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2  Web Effort Estimation 

Emilia Mendes, Nile Mosley, Steve Counsell 

Abstract: Software effort models and effort estimates help project manag-
ers allocate resources, control costs, and schedule and improve current 
practices, leading to projects that are finished on time and within budget. 
In the context of Web development and maintenance, these issues are also 
crucial, and very challenging, given that Web projects have short sched-
ules and a highly fluidic scope. Therefore this chapter has two main objec-
tives. The first is to introduce the concepts related to effort estimation and 
in particular Web effort estimation. The second is to present a case study 
where a real effort prediction model based on data from completed indus-
trial Web projects is constructed step by step. 

Keywords: Web effort estimation, Manual stepwise regression, Effort mo-
dels, Web size measures, Prediction accuracy, Data analysis. 

2.1  Introduction 

The Web is used as a delivery platform for numerous types of Web applica-
tions, ranging from complex e-commerce solutions with back-end databases 
to on-line personal static Web pages. With the sheer diversity of Web appli-
cation types and technologies employed, there exists a growing number of 
Web companies bidding for as many Web projects as they can accommodate. 
As usual, in order to win the bid, companies estimate unrealistic schedules, 
leading to applications that are rarely developed within time and budget. 

Realistic effort estimates are fundamental for the successful manage-
ment of software projects; the Web is no exception. Having realistic esti-
mates at an early stage in a project's life cycle allows project managers and 
development organisations to manage their resources effectively. 

To this end, prediction is a necessary part of an effective process, 
whether it be authoring, design, testing, or Web development as a whole. 
A prediction process involves:  

• The identification of measures (e.g. number of new Web pages, num-
ber of new images) that are believed to influence the effort required to 
develop a new Web application. 

• The formulation of theories about the relationship between the selected 
measures and effort (e.g. the greater the number of new static Web 
pages, the greater the development effort for a new application). 
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• The capturing of historical data (e.g. size and actual effort) about past 
Web projects or even past development phases within the same project. 

• The use of this historical data to develop effort estimation models for 
use in predicting effort for new Web projects. 

• The assessment of how effective those effort estimation models are, 
i.e. the assessment of their prediction accuracy. 

Cost and effort are often used interchangeably within the context of ef-
fort estimation (prediction) since effort is taken as the main component of 
project costs. However, given that project costs also take into account 
other factors such as contingency and profit [20]we will use the word “ef-
fort” and not “cost” throughout this chapter. 

Numerous effort estimation techniques have been proposed and com-
pared over the last 20 years. A classification and description of such tech-
niques is introduced in Sect. 2.2 to help provide readers with a broader 
overview. To be useful, an effort estimation technique must provide an 
effort estimate for a new project that is not widely dissimilar from the ac-
tual effort this project will need to be finished. The effectiveness of effort 
estimation techniques to provide accurate effort estimates is called predic-
tion power. Section 2.3 presents the four most commonly used measures of 
prediction power and, in Section 2.4, the associated prediction accuracy. 
Finally, Sect. 2.5 details a case study building an effort estimation model 
using data from world-wide industrial Web projects. 

2.2  Effort Estimation Techniques 

The purpose of estimating effort is to predict the amount of effort to ac-
complish a given task, based on knowledge of other project characteristics 
that are believed to be related to effort. Project characteristics (independent 
variables) are the input, and effort (dependent variable) is the output we 
wish to predict (see Fig. 2.1). For example, a given Web company may 
find that to predict the effort necessary to implement a new Web applica-
tion, it will require the following input: estimated number of new Web 
pages, total number of developers who will help develop the new Web 
application, developers’ average number of years of experience with the 
development tools employed, and the number of functions/features (e.g. 
shopping cart) to be offered by the new Web application. 

A task to be estimated can be as simple as developing a single function 
(e.g. creating a table on the database) or as complex as developing a large 
application, and in general the one input (independent variable) assumed to 
have the strongest influence on effort is size. Other independent variables 
may also be influential (e.g. developers’ average experience, number of 
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tools employed) and these are often identified as cost drivers. Depending 
on the techniques employed, we can also use data on past finished projects 
to help estimate effort for new projects. 

 
 
  
 
 
 
 
 
 
 
 

Fig. 2.1. Components of a cost model 

Several techniques for effort estimation have been proposed over the 
past 30 years in software engineering. These fall into three general catego-
ries [37]: expert opinion, algorithmic models and artificial intelligence 
techniques. 

2.2.1  Expert Opinion 

Expert opinion represents the process of estimating effort by subjective 
means, and is often based on previous experience from develop-
ing/managing similar projects. It has been and still is widely used in soft-
ware and Web development.  

The drawback of this technique is that it is very difficult to quantify and 
to determine those factors that have been used to derive an estimate, mak-
ing it difficult to repeat. However, studies show that this technique can be 
an effective estimating tool when used in combination with other less sub-
jective techniques (e.g. algorithmic models) [11,30,31].  

In terms of the diagram presented in Fig. 2.1, the sequence occurs as  
follows: 

a) An expert looks at the estimated size and cost drivers related to a new 
project for which effort needs to be estimated. 

b) Based on the data obtained in a) (s)he remembers or retrieves data on 
past finished projects for which actual effort is known. 

c) Based on the data from a) and b) (s)he subjectively estimates effort for 
the new project. Deriving an accurate effort estimate is more likely to 
occur when there are completed projects similar to the one having its 
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effort estimated. The sequence described corresponds to steps 2, 1, and 
3 in Fig. 2.1. The knowledge regarding the characteristics of a new 
project is necessary to retrieve, from either memory or a database, 
knowledge on finished similar projects. Once this knowledge is re-
trieved, effort can be estimated. 

2.2.2  Algorithmic Techniques 

To date, the most popular techniques described in the effort estimation 
literature are algorithmic techniques. Such techniques attempt to formalise 
the relationship between effort and one or more project characteristics. 
The  result is an algorithmic model. The central project characteristic used 
in such a model is usually taken to be some notion of software size (e.g. 
the number of lines of source code, number of Web pages, number of 
links). This formalisation is often translated as an equation such as that 
shown by Eq. 2.1, where a and b are parameters that also need to be esti-
mated.  Equation 2.1 shows that size is the main factor contributing to 
effort, and can be adjusted according to an Effort Adjustment Factor 
(EAF), calculated from cost drivers (e.g. developers, experience, tools). 
An example of an algorithmic model that uses Eq. 2.1 is the COnstructive 
COst MOdel (COCOMO) model [2], where parameters a and b are based 
on the type of project under construction, and the EAF is based on 15 cost 
drivers that are calculated and then summed.  

 EAFprojEstSizeNewaEffortEstimated b=  (2.1) 

where: 
a, b  are parameters chosen based on certain criteria, such as the type of 
software project being developed. EstSizeNewproj is the estimated size for 
the new project. EAF is the Effort Adjustment Factor. 

Equations 2.2 and 2.3 are different examples of algorithmic equations 
(models), where both are obtained by applying regression analysis tech-
niques [33 ]on data sets of past completed projects. Equation 2.2 assumes a 
linear relationship between effort and its size/cost drivers whereas Equa-
tion 2.3 assumes a non-linear relationship. In Equation 2.3, when the ex-
ponent is < 1 we have economies of scale, i.e., larger projects use less ef-
fort comparatively than smaller projects. The opposite situation (exponent 
> 1) gives diseconomies of scale, i.e. larger projects use more effort com-
paratively than smaller projects.  

 nnCDaCDaprojEstSizeNewaCffortEstimatedE ++++= 110  (2.2) 

 na
n

aa CDCDprojEstSizeNewCffortEstimatedE 10
1=  (2.3) 



Web Effort Estimation      33 

where: 
C is a constant denoting the initial estimated effort (assuming size and cost 
drivers to be zero) derived from past data.  
a0 ... an are parameters derived from past data.  
CD1…CDn are other project characteristics, other than size, that have an 
impact on effort. 

The COCOMO model is an example of a generic algorithmic model, be-
lieved to be applicable to any type of software project, with suitable cali-
bration or adjustment to local circumstances. In terms of the diagram pre-
sented in Fig. 2.1, the model uses parameter values that are based on past 
project data; however, for anyone wishing to use this model, the steps to 
use are 1, 2, and 3. Step 1 is used only once to calculate the initial values 
for its parameters, which are then fixed from that point onwards. The sin-
gle use of step 1 makes this model a generic algorithmic model.  

Regression-based algorithmic models are most suitable to local circum-
stances such as “in-house” analysis as they are derived from past data that 
often represents projects from the company itself. Regression analysis, 
used to generate regression-based algorithmic models, provides a proce-
dure for determining the “best” straight-line fit to a set of project data that 
represents the relationship between effort (the response or dependent vari-
able) and project characteristics (e.g. size, experience, tools, the predictor 
or independent variables) [33]. The regression line is represented as an 
equation, such as those given by Eqs. 2.1 and 2.2. The effort estimation 
models we will create in Sect. 2.5 fall into this category.  

Regarding the regression analysis itself, two of the most widely used 
techniques are multiple regression (MR) and stepwise regression (SWR). 
The difference between both is that MR obtains a regression line using all 
the independent variables at the same time, whereas SWR is a technique 
that examines different combinations of independent variables, looking for 
the best grouping to explain the greatest amount of variation in effort. Both 
use least squares regression, where the regression line selected is the one 
that reflects the minimum values of the sum of the squared errors. Errors 
are calculated as the difference between actual and estimated effort and are 
known as the residuals [33]. 

The sequence followed here is as follows:  
a) Past data is used to generate a cost model. 
b) This model then receives, as input, values for the new project charac-

teristics. 
c) The model generates estimated effort. The sequence described herein 

corresponds to steps 1, 2, and 3 from Fig. 2.1, in contrast to that for ex-
pert opinion. 

A description of regression analysis is presented in Chap. 12.  
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2.2.3  Artificial Intelligence Techniques  

Artificial intelligence techniques have, in the last decade, been used as a 
complement to, or as an alternative to, the previous two categories. Exam-
ples include fuzzy logic [22[, regression trees [34[, neural networks [38], 
and case-based reasoning [37]. We will cover case-based reasoning (CBR) 
and regression trees (CART) in more detail as they are currently the most 
popular machine learning techniques employed for Web cost estimation. A 
useful summary of numerous machine learning techniques can also be 
found in [10]. 

Case-Based Reasoning 
Case-based reasoning (CBR) provides estimates by comparing the current 
problem to be estimated against a library of historical information from 
completed projects with a known effort (case base). It involves [1]:  

i. Characterising a new project p, for which an estimate is required, with 
attributes (features) common to those completed projects stored in the 
case base. In terms of software cost estimation, features represent size 
measures and cost drivers which have a bearing on effort. Feature val-
ues are normally standardized (between 0 and 1) such that they have 
the same degree of influence on the result. 

ii. Use of this characterisation as a basis for finding similar (analogous) 
completed projects, for which effort is known. This process can be 
achieved by measuring the “distance” between two projects, based on 
the values of the number of features (k) for these projects. Although 
numerous techniques can be used to measure similarity, nearest 
neighbour algorithms using the unweighted Euclidean distance meas-
ure have been the most widely used to date in software and Web engi-
neering. 

iii. Generation of a predicted value of effort for project p based on the 
effort for those completed projects that are similar to p. The number of 
similar projects will depend on the size of the case base. For small case 
bases (e.g. up to 90 cases), typical values are 1, 2, and 3 closest 
neighbours (analogies). For larger case bases no conclusions have been 
reached regarding the best number of similar projects to use. The cal-
culation of estimated effort is obtained using the same effort value as 
the closest neighbour, or the mean of effort for two or more analogies. 
This is the common choice in Web and software engineering.   
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The sequence of steps used with CBR is as follows:  

a) The estimated size and cost drivers relating to a new project are used to 
retrieve similar projects from the case base, for which actual effort is 
known. 

b) Using the data from a) a suitable CBR tool retrieves similar projects 
and calculates estimated effort for the new project. The sequence just 
described corresponds to steps 2, 1, and 3 in Fig. 2.1, similar to that 
employed for expert opinion. The characteristics of a new project must 
be known in order to retrieve finished similar projects. Once similar 
projects are retrieved, then effort can be estimated. 

When using CBR there are six parameters to consider [35]: 

• Feature Subset Selection 
• Similarity Measure 
• Scaling 
• Number of Analogies 
• Analogy Adaptation 
• Adaptation Rules 

Feature Subset Selection 
Feature subset selection involves determining the optimum subset of fea-
tures that yield the most accurate estimation. Some existing CBR tools, 
e.g. ANGEL [36 ]optionally offer this functionality using a brute force 
algorithm, searching for all possible feature subsets. Other CBR tools (e.g. 
CBR-Works) have no such functionality, and therefore to obtain estimated 
effort, we must use all of the known features of a project to retrieve the 
most similar cases. 

Similarity Measure 
The similarity measure measures the level of similarity between different 
cases, with several similarity measures proposed in the literature. The most 
popular in the current Web/software engineering literature [1,24,35 ]are 
the unweighted Euclidean distance, the weighted Euclidean distance, and 
the maximum distance. Other similarity measures are presented in [1].  

Unweighted Euclidean distance: The unweighted Euclidean distance 
measures the Euclidean (straight-line) distance d between the points (x0,y0) 
and (x1,y1), given by the equation: 

 2
10

2
10 )()( yyxxd −+−=  (2.4) 
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This measure has a geometrical meaning as the shortest distance be-
tween two points in an n-dimensional Euclidean space [1]. 

 

Fig. 2.2. Euclidean distance using two size attributes 

Figure 2.2 illustrates this distance by representing coordinates in a two-
dimensional space, E2. The number of features employed determines the 
number of dimensions, En. 

Weighted Euclidean distance: The weighted Euclidean distance is used 
when features vectors are given weights that reflect the relative importance 
of each feature. The weighted Euclidean distance d between the points 
(x0,y0) and (x1,y1) is given by the following equation: 

 2
10

2
10 )()( yywxxwd yx −+−=  (2.5) 

where wx and wy are the weights of x and y respectively. 

Maximum distance: The maximum distance computes the highest fea-
ture similarity, i.e. the one to define the closest analogy. For two points 
(x0,y0) and (x1,y1), the maximum measure d is equivalent to the formula: 

 ))(,)max(( 2
10

2
10 yyxxd −−=  (2.6) 

This effectively reduces the similarity measure down to a single feature, 
although this feature may differ for each retrieval episode. So, for a given 
“new” project Pnew, the closest project in the case base will be the one that 
has at least one size feature with the most similar value to the same feature 
in project Pnew. 

   x0                       x1 
Page-count 

Page-complexity 

Y1 

 

 
 
 
Y0 

d



Web Effort Estimation      37 

Scaling 
Scaling (also known as standardisation) represents the transformation of 
attribute values according to a defined rule, such that all attributes present 
values within the same range and hence have the same degree of influence 
on the results [1]. A common method of scaling is to assign zero to the 
minimum observed value and one to the maximum observed value [15]. 
This is the strategy used by ANGEL. 

Number of Analogies 
The number of analogies refers to the number of most similar cases that 
will be used to generate the estimation. With small sets of data it is reason-
able to consider only a small number of analogies [1]. Several studies in 
software engineering have restricted their analysis to the closest anal-
ogy )0.1( =k [3,30], while others have used two and three analogies 
[1,13,14,24,25,27,32]. 

Analogy Adaptation 
Once the similar cases have been selected the next step is to decide how to 
generate the estimation for project Pnew. Choices of analogy adaptation tech-
niques presented in the literature vary from the nearest neighbour [3,14], the 
mean of the closest analogies [36], the median [1], inverse distance weighted 
mean and inverse rank weighted mean [15], to illustrate just a few. The adap-
tations used to date for Web engineering are the nearest neighbour, mean of 
the closest analogies [24,25], and the inverse rank weighted mean [26,27]. 

Each adaptation is explained below:  

Mean: The average of k analogies, when k > 1. This is a typical measure of 
central tendency, often used in the software and Web engineering litera-
ture. It treats all analogies as being equally influential on estimated effort. 

Median: The median of k analogies, when k > 2. This is also a measure of 
central tendency, and has been used in the literature when the number of 
closest projects increases [1]. 

Inverse rank weighted mean: Allows higher ranked analogies to have more 
influence than lower ones. If we use three analogies, for example, the clos-
est analogy (CA) would have weight = 3, the second closest (SC) weight = 
2, and the third closest (LA) weight = 1. The estimation would then be 
calculated as: 

 
6

23 LASCCA
ankWeighedMeInverseRan

++=  (2.7) 
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 WP 

 IM IM 

 FN   Effort = 25 

 Effort = 65  Effort = 45 

 Effort = 110 Effort = 75

WP < = 50 WP > 50

IM  > = 10IM < IM  > 20IM < =  

FN > = 5FN < 

Adaptation Rules 
Adaptation rules are used to adapt estimated effort, according to a given 
criterion, such that it reflects the characteristics of the target project more 
closely. For example, in the context of effort prediction, the estimated ef-
fort to develop an application would be adapted such that it would also 
take into consideration the application’s size values. 

Classification and Regression Trees 
The objective of a Classification and Regression Tree (CART) model is to 
develop a simple tree-structured decision process for describing the distri-
bution of a variable r given a vector of predictors vp [5]. A CART model 
represents a binary tree where the trees’ leaves suggest values for r based 
on existing values of vp. For example, assume the estimated effort to de-
velop a Web application can be determined by an estimated number of 
pages (WP), number of images (IM), and number of functions (FN). 
A regression tree such as the one shown in Fig. 2.3 is generated from data 
obtained from past finished Web applications, taking into account their 
existing values of effort, WP, IM, and FN. These are the predictors that 
make up the vector vp. Once the tree has been built it is used to estimate 
effort for a new project. So, to estimate effort for a new project where 
WP = 25, IM = 10, and FN = 4 we would navigate down the tree structure 
to find the estimated effort. In this case, 45 person hours.  

Whenever predictors are numerical the CART tree is called a regression 
tree and whenever predictors are categorical the CART tree is called a 
classification tree.  

 

Fig. 2.3. Example of a regression tree for Web cost estimation 
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A CART model constructs a binary tree by recursively partitioning the 
predictor space (set of values of each of the predictors in vector vp) into 
subsets where the distribution of values for the response variable (effort) is 
successively more uniform. The partition itself is determined by splitting 
rules associated with each of the non-leaf nodes.  

A “purity” function calculated from the predictor data is employed to 
split each node. There are numerous types of “purity” functions where the 
choice is determined by the software tool used to build the CART model, 
the type of predictors employed, and the goals for using a CART model 
(e.g. using it for cost estimation). The sequence used with CART is as 
follows:  

a) Past data is used to generate a CART model. 
b) This model is then traversed manually in order to obtain estimated 

effort, using as input values for the new project characteristics. 
c) The sequence described corresponds to steps 1, 2, and 3 from Fig. 2.1, 

in contrast to that for expert opinion and CBR.   

2.3  Measuring Effort Prediction Power and Accuracy 

An effort estimation model m uses historical data of finished projects to 
predict the effort of a new project. Some believe this is enough to provide 
accurate effort estimates. However, to gauge the accuracy of this model we 
need to measure its predictive accuracy.  

To measure a model’s predictive accuracy first calculate the predictive 
power for each of a set of new projects p1 to pn that used the effort estima-
tion model m. Once predictive power for p1 to pn  has been obtained, their 
values are aggregated, which gives the predictive power of model m and 
hence its corresponding predictive accuracy. 

This section describes how to measure the predictive power of a model, 
and how to measure a model’s predictive accuracy.  

2.3.1  Measuring Predictive Power 

The most common approaches to date for measuring predictive power of 
effort estimation models are: 

• The Mean Magnitude of Relative Error (MMRE)  [37] 
• The Median Magnitude of Relative Error (MdMRE) [30] 
• The Prediction at level n (Pred(n))  [36 ] 
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The basis for calculating MMRE and MdMRE is to use the Magnitude 
of Relative Error (MRE) [16], defined as: 

 
e

êe −
=MRE  (2.8) 

where e is the actual effort and ê is the estimated effort.   

The mean of all MREs is the MMRE, calculated as: 

 ∑
=

=

−
=

ni

i i

ii

e

ee

n
MMRE

1

ˆ1
 (2.9) 

As the mean is calculated by taking into account the value of every es-
timated and actual effort from the data set employed, the result may give a 
biased assessment of a model’s predictive power when there are several 
projects with large MREs.  

An alternative to the mean is the median, which also represents a meas-
ure of central tendency, as it is less sensitive to the existence of several 
large MREs. The median of MRE values for the number i of observations 
(data values) is called the MdMRE.  

Another indicator which is commonly used is the prediction at level l, 
also known as Pred(l). This measures the percentage of effort estimates 
that are within %l  of their actual values.  

MMRE, MdMRE, and Pred(l) are taken as the de facto standard evaluation 
criteria to measure the predictive power of effort estimation models [39]. 

2.3.2  Measuring Predictive Accuracy 

In order to calculate the predictive accuracy of a given effort estimation 
model m, based on a given data set of finished projects d, we do the fol-
lowing: 

1. Divide the data set d into a training set t and a validation set v. It is 
common to create training sets that use 66% of the projects from the 
complete data set, leaving 34% for the validation set. 

2. Using t, produce an effort estimation model m (if applicable). 
3. Using m, predict the effort for each of the projects in v, simulating new 

projects for which effort is unknown.  

Once done, we will have, for each project in v, an estimated effort ê, cal-
culated using the model m, and also the actual effort e that the project actu-
ally used. We are now able to calculate the predictive power (MRE) for each 
project in the validation set v. The final step, once we have obtained the 
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predictive power for each project, is to aggregate these values to obtain 
MMRE, MdMRE, and Pred(25) for v, which is taken to be the same for m. 

Calculated MMREs and MdMREs with values up to 0.25, and Pred(25) 
at 75% or above, indicate good prediction models [6].  

This splitting of a data set into training and validation sets is also known 
as cross-validation. An n-fold cross-validation means the original data set 
is divided into n subsets of training and validation sets. When the valida-
tion set has only one project the cross-validation is called “leave-one-out” 
cross-validation. This is an approach commonly used when assessing pre-
diction accuracy using CBR.  

2.4  Which Is the Most Accurate Prediction Technique? 

Section 2.2 introduced numerous techniques for obtaining effort estimates 
for a new project, and all have been used, each with a varying degree of 
success. Therefore the question that is often asked is: Which of the tech-
niques provides the most accurate prediction? 

To date, the answer to this question has been simply “it depends”.  
Algorithmic models have some advantages over machine learning and 

expert opinion, such as:  

1. Allowing users to see how a model derives its conclusions, an impor-
tant factor for verification as well as theory building and understanding 
of the process being modelled [10]. 

2. The need to be specialised relative to the local environment in which 
they are used [21,7].  

Despite these advantages, no convergence on which effort estimation 
technique has the best predictive power has yet been reached, even though 
comparative studies have been carried out over the last 15 years (e.g. 
[1,3,4,8–10,12–16,30,32,35–37]).  

One justification is that these studies have used data sets with differing 
characteristics (e.g. number of outliers,1 amount of collinearity,2 number of 
variables, number of projects) and different comparative designs.   

Shepperd and Kadoda [35 ]presented evidence for the relationship be-
tween the success of a particular technique and training set size, nature of 
the “effort estimation” function (e.g. continuous3 or discontinuous4), and 

                                                      
1 An outlier is a value which is far from the others. 
2 Collinearity represents the existence of a linear relationship between two or 

more independent variables. 
3 A continuous function is one in which “small changes in the input produce 

small changes in the output” (http://e.wikipedia.org/wiki/Continuous_function). 
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characteristics of the data set. They concluded that the “best” prediction 
technique that can work on any type of data set may be impossible to  
obtain.  

Mendes et al. [28]investigated three techniques for Web effort estima-
tion (stepwise regression, case-based reasoning, and regression trees) by 
comparing the prediction accuracy of their respective models. Stepwise 
regression provided the best results overall. This trend has also been 
confirmed using a different data set of Web projects [29]. This is therefore 
the technique to be used in Sect. 2.5 to build an effort estimation model for 
estimating effort for Web projects.  

2.5  Case Study 

The case study we present here describes the construction and further vali-
dation of a Web effort estimation model using data on industrial Web pro-
jects, developed by Web companies worldwide, from the Tukutuku data-
base [29].5 This database is part of the ongoing Tukutuku project,6 which 
collects data on Web projects, for the development of effort estimation 
models and to benchmark productivity across and within Web companies. 

The database contains data on 87 Web projects: 34 and 13 come from 2 
single Web companies respectively and the remaining 40 projects come 
from another 23 companies. The Tukutuku database uses 6 variables to 
store specifics about each company that volunteered projects, 10 variables 
to store particulars about each project, and 13 variables to store data about 
each Web application (see Table 2.1). Company data is obtained once and 
both project and application data are gathered for each volunteered project. 

All results presented were obtained using the statistical software SPSS 
10.1.3 for Windows. Further details on the statistical methods used throug-
hout this case study are given in Chap. 12. Finally, all the statistical tests 
set the significance level at 95% (α = 0.05). 

                                                                                                                          
4 “If small changes in the input can produce a broken jump in the changes of the 

output, the function is said to be discontinuous (or to have a discontinuity)” 
(http://e.wikipedia.org/wiki/Continuous_function). 

5 The raw data cannot be displayed here due to a confidentiality agreement with 
those companies that have volunteered data on their projects.   

6 http://www.cs.auckland.ac.nz/tukutuku. 
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Table 2.1. Variables for the Tukutuku database 

NAME SCALE7 DESCRIPTION 

COMPANY DATA 
COUNTRY Categorical Country company belongs to. 
ESTABLISHED Ordinal Year when company was established. 
SERVICES Categorical Type of services company provides. 
NPEOPLEWD Ratio Number of people who work on Web design and 

development. 
CLIENTIND Categorical Industry representative of those clients to whom 

applications are provided. 
ESTPRACT Categorical Accuracy of a company’s own effort estimation 

practices. 
PROJECT DATA 
TYPEPROJ Categorical Type of project (new or enhancement). 
LANGS Categorical Implementation languages used. 
DOCPROC Categorical If project followed defined and documented proc-

ess. 
PROIMPR Categorical If project team involved in a process improvement 

programme. 
METRICS Categorical If project team part of a software metrics pro-

gramme. 
DEVTEAM Ratio Size of project’s development team.  
TEAMEXP Ratio Average team experience with the development 

language(s) employed. 
TOTEFF Ratio Actual total effort used to develop the Web applica-

tion.  
ESTEFF Ratio Estimated total effort necessary to develop the Web 

application. 
ACCURACY Categorical Procedure used to record effort data. 
WEB APPLICATION 
TYPEAPP Categorical Type of Web application developed. 
TOTWP Ratio Total number of Web pages (new and reused). 
NEWWP Ratio Total number of new Web pages.  
TOTIMG Ratio Total number of images (new and reused).  
NEWIMG Ratio Total number of new images created. 
HEFFDEV Ratio Minimum number of hours to develop a single 

function/feature by one experienced developer that 
is considered high (above average).8 

HEFFADPT Ratio Minimum number of hours to adapt a single func-
tion/feature by one experienced developer that is 
considered high (above average).9 

                                                      
7 The different types of measurement scale are described in Chap. 12.  
8 This number is currently set to 15 hours based on the collected data. 
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NAME SCALE7 DESCRIPTION 
HFOTS Ratio Number of reused high-effort features/functions 

without adaptation. 
HFOTSA Ratio Number of reused high-effort features/functions 

adapted. 
HNEW Ratio Number of new high-effort features/functions. 
FOTS Ratio Number of reused low-effort features without adap-

tation. 
FOTSA Ratio Number of reused low-effort features adapted. 
NEW Ratio Number of new low-effort features/functions. 

The following sections describe our data analysis procedure, adapted 
from [23], which consists of: 

1. Data validation 
2. Variables and model selection 
3. Model inspection 
4. Extraction of effort equation 
5. Model validation 

2.5.1  Data Validation 

Data validation (DV) performs the first screening of the collected data. It 
generally involves understanding what the variables are (e.g. purpose, scale 
type, see Table 2.1) and also uses descriptive statistics (e.g. mean, median, 
minimum, maximum) to help identify any missing or unusual cases.  

Table 2.2 presents summary statistics for numerical variables. None of 
the numerical variables seem to exhibit unusual or missing values, al-
though this requires careful examination. For example, one would find it 
strange to see zero as minimum value for Total Images (TOTIMG) or one 
as minimum value for Total Web Pages (TOTWP). However, it is possible 
to have either a Web application without any images or a Web application 
that provides all its content and functionality within a single Web page. 
Another example relates to the maximum number of Web pages, which is 
2000 Web pages. Although it does not seem possible at first to have such 
large number of pages we cannot simply assume this has been a data entry 
error. We were unable to obtain confirmation from the source company. 
However, further investigation revealed that 1980 pages were developed 
from scratch, and numerous new functions/features (five high-effort and 
seven low-effort) were also implemented. In addition, the development 
team consisted of two people who had very little experience with the six 

                                                                                                                          
9 This number is currently set to 4 hours based on the collected data. 
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programming languages used. The total effort was 947 person hours, 
which can correspond to a three-month project assuming both developers 
worked at the same time. If we only consider number of pages and effort, 
the ratio of number of minutes per page is 27:1, which seems reasonable 
given the lack of experience of the development team and the number of 
different languages they had to use. 

Table 2.2. Descriptive statistics for numerical variables 

Variables N Min. Max. Mean Median Std. dev. 

DEVTEAM 87 1 8 2.37 2 1.35
TEAMEXP 87 1 10 3.40 2 1.93
TOTWP 87 1 2000 92.40 25 273.09
NEWWP 87 0 1980 82.92 7 262.98
TOTIMG 87 0 1820 122.54 40 284.48
NEWIMG 87 0 800 51.90 0 143.25
HEFFDEV 87 5 800 62.02 15 141.25
HEFFADPT 87 0 200 10.61 4 28.48
HFOTS 87 0 3 .08 0 .41
HFOTSA 87 0 4 .29 0 .75
HNEW 87 0 10 1.24 0 2.35
FOTS 87 0 15 1.07 0 2.57
FOTSA 87 0 10 1.89 1 2.41
NEW 87 0 13 1.87 0 2.84
TOTEFF 87 1 5000 261.73 43 670.36
ESTEFF 34 1 108 14.45 7.08 20.61

Once we have checked the numerical variables our next step is to check 
the categorical variables using their frequency tables as a tool (see Tables 
2.4 to 2.7).  

Tables 2.4 to 2.6 show that most projects followed a defined and docu-
mented process, and that development teams were involved in a process 
improvement programme and/or part of a software metrics programme. 
These positive trends are mainly due to the two single companies that to-
gether volunteered data on 47 projects (54% of our data set). They have 
answered “yes” to all three categories. No unusual trends seem to exist. 

Table 2.7 shows that the majority of projects (83%) had the actual effort 
recorded on a daily basis, for each project and/or project task. These num-
bers are inflated by the two single companies where one chose category 
“good” (11 projects) and the other chose category “very good” (34 projects). 
The actual effort recording procedure is not an adequate effort estimator per 
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se, being used here simply to show that the effort data gathered seems to be 
reliable overall. 

Table 2.3. Frequency table for type of project 

Type of project Frequency % Cumulative %
New 39 44.8 44.8
Enhancement 48 55.2 100.0

Total 87 100.0

Table 2.4. Frequency table for documented process 

Documented process Frequency % Cumulative %
no 23 26.4 26.4
yes 64 73.6 100.0

Total 87 100.0

Table 2.5. Frequency table for process improvement 

Process improvement Frequency % Cumulative %
no 28 32.2 32.2
yes 59 67.8 100.0

Total 87 100.0

Table 2.6. Frequency table for metrics programme 

Metrics programme Frequency % Cumulative %
no 36 41.4 41.4
yes 51 58.6 100.0

Total 87 100.0

Table 2.7. Frequency table for companies’ effort recording procedure 

Actual effort recording procedure Frequency % Cumulative %
Poor 12 13.8 13.8
Medium 3 3.4 17.2
Good 24 27.6 44.8
Very good 48 55.2 100

Total 87 100.0

Once the data validation is complete, we are ready to move on to the 
next step, namely variables and model selection.  
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2.5.2  Variables and Model Selection 

The second step in our data analysis methodology is sub-divided into two 
separate and distinct phases: preliminary analysis and model building. 

Preliminary analysis allows us to choose which variables to use, discard, 
modify, and, where necessary, sometimes create. Model building deter-
mines an effort estimation model based on our data set and variables. 

Preliminary Analysis 
This important phase is used to create variables based on existing vari-
ables, discard unnecessary variables, and modify existing variables (e.g. 
joining categories). The net result of this phase is to obtain a set of vari-
ables that are ready to use in the next phase, model building. Since this  
phase will construct an effort model using stepwise regression we need to 
ensure that the variables comply with the assumptions underlying regres-
sion analysis, which are: 

1. The input variables (independent variables) are measured without er-
ror. If this cannot be guaranteed then these variables need to be nor-
malised. 

2. The relationship between dependent and independent variables is lin-
ear. 

3. No important input variables have been omitted. This ensures that 
there is no specification error associated with the data set. The use of a 
prior theory-based model justifying the choice of input variables en-
sures this assumption is not violated. 

4. The variance of the residuals is the same for all combinations of input 
variables (i.e. the residuals are homoscedastic rather than heteroscedas-
tic)10. 

5. The residuals must be normally distributed. 
6. The residuals must be independent, i.e. not correlated.11 
7. The independent variables are not linearly dependent, i.e. there are no 

linear dependencies among the independent variables. 

The first task within the preliminary analysis phase is to examine the en-
tire set of variables and check if there is a significant amount of missing 
values (> 60%). If yes, they should be automatically discarded as they 
prohibit the use of imputation methods12 and will further prevent the identi-
fication of useful trends in the data. Table 2.2 shows that only ESTEFF 
presented missing values greater than 60%. ESTEFF was gathered to give 
                                                      
10 Further details are provided in Chap. 12. 
11 Further details are provided in Chap. 12. 
12 Imputation methods are methods used to replace missing values with estimated 

values. 
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an idea of each company’s own prediction accuracy; however, it will not 
be included in our analysis since it is not an effort predictor per se. Note 
that a large number of zero values on certain size variables do not repre-
sent missing or rounded values.  

Next we present the analyses for numerical variables first, followed by 
the analyses for categorical variables. 

Numerical Variables: Looking for Symptoms 
Our next step is to look for symptoms (e.g. skewness13, heteroscedastic-
ity14, and outliers15) that may suggest the need for variables to be normal-
ised, i.e. having their values transformed such that they resemble more 
closely a normal distribution. This step uses histograms, boxplots, and 
scatter plots. 

Histograms, or bar charts, provide a graphical display, where each bar 
summarises the frequency of a single value or range of values for a given 
variable. They are often used to check if a variable is normally distributed, 
in which case the bars are displayed in the shape of a bell-shaped curve. 
Histograms for the numerical variables (see Figs. 2.4 to 2.6) suggest that 
all variables present skewed distributions, i.e. values not symmetrical 
about a central value.  

Next we use boxplots to check the existence of outliers. Boxplots (see 
Fig. 2.7) use the median, represented by the horizontal line in the middle 
of the box, as the central value for the distribution. The box’s height is the 
inter-quartile range, and contains 50% of the values. The vertical (whisk-
ers) lines up or down from the edges contain observations which are less 
than 1.5 times inter-quartile range. Outliers are taken as values greater than 
1.5 times the height of the box. Values greater than 3 times the box’s 
height are called extreme outliers [19]. 

                                                      
13 Skewness measures to what extent the distribution of data values is symmetri-

cal about a central value. 
14 Heteroscedasticity represents unstable variance of values. 
15 Outliers are unusual values. 
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Fig. 2.4. Distribution of values for six numerical variables 
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Fig. 2.5. Distribution of values for another six numerical variables 
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Fig. 2.6. Distribution of values for three numerical variables 

When upper and lower tails are approximately equal and the median is 
in the centre of the box, the distribution is symmetric. If the distribution is 
not symmetric the relative lengths of the tails and the position of the me-
dian in the box indicate the nature of the skewness. The length of the box 
relative to the length of the tails gives an indication of the shape of the 
distribution. So, a boxplot with a small box and long tails represents a very 
peaked distribution, whereas a boxplot with a long box represents a flatter 
distribution [19]. 

The boxplots for numerical variables (see Fig. 2.8) indicate that they 
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Fig. 2.7. Main components of a boxplot 

Whenever outliers are present they should be investigated further, since 
they may be a result of data entry error. In our study we looked at all cases, 
in particular in relation to projects that exhibited very large effort values, 
but did not find anything in the data to suggest they should be removed 
from the data set. Note that when there are doubts about the correctness of 
the data, the best solution is to contact the data source for confirmation. 
Only if the source is not available should an assessment be based on con-
sistency with other variables.   

The histograms and boxplots both indicate symptoms of skewness and 
outliers. When this situation arises it is common practice to normalise the 
data, i.e. to transform the data trying to approximate the values to a normal 
distribution. A common transformation is to take the natural log (ln), 
which makes larger values smaller and brings the data values closer to 
each other [23]. This is the transformation applied in our case, to all nu-
merical variables. For consistency, all variables with a value of zero had 
one added to their values prior to being transformed, as there is no natural 
log of zero.   

The Tukutuku database uses six variables to record the number of fea-
tures/functions for each application. Their histograms (Fig. 2.5(c)–(f), Fig. 
2.6(a)–(b)) indicate that each has a large number of zeros, reducing their 
likelihood of being selected by the stepwise procedure. We therefore de-
cided to group their values by creating two new variables – TOTHIGH 
(summation of HFOTS, HFOTSA, and HNEW) and TOTNHIGH (summa-
tion of FOTS, FOTSA, and NEW). Their histograms are presented in Fig. 
2.9(a)–(b). 
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Fig. 2.8. Boxplots for numerical variables 
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Fig. 2.9. Distribution of values for TOTHIGH and TOTNHIGH 
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Fig. 2.10. Distribution of values for number of different implementation languages 
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Fig. 2.11. Scatter plots showing strong relationships between ltoteff and several 
size variables 
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Fig. 2.12. Scatter plots for strong (d,e,f) and weak (a,b,c) relationships between 
ltoteff and several size variables 
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Fig. 2.13. Scatter plots for strong (a–d) and weak (e) relationships between ltoteff 
and independent variables 
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Figures 2.11 to 2.13 show that most variables seem to present a positive 
relationship with LTOTEFF. 

The scatter plots in Fig. 3.12(a)–(f) clearly show that the large number 
of zero values for the independent variables causes the dependent variable 
to exhibit more variability at the zero point, i.e. when independent vari-
ables have zero values, compared with non-zero values. This behaviour 
violates the fourth assumption underlying linear regression. Therefore 
within the context of this case study, we will exclude LHFOTS, 
LHFOSTA, LHNEW, LFOTS, LFOTSA, and LNEW from any subsequent 
analysis. 

Our preliminary analyses for numerical variables is finished. Now we 
can move on and look at our categorical variables.  

Categorical Variables: Relationship with Total Effort 
This part of the analysis involves the creation of a table for each categori-
cal variable where, for each of this variable’s category, we display the 
mean and median values of effort and the corresponding number of pro-
jects it is based on. The motivation is to check if there is a significant dif-
ference in effort by category. If there is, then we need to understand why.  

Table 2.8 shows that on average, new projects required more effort, de-
spite being smaller in number than enhancement projects. This should not 
come as a surprise since we generally know that building an application of 
size s from scratch takes longer than enhancing such application.  

Table 2.8. Mean, median effort, and number of projects per type of project category 

TYPEPROJ N Mean effort Median effort 
New 39 329.8 100.0 
Enhancement 48 206.4 18.7 
Total 87 261.7 43.0 

Table 2.9 shows that on average, projects that did not use any docu-
mented process used higher effort, despite being smaller in number than 
projects that used a documented process. Further inspection of the data 
revealed that 70% of the 23 projects that did not use any documented proc-
ess are new, and that 64% of the 64 projects that used a documented proc-
ess are enhancement projects. These results are in line with those shown in 
Table 2.8. 
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Table 2.9. Mean, median effort, and number of projects per documented process 
category 

DOCPROC N Mean effort Median effort 
no 23 307.5 50.0 
yes 64 245.3 36.2 
Total 87 261.7 43.0 

Table 2.10. Mean, median effort, and number of projects per process improve-
ment category 

PROIMPR N Mean effort Median effort 
no 28 508.1 100.0 
yes 59 144.8 25.2 
Total 87 261.7 43.0 

Table 2.11. Mean, median effort, and number of projects per metrics programme  
category 

METRICS N Mean effort Median effort 
no 36 462.9 112.5 
yes 51 119.7 21.0 
Total 87 261.7 43.0 

A similar pattern is observed in Tables 2.10 and 2.11, where, on average, 
projects that are not part of a process improvement or metrics programme 
required higher effort despite being smaller in size (61% of the 28 projects 
that are not part of a process improvement programme are new projects). 

For projects that are not part of a metrics programme this percentage is 
also 61% of 36 projects. In both cases the majority of projects that are part 
of a process improvement or metrics programme are enhancement projects 
(63% of 59 and 67% of 51 respectively).  

Our next step is to check the relationship between categorical variables 
and effort. Note that we cannot use scatter plots as categorical variables are 
not numerical. Therefore we use a technique called the one-way ANOVA  
(see Chap. 12 for details). Table 2.12 summarises the results for the one-
way ANOVA. 

Table 2.12. Results for the one-way ANOVA 

Categorical variables LTOTEFF 
TYPEPROJ Yes 
DOCPROC No 
PROIMPR Yes 
METRICS Yes 



60      Emilia Mendes, Nile Mosley, Steve Counsell 

DOCPROC is the only categorical variable not significantly related to 
LTOTEFF; however, it will not be removed from further analysis as its 
relationship with LTOTEFF may be concealed at this stage [18].  

Next we build the effort model using a two-step process. The first step is 
to use a manual stepwise regression based on residuals to select the cate-
gorical and numerical variables that jointly have a statistically significant 
effect on the dependent variable, LTOTEFF. The second step is to use 
these selected variables to build the final effort model using multivariate 
regression, i.e. linear regression using more than one independent variable.  

The size measures used in our case study represent early Web size 
measures obtained from the results of a survey investigation [29], using 
data from 133 on-line Web forms aimed at giving quotes on Web devel-
opment projects. In addition, the measures were validated by an estab-
lished Web company, and a second survey involving 33 Web companies in 
New Zealand. Consequently it is our belief that the size measures identi-
fied are plausible effort predictors, not an ad-hoc set of variables with no 
underlying rationale. 

Building the Model Using a Two-Step Process 
This section describes the use of a manual stepwise regression based on 
residuals to build the effort model. This technique, proposed by Kitchen-
ham [18], enables the use of information on residuals to handle relation-
ships amongst independent variables. In addition, it only selects the input 
variables that jointly have a statistically significant effect on the dependent 
variable, thus avoiding any multi-collinearity problems. 

The input variables to use are those selected as a result of our prelimi-
nary analyses, which are: LTOTWP, LNEWWP, LTOTIMG, LIMGNEW, 
LTOTHIGH, LTOTNHIG, TYPEPROJ, DOCPROC, PROIMPR, and 
METRICS.  

Note: the distinct values of a categorical variables are called levels. For 
example, the categorical variable DOCPROC has two levels – Yes and No.  

The manual stepwise technique applied to categorical variables com-
prises the following steps [18]:  

Step 1. Identify the categorical variable that has a statistically significant 
effect on LTOTEFF and gives the smallest error term (mean square 
within groups). This is obtained by applying simple analysis of 
variance (ANOVA) using each categorical variable in turn (CV1). 

Step 2. Remove the effect of the most significant categorical variable to 
obtain residuals (ResC1). This means that for each level of the 
most significant categorical variable, subtract the mean effort from 
the project effort values. Note that effort represents the normalised 
effort – LTOTEFF. 
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Step 3. Apply ANOVA using each remaining categorical variable in turn, 
this time measuring their effect on ResC1. 

Step 4. Any categorical variables that had a statistically significant effect 
on LTOTEFF (in step 1), but have no statistically significant effect 
on ResC1, are variables related to CV1 and offer no additional in-
formation about the dependent variable. They can therefore be 
eliminated from the stepwise regression. 

Step 5. Identify the next most significant categorical variable from step 4 
(CV2). Again, if there are several statistically significant variables, 
choose the one that minimises the error term. 

Step 6. Remove the effect of CV2 to obtain residuals (ResC2). 
Step 7. Apply ANOVA using each remaining categorical variable in turn, 

this time measuring their effect on ResC2. 
Step 8. Any categorical variables that had a statistically significant effect 

on ResC1, but have no statistically significant effect on ResC2, are 
variables related with CV2 and offer no additional information 
about the dependent variable. They can therefore be eliminated 
from the stepwise regression. 

Step 9. Repeat the stepwise process until all statistically significant cate-
gorical variables are removed or none of the remaining variables 
have a statistically significant effect on the current residuals. 

The initial level means for the four categorical variables to be used in 
our manual stepwise process are presented in Table 2.13. 

Numerical variables can also be added to this stepwise procedure. Their 
impact on the dependent variable can be assessed using linear regression, 
and obtaining the mean squares for the regression model and residual. 
Whenever a numerical variable is the most significant, its effect has to be 
removed, i.e. the obtained residuals are the ones further analysed. 

To construct the full regression model, apply a multivariate regression 
using only the variables that have been selected from the manual stepwise 
procedure. At each stage of the stepwise process we also need to verify the 
stability of the model. This involves identifying large residual and high–
influence data points (i.e. projects), and also checking if residuals are ho-
moscedastic and normally distributed. Several types of plots (e.g. residual, 
leverage, probability) and statistics are available in most statistics tools to 
accomplish such task. 
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Table 2.13. Initial level means for categorical variables 

Variable/Level No. projects Total LTOTEFF Mean LTOTEFF 

TYPEPROJ/New 39 186.7 4.8 
TYPEPROJ/Enhancement 48 154.1 3.2 
DOCPROC/Yes 64 244.3 3.8 
DOCPROC/No 23 96.5 4.2 
PROIMPR/Yes 59 204.4 3.5 
PROIMPR/No 28 136.4 4.9 
METRICS/Yes 51 163.2 3.2 
METRICS/No 36 177.6 4.9 

The plots we have employed here are: 

• A residual plot showing residuals vs. fitted values. This allows us to 
investigate if the residuals are random and normally distributed. For 
numerical variables the plotted data points should be distributed ran-
domly about zero. They should not exhibit patterns such as linear or 
non-linear trends, or increasing or decreasing variance. For categorical 
variables the pattern of the residuals should appear “as a series of par-
allel, angled lines of approximately the same length” [18]. 

• A normal P–P plot (probability plots) for the residuals. Normal P–P 
plots are generally employed to verify if the distribution of a variable is 
consistent with the normal distribution. When the distribution is nor-
mal, the data points are close to linear. 

• Cook’s D statistic to identify projects that exhibited jointly a large 
influence and large residual [23]. Any projects with D greater than 4/n, 
where n represents the total number of projects, are considered to have 
a high influence on the results. When there are high-influence projects 
the stability of the model is tested by removing these projects and ob-
serving the effect their removal has on the model. If the coefficients 
remain stable and the adjusted R2 increases, this indicates that the high-
influence projects are not destabilising the model and therefore do not 
need to be removed. 

First Cycle 
Table 2.14 shows the results of applying ANOVA to categorical and numeri-
cal variables. This is the first cycle in the stepwise procedure. The numerical 
variable LNEWWP is the most significant, since it results in the smallest 
error term, represented by a within-groups mean square value of 1.47. 
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Table 2.14. ANOVA for each categorical and numerical variable for first cycle 

Variable Levels Mean No. projs Between-
groups 

MS 

Within-
groups 

MS 

F test 
level of 
signifi-
cance 

TYPEPROJ New 4.79 39 
TYPEPROJ Enhancement 3.20 48 

53.56 3.05 17.56 
p < 0.01 

DOCPROC Yes 3.82 64 
DOCPROC No 4.20 23 

2.44 3.65 0.42 
n.s. 

PROIMPR Yes 3.46 59 
PROIMPR No 4.87 28 

37.38 3.24 11.64 
p = 0.001 

METRICS Yes 3.20 51 
METRICS No 4.93 36 

63.54 2.93 21.67 
p < 0.01 

LTOTWP LTOTEFF = 1.183 + 0.841LTOTWP 158.22 1.82 86.97 
p < 0.01 

LNEWWP LTOTEFF = 2.165 + 0.731LNEWWP 188.21 1.47 128.36 
p < 0.01 

LTOTIMG LTOTEFF = 2.428 + 0.471LTOTIMG 78.55 2.76 28.50 
p < 0.01 

LIMGNEW LTOTEFF = 2.98 + 0.524LIMGNEW 104.35 2.45 42.54 
p < 0.01 

LTOTHIGH LTOTEFF = 2.84 + 1.705LTOTHIGH 143.04 2.00 71.61 
p < 0.01 

LTOTNHIG LTOTEFF = 2.954 + 0.641LTOTNHIG 21.12 3.43 6.15 
p = 0.015 

The single variable regression equation with LTOTEFF as the depend-
ent/response variable and LNEWWP as the independent/predictor variable 
gives an adjusted R2 of 0.597. Two projects are identified with Cook’s D > 
0.045; however, their removal did not seem to destabilise the model, i.e. 
after their removal the coefficients remained stable and the adjusted R2 
increased. Furthermore, there was no indication from the residual and P–P 
plots that the residuals were non-normal. The residuals resulting from the 
linear regression are used for the second cycle in the stepwise procedure.  

Second Cycle  
Table 2.15 shows the results of applying ANOVA to categorical and nu-
merical variables. This is the second cycle in the stepwise procedure. The 
numerical variable LTOTHIGH is the most significant, since it results in 
the smallest error term, represented by a within-square value of 1.118. The 
linear regression equation with the residual as the dependent/response 
variable and LTOTHIGH as the independent/predictor variable gives an 
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adjusted R2 of 0.228. This time five projects are identified with Cook’s 
D > 0.045; however, their removal did not destabilise the model. In addi-
tion, the residual and P–P plots found no evidence of non-normality. 

Table 2.15. ANOVA for each categorical and numerical variable for second cycle 

Variable Levels Mean No. projs Be-
tween-
groups 

MS 

Within- 
groups 

MS 

F test 
level of 
signifi-
cance 

TYPEPROJ New -0.0181 39 0.023
TYPEPROJ Enhancement 0.0147 48  

1.466 0.016 
n.s. 

DOCPROC Yes 0.0385 64 0.359
DOCPROC No -0.1072 23  

1.462 0.246 
n.s. 

PROIMPR Yes -0.1654 59 5.017
PROIMPR No 0.3486 28  

1.407 3.565 
n.s. 

METRICS Yes -0.2005 51 4.954
METRICS No 0.2840 36  

1.408 3.519 
n.s. 

LTOTWP LTOTEFF =  -0.474 + 0.146LTOTWP 4.749 1.410 3.367 
n.s. 

LTOTIMG LTOTEFF = -0.417 + 0.132LTOTIMG 6.169 1.394 4.427 
p = 0.038 

LIMGNEW LTOTEFF = -0.33 + 0.184LIMGNEW 12.915 1.314 9.826 
p = 0.002 

LTOTHIGH LTOTEFF = -0.49 + 0.775LTOTHIGH 29.585 1.118 26.457 
p < 0.01 

LTOTNHIG LTOTEFF = -0.593 + 0.395LTOTNHIG 8.015 1.372 5.842 
p = 0.018 

Table 2.15 also shows that TYPEPROJ, PROIMPR, METRICS, and 
LTOTWP have no further statistically significant effect on the residuals 
obtained in the previous cycle. Therefore they can all be eliminated from 
the stepwise procedure.  

Once this cycle is complete the remaining input variables are 
DOCPROC, LTOTIMG, LIMGNEW, and LTOTNHIG. 

Third Cycle  
Table 2.16 shows the results of applying ANOVA to the four remaining 
categorical and numerical variables. This is the third cycle in the stepwise 
procedure. As shown in Table 2.16 none of the four remaining variables 
have any statistically significant effect on the current residuals, and as such 
the procedure finishes.  
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Finally, our last step is to construct the effort model using a multivariate 
regression analysis with only the input variables selected using the manual 
stepwise procedure – LNEWWP and LTOTHIGH. The coefficients for the 
effort model are presented in Table 2.17. Its adjusted R2 is 0.717 suggest-
ing that LNEWWP and LTOTHIGH can explain 72% of the variation in 
LTOTEFF.   

Table 2.16. ANOVA for each categorical and numerical variable for third cycle 

Variable Levels Mean No. projs Be-
tween- 
groups 

MS 

Within- 
groups 

MS 

F test level 
of signi-
ficance 

DOCPROC Yes 0.0097 64 
DOCPROC No -0.0272 23 

0.023 1.118 0.021 
n.s. 

LTOTIMG LTOTEFF = -0.109 + 0.034 
LTOTIMG 

0.419 1.113 0.376 
n.s. 

LIMGNEW LTOTEFF = -0.162 + 0.091 
LIMGNEW 

3.126 1.081 2.89 
n.s. 

LTOTNHIG LTOTEFF = -0.192 + 0.128 
LTOTNHIG 

0.837 1.108 0.755 
n.s. 

Table 2.17. Coefficients for the effort model 

Variable Coeff. Std. error t P>|t| [95% conf. interval] 

(Constant) 1.959 0.172 11.355 0.000 1.616 2.302 
LNEWWP 0.553 0.061 9.003 0.000 0.431 0.675 
LTOTHIGH 1.001 0.164 6.095 0.000 0.675 1.328 

Four projects had Cook’s D > 0.045 (see Table 2.18) and so we fol-
lowed the procedure adopted previously. We repeated the regression 
analysis after excluding these four projects from the data set. Their re-
moval did not result in any major changes to the model coefficients and the 
adjusted R2 improved (0.757). Therefore we assume that the regression 
equation is reasonably stable for this data set and it is not necessary to omit 
these four projects from the data set.  

Table 2.18. Four projects that presented high Cook’s distance 

ID NEWWP TOTHIGH TOTEFF Cook’s D 
20 20 0 625 0.073 
25 0 4 300 0.138 
32 22 8 3150 0.116 
45 280 0 800 0.078 
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Figure 2.14 shows three different plots all related to residuals. The his-
togram (see Fig. 2.14(a)) suggests that the residuals are normally distrib-
uted, which is further corroborated by the P–P plot (see Fig. 2.14(b)). In 
addition, the scatter plot of standardised residuals versus standardised pre-
dicted values does not show any problematic patterns in the data. 

 

Fig. 2.14. Several residual plots 

Once the residuals and the stability of the regression model have been 
checked, we are in a position to extract the equation that represents the 
model.  
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2.5.3  Extraction of effort Equation 

The equation that is obtained from Table 2.17 is the following:  

 LTOTHIGHLNEWWPLTOTEFF 001.1553.0959.1 ++=  (2.10) 

This equation uses three variables that had been previously transformed, 
therefore we need to transform it back to its original state, which gives the 
following equation: 

 001.1553.0 )1()1(092.7 ++= TOTHIGHNEWWPTOTEFF  (2.11) 

In Eq. 2.11, the multiplicative value 7.092 can be interpreted as the ef-
fort required to develop one Web page.   

Obtaining a model that has a good fit to the data and can alone explain a 
large degree of the variation in the dependent variable is not enough to 
assume this model will provide good effort predictions. To confirm this, it 
also needs to be validated. This is the procedure explained in Sect. 2.5.4. 

2.5.4  Model Validation 

As described in Sect. 2.3.2, to validate a model we need to do the follow-
ing: 

Step 1. Divide data set d into a training set t and a validation set v. 
Step 2. Use t to produce an effort estimation model te (if applicable). 
Step 3. Use te to predict effort for each of the projects in v, as if these 

projects were new projects for which effort was unknown.  

This process is known as cross-validation. For an n-fold cross-
validation, n different training/validation sets are used. In this section we 
will show the cross-validation procedure using a one-fold cross-validation, 
with a 66% split. This split means that 66% of our project data will be used 
for model building, the remaining 34% to validate the model, i.e. the train-
ing set will have 66% of the total number of projects and the validation set 
will have the remaining 34%.  

Our initial data set had 87 projects. At step 1 they are split into training 
and validation sets containing 58 and 29 projects respectively. Generally 
projects are selected randomly.  

As part of step 2 we need to create an effort model using the 58 projects 
in the training set. We will create an effort model that only considers the 
variables that have been previously selected and presented in Eq. 2.10. 
These are: LNEWWP and LTOTHIGH. Here we do not perform the resid-
ual analysis or consider Cook’s D since it is assumed these have also been  
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done using the generic equation, Eq. 2.10. The model’s coefficients are 
presented in Table 2.19, and the transformed equation is presented in Eq. 
2.12. The adjusted R2 is 0.619. 

Table 2.19. Coefficients for effort model using 58 projects 

Variable Coeff. Std. error t P>|t| [95% conf. interval] 

(Constant) 2.714 0.264 10.290 0.000 2.185 3.242 
LNEWWP 0.420 0.073 5.749 0.000 0.273 0.566 
LTOTHIGH 0.861 0.160 5.389 0.000 0.675 1.328 

 861.0420.0 )1()1(089.15 ++= TOTHIGHNEWWPTOTEFF  (2.12) 

To measure this model’s prediction accuracy we obtain the MMRE, 
MdMRE, and Pred(25) for the validation set. The model presented as Eq. 
2.12 is applied to each of the 29 projects in the validation set to obtain 
estimated effort, and MRE is computed. Having the calculated estimated 
effort and the actual effort (provided by the Web companies), we are fi-
nally in a position to calculate MRE for each of the 29 projects, and hence 
MMRE, MdMRE, and Pred(25) for the entire 29 projects. This process is 
explained in Fig. 2.15. 

 

Fig. 2.15. Steps used in the cross-validation process 
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87
 p

ro
je

ct
s 

T
ra

in
in

g 
se

t 
 (

58
 p

ro
je

ct
s)

 

V
al

id
at

io
n 

se
t 

(2
9 

pr
oj

ec
ts

) 

Model in Eq. 2.14 

Estimated effort, 
Actual effort 
MRE, 
Residual 

MMRE, 
MdMRE, 
Pred(25) 

 (1) 

 (1)  (2) 
 (3) 

 (4) 

 (5) 



Web Effort Estimation      69 

Table 2.20. Prediction accuracy measures using model-based estimated effort 

Measure %
MMRE 129
MdMRE 73
Pred(25) 17.24

If we assume a good prediction model has an MMRE less than or equal 
to 25% and Pred(25) greater than or equal to 75% then the values pre-
sented in Table 2.20 suggest the accuracy of the effort model used is poor. 
However, if instead we were to use the average actual effort (average = 
261) or the median actual effort for the 87 projects (median = 43) accuracy 
would be considerably worse. One viable approach for a Web company 
would be to use the effort model described above to obtain an estimated 
effort, and adapt the obtained values, taking into account factors such as 
previous experience with similar projects and the skills of the developers.  

Table 2.21. Prediction accuracy measures based on average and median effort 

 
Average effort as 
estimated effort 

Median effort as 
estimated effort 

MMRE 4314% 663% 
MdMRE 1413% 149% 
Pred(25) 6.89% 3.44% 

Table 2.21 presents the results for a one-fold cross-validation. However, 
research on effort estimation suggests that to have unbiased results for a 
cross-validation we should actually use at least a 20-fold cross-validation 
analysis [17]. This would represent for the data set presented here, the 
selection of 20 different training/validation sets and the aggregation of the 
MMREs, MdMREs, and Pred(25)s after accuracy for all 20 groups has 
been calculated.  

2.6  Conclusions 

This chapter introduced the concepts related to effort estimation, and de-
scribed techniques for effort estimation using three general categories: 
expert opinion, algorithmic models and artificial intelligence (AI) tech-
niques. In addition, it discussed how to measure effort prediction power 
and accuracy of effort estimation models. 

This chapter also presented a case study that used data from industrial 
Web projects held in the Tukutuku database, to construct and validate an 
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effort estimation model. The size measures used in the case study represent 
early Web size measures obtained from the results of a survey investiga-
tion [29], using data from 133 on-line Web forms aimed at giving quotes 
for Web development projects. In addition, the measures were validated by 
an established Web company, and by a second survey involving 33 Web 
companies in New Zealand. Consequently we believe that the size meas-
ures identified are plausible effort predictors, not an ad-hoc set of variables 
with no underlying rationale. 

Furthermore, a detailed analysis of the data was provided, with details 
of a manual stepwise procedure [18] used to build an effort estimation 
model. The two variables that were selected by the effort estimation model 
were the total number of new Web pages and the total number of high-
effort features/functions in the application. Together they explained 76% 
of the variation in total effort. Note that the effort model constructed and 
the selected variables are applicable only to projects belonging to the data 
set on which they were constructed.  

The case study details the mechanism that can be used by any Web 
company to construct and validate its own effort estimation models. Alter-
natively, Web companies that do not have a data set of past projects may 
be able to benefit from the cross-company effort estimation models pro-
vided within the context of the Tukutuku project, provided they are willing 
to volunteer data on three of their past finished projects. 
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