E (E ⊆ V × V), we denote the type of the edge with
t(e), i.e. we have t(e) = 1 for an edge e = (v, then(v)) (called a 1-edge)
and t(e) = 0 for an edge e = (v, else(v)) (called a 0-edge).

Definition 2.12 A Shared OBDD (SBDD) is a tuple (π, G, O). G
is a rooted, possibly multi-rooted DAG (V, E) which consists of a finite
number of graph components. These components are OBDDs, all of
them respecting the same variable ordering π. O ⊆ V \ {1,0} is a finite
set of output nodes O = {o1, o2, . . . , om}. An SBDD has the following
properties:

A node in V is either a non-terminal node or one of the two terminal
nodes in {1, 0}.
Every root node of the component OBDD graphs must be contained
in O (but not necessarily vice versa).

Example 2.13 An example of an SBDD is given in Figure 2.2. The
nodes pointed to by f1, f2ff and f3ff are output nodes. Note that every root
node is an output node (pointed to by f2ff and f3ff). An output node must
not necessarily be a root node (see the node pointed to by f1).

Also note that in SBDDs multiple graphs can share the same node, a
property which helps to save nodes and to reduce the size of the diagram.
In contrast to the OBDD in Figure 2.1, an SBDD represents multiple
Boolean functions in only one diagram, as will be explained later.

Where appropriate, again we speak of an SBDD over Xn to clarify
the set of node labels.

If there is only one component in G and if O is a singleton (consisting
of the one root node of G), an SBDD specializes to an OBDD. Later, in

18 ADVANCED BDD OPTIMIZATION

1 1

f
2
ff

f
1
ff

2 2

3
f
3

1 0

x3xx3x

x

x3xx3x

x

x x

Figure 2.2. A shared OBDD (SBDD).

the case that for some reason single-rooted diagrams must explicitly be
excluded, or to put emphasis on the multi-rooted case, the term “shared
BDD” will be used where a BDD is a “reduced” SBDD (see Definition
2.16 and also Remark 1). Since SBDDs are not necessarily reduced, the
terms “SBDD” and “shared BDD” should not be mixed up.

The idea behind the set O is to declare additional non-terminal, non-
root nodes as nodes representing Boolean functions. This will be clarified
in the next section when the semantics of BDDs is defined. Note that
also SBDDs have at most two terminal nodes which are shared by the
components.

2.4.2 Semantical Definition of BDDs
Definition 2.14 An SBDD (. . . , G,O), over Xn with O = {o1, o2, . . .,

om} represents the multi-output function f := (f
(n)
iff)1≤i≤m defined as

follows:

If v is the terminal node 1, then fvff = one, if v is the terminal node
0, then fvff = zero.

If v is a non-terminal node and var(v) = xi, then fvff is the function

fvff (x1, x2, . . . , xn)

= xi · fthen(ff v)(x1, x2, . . . , xn) + xi · felse(ff v)(x1, x2, . . . , xn).

For 1 ≤ i ≤ m, fiff is the function represented by the node oi.

The expression fthen(ff v) (felse(ff v)) denotes the function represented by the
child nodes then(v) (else(v)). At each node of the SBDD, essentially
a Shannon decomposition (see Theorem 2.9) is performed. In this, an
SBDD recursively splits a function into simpler sub-functions. The first

Preliminaries 19

f

2

1

f

2

1

x3x

x

x

01

x3x

x

x

0 1

Representation of f = x1 · x2 + x1 · x3 and f = x1 · x2 + x1 · x3.

definitions of binary decision diagrams are due to [Lee59] and [Ake78a].
Complemented Edges (CEs) are an important extension of the basic BDD
concept and have been described in [Ake78b, Kar88, MB88, MIY90,
BRB90]. The idea is to use the close similarity between the BDD rep-
resenting a function f and the BDD representing its complement. For
example see Figure 2.3 where a left BDD for f = x1 · x2 + x1 · x3 and a
right BDD for f = x1 · x2 + x1 · x3 is given. The diagrams are identical
except for interchanged terminal nodes.

A CE is an ordinary edge that is tagged with an extra bit (complement
bit): This bit is set to indicate that the connected sub-graph must be
interpreted as the complement of the formula that the sub-graph rep-
resents. CEs allow to represent both a function and its complement by
the same node, modifying the edge pointing to that node instead. As a
consequence, only one constant node is needed. Usually the node 1 is
kept, allowing the function zero to be represented by a CE to 1.

Note that it is not necessary to store the complement bit as an extra
element of the node structure. Instead, a smart implementation tech-
nique can be used which exploits the memory alignment used in present
computer systems: modern CPUs require allocated objects to reside at a
memory address that is evenly divisible by some small constant, e.g. of-
ten this is the constant two or four. Consequently, the least significant
bit of a pointer word is irrelevant for address calculation. Therefore it
can be used to store the complement bit (provided that an appropriate
bit mask is applied before address calculation). Hence using CEs does
not cause any memory overhead. SBDDs with CEs are used today in
many modern BDD packages.

For the sake of a more understandable presentation of the achieved
results, in this book “classical”, unmodified SBDDs without CEs are
used in most of the examples and their illustrations (with the exception

20 ADVANCED BDD OPTIMIZATION

f

1

f

2

1

2 2

1 0

x3xx3x

x

x3xx3x x3x

x

x

1 0

x x

Figure 2.4. Two different SBDDs for f : (x1, x2, x3) �→ x1 · x2 + x1 · x3.

of Section 5.1 where CEs are discussed explicitly). However, all results
presented throughout the book hold for BDDs with CEs and can easily
be transferred to BDDs without CEs.

Note that in case of using CEs special attention must be drawn to
maintain a so-called “canonical form”, i.e. to achieve uniqueness of the
representation of Boolean functions. This will be addressed again in
Section 2.4.3 where the unique, irreducible form of BDDs is introduced.

2.4.3 Reduction Operations on SBDDs
In the previous sections, we developed syntax and semantics of a spe-

cial form of graphs which are representing Boolean functions. However,
even if the considered variable ordering is fixed, still there exist sev-
eral possibilities of representing a given function: in Figure 2.4 we see
two different SBDDs respecting the same variable ordering π−1(x1) <
π−1(x2) < π−1(x3), representing the same function f : B3 → B;
(x1, x2, x3) �→ x1 · x2 + x1 · x3. Next, we will give reduction opera-
tions on SBDDs which transform an SBDD into an irreducible form,
while the function represented by the SBDD is preserved. This is a cru-
cial technique leading to an SBDD respecting a given variable ordering
which is unique up to graph isomorphism and of minimal size.

A reduced SBDD then is the final form of binary decision diagrams
that will be considered throughout this book, called BDD.

Definition 2.15 Given an SBDD (. . . , G,O), there are the following
two reduction rules which can be applied to G = (V, E):

Deletion Rule: Let v ∈ V be a node with

then(v) = else(v) =: v′.

Preliminaries 21

f

f

jx

ix

jx

Figure 2.5. Deletion Rule for SBDD-reduction.

f f

ixix

xjxjx

ix

xjxjx

Figure 2.6. Merging Rule for SBDD-reduction.

Then the reduction del(v, v′) is applicable to G, resulting in a graph
G[del(v, v′)] obtained by a) redirecting all edges that are pointing to
v to the node v′ and b) inserting v′ into O iff v ∈ O and c) deleting
v from V and O.

Merging Rule: Let v, v′ ∈ V be two nodes with

1) var(v) = var(v′),

2) then(v) = then(v′), and

3) else(v) = else(v′).

Then the reduction merge(v, v′) is applicable to G, resulting in a graph
G[merge(v, v′)] obtained by a) redirecting all edges pointing to v to the
node v′ and b) inserting v′ into O iff v ∈ O and c) deleting v from V
and O.

In both rules with action b) we ensure that output nodes do not “van-
ish”. In Figures 2.5 and 2.6 the application of both reduction rules is
illustrated. It is straightforward to see that the application of one of
the two reduction operations del and merge does not change the func-

22 ADVANCED BDD OPTIMIZATION

tion represented by the affected SBDD: first, with the Deletion Rule,
redundant nodes are deleted. Let fvff denote the function represented by
node v and let var(v) = x. Provided that the Deletion Rule applies, we
have then(v) = else(v) =: v′. Then, by Definition 2.14,

fvff = x · fthen(ff v) + x · felse(ff v)

= x · fvff ′ + x · fvff ′

= (x + x)fvff ′ = fvff ′ ,

hence deletion of v and redirection of all ingoing edges to the functionally
equivalent node v′ preserves the function represented by the diagram.

Second, with subsequent application of the Merging Rule isomorphic
sub-graphs are identified. Provided that the Merging Rule applies, we
have var(v) = var(v′) := x and the equivalence of the 1-children (0-
children) of v and v′. Functional equivalence of the nodes v and v′

follows directly from Definition 2.14: it is

fvff = x · fthen(ff v) + x · felse(ff v)

= x · fthen(ff v′) + x · felse(ff v′)

= fvff ′ ,

thus using v′ instead of v on every path of the BDD and discarding v
collapses the graph but the represented function is not changed.

Definition 2.16 An SBDD is called reduced iff there is no node where
one of the reduction rules (i.e., the Deletion or the Merging Rule) ap-
plies.

The term “reduced” is used here since it has become common in the
literature. This is done despite the fact that the older and more accurate
term “irreducible” known from the paradigm of rewriting systems could
be applied as well.

Remark 1 In the following, only reduced SBDDs are considered and
for simplicity, they are called BDDs (or shared BDDs when explicitly
excluding single-rooted BDDs).

The size of a BDD F = (. . . , G, . . .) is the number of nodes in the
underlying graph G, denoted |F | (or sometimes also |G|). The following
theorem [Bry86] holds:

Theorem 2.17 BDDs are a canonical representation of Boolean func-
tions, i.e. the BDD-representation of a given Boolean function with re-
spect to a fixed variable ordering is unique up to isomorphism and is of
minimal size.

Preliminaries 23

This property of BDDs is useful especially when checking the equivalence
of two Boolean functions represented as a BDD. If the functions are in-
deed equivalent, their representation must be isomorphic. Actually, in
modern, efficient BDD packages [BRB90, DB98, Som01, Som02] equiv-
alent functions are represented by the same graph. Once the BDDs for
the functions have been built, equivalence checking can be done in con-
stant time (comparing the address of the root nodes of the representing
graphs).

In a similar manner, it can be decided in constant time whether a
Boolean function is satisfiable or not, once the BDD representing the
function has been built: it suffices to check whether the BDD is the one
for the constant zero function or not. In the latter case, the function
must be satisfiable.

Moreover, it is known that computing a satisfying assignment of the
n input variables can be done in time which is linear in n [Bry86].

The result of Theorem 2.17 is reflected in the next definition intro-
ducing a convenient notation to refer to the one BDD representing a
Boolean function f with respect to a variable ordering π: we use the fact
that the set of all BDDs representing a given Boolean function f (n,m)

can be decomposed into equivalence classes of isomorphic BDDs, i.e. we
have one class for every ordering.

Definition 2.18 Let f (n,m) be a Boolean function and let π(n) a vari-
able ordering. Then BDDn,m(f, π) denotes the equivalence class of BDDs
representing f and respecting π. If n, m are clear, we simply write
BDD(f, π).

We may find it convenient to identify a class BDD(f, π) with an arbitrary
representative, i.e. we speak of the BDD BDD(f, π) instead of the class
of all BDDs isomorphic to the (chosen) representative. Formally, if F is
a class of BDDs, we identify F with F .

An example of this would be using BDD(f, π) as parameter of a func-
tion which is expecting a BDD as argument. This simplification is harm-
less, as long as the following holds: the resulting function value must be
preserved with respect to changes of the class representative. Instead
of declaring a BDD with F ∈ BDD(f, π), this will be done in the form
F := BDD(f, π). This is a relaxed notation, expressing that F is as-
signed a certain, fixed class representative. This notation is used to
support complete abstraction from the details of graph isomorphism.

The introduced terminology directly transfers to BDDs with CEs.
However, as has already been mentioned before in Section 2.4.2, special
care has to be taken here to maintain a canonical form. The reason
is the existence of several functional equivalences of distinct, reduced

24 ADVANCED BDD OPTIMIZATION

x

x x

xx x

xx

Figure 2.7. Pairs of functions represented as BDDs with CEs that are functional
equivalent.

BDDs with CEs as illustrated in Figure 2.7. A dot on an edge indicates
a complemented edge (otherwise it is a regular edge).

As a remedy, it must be constrained where CEs are used. To achieve
a unique representation it suffices to restrict the 1-edge of every node
to be a regular edge. Thus, in Figure 2.7 always the left member of
each functionally equivalent pair is chosen. It can be shown that this
already guarantees a canonical form. All function-preserving reduction
operations which follow this constraint result in a unique BDD with CEs
which also respects this condition.

2.4.4 Variable Orderings of BDDs
A problem with BDDs however is their sensitivity to variable order-

ing. To illustrate this, an example is reviewed which has been given in
[Bry86].

Example 2.19 Let n ∈ IN be even and let f : Bn → B;

(x1, x2, . . ., xn) �→ x1 · x2 + x3 · x4 + . . . + xn−1 · xn.

A BDD for f respecting the variable ordering π(1) = x1, π(2) = x2, . . .,
π(n − 1) = xn−1, π(n) = xn is given in Figure 2.8: the left BDD is of
size n. Since f obviously depends on all n variables, this is the optimal
size.

However, the right BDD for f respecting the variable ordering π(1) =
x1, π(2) = x3, . . . , π(n/2) = xn−1 , π(n/2 + 1) = x2, π(n/2 + 2) =
x4, . . . , π(n) = xn is of exponential size: it is straightforward to see that
the graph is of size 2(n/2)+1 − 2.

That is, depending on the variable ordering the size of a BDD may vary
from linear to exponential in n, the number of input variables.

Preliminaries 25

3

4

2

1

f

5

n

n−1

1

f

3 3

5 5 5 5

n

2 2

n−1 n−1 n−1 n−1

x

x

x

x

x

x

1

x

x

x x

x x x x

01

x

x x

x x x x

Figure 2.8. Two BDDs for f = x1 · x2 + x3 · x4 + . . . + xn−1 · xn.

To describe approaches to minimization of BDD size (as will be done
in Chapters 3 and 4), a formalism expressing variable orderings, changes
of these orderings and movements of variables is necessary. This section
introduces the notation used throughout this book for this purpose.

In some cases, when considering the variable ordering of a given BDD,
the ordering is not needed explicitly. E.g. this is the case, when a BDD
is given with respect to an initial ordering: considering methods for BDD
size minimization, we are often interested in expressing (or restricting)
the effect of the changes from one ordering to another. In this case we
are not interested in the initial ordering from which a heuristic or an
exact reordering method has been started.

In such cases we omit stating the ordering and thus in all examples,
if not stated otherwise, the “natural” ordering defined by

π(i) = xi (i ∈ {1, 2, . . . , n})

26 ADVANCED BDD OPTIMIZATION

is assumed. To express movements (shifts) of variables in the ordering,
i.e. changes in the position of a variable and exchanging a variable with
another variable, often permutations have been used. E.g. [FS90], used
bijections

π: {1, 2, . . . , n} → {1, 2, . . . , n}
to express exchanges of variables. Here, variables xi are referred to by
their subscript i. A certain disadvantage is that both positions in the
ordering and variable subscripts are denoted using natural numbers in
{1, 2, . . . , n}, hence they can be mixed up quite easily.

In [DDG00] bijections

π: Xn → Xn

have been used instead. Both formalisms, although mainly designed to
express changes in an ordering, also allow to express a variable order-
ing: for that we assume π is applied to the natural ordering, the result
is then assumed to be the current ordering.

However, a formalism which directly gives the current position of each
variable can be easier to read in most cases. Hence, instead of denoting
orderings as permutations, throughout the book the mapping π from po-
sitions to variables is used, as already introduced in Definition 2.10. For
the outlined historical reasons (see above), this bijection still is named
π.

The next definition will be used later in Chapter 3 to express sets of
orderings which respect a certain condition.

Definition 2.20 Let I ⊆ Xn. Then Πn(I) denotes the set

Πn(I) = {π: {1, 2, . . . , n} → Xn | {π(1), π(2), . . . , π(|I|)} = I}.
A mapping π ∈ Πn(I) is a variable ordering whose first |I| positions
constitute I. Normally we omit the arity n, writing Π(I) instead of
Πn(I), if n is given from the context.

This allows us to focus the attention to variable orderings with the fol-
lowing property: an ordering π(n) ∈ Πn(I) partitions the set of variables
XnXX into a partition (L, R): let (π, G, . . .) be a BDD over Xn. Nodes with
a label in L = I reside in the upper part of G, i.e. in levels 1, 2, . . . , |I|.
Nodes with a label in R = Xn \ I reside in the lower part of G in levels
|I| + 1, |I| + 2, . . . , n. The definition also allows us to force the last |I|
positions of an ordering to constitute I: this holds for all π ∈ Π(Xn \ I).

Here, the term “level” has been used informally. In the next section
a formal definition of the term “BDD level” will be given.

Preliminaries 27

2.4.5 BDD Levels and their Sizes
In this section additional notations are given which are needed to

formally refer to parts of the BDD, to their sizes and to minimal sizes.

Definition 2.21 A level of a BDD over Xn (or, equivalently, a BDD
level) is a set containing all non-terminal nodes labeled with one par-
ticular variable xi in Xn. Let F = (π(n), . . .) be a BDD over Xn. If
xi = π(k), we speak of the “x“ i-level” as well as the “k“ -th level” or “level
k”.

Definition 2.22 Let

nodesn: {F | F is a BDD over Xn} × Xn → 2{v∈V |(...,(V,E),...) is a BDD};

nodesn(F, xi) = {v | v ∈ V, var(v) = xi where F = (. . . , (V, E), . . .)}.
We straightforwardly extend this definition to also cover sets of variables,
i.e. we define

nodesn: {F | F is a BDD over Xn} × 2Xn → 2{v∈V |(...,(V,E),...) is a BDD};

nodesn(F, X) =
⋃

xi∈X

nodesn(F, xi).

For simplicity, this extension is denoted with the same function sym-
bol. If n is clear from the context, we omit the subscript n, writing
nodes(F, xi) and nodes(F, X) instead of nodesn(F, xi) and nodesn(F, X).
The term nodes(F, xi) denotes the set of nodes in the xi-level of F
whereas the term nodes(F, X) denotes the set of nodes in F labeled
with a variable in X ⊆ Xn.

To express sizes of levels, i.e. the number of nodes in a level, we also
introduce the following function.

Definition 2.23 labeln: {F | F is a BDD over Xn} × Xn → IN;

labeln(F, xi) = |nodesn(F, xi)| ,
and labeln: {F | F is a BDD over Xn} × 2Xn → IN;

labeln(F, X) = |nodesn(F, X)| .
As before, the subscript n is ommited if n is given by the context
and the same function symbol is used both for the basic and the ex-
tended function. Note that the size of the k-th level can be expressed as

28 ADVANCED BDD OPTIMIZATION

label(F, π(k)). To be able to refer to the set of nodes in the k-th level
in a BDD, we introduce the following definition.

Definition 2.24

level: {F | F is a BDD} × IN → 2{v∈V |(...,(V,E),...) is a BDD};

level(F, k) = {v | v ∈ V, var(v) = π(k) where F = (π, (V, E), . . .)}.
Let F = (. . . , . . . , O) be a BDD. To express the set of nodes in parts
of F covering (the output nodes situated at) several levels we introduce
the following notations. Let

F i
jFF =

⋃
i≤k≤j

level(F, k)

and let

Oi
j = O ∩ F i

jFF .

Due to the ordering restriction imposed on the variables of a BDD, it
is possible to levelize each BDD graph illustration, i.e. to rectify the
graph such that all nodes with the same label appear at the same level
of height in the graph. Later, in Chapter 3, we will need to express the
minimal number of nodes in BDDs or parts of BDDs. This can be done
using the following very flexible definition.

Definition 2.25 Let f be an n-ary Boolean function and let I, J ⊆ Xn.

min costf (I, J) = min
π∈Π(J)

(label(BDD(f, π), I)) ,

i.e., min costf (I, J) denotes the minimal number of nodes labeled with
a variable in I under all BDDs representing f with a variable ordering
whose first |J | elements constitute J . If the function f is given from the
context, we omit it, writing min cost(I, J) for short.

If J = I, all orderings are considered which change the order of variables
within the upper part of the BDD in levels 1, 2, . . . , |I| such that all nodes
in this part remain labeled with a variable in I.

The term min cost(I, I) expresses the size of the upper part for a
“best” of all these orderings, i.e. the minimal size of the upper part with
respect to a partition (I, Xn \ I) of the set Xn.

If J = Xn \ I, all orderings are considered which change the order of
variables within the lower part of the BDD in levels n−|I|+1, n−|I|+

Preliminaries 29

2, . . . , n such that all nodes in this part remain labeled with a variable
in I.

The term min cost(I, Xn \ I) expresses the size of the lower part for a
“best” of all these orderings, i.e. the minimal size of the lower part with
respect to a partition (Xn \ I, I) of the set Xn.

Instead, we can also consider a partition (I, Xn \I), again considering
all orderings which change the order of variables within the upper part
of the BDD in levels 1, 2, . . . , |I| and then express the minimal size of the
lower part of the BDD under all these orderings: this would be expressed
by the term min cost(Xn \ I, I).

Yet, besides these possibilities, the definition allows to express even
more sophisticated minimal sizes of BDD parts. But throughout this
book, only the above forms will be needed and used.

Formally, min costf is a function

min costf : 2Xn × 2Xn → IN.

The well-definedness follows from Theorem 2.17 which ensures that, for
I ⊆ Xn, the term label(BDD(f, π), I) is uniquely determined by f and
π.

2.4.6 Implementation of BDD Packages
In the previous sections, the concept of BDDs has been introduced.

In practice, the success of BDD-based algorithms relies on the efficient
implementation of this concept. This section describes the basic imple-
mentation techniques used today by modern BDD packages. For more
details see [BRB90, Som01].

In Section 2.4.3 it was explained why for typical applications like a
functional equivalence check only reduced BDDs are of interest. For this
reason it is desirable to avoid generating unreduced BDDs during the
operation of a BDD package. A way of achieving this is to check whether
a node representing a particular function already exists. This is done
before the creation of a node representing this function. For a node v,
the function represented by v, fvff , is uniquely determined by the tuple

(var(v), then(v), else(v)),

containing as its elements all arguments of the Shannon decomposition
(see Theorem 2.9) carried out at v:

fvff = x · fthen(v)ff + x · felse(v)ff

where x = var(v). Of course it would be too time-consuming to compare
the tuple of a new node to all tuples of already existing nodes. Hence,

30 ADVANCED BDD OPTIMIZATION

else()−pointerv

ref index

then()−pointerv

next

v

Figure 2.9. Node structure.

a global hash table, called the unique table is used which allows to find
the node v for a tuple (x, v1, v0) in constant time. A hash function is
computed on the tuple returning an index into an array of bins each
storing the first node for that hash value. All other nodes with the
same hash value are stored in a collision list. Usually, a next-pointer in
the node structure is used to implement this linked list. Other pointers
stored at each node are the pointers to the 1-child and the 0-child. Note
that only forward-pointers are used to form the DAG, as backward-
pointers would increase the node structure and cause too much memory
overhead. Besides this, also the variable index index (plus flags, i.e. the
complement bit, see Section 2.4.3) and a reference count ref are stored
in the node structure (see Figure 2.9).

The reference count ref gives the information how often a node is used
at the moment. That way it is possible to free a node if it is not used
anymore. This allows the efficient usage of the memory. The count ref
is updated dynamically whenever the number of references from other
nodes or returned user functions changes. If ref has reached its maximum
value, it is frozen, i.e. the node is not deleted during program run and
exists until program termination.

If ref reaches the value zero for a node v, the node is called a dead
node. The reference counts of the descendants of v need to be decreased
recursively. However, the memory of the dead node v is not freed imme-
diately, because there might still exist an entry in the so-called computed
table which points at v.

The computed table is a global cache storing the intermediate and
final results of the recursive algorithms which operate on the DAG of
the BDD. A result in this context means a node of the DAG which is
the root of a sub-graph representing the computed function.

The idea is to trade memory vs. run time: if a result can be found
in the cache, it has been computed before and it is avoided to compute

Preliminaries 31

it again. As the number of results can be high during a program run
with many BDD operations, the computed table would soon grow too
large if implemented as a standard hash table. Therefore usually it is
implemented as a hash-based cache.

Though the result of a new computation is stored in the cache (again,
in form of a tuple pointing to a node via hashing), the handling is dif-
ferent from that of the unique table: rather than appending a new entry
to a collision chain, an entry is simply overwritten if a collision occurs.
That way a good trade-off between memory requirement and run time
improvement can be achieved. Note that it is no problem if a result node
is a dead node. In this case a reclaim operation, increasing the reference
count, re-establishes the node. The reclaimed node is not a dead node
anymore.

The reference count also allows for an efficient memory management
of the unique table: if a new node is created causing the unique table
to become too full, then there are two possible ways of remediation: as
a first possibility a garbage collection can be performed. This is only
done if the number of dead nodes exceeds a certain threshold. Otherwise
freeing the dead nodes would not result in a sufficient amount of memory
to be recycled, not making the garbage collection worthwile. During
garbage collection, dead nodes are freed and entries in the computed
table pointing to dead nodes are deleted. Second, if not enough dead
nodes are available, both the unique table array and the computed table
cache are increased in size, typically by a factor of two. As a consequence,
all entries must be assigned a new valid position. This happens using the
hash function whose return values have now changed due to the increase
of the table size. This process is called rehashing. During rehashing,
typically also an implicit garbage collection is performed.

Since the tables are increased by a factor of two every time, the re-
hashing operation is involved only logarithmically often. If both methods
to obtain more memory, garbage collection and table size increase with
rehashing, fail, the system returns a NULL pointer to the user. At this
point it is up to the user to save space by freeing nodes.

Another important implementation aspect used by modern BDD pack-
ages is the use of an array of unique tables, one per level i = 1, . . . n.
Index i serves to locate the hash table which stores all nodes for level
i. Then all nodes of level i can be traversed by stepping through all
collision chains, each starting at a hash table array position.

32 ADVANCED BDD OPTIMIZATION

2.4.7 Basic Minimization Algorithm

Algorithms for the minimization of BDDs make use of basic techniques
such as variable swaps and the sifting algorithm. This method has been
described in [Rud93] and exploits the only local complexity of the swap
operation [ISY91] to achieve good run times. This section gives both
basic techniques as the algorithms for BDD optimization presented in
Chapters 3, 4, and 5 are based on them.

2.4.7.1 Variable swap

This section describes how a swap of adjacent variables can be imple-
mented such that it is performed with a run time which is proportional
to the sizes of the neighboring levels at which the variables are situated,
i.e. a local behavior.

A problem which is encountered when trying to achieve a local behav-
ior during a swap is the following: assume that a variable swap results
in the change of the function represented by a BDD node v. As a con-
sequence, all previous references to v in the DAG are not valid anymore
and need to be corrected. In Section 2.4.6 it has already been described
that modern BDD packages do not maintain back-pointers (from child
nodes to parent nodes) in order to reduce memory requirement. Hence,
to find all references to v from nodes situated above, we would have to
traverse large parts of the DAG, and even then the problem to patch
the references from user functions still remains.

For this reason it is necessary to preserve the function represented
at each node involved in a swap. This is achieved as follows: instead
of constructing a new node in another part of the computer’s memory,
the data of the node in question (i.e. its tuple, see Section 2.4.6) is
overwritten with new values in a function preserving manner. These new
values result from the change in the variable ordering. Besides avoiding
the problem described above, another advantage of this schema is that
no time-consuming memory allocations are needed.

In detail, this is done as follows. Assume a natural variable ordering
and assume that variables xi = π(i) and xi+1 = π(i + 1) are swapped.
Let v be a node situated at level i and let v1, (v0) denote the 1-child
(0-child) of v.

Let fvff denote the function represented by v and let f1 (f0ff) denote
the positive (negative) cofactor of fvff with respect to xi. Clearly, f1

(f0ff) is represented by v1 (v0). Further, let f11, (f10) denote the positive
(negative) cofactor of f1 with respect to xi+1. Similarly, let f01ff , (f00ff)
denote the positive (negative) cofactor of f0ff with respect to xi+1. Let
v11 be the node representing f11. This is either the 1-child of v1 (if

Preliminaries 33

1 01 0 010 10

vv

10 01

x

x

i

i+1
0 1

x

x

i+1

i

f f f ff f

ff

f f

v

v v

v

a b

Figure 2.10. Variable swap.

xi+1 is tested at v1) or simply v1, otherwise. Similarly, let v10, and v01,
v00 be the nodes representing f10, and f01ff , f00ff , respectively. The left
side of Figure 2.10 illustrates the most general case where all cofactors
are distinct functions. If some of the cofactors f11, f10, f01ff , and f00ff
are functionally equivalent, the respective representing nodes have been
collapsed by a merge operation before and thus less nodes are involved
in the swap than depicted in Figure 2.10.

Node v is represented by the tuple (xi, v1, v0). Performing the swap
of xi and xi+1, v is overwritten by (xi+1, (xi, v11, v01), (xi, v10, v00)). In-
specting the paths through v shows that the new variable ordering (i.e.,
xi+1 “above” xi) is established (see the right side of Figure 2.10). More-
over, this modification preserves the function represented by v:

(xi+1, (xi, v11, v01), (xi, v10, v00))

= (xi+1, xi · f11 + xi · f01ff , xi · f10 + xi · f00ff)

= xi+1 · (xi · f11 + xi · f01ff) + xi+1 · (xi · f10 + xi · f00ff)

= xi · xi+1 · f11 + xi · xi+1 · f01ff + xi · xi+1 · f10 + xi · xi+1 · f00ff

= xi · (xi+1 · f11 + xi+1 · f10) + xi · (xi+1 · f01ff + xi+1 · f00ff)

= xi · f1 + xi · f0ff

= fvff

The situation after the swap is illustrated on the right side of Figure 2.10.
Nodes v0 and v1 will only vanish, if no other (external or user) reference
besides those from node v existed. Nodes a and b must be newly created
only if nodes with their tuples did not already exist, otherwise they are
simply retrieved from the unique table (see Section 2.4.6).

34 ADVANCED BDD OPTIMIZATION

2.4.7.2 Sifting Algorithm

In 1993, Rudell presented an effective algorithm to reduce the size of
a BDD, the sifting algorithm [Rud93]. Every variable is moved up and
down in the variable ordering, i.e. the relative order of the other variables
is preserved. At each position the resulting BDD size is recorded and
in the end the variable is moved back to a best position, i.e. one which
yielded the smallest BDD size. The variable movements are performed
by swaps of variables which are adjacent in the variable ordering, e.g. for
i < j swapping π(i) and π(i+1), π(i+1) and π(i+2) . . . , finally swapping
π(j − 1) and π(j) moves π(i) to the j-th position in the ordering. Note
that π changes with each swap.

In Section 2.4.7.1 it has been shown that a swap of adjacent variables
only affects the graph structure of the two levels involved in the swap.
Since the number of nodes which have to be touched directly transfers
to the run time of the method, this locality of the swap operation is a
main reason for the efficiency of the sifting algorithm: these exchanges
are performed very quickly since only edges must be redirected within
these two levels. Moreover, changes in the graph structure can often
be established simply by updates of the node data, thus saving the cost
of many memory allocations. In this, sifting is based on effective local
operations. Moreover, further reducing the number of swaps obviously
yields reductions in the run time of the method.

In the past, several methods of achieving reductions in the number of
variable swaps have been suggested. A trivial method for example is to
start with moving the variable to the closest end first when moving a
variable to all other positions in the relative order of the variables.

A much more sophisticated method is the use of lower bounds during
sifting, which will be discussed in more detail in Chapter 4.

Another improvement suggested is the idea to start with the vari-
able situated at the level with the largest number of nodes: this helps
to reduce the overall BDD size as early as possible, thus reducing the
complexity of all subsequent steps.

Summarized, the classical sifting algorithm works as follows:

1 The levels are sorted according to their sizes. The largest level is
considered first.

2 For each variable:

(a) The variable is first moved downwards if it is situated closer to
the bottommost variable, otherwise it is first moved upwards.
Moving the variable means exchanging it repeatedly with its suc-

Preliminaries 35

cessor variable if moved downwards or with its predecessor vari-
able if moved upwards. This process stops, when the variable has
become the bottommost variable (if moved downwards) or the
topmost variable (if moved upwards).

(b) The variable is moved into the opposite direction of the previous
step, i.e. if in the previous step the variable has been moved down-
wards, now it is moved upwards until it has become the topmost
variable. If, however, in the previous step the variable has been
moved upwards, now it is moved downwards until it has become
the bottommost variable.

(c) In the previous steps the BDD size resulting from every variable
swap has been recorded. Now the variable is moved back to the
closest position among those positions which led to a minimal
BDD size.

The algorithm is given in Figure 2.11. For i < j, a call sift down(i, j)
moves a variable from level i down to j (the other procedure calls have
similar semantics). We start with the largest level first, hence in lines
(5), (7), and (9), sl[i] denotes the number of the largest unprocessed
level. In line (9) the tested condition is a check whether the way down
is shorter than the way up. In that case, the algorithm goes down first.
In line (16) the algorithm moves the variable back to a best position.
This is usually done by following a sequence of recorded moves in reverse
order.

Note that the run time of sifting increases, if the BDD becomes large in
intermediate steps of the algorithm. To prevent high run times, moving a
variable into a specific direction can be cancelled if the BDD size exceeds
a certain limit, e.g. a limit of twice the size of the initial BDD.

2.4.8 Evaluation with BDDs
Besides the ability of BDDs to represent a Boolean function, BDDs

can be also used to actually implement an evaluation of the function.
While evaluating functions with BDDs, one has to consider paths in

BDDs, starting at one of the output nodes and ending at a terminal node.
Sometimes also paths to an inner node are considered. Since BDDs es-
sentially are DAGs, they inherit the usual standard notations considering
paths in graphs. Paths in BDDs, as is common for graphs, are denoted
as alternating sequence of nodes vi and edges ei, i.e. (v1, e1, . . . , ek−1, vk).
The length of a path p is the number of non-terminal nodes occurring
on p, denoted λ(p). Next, an evaluation of a BDD with respect to an
assignment is defined in operational terms.

36 ADVANCED BDD OPTIMIZATION

(1) sifting(BDD F , int n)
(2) proc
(3) sort level numbers by descending level sizes and store

them in array sl;
(4) for i := 1 to n do
(5) if sl[i] = 1 then
(6) sift down(i, n);
(7) else if sl[i] = n then
(8) sift up(i, 1);
(9) else if (sl[i] − 1) > (n − sl[i]) then

(10) sift down(i, n);
(11) sift up(n, 1);
(12) else
(13) sift up(i, 1);
(14) sift down(1, n);
(15) end–if
(16) sift back();
(17) end–for
(18) end–proc

Figure 2.11. Original sifting-algorithm.

An assignment b = (b1, . . . , bn) ∈ Bn denotes the function

b: 2Xn → Bn; xi �→ bi (1 ≤ i ≤ n).

Definition 2.26 An evaluation of a BDD (. . . , (V, E), O) with respect
to an assignment b = (b1, . . . , bn) ∈ Bn starts at one of the output nodes
in O and traverses the path along the edges in E which are chosen ac-
cording to the values assigned to the variables by b. Thereby all variables
which are not tested along the traversed path are ignored.

The evaluation is said to reach a node v ∈ V if v occurs on the
traversed path. The evaluation is said to stop at node v if v is the last
node of the traversed path.

Due to the BDD semantics as a graph where a Shannon decomposition is
carried out at each node, we have f(b1, b2, . . . , bn) = 1 iff the evaluation
stops at 1 and f(b1, b2, . . . , bn) = 0 iff the evaluation stops at 0.

Example 2.27 Consider the left BDD given in Figure 2.12. The eval-
uation for b = (0, 0, 1) starts at the output node for f which is the root
node of the BDD. Assignment b assigns x1 to 0, x2 to 0, and x3 to 1.
According to these values, the path along the corresponding edges labeled

Preliminaries 37

f

1

2

f

2

1

1

3

2

1

x3x

x

x

x3x

1 10 0

x

x

x

e

e

e

Figure 2.12. Two BDDs for f : (x1, x2, x3) �→ x1 · x2 + x1 · x3.

e1, e2, and e3 is chosen (1((-edges are depicted with solid lines, 0-edges
with dashed lines). This path finally reaches the terminal node labeled 1,
and indeed the function value f(0, 0, 1) equals 1.

Note that the path along e1, e2, and e3 is of maximal length three in the
left BDD whereas the right BDD has a maximal path length of only
two.

Let us consider a BDD respecting a variable ordering π. Sometimes we
may choose to assign values to only the first few variables in the ordering
π, thus considering a possibly shorter prefix a = (b1, . . . , bk) (k ≤ n) of a
(full) assignment b. The operational semantics of an evaluation directly
transfers to this situation in complete analogy. Evaluation of a stops at a
(possibly non-terminal) node v, representing the cofactor fxff 1=b1,...,xk=bk

for which we also write faff .

2.4.9 Paths in BDDs
The optimization of BDDs with respect to different aspects of their

paths will be subject to further discussion in Chapter 5. Thereby CEs
(see Sections 2.4.2 and 2.4.3) will be explicitly considered to distinguish
paths to zero from paths to one. Formally BDDs with CEs have to be
represented by a edge-labeled graph in order to explicitly represent edges
from a node v to then(v) and else(v), respectively. This is necessary as
the following example illustrates.

Example 2.28 Consider the projection function for variable x1 shown
in Figure 2.13. Both outgoing edges of node v lead to the terminal 1.
Therefore they would correspond to a single edge in the graph structure
without labels and the complement could not be properly associated to the
edge leading to else(v). This ambiguity is removed using the edge-labeled
graph that contains two edges.

38 ADVANCED BDD OPTIMIZATION

1

1 2

1

f

x
e e

v

Figure 2.13. BDD with CEs for f(x1) = x1.

The following definitions are given for the more difficult case of BDDs
with CEs only. For an edge e ∈ E the attribute CE(e) is true, iff e is a
CE. The edges ei occurring on a path in a BDD may be complemented or
non-complemented. An (implicit) edge e pointing to the root node has
to be considered to represent a function. Such an implicit (possibly com-
plemented) edge into the BDD is used to represent f or f , respectively.
This edge is not explicitly denoted.

The predecessors of a node w are split into those having a CE to w
and those having a regular edge to w, given by two sets (the sets are not
always disjoint):

M1(w) := {v : w can be reached from v via a regular edge}
M0(w) := {v : w can be reached from v via a CE}

Regarding the following terminology for paths in BDDs, it should be
noted that for a BDD with CEs the implicit edge representing a function
has to be considered.

Definition 2.29

Two paths

p1 = (v0, d0, v1, d1, . . . , dl−1, vl),

p2 = (w0, e0, w1, e1, . . . , el−1, wl)

with vi, wi ∈ V and ei, fiff ∈ E are identical, iff

∀i ∈ {0, . . . , l} vi = wi,

∀i ∈ {0, . . . , l − 1} di = ei,

∀i ∈ {0, . . . , l − 1} CE(di) = CE(ei).

Otherwise the two paths are called different.

Preliminaries 39

Definition 2.30 A path p = (v0, e0, v1, e1, . . . , el−1, vl) is called com-
plemented iff it leads from v0 to vl via an odd number of CEs, i.e.

|{e : (e is an edge in p) ∧ CE(e)}| = 2i + 1

for some i ∈ IN. Otherwise the path is called regular.

Definition 2.31 A path p = (v0, e0, v1, e1, . . . , el−1, vl) is called a 1-
path (“one-path”) from v0 iff the path is regular and vl = 1. A path
p = (v0, e0, v1, e1, . . . , el−1, vl) is called a 0-path (“zero-path”) from v0

iff the path is complemented and vl = 1.

2.4.9.1 Number of Paths

Notation 1 Let f be a Boolean function. P1PP (BDD(f, π)) denotes the
number of all different 1-paths from any of the outputs to the terminal
1 with respect to the variable ordering π. P0PP (BDD(f, π)) denotes the
number of all different 0-paths from any of the outputs with respect to
the variable ordering π. To denote the number of all paths in BDD(f, π),
we use the short notation

α(BDD(f, π)) = P1PP (BDD(f, π)) + P0PP (BDD(f, π)).

Example 2.32 The BDD for the well-known odd-parity or EXOR-
function f : Bn → B; (x1, . . . xn) �→ x1 ⊕ . . . ⊕ xn is of linear size
2n + 1. The corresponding BDD is shown in Figure 2.14. Nonetheless
the number of paths is exponential in n and, even worse, all BDDs rep-
resenting the EXOR-function have a number of paths exponential in n.
Due to the symmetry of the EXOR-function with respect to all variables,
the structure of the BDD is independent of the variable ordering.

Example 2.32 shows that the number of paths can grow exponentially
in n, the number of input variables, even if the size of the BDD grows
only linear in n.

When computing the number of paths in a BDD (see Section 5.1 and
in particular Section 5.3) an exponential run time should be avoided.
An appropriate formula for the number of paths in a BDD F can be
derived from the Shannon decomposition (Theorem 2.9). The following
recurrent equation expresses the number of paths starting at a node v
and ending at a terminal node (this quantity denoted α(v)):

α(v) =

{
1, v ∈ {1,0}
α(then(v)) + α(else(v)), else

(2.2)

The formula simply states that α(v) is one if v is a terminal node (there
is one path of length zero from v to v). Otherwise, the paths starting at

40 ADVANCED BDD OPTIMIZATION

f

1 0

x

2x 2x

x3x3x

xnxxnx

Figure 2.14. BDD for Example 2.32.

v and ending at a terminal node can be partitioned into the paths via
the 1-child and those via the 0-child, due to the Shannon decomposition
carried out at each node. The sum of the number of paths in these two
partitions yields the total number of paths.

It is straightforward to give an algorithm computing the number of
paths during a graph traversal (an example of the recursive computation
of the α-values is illustrated later in Section 5.3). The number of paths
in a shared BDD F representing a Boolean multi-output function f =
(fiff)1≤i≤m can be computed as the sum of the α-values of the output
nodes representing the m single-output functions:

α(F) =
m∑

i=1

α(oi) (2.3)

where oi is the output node representing fiff . Note that an output node
oi might be used by multiple, functionally equivalent single-output func-
tions, as circuits sometimes repeat an output signal several times. In
other words, paths emerging from output nodes used for more than one
function are counted several times accordingly.

Preliminaries 41

2.4.9.2 Expected Path Length

An important problem of VLSI CAD is simulation-based verifica-
tion: here, a circuit is simulated to check whether the design fullfills its
specification. The main difference of cycle-based functional simulation
to classical simulation is that only values of output and latch ports are
computed. Applications in this field repeatedly evaluate logic functions
with different input vectors. This can be done using BDDs as described
in Section 2.4.8.

During evaluation, a path is traversed. Thereby the algorithm moves
from the start node of the path to the end of the path, following the
respectiv edges. Pointers to the respective next node on the path must
be dereferenced repeatedly. Hence, the evaluation time is linear in the
length of the path. In BDD-based functional simulation, the average
evaluation time (and hence the total simulation time) is proportional to
the Expected Path Length (EPL) in the BDD. Next, a formal definition of
the expected path length follows. EPL expresses the expected number
of variable tests needed to evaluate a BDD with respect to an input
assignment along a path from an output node to one of the terminal
nodes, as explained and defined above in Section 2.4.8.

Let F be a BDD and let pi be the i-th path in an enumeration of all
paths from output nodes to one of the terminal nodes in F . Let pr(pi)
be the probability of an evaluation traversing path pi. Then for the EPL
of F , denoted ε(F), we have

ε(F) =

α(F)∑
i=1

λ(pi) · pr(pi). (2.4)

In this formula, a path p is weighted with the probability of being chosen
during evaluation. Minimizing ε(F) means shortening the path lengths
with a high probability, thus minimizing the expected path length or, in
other words, the average evaluation time.

Equation (2.4) is not suitable for use by an efficient algorithm to
compute EPL, as α(F) can grow exponentially in n, even if the size of
the BDD only grows linear in n: a function and the respective BDD with
this property has already been given in Example 2.32.

Next, a formula is given which is useful for computing EPL in a time
proportional to the BDD size: the following equation expresses the ex-
pected number of variable tests for an evaluation starting from a node
v and ending at one of the terminal nodes (this quantity denoted ε(v)).

42 ADVANCED BDD OPTIMIZATION

Thereby the probability that a variable x is assigned to a value b ∈ B
is denoted by pr(x = b).

ε(v) =

⎧⎨⎧⎧
⎩
⎨⎨ 0, v ∈ {1,0}

1 + pr(var(v) = 1) · ε(then(v)), else
+ pr(var(v) = 0) · ε(else(v))

This formula simply states that ε(v) is zero if v is already a terminal
node. Otherwise, evaluations starting from v are either via the 1-child
or the 0-child of v. Hence, ε(v) is built by

1) summing up the respective ε-values of the child nodes of v weighted
with the probability of the respective child node being chosen, and

2) adding one since the expected length of all paths starting at v must
be one larger than that of the child nodes of v: this is due to the
additional variable test at v.

Again it is straightforward to compute ε(F) during a graph traversal. An
example of the recursive computation of the ε-values is illustrated later
in Section 5.2 by the left BDD in Figure 5.8. In analogy to Equation
(2.3), the EPL for a shared BDD F representing a Boolean multi-output
function f = (fiff)1≤i≤m can be computed by use of the ε-values of the
output nodes representing the m single-output functions:

ε(F) =
1

m

m∑
i=1

ε(oi)

where oi is the output node representing fiff . Again, note that an output
node oi might be used by multiple, functionally equivalent single-output
functions.

2.4.9.3 Average Path Length

In Section 5.3, optimization of BDDs with respect to the following
aspect of their paths will be discussed. The motivation for this is the
mapping of optimized BDDs into fast multiplexor-based circuits.

Let F be a BDD and let λ(F) denote the sum of the lengths of the
paths in F . Again, let pi be the i-th path in an enumeration of all
paths from output nodes to the terminal node in F . Then λ(F) can be
expressed as

λ(F) =

α(F)∑
i=1

λ(pi). (2.5)

Preliminaries 43

Equation (2.5) can be seen as a special instance of Equation (2.4) where
all path probabilities pr(pi) = 1.

The Average Path Length (APL) of F is denoted λ(F) and is defined
as

λ(F) =
λ(F)

α(F)
. (2.6)

Equation (2.6) can be seen as a special case of Equation (2.4), defining
the expected path length: the two equations coincide, if in Equation (2.4)
the term pr(pi) is fixed to 1

α(F) for each pi.

A recurrent equation that is more useful for the efficient computation
of the sum of the lengths of the paths is derived from the Shannon
decomposition. This equation is given in the next result.

Lemma 2.33 For a node v in a BDD, let λ(v) denote the sum of the
lengths of all paths starting at v and ending at a terminal node. Then
we have

λ(v) =

⎧⎨⎧⎧
⎩
⎨⎨ 0, v ∈ {1,0}

λ(then(v)) + α(then(v))
+ λ(else(v)) + α(else(v)), else

(2.7)

Proof. In the case of v ∈ {1,0} there is nothing to show. Now let v be
an inner node. Let p = (v, e1, then(v), . . . , t) be a path from v via then(v)
onto a terminal node t. Further, let p′ = (then(v), . . . , t) be a path
coinciding with p except that we start at then(v) instead. It is λ(p) =
λ(p′) + 1, i.e. the length of every path via then(v) is increased by one
if started at v instead. There are α(then(v)) such paths. Consequently,
the sum of the lengths of all paths from v via then(v) onto a terminal
node must be λ(then(v)) + α(then(v)). An analogous argument holds
for paths via else(v). The set of all paths starting from v and ending at
a terminal node can be partitioned into those via then(v) and those via
else(v). But then the required result already follows. �

Similar to Equations (5.8) and (2.3), the sum of path lengths for a shared
BDD F representing a Boolean multi-output function f = (fiff)1≤i≤m can
be computed by use of the λ-values of the output nodes representing the
m single-output functions:

λ(F) =
m∑

i=1

λ(oi)

