
2
Teamwork

Abstract

This chapter presents one of the basic elements of software projects|teamwork. It

addresses how to build teams in a way that promotes team members’ accountability

and responsibility, and that fosters communication between teammates. One of the

basic ways to start team building is by assigning roles to the team members. For this

purpose a role scheme is presented in this chapter, according to which each team

member is in charge of a specific managerial aspect of the development process, such

as design and continuous integration, in addition to his or her development tasks.

Teamwork is not always a simple process, and sometimes it raises dilemmas and

conflicts between team members. This aspect of teamwork is not neglected in agile

teams, and when a conflict emerges, it is addressed openly by all the team members.

In the section that deals with teamwork in learning environments, it is illustrated how

the role scheme and the discussion about dilemmas in teamwork provide an evalua-

tion framework for software projects developed by student teams in academia.

2.1 Overview

This chapter focuses on teams|one of the main and most influential factors of

software projects’ success. Consequently, it is
HOT

highly appreciated and supported

by agile software development methods.

One practice which is highlighted in this chapter is applying a role scheme,

according to which each team member has an additional role in the team in

O. Hazzan, Y. Dubinsky, Agile Software Engineering,
DOI: 10.1007/978-1-84800-198-5 2, � Springer-Verlag London Limited 2008

addition to being a software developer. This role scheme fosters the interconnec-

tions and dependencies between the members of agile teams and enhances

creativity, responsibility, accountability, diversity, and measure collection.

Further, this role scheme shows that each team member can contribute to soft-

ware development on the team level, beyond his or her individual contribution,

and that the mutual contributions of the individuals in the team create a whole

which is greater than the sum of its parts.

To highlight the importance attributed to teamwork in agile software devel-

opment environments, this chapter also presents a set of activities that deal with

roles, which may form the needed atmosphere for agile teamwork.

In addition, we discuss potential dilemmas in teamwork and how agile devel-

opment may help cope with such dilemmas. Specifically, we examine how to

satisfy the individual needs of each team member and, at the same time, achieve

the needed contributions to the team’s work.

Based on this examination, an evaluation scheme for student software pro-

jects, developed in teams, is presented in the section of this chapter that deals with

teamwork in learning environments. This evaluation scheme takes into considera-

tion the various conflicts that may arise.

2.2 Objectives

l Readers will become familiar with the characteristics of software teams in agile

software development environments.

l Readers will learn how to allocate roles to members of agile teams and how to exploit

the benefits of role assignment at the individual, team, and organization levels.

l Readers will discuss dilemmas in teamwork and understand how agile teams

can overcome them.

l Readers will get a sense of how agile team spirit can be achieved, empowered,

and maintained.

l Readers will gain basic skills to exploit the strength of agile teams.

2.3 Study Questions

1. Find definitions for the concepts of team and teamwork. Discuss the defini-

tions’ relevance for software teams.

2. What is the purpose of teams? Why are teams needed?

26 2. Teamwork

3. As a software team member, how would you like to feel in your team? What

values would you like to pursue? What practices would you want to see in your

team development environment to provide an atmosphere that fits you?

4. What roles do you have in your life? How do you manage to perform them all?

Describe two personal scenarios in which a conflict emerged from the need to

play different roles and explain how the conflicts were solved.

5. Why should roles be assigned to software team members? What roles would

you assign to your team members?

6. Look through the literature for different approaches to role assignments in

software teams in general and in agile software teams in particular. Compare

these approaches: What ideas do they share? How do they differ from each

other? What are the specific characteristics and responsibilities of each role

holder in the team?

7. Discuss at least three problems which software teams face. Suggest ways to

solve these problems.

8. Suggest dilemmas which software team members might face. Suggest ways to

solve these problems. Suggest agile principles and practices that can support

such cases.

2.4 A Role Scheme in Agile Teams

According to Humphrey (2000), a team consists of at least two people who are

working towards a common goal/objective/mission, in which each person has

been assigned a specific role to perform and in which a completion of the mission

requires some form of dependency among team members (p. 19). In the case of a

software project, a team is a group of individuals who have gathered to produce a

software product.

In software projects teams are needed for the accomplishment of the complex

task of software development. It is however, not a trivial task to mange software

teamwork. This is partially because software development is about an intangible

product, one that cannot be seen, smelled, or touched, and therefore, the devel-

opment status and the exact responsibilities are not always clear.

The unique situation of software development can be approached in different

ways. We will start with role assignment, which is one way by which agile soft-

ware development methods attempt to overcome the typical challenges of soft-

ware projects. Role assignment means that each team member has an additional

role besides that of developer.

2.4 A Role Scheme in Agile Teams 27

The assignment of roles serves as a means for splitting the responsibility for

project management and progress among all the
HOT?

team members. The rationale for

this stems from the fact that one person (or a small number of developers) cannot

manage the entire richness and complexity involved in software development

projects. When the responsibility is split among all teammates, each aspect of

the process is treated by one teammate, and each teammate feels a personal

responsibility for that specific aspect. Both the software project as a whole and

each of the individual team members benefit from this kind of organization.

Table 2.1 presents a role scheme for an agile software team, which expands

and integrates the role schemes suggested by the different agile methods. It is

based on the idea that the responsibility for the software’s progress and success

should be transferred to and distributed among all teammates (Dubinsky and

Hazzan 2004, 2006).

There are four groups of roles.

The first is the leading group, which consists of the coach, tracker, and

methodologist. It is important to note that the tracker and methodologist in

this group, as well as the other role holders, do not reduce the significance of the

project leader/coach. To the contrary|as it turns out, the role scheme improves

the project leader’s position and provides him or her a better way to assess and

lead the development process.

The second is the customer group, which consists of the user evaluator,

customer, and acceptance tester. If the project has a real customer, the roles in

the customer group should be conceived of as a bridge between the real customer

and the team. If the project does not have a real customer, these role holders play a

real customer.

The third group is the code group, which is composed of four roles: designer,

unit tester, continuous integrator, and code reviewer. This group of roles focuses

on those aspects of software development that are directly related to the coding

activity.

The fourth group is the maintenance group, which comprises three roles:

presenter, documenter, and installer, and focuses mainly on the product’s exter-

nal presentation and documentation.

As can be seen, the different roles address different aspects of the development

process (leadership, customer, code, and maintenance), and together they encom-

pass all the aspects of a standard software development process.

Holding a role, and thus being in charge of a specific aspect of the development

process, does not mean that the role holder performs all the activities related to his or

her particular role; instead, it implies that each role holder must ensure that the

specific aspect for which he or she is responsible will be carried out properly by all

team members. Since this idea applies to all team members, the project management

is split among all team members and, at the same time, is covered by all of them.

28 2. Teamwork

Table 2.1 Roles in an agile software team (Reprinted from Journal of System Architecture, 52,
Dubinsky Y, Hazzan O. Using a role scheme to derive software project quality, 693{699,
Copyright (2006), with permission from Elsevier. Also, with kind permission of Springer Science
and Business Media.)

Group of
roles Role Description

Leading
group

Coach Coordinates and solves group problems, leads and guides
development sessions

Tracker Measures the group progress by measures as defined by the
team, the customer, and the organization; manages the
workspace boards; manages the team diary/collective
memory. See also Chapter 5, Measures

Methodologist Makes sure that the team works according to the defined
development process, answers questions related to the
methodology, looks for solutions to problems related to
the methodology

Customer
group

User
evaluator

Performs an ongoing user evaluation of the product (collects
and processes feedback received from real end users),
holds a user centric approach, serves as the user interface
designer. See also Chapter 3, Customers and Users

Customer If the project doesn’t have a real customer: tells customer
stories, makes decisions pertaining to each iteration,
provides feedback, defines acceptance tests. See also
Chapter 3, Customers and Users

Acceptance
tester

Defines (with the customer) and develops acceptance tests,
inspires a test-driven development process. See also
Chapter 6, Quality

Code group Designer Maintains current design, works to simplify design, searches
for refactoring tasks and ensures their proper execution.
See also Chapter 8, Abstraction

Unit tester Establishes an automated test suite, guides and supports
others in the development of unit tests, guides a test-
driven development process. See also Chapter 6, Quality

Continuous
integrator

Establishes the integration environment; publishes and
encourages rules pertaining to the addition of new code,
including testing issues

Code reviewer Maintains source control, establishes and refines coding
standards, guides and manages the team’s pair
programming

Maintenance
group

Presenter Plans and organizes iteration/release presentations, demos,
and roles; measures presentations

Documenter Plans and organizes the project documentation: process
documentation, user’s guide, and installation
instructions

Installer Plans and ensures the development of an automated
installation kit, maintains the collaborative workspace
infrastructure

2.4 A Role Scheme in Agile Teams 29

For example, let us assume that one of the teammates is a developer who also has

the role of unit tester. As the unit tester, this team member is in charge of all the unit

testing activities of the entire project, and of guiding other teammates in the develop-

ment of their unit tests. But this does not paint the entire picture: let’s look at this team

member from the perspective of being a developer. As a developer, this team member

should write quality unit tests for his or her own development tasks. As the person who

is specialized in unit testing, it makes sense that she or he will write quality tests, which

can in turn serve as examples for the other teammates of how unit tests should be

written. In addition, as a developer, this team member is guided with respect to other

aspects of the development process by team members who hold the other roles. This

scenario shows how the two hats of each team member|a role holder and a devel-

oper|are interconnected and contribute to the development process, improve the

software quality, and reinforce the team members’ communication.

Task

In a way similar to the analysis presented above with respect to the unit tester

role, analyze at least three additional roles from Table 2.1.

The cumulative impact of all the roles increases the team members’ commitment

to the project. In order to carry out a role successfully, each team member must gain a

global view of the developed software and to be involved in all parts of the applica-

tion, in addition to carrying out his or her personal development tasks. If a team

member has a limited view and is aware only of his or her tasks, he or she will not be

able to perform the personal role properly. The need to accomplish the personal role

satisfactorily actually increases one’s involvement and accountability, as well as the

commitment to the development process, and leads one to become familiar with all

the software parts. Consequently, communication and knowledge sharing, which are

vital for software development, are once again increased among team members.

In general, in having a personal role, the team members are expected to perform their

development tasks as well as the tasks related to their personal role. Thus, no teammate

is merely a developer. The two activities have a mutual positive influence, and conse-

quently the collaboration and communication between the team members is enhanced

and the agile team’s spirit is maintained. Further, the dual functionality of each team

member increases the transparency of both the software process and the product. The

process becomes more transparent because it is clear who is in charge of each of its

aspects; the product becomes more transparent because each team member is familiar

with all the product components and aspects, at least with respect to his or her role.

This perspective is different from the approach in which each role holder is

responsible for the entire implementation of the aspect of which he or she is in charge,

while the other team members do not perform it at all (e.g., the documenter is the

30 2. Teamwork

only team member who is involved in documentation activities). While this approach

may lead other team members to reduce their responsibility with respect to that

activity, the role scheme described above just inspires the opposite: a strong inter-

connection exists between the teammates. One team member cannot properly per-

form all the tasks involved in a software project, even with respect to only one aspect

of the development process; cooperation between teammates is essential in order to

accomplish the development process properly and on time. Further, since the role

scheme clarifies the exact responsibilities of each team member, team members are

committed to each other by ensuring that all of them are able to perform their roles in

the best way. All these messages delivered by the role scheme increase the team

members’ involvement and commitment to the project and to the team.

To sum up: Roles are important for the establishment and maintenance of agile

teams. A clear role scheme inspires an agile spirit and contributes both to the indivi-

duals, to the team, and to the project’s success. Further, the role scheme spreads the

leadership and management of the software project among all the team members. It

lets the developers know that not all the responsibility is carried by one person.

2.4.1 Remarks on the Implementation of the Role Scheme

l The set of roles that a software development method includes in its role

scheme reflects the values that a software development method attempts

to inspire. Therefore, the role scheme that a software development method

defines is one of the key elements of the method. Indeed, different agile

methods suggest different role schemes that support their values and con-

ception of software development processes.

l In addition to the role definitions presented in Table 2.1, several roles also

support communication between the four groups. For example, the installer

is also in charge of communication with the code group.

l At the first stages of the development process, or when the team is estab-

lished, the role holders should learn their roles and establish a procedure that

will enable them to perform their role properly. In the next stages of the agile

project, role holders should maintain the spirit and the actual performance of

the aspect that their role focuses on.

l When teams consist of fewer than twelve developers, several roles can be

unified and assigned to one team member. There are different ways to unify

roles, and each has its own advantages. In each case, however, the entire list

of roles should be assigned and performed by all team members.

2.4 A Role Scheme in Agile Teams 31

l The team can choose whether each of its members will specialize in one role for

a long period of time or, alternatively, whether the roles will rotate among the

team members. The exact way by which it is done in practice should be set by

each team according to the team members’ preferences. For example, it can

be decided that roles are reassigned at the beginning of each release.

l Such a team organization eases project management, since it is clear who is in

charge of what aspect of the development project, what aspect should be treated

by whom, and who should be approached when a specific problem, which

belongs to a specific aspect of the development process, arises. Even in cases

when there are role overlaps, they will not interrupt the process. Sometimes

they can even foster project development. One example is when the unit tester

and the acceptance tester work together to introduce test-driven development.

Tasks

1. How does the role scheme reflect the HOT perspectives of agile methods?

2. Predict what attitudes and feelings such a role scheme might raise in agile

software teams.

3. What information does each role holder need in order to perform his or her

role successfully?

4. In what ways does the role scheme relate to the Agile Manifesto?

5. Describe how each of the Agile Manifesto principles is supported by the role

scheme.

6. What benefits does role rotation have?

7. Suggest a mechanism for role rotation in agile teams. What are its benefits?

What are its pitfalls?

2.4.2 Human Perspective on the Role Scheme

Social Aspect

HOT
l A personal role increases teammates’ involvement, communication, account-

ability, responsibility, and commitment to the software development process

and to their team.

l Team members wish to have a specific role in addition to their development

tasks in order to increase their influence and involvement in the project

management.

32 2. Teamwork

Cognitive Aspect

l Since each team member approaches the product from one specific perspec-

tive, each can focus on this one specific aspect without being distracted by

the multifaceted nature of software product development. In other words, on

the global level, the role definition encourages each team member to treat the

software product from one perspective. Consequently, each gradually

improves his or her understanding about that aspect.

l The role scheme supports the thinking of the development process on multiple

levels of abstraction (see Chapter 8, Abstraction). Since abstraction is a key

component of software development, every mechanism that supports team mem-

bers’ thinking in terms of different levels of abstraction should be enhanced. On

the one hand, each team member sees his or her development task on a relatively

low level of abstraction; and on the other hand, the personal role of each team

member enables each of them to gain a global overview of the developed system

on a higher level of abstraction. Agile methods support thinking at different levels

of abstraction in additional ways, such as short releases (see Chapter 3, Customers

and Users) and refactoring (see Chapter 8, Abstraction).

l The role scheme enhances knowledge distribution, since each team member

specializes in one domain and shares his or her knowledge with the other

team members. In addition, since the role scheme leads to knowledge

distribution, no harm happens when one team member leaves the team.

Indeed, he or she has gained expertise in his or her role; at the same time,

however, parts of this knowledge have already been spread. Thus, if a team

member leaves the team, the other team members have a reasonable amount

of knowledge to continue with respect to that role.

l The role scheme supports the individual’s professional development. Team

members perform their roles and improve their role performance while learning

the practice that their role represents. In turn, they become experts in the

specific aspect of software development on which their personal role focuses. In

addition, when a team member feels that he or she has exhausted one role’s

contribution to his or her professional development and wishes to hold another

role in the team, as has already been mentioned, role rotation can take place.

Tasks

1. To each of the ideas presented in the human perspective on the role scheme,

add its organizational and technological view.

2. Analyze the role scheme from the organizational and the technological

perspectives.

2.4 A Role Scheme in Agile Teams 33

2.4.3 Using the Role Scheme to Scale Agile Projects

The role scheme also supports the scaling up of agile
HOT

projects. Suppose we have

five agile teams as part of one software project, and each of them applies the role

scheme. In this setting, weekly role meetings are set for each role, in which all the

role holders from all the teams participate. For example, a weekly meeting of all

testers of the project takes place; a biweekly meeting of all the integrators takes

place, etc. It is recommended that these role meetings be scheduled at the same

time, in order not to collide with the development sessions of the project teams. In

these meetings project-wide issues are discussed, so that the project management

proceeds in one direction.

The use of the role scheme for scaling up purposes also enhances knowledge

distribution. On the individual level, each team member has the opportunity to

communicate with other developers, beyond his or her team, to present the

knowledge his or her team has gained so far with respect to a given role, and to

serve as a bridge between the team and the organization with respect to that

aspect of development of which she or he is in charge. On the team level, each team

may benefit also from the wisdom and experience gained by other teams. For

example, the team representatives may bring into the role meetings a problem

which their team faces, and ask the other role representatives whether their

experience can contribute to a solution. Such a dialogue creates a knowledge

infrastructure for the development process from which all teams can benefit. On

the organization level, and based on the individual and team levels, knowledge is

distributed, managed, and maintained.

The role scheme also supports measures related to the project’s progress

(see Chapter 5, Measures). The measures and policies that should be applied by

all the teams enable the project’s management to know on an ongoing basis the

project’s status, progress, and quality. Based on this information, management

monitors and controls the project’s progress.

2.5 Dilemmas in Teamwork

One of the problems that can arise with respect to teamwork is the question of

how to allocate incentives, rewards, and bonuses among team members.

This question is relevant with respect to many professionals and kinds of

institutions. However, reward allocation in software engineering is important

mainly, but not only, because teamwork is essential in software development.

As a result, conflicts between the required cooperation on the one hand, and one’s

desire to excel as an individual on the other, may intensify. The discussion is

34 2. Teamwork

especially relevant with respect to agile teams since teamwork is one of the basic

working assumptions of agile software development, and team members are asked

to cooperate, share information, and exchange ongoing feedback with the other

players in the development environment.

Task

This task is based on Hazzan (2003). It aims at elevating the developers’ aware-

ness to these potential conflicts and to encourage discussing them openly. This

approach is in agreement with the first principle of the Agile Manifesto: indivi-

duals and interactions over processes and tools.

Perform the task presented in Figure 2.1 with your team.

Step 1 of the task focuses on the individual’s preferences; step 2 examines how

team members face possible conflicts between their own preferences and the

preferences of the other team members. Thus, in the case of new teams, this

activity also fosters the team members’ acquaintance with each other.

The discussion that takes place at step 3 focuses on the team preferences at the

individual and at the team level. This discussion can be promoted by the following

reflective questions.

Step 1: Individual work

You are a member of a software development team. Your team is told that if the project it is

working on is successfully completed on time, the team will receive a bonus. Five options for bonus

allocation are outlined below. Please explain how each option might influence team cooperation,

and select the option you prefer.

Personal Bonus
(% of the total

bonus)

Team Bonus
(% of the total

bonus)

How this option may
influence teammates’

cooperation

A 100 0

B 80 20

C 50 50

D 20 80

E 0 100

Step 2: Teamwork (to be facilitated with the development team)

Each team decides on one option that all team members, as a group, prefer.

Step 3: All teams discussion

Discuss with all the teams the processes that took place in the above two steps.

Figure 2.1 Bonus allocation activity [#2003 ACM, Inc.].

2.5 Dilemmas in Teamwork 35

Reflective Questions

1. What were your considerations when choosing your personal option for bonus

allocation?

2. Did you face conflicts while working on this task individually (Step 1)? What

was their source? How did you overcome these conflicts?

3. Did you face conflicts while working on this task with your team (Step 2)?

What was their source? How did you overcome these conflicts?

4. What questions, emotions, and dilemmas with respect to software teams were

raised during individual and team work?

5. Predict what considerations would cause developers to prefer a different

option for bonus allocation than yours.

6. What characterized the discussion in your team about the agreed upon option

for bonus allocation? How did the team agree about the preferred option?

2.6 Teamwork in Learning Environments

The studio meeting this week focuses on activities related to the introduction of

the role scheme, the role assignment, and the grading policy that is used for the

evaluation of the students’ work. The details appear in the continuation of this

section.

2.6.1 Teaching and Learning Principles

The following teaching and learning principle deals with the role scheme. (In our

list of teaching and learning principles presented in Chapter 14, Delivery and

Cyclicality, this is principle number 7.)

Teaching and Learning Principle 7: Assign Roles to Team
Members.

According to this principle, each team member has both an individual role, chosen

by the member from a given list (for example, coach, unit tester, acceptance tester,

code reviewer, etc.), and development tasks for which he or she is responsible.

36 2. Teamwork

Such a role scheme does not imply that each role holder carries out all

activities related to the domain for which he or she is responsible; rather, each

role holder makes sure that the activities related to hir or her domain are

accomplished satisfactorily by all team members. Accordingly, the assignment

of roles helps divide the responsibility for project progress and management

among all team members.

The rationale for this principle is that one person (or a small number of team

members) cannot be responsible for the entire richness and complexity involved in

software development. When the responsibility is divided among all team mem-

bers, each aspect of the entire process is addressed by one team member, and at

the same time each team member feels personal responsibility for that specific

aspect. Both the project itself and the team members benefit from this arrange-

ment. Furthermore, the need to perform one’s role successfully actually forces all

the team members to be involved in, and to become familiar with, all parts of the

developed application. Consequently, knowledge sharing, communication, and

involvement are enhanced among team members.

2.6.2 Role Activities

We present the actual application of the role scheme through three kinds of

activities. The first kind deals with the role assignments. Second, activities that

maintain the role performances on a daily basis are described. Third, an activity

that aims at improving the role performances is presented. The activities can be

performed in both academic and industrial settings.

2.6.2.1 Role Assignment Activities

The first two activities introduce the role scheme to the team members. If the

activities are carried out in an industrial setting, they should be facilitated when

the agile team is established, in order to let the team members feel the interconnec-

tion among themselves, and their mutual responsibility as an agile software devel-

opment team. The other activities should be facilitated as development proceeds.

Figure 2.2 describes the first activity related to role assignment. It focuses on

the creation of one agreed upon role list.

Since in this studio meeting the academic coach sits together with ten to

twelve students who do not know each other but will soon start working together

on many tasks related to software development, this activity initiates the stu-

dents’ relationships as teammates.

2.6 Teamwork in Learning Environments 37

In industry, this activity signals the beginning of a change in the team

structure with respect to personal responsibilities. It can be facilitated when the

team is first introduced to agile software development, as part of a workshop that

the team attends (see Chapter 12, Change) or at the beginning of the implemen-

tation phase of agile software development.

In both cases, Activity 1 improves the team members’ acquaintance of and

familiarity with their teammates.

Activity 2 (Figure 2.3) describes the role distribution.

In academia, the full set of roles is determined for the entire semester. This full

implementation is needed for the evaluation process, presented later in this

chapter, which is based on the fact that all students have the same load.

Also, according to the role scheme presented in this chapter, the students are

responsible for the software’s progress and success. Therefore, it is important to

note that the academic coach should not be the team coach, and that the role of

coach should be given to one of the students. The academic coach is in charge of

Time: In academia: second meeting; in industry: following the previous activity.

Discussion (10 minutes): In your opinion, how should we assign roles to teammates?

Task description (20 minutes): Distribute the roles among the teammates. At the end of the task

suggest a list of role-teammate pairs.

Discussion (15minutes): Discuss what portion of your time you should dedicate to the performance

of your personal role and what portion should be devoted to the accomplishment of your devel-

opment tasks?

Reflection (after the second meeting in academia; during a team discussion in industry):

- Express your opinion about the process of role assignment in your team.

- Howdo you conceive of your role?What input would you expect to get from your teammateswith

respect to your role?

Figure 2.3 Activity 2: role distribution (Reprinted from Journal of System
Architecture, 52, Dubinsky Y, Hazzan O. Using a role scheme to derive software

project quality, 693{699, Copyright (2006), with permission from Elsevier.).

Time: In academia: second meeting; in industry: when an agile method starts to be implemented.

Task description: You are going to develop a software product as a team.Write down the roles that

in your opinion should be performed as part of your project.

Individual work (10 minutes): Students/developers write down their lists.

Team discussion (20minutes): Students/developers discuss their suggestions, trying to generate one

agreed upon list.

For students: Students are asked to prepare a prioritized list of roles they would prefer to perform

during the semester.

Summary: The academic coach/agile facilitator presents the role scheme (Table 2.1).

Figure 2.2 Activity 1: role list generation (Reprinted from Journal of System
Architecture, 52, Dubinsky Y, Hazzan O. Using a role scheme to derive software

project quality, 693{699, Copyright (2006), with permission from Elsevier.).

38 2. Teamwork

project evaluation and control from the academic perspective, but does not lead

the actual development process. This perspective gives the academic coach a

better way to assess the development process and the teammates’ work by

means of the grading policy, presented later in this section, that supports the

role scheme and is based on both an individual component and a team component.

In an industrial setting, the role scheme should be applied in a gradual fashion. It

is recommended that the team decide with what roles they would prefer to start the

agile implementation phase. The team chooses several roles to start with, and team

members volunteer to carry out these roles. It is recommended that the team start at

least with the roles of coach, tracker, and unit tester, and gradually add roles

according to the team preferences, needs, and adjustment to the agile process.

The actual role assignment itself has a direct influence on team communica-

tion. For example, in an industrial setting, it opens new horizons to team mem-

bers: they are exposed to new facets of their teammates of which they were not

aware, even though they may have worked together for many years.

This activity also influences and enhances learning. For example, team mem-

bers may suggest that roles should be assigned not according to what is appealing,

but rather according to what area one is not skilled in. In this way, in order to

perform their role properly team members will have to communicate about the

various aspects of their role with other teammates who are more knowledgeable.

Thus the team members will learn new topics.

2.6.2.2 Role Maintenance Activities

The activities in this part are performed on a regular (daily, weekly, iteration)

basis. In academia this enables the academic coach to be aware of the project’s

progress and to improve the students’ work assessment; in industry it enables the

entire team to be aware of the project status.

Stand-up meeting: Stand-up meetings take place every day in industry, and

on a weekly basis in academia. It can be decided that some portion of the brief

personal report (one or two sentences) be dedicated to the personal role. Each

team member reports about his or her role performance and about his or her

expectations from teammates with respect to personal roles.

Presentations to customers: The following task fits for an academic setting;

when appropriate, it can be adjusted for an industrial setting. Specifically, each

presentation to the customer consists of two parts. In the first part, the development

tasks of the iteration are presented; in the second part, each student briefly presents

how he or she improves product quality by the accomplishment of his or her role.

The preparation for these presentations takes place one week before the presenta-

tion of each iteration to the customer. The students can discuss what the presentation

should contain, how much time will be dedicated for each part, and how the personal

2.6 Teamwork in Learning Environments 39

roles will be presented. Since students usually do not have previous experience in

presenting software products, they will benefit a lot from this activity.

Feedback after presentations: In academia, there are three presentations

to the customer during the semester: at the seventh, eleventh, and fourteenth (the

last) meetings (see Chapter 1, Introduction to Agile Software Development, for a

semester schedule). After each presentation two reflective activities are carried

out: the first is a feedback session that takes place with the all team members; the

second is a personal reflection that encourages the students to evaluate their work

in the last iteration. As part of this reflection, students are requested to evaluate

their role performance as well as to grade it.

2.6.2.3 Role Improvement Activity

The following activity can be requested by the academic coach periodically when she

or he observes that it is needed. Such a need occurs mainly in cases when the academic

coach feels that some roles are not being performed properly. The students are asked

to summarize their role activities, to publish their summaries in the electronic forum,

and to provide feedback to the summaries presented by the other team members.

2.6.3 Student Evaluation

One outcome of the team discussions that take place in the bonus allocation

activity (Figure 2.1) is an agreement that each individual’s contribution should

be considered on the basis of his or her personal accomplishments (no matter how

the team performs), as well as the team performance.

Accordingly, in an academic setting, if the course is accompanied by a software

development project, we propose to make the project evaluation of each student be

based on a personal evaluation (independently of how the team performs), and on

an evaluation of the team performance. In order to promote teamwork as well as

personal contributions to the project, the two components should be balanced in

some way. For this purpose, the students’ evaluation is composed of two parts: one

the personal component and one the team component. The evaluation of the

individual role performance is used for the personal evaluation.

The proposed evaluation scheme, presented in Table 2.2, applies these conclusions.

It is composed of an individual component (35%) and a team component (65%); the

team component is identical for all members of the team. The main criterion of the

individual component of the grading scheme is the personal performance of the student

(50%) as well as his or her personal role (25%). The main criterion of the group

component is the presentation of the customer stories as well as the time estimations

given by the students at each of the three development iterations.

40 2. Teamwork

This student evaluation scheme shows that both teamwork and individual con-

tribution count. Accordingly, it is assumed that on the one hand, students will be

encouraged to contribute to their team’s work, and that on the other hand, those

wishing to excel will have the opportunity to improve their grade through the personal

component. Consequently, the personal responsibility of each student is increased.

The grading policy presented in Table 2.2 also fosters gradual improvement. This

is accomplished by the main parts of each grade component. In the group component,

60% of the grade is achieved by meeting the customer requirements according to the

students’ own estimations. The first iteration (out of the three iterations) receives the

lowest portion (even though it lasts half a semester), thus demonstrating that this

iteration is dedicated to learning about the environment, the teammates, the method,

and the project. In the individual component, about 75% of the grade is achieved by

presence and reflection, for specific exercises, and for performing the personal role.

These parts are also characterized by gradual learning. Students are more open to

give feedback as the semester proceeds, and role performance is improved after the

learning iteration, which is the first iteration of the semester.

Tasks

1. In your opinion, should different kinds of teams be evaluated in different

ways?

2. Should teams be formed of students with similar preferences, with different

preferences, or according to a specific combination of preferences, with respect

to bonus allocation? What considerations should guide each of these options?

3. In what ways is bonus allocation similar to course grading? In what ways is it

different?

Table 2.2 Grading policy

Individual component (35%) Group component (65%)

50%| 60%|

3 Weekly reflection Answer the customer stories and
meeting the schedule according to
the group time estimations:

3 Pair programming experience

3 (10%) for iteration 1
3 Test-Driven-Development exercise

3 Weekly presence

3 (25%) for iteration 225%|

Performance of a personal role: 3 (25%) for iteration 3

3 Actual implementation 25%|

3 Further development and enhancement Project documentation

25%| 15%|

Personal evaluation of the academic coach Group evaluation by the academic
coach

2.6 Teamwork in Learning Environments 41

2.7 Concluding Reflective Questions

1. What were your considerations when choosing a personal role? Why?

2. What were your teammates’ considerations when choosing a personal role?

Why, in your opinion, were these their considerations?

3. How will you accomplish your role successfully?

4. What are the three main goals of agile software teams?

5. In your opinion, what are the three most important characteristics of agile

software teams? How do these characteristics enable them to achieve their

goals successfully (Question 4)?

6. In Chapter 9, Trust, we will meet two ideas related to agile teamwork:

diversity and ethics. If you are familiar with these concepts, suggest connec-

tions between them and the way agile teams are built and function.

2.8 Summary

This chapter introduces the first steps of agile teams by establishing their struc-

ture and some of their development habits and processes. This is done by assign-

ing personal roles to team members, which on a personal level improves their

understanding of the developed product, and on the team level improves the

process and product quality. The role scheme that guides the role assignment

achieves these goals by defining personal roles and cross-project roles; that is, each

role holder is responsible for the management of a specific aspect throughout the

entire project.

This chapter also introduces dilemmas in agile teamwork and how they can be

addressed. In the spirit of the Agile Manifesto, dilemmas and conflicts associated

with teamwork should be discussed openly by all team members, and a solution that

meets the needs of the individuals as well as the entire team should be established.

This idea has been illustrated by an evaluation scheme for student projects.

References

Dubinsky Y, Hazzan O (2004) Roles in agile software development teams. 5th international
conference on extreme programming and agile processes in software engineering. Garmisch-
Partenkirchen, Germany, pp 157{165

42 2. Teamwork

Dubinsky Y, Hazzan O (2006) Using a role scheme to derive software project quality. J Syst
Architect 52 (11): 693{699

Hazzan O (2003) Computer science students’ conception of the relationship between reward
(grade) and cooperation. 8th annual conference on innovation and technology in computer
science education (ITiCSE 2003), Thessaloniki, Greece, pp 178{182

Humphrey W (2000) Introduction to the team software process. Addison-Wesley, Reading, MA

References 43

