
follow on sequence

repeat
sequence

lead in sequence

test

true

false

2
Computer Languages:
& Java Programming

Introduction

It is assumed that the reader has a working knowledge of some computer language.
However, key aspects of programming are summarizes in this chapter using the Java
language to support the illustrations developed later in the text that demonstrate how
graphic algorithms can be implemented in a practical way.

Libraries accessed through high level programming languages provide most
graphics facilities now in common use. The demonstrations and illustrations in this
section are all prepared using Java’s standard window display libraries. Some of the
topics, which will be explored in later chapters, will be presented using specially
constructed high-level graphic and geometric-modelling language facilities that are
extensions not supported by standard high-level languages. In order to outline how
these extensions might be implemented it is necessary to provide an introduction to
computer language processing, and it is convenient, to overlap this task with a
summary of the Java language facilities used through out this book.

Later chapters set out to present the way in which a high-level computer language
like Java is processed in stages to control the hardware of a computer system in the
desired way. This is done using a series of simplified system-simulations. These are
written in Java, using Java graphics user interface facilities to visualize the operation
of the computer system and to illustrate the way that the various language levels
translate from one to the other. The lowest level is micro coding and machine
language programming, the next level up is an assembly language translation system,
and finally at the top of the language system hierarchy is Mini-JC the kernel of a high
level Java or C like programming language. Access to graphic facilities can be made
at each of these language levels. Although display processors need to be examined
briefly at the hardware level to understand their fundamental capabilities,
programming them, can be done at all language levels above their machine code.

A. Thomas, Integrated Graphic and Computer Modelling,
DOI: 10.1007/978-1-84800-179-4_2, © Springer-Verlag London Limited 2008

34 2 Computer Languages: & Java Programming

Structured Programming Constructs

The core of an imperative-language system is based on four kinds of construction.

• Simple command statements and sequences.
• Conditional statements and sequences.
• Repeat statements and sequences.
• Sequences of statements in a hierarchical block structure.

In Java these occur in the following ways:

Names

In order to issue commands in any language it is necessary to identify the objects to
which the commands will be applied. In natural language these references are names
or nouns. In computer languages there are two kinds of references to simple objects.
The first are called literal references and in a sense they are the objects they
represent. Examples are numbers such as 2.304, which though they are character
strings, directly represent the particular numbers they encode. In order to treat this
sequence of characters merely as a sequence of characters it is necessary to enclose
them within quotation marks. This identifies them as a character string literal: a
String, “2.304”. Character strings must be represented using double quotes: “67”,
“234 items”, or “Fred”, single characters using single quotes: ‘k’ or ‘G’. Names are
character strings (but not in quotes) that start with an alphabetic character and
optionally continue with further alphabetic or numerical characters. They must be
treated like algebraic variables in that they are a name that can represent any value or
object. A numeric variable has to be given a value before an expression containing it
can be evaluated. Variables can be rearranged in algebraic expressions in “valid”
ways, independently of the values they represent. Strings and characters can be
reordered to implement such text manipulation within larger language statements.
Naming allows general commands to be expressed that can be applied to many
different particular values or objects that a name could represent.

Simple Command Statements

Many simple commands are in reality sub-program names, for example:

IO.writeString(“Hello World”);

The command IO.writeString() is a call to a sub-program elsewhere in the system,
which takes the data “Hello World” and writes it out to the display screen. Other
simple commands duplicate, rename or generate objects using assignment statements.

number1 = 3.78;
number2 = IO.readInteger();

 number3 = number2;
 number4 = number3*number1;

These assignment statements are commands, in the first case to associate a
variable name number1 with the real value, 3.78: In the second to call the sub-
program IO.readInteger() to get a number from the computer keyboard and store it

35

as a variable called number2, in the third as a command to transfer the value stored in
number2 to another variable called number3, and finally in the fourth the values of
two variables are combined in an arithmetic expression creating a new value which is
then assigned to the variable number4. The assignment statement can be interpreted
in two ways in Java. In the first, shown below, it is a copy command. In other cases it
can be thought of as a renaming or multiple naming-command.

 3.4

a = b
a

3.4 3.4
a copy b b

In this example if a and b are simple variable names referring to data representing

numbers or characters, or truth values, then the assignment operation is one of
duplication. The simplest way of thinking about the operation is that a and b
represent boxes, and the assignment takes a copy of what is in box b and places it in
box a.

If on the other hand, a and b are the names of a more complex object, then the
assignment a = b; means that the object named b can also be referred to or called by
the name a. The simplest way of visualising this case is as follows.

a = b
a b

object

a rename
b

object

@@@ @@@ @@@

Where the data object referred to by a name is small, the box associated with the

name is used to hold the data. Where the data object referred to by a name is too
large for this or has a variety of possible sizes, then the name-box holds an indirect
reference to the object shown in the diagram above by @@@. This means the
assignment can be executed by exactly the same operation as that used in the simple
case: copying the reference @@@ from one box to the other, but to get a duplicate or
new object the statement has to be written a = b.copy();

a = b.copy()
a b

object

a

copy
object

b

object object

@@@ %%% @@@

Clearly, further operations using the new names in each of these two cases must
be handled differently. In the first case there are two objects, which can be acted on
independently using their corresponding names, in the second there is one object and
either name will select it. If the first name is used to change the object, then, when
the second name is used to access the object that it refers to, following the change, it
will address the modified object; not the unchanged one it originally referred to.

3.4 3.4 3.4

@@@ @@@ @@@

object object

object object

@@@ @@@ %%%

Simple Command Statements

36 2 Computer Languages: & Java Programming

Declaring Variables and Initialising Objects

In carrying out an assignment unless the operation is policed by the system, any
“type” of object could be associated with a name. If the name was intended to
represent a number and by accident a truth-value is assigned to it, then clearly
unlooked for results would be produced! Most programming languages type-check
variables and restrict assignments to permitted associations. In order to do this a
necessary part of the program writing is to specify the type of data a variable can
hold. This is done in declaration statements.

 int variable1, variable2, variable3; // integer variables
 double variable4 = 3.2, variable5 = 6.1; // double length floating point variables

static TextWindow IO = null; // a null reference to a TextWindow object

It is generally a good idea to initialise variables with start up values like the
assignments shown in the second example, even if these are going to be changed
later. Where a variable refers to a more complex object, then this initialisation may
be deferred in the way shown for the TextWindow object. Where it is not then an
object has to be constructed by the system. This is achieved by issuing the new
command. A useful example of this is initialising a text window to support input and
output to the program, which can be done in the following way:

 static TextWindow IO = new TextWindow (20, 30, 500, 60);

The name of the object type: TextWindow precedes the variable name: IO, in the
same way used to declaring simple objects. However, the new command is required
to initialise a new TextWindow, by a call to the sub-program that sets up an object of
this type, before its reference can be assigned to the variable name IO. In Java the
procedure for building more complex objects is called a “constructor”, and it has the
same name as the type of object it generates. The qualification of this declaration, by
the keyword static makes the variable a class variable. This allows it to be used
directly in simple programs.

A Simple Java Program

The classic example of a simple program is one that outputs the greeting:

Hello World

public class Program1 {
static TextWindow IO = new TextWindow(20,170,500,200);
public static void main(String[] args){

IO.writeString(" Hello World ");
}

}

Notice that the output command writeString(“hello world”) is coupled to the
object name IO by a full stop character. This is because the TextWindow object: IO
carries out the operation of displaying the message, and the sub-program that does
the work, is part of this more complex object. This program when it is run generates
the following display on the screen

37

The command writeString() is a call to a sub-program, elsewhere in the system,
which is part of the definition of the text window object, and which takes the data
“Hello World” and writes it out to the display screen. It is an example of several
commands needed to enter and display data. Essential, if useful programs are to be
written.

The facilities in Java to handle the input and output of data are very flexible to
cover a variety of different modes of interaction between the user and the system, and
consequently are fairly complex. In order to simplify most of the examples of
programs presented in this book, a reduced set of commands solely for entering and
displaying text information in a text window is provided.

class TextWindow extends JFrame{

TextWindow(int col, int row,int width, int height){} // Constructor

public String readTextString(){}
public String readString(){}
public char readCharacter(){}
public void readSpaces(){}
public String readLine(){}
public byte readByteInteger(){}
public short readShortInteger(){}
public int readInteger(){}
public long readLongInteger(){}
public float readReal(){}
public double readLongReal(){}

public void writeString(String str){}
public void writeLine(){}
public void writeCharacter(char ch){}
public void writeByteInteger(byte number, int align){}
public void writeShortInteger(short number, int align){}
public void writeInteger(int number, int align){}
public void writeLongInteger(long number, int align){}
public void writeReal(float number, int align,int frac){}
public void writeLongReal(double number, int align,int frac){}
public void newLine(){}

public void quit()

}

A Simple Java Program

38 2 Computer Languages: & Java Programming

This TextWindow object IO, once it is set up, by calling its constructor in the way
illustrated in the “Hello World” program, supports the list of commands or methods
given above. Since a subprogram with a particular name can only return one type of
data object, this list of methods introduces most of the basic types of data that the
system user handles as text. The first eleven methods return numbers of different
types, which can be assigned to variables of matching types in the following way:

char character = IO. readCharacter(); // single characters
String string1 = IO.readTextString(); // character strings
String string2 = IO.readString(); // character strings
String string3 = IO.readLine(); // character strings
byte number1 = IO.readByteInteger(); // 8 bit integers
short number2 = IO.readShortInteger(); // 16 bit integers
int number3 = IO.readInteger(); // 32 bit integers
long number4 = IO.readLongInteger(); // 64 bit integers
float number5 = IO.readReal(); // 32 bit floating point values
double number6 = IO.readLongReal(); // 64 bit floating point values

These newly defined variables character, string1, string2, string3, and number1..

number6, will receive input from the keyboard. Their contents can in turn be output
to the display in the TextWindow by the matching commands:

IO.writeCharacter(character);
IO.writeString(string1);
IO.writeString(string2);
IO.writeString(string3);
IO.writeByteInteger(number1, 5);
IO.writeShortInteger(number2, 5);
IO.writeInteger(number3, 5);
IO.writeLongInteger(number4, 10){}
IO.writeReal(number5, 10, 5);
IO.writeLongReal(number6, 10, 5);

Input to the system is best thought of as a flow of characters, in a single-file

stream from the keyboard, in the order in which they are typed into the system. This
will include character codes for formatting the text display like the carriage return,
which finishes one line and starts the next in the display. The IO.readLine()
command returns all the remaining text in the current line of input up to and
including the carriage return. The IO.newLine() command does the same thing but
does not return the String of characters making up the rest of the line. Its useful
function is to clear input stream characters such as the carriage return that might
interfere with subsequent read commands. In a related way the IO.writeLine()
command places a carriage return character into the output steam of characters being
sent to the text window. The IO.readTextString command and IO.readString
command returns the next sequence of characters, upto the next “space” character
code. The IO.readTextString() command removes any leading space characters
before looking for input. The sequence IO.readSpaces(); IO.readString(); being
equivalent to IO.readTextString().

39

Formulae, Expressions and Equations

A natural extension to the assignment of simple variables is made, where the
assignment transfers the result of evaluating an expression into a new variable box. In
this case the assignment can be viewed as a way of generating a new variable value.

c = (f - 32.0) / 9.0 * 5.0;

This provides the simplest route into writing useful programs. Many scientific
relationships and results are recorded mathematically in the form of formulae and
equations. These usually translate into assignment statements and expressions in a
conveniently directly way.

A simple program to convert a Fahrenheit temperature value into its
corresponding Celsius value can be written in the following way.

public class Program2{
 static TextWindow IO = new TextWindow(20,170,500,200);
 public static void main(String[] args){
 IO.writeString("Please enter a Farenheit value: ");
 double f = IO.readLongReal(); IO.newLine();
 double c = (f-32.0)/9.0*5.0;
 IO.writeString("The Celsius value is: ");
 IO.writeLongReal(c,6,3);
 IO.writeLine();
 IO.writeString("calculation complete \n");
 }
}

Statement Sequences: Blocks and Subprograms

A small program like this is made up from a list of simple commands. However the
flow of control from one statement to the next, often needs to be rearranged to follow
more complicated routes through different statement-sequence blocks, and facilities
have to be provided to move from block to block in a program in a controlled
manner. One of these block-structuring approaches has already been mentioned, and
consists of giving a name to a commonly used block of code as a sub-program, and
accessing it by issuing its name as a single command. The readInteger() command
given above refers to such a block of code which carries out the reading operation
demanded by the program, obtaining the number from the keyboard as it is typed into
the computer system.

Statement Sequences: Blocks and Subprograms

40 2 Computer Languages: & Java Programming

Conditional Statements

The simplest command that requires a statement sequence to be divided into blocks is
the conditional command, which is illustrated by the two examples given below. In
each of these cases a special pair of symbols < and > is used as brackets to indicate a
section of code that has not been expressed using correctly structured commands.
These brackets are called meta-symbols because they are not part of the language, but
denote either an approximation name or an abstract name for an operation, which
will be replaced in the final completed program by an equivalent sequence of correct
commands. They are useful to denote “pseudo” code, in other words, statements,
which are a rough approximation of what the final program is intended to do, but
need to be distinguished from finished code. This helps to develop a program in
organised steps, as it is being set up and designed. The meta symbols < >, in a similar
way but more formally, are also used to define the grammatical components of larger
language structures. An example would be a sentence defined as:

<sentence> := <subject> <verb> <object>

In order to get a correct sentence the elements in < > brackets have to be replaced
by the real words that make up, or are deemed appropriate as, the subject, the verb or
the object of the final sentence.

<lead in sequence>
if(< test >){< action sequence A>}
<follow on sequence>

follow on sequence

action
sequence A

lead in sequence

test
true

false

<lead in sequence>
if(< test>){< action sequence A>}
else{<action sequence B>}
<follow on sequence>

follow on sequence

action
sequence A

action
sequence B

lead in sequence

test
true false

test

test

action
sequence B

41

The conditional consists of a block of code, which must be processed only if a
certain condition is met. A test statement specifies the condition, and the condition is
met when this test is found to be true. Its associated operation can then be executed.

An extension of the same idea is given in the second example. Here there are two
alternative sequences of code. The first is executed when the condition is met in other
words when the test is true, the second is executed when the test fails and gives a
false result. It is convenient to visualise the flow of control defined by these
statements in the way shown above in the diagrams on the right.

public class Program3{

static TextWindow IO = new TextWindow(20,170,500,200);

public static void main(String [] args){

IO.writeString("Please enter two numbers: ");
double a = IO.readLongReal();
double b = IO.readLongReal();

IO.writeString("ascending order \n");
if(a<b){

IO.writeLongReal(a,10,3);
IO.writeLongReal(b,10,3);
IO.writeLine();

}else{
IO.writeLongReal(b,10,3);
IO.writeLongReal(a,10,3);
IO.writeLine();

 }
IO.writeString("descending order \n");

 if(a>b){
IO.writeLongReal(a,10,3);
IO.writeLongReal(b,10,3);
IO.writeLine();

}else{
IO.writeLongReal(b,10,3);
IO.writeLongReal(a,10,3);
IO.writeLine();

}
}

A program to order two numbers for output can be written using a single

conditional test in the way shown above. However it is possible to place conditional
statements within the statement sequences already controlled by other conditional
statements.

This gives a nested structure, which can be used to reorder more than two numbers
and output them as an ordered list, in a single step. This is loosely comparable to the
analogue use of measured rods to order a collection of values in a single step,
described in chapter one as a “one-shot” operation.

Conditional Statements

42 2 Computer Languages: & Java Programming

public static void main(String[] args){
IO.writeString("Please enter three values: ");
int a = IO.readInteger(); int b = IO.readInteger(); int c = IO.readInteger();

if(a<b)

if(a<c)
if (b<c) { IO.writeInteger(a,9);IO.writeInteger (b,9); IO.writeInteger (c,9);}
else { IO.writeInteger(a,9); IO.writeInteger (c,9); IO.writeInteger (b,9);}

else if (b<c) { IO.writeString("Impossible case :except ring order ");}
else { IO.writeInteger(c,9); IO.writeInteger (a,9); IO.writeInteger (b,9);}

else if(a<c)
if (b<c) { IO.writeInteger(b,9); IO.writeInteger (a,9); IO.writeInteger (c,9);}
else { IO.writeString("Impossible case :except ring order ");}

else if (b<c) { IO.writeInteger(b,9); IO.writeInteger (c,9); IO.writeInteger (a,9);}
else { IO.writeInteger(c,9); IO.writeInteger (b,9); IO.writeInteger (a,9);}

}

if (<test1>){<Action1>}
else if (<test2>){<Action2>}
else if (<test3>){<Action3>}
else if (<test..>){<Action..>}
…
else if (<test n>){<Action n>}
else {<Action n+1>}

follow on sequence

lead in sequence

action 1

test 1
true

false

test 2

test 3

action 2

action 3

test n

action n action n+1

true

false

false

true

true false

A special case of this nested arrangement is provided by the example shown above
where the tests are applied sequentially in a list. In this example a list of conditional
tests is processed and whenever a test is successful the dependent code sequence is
executed after which, control leaves the conditional statement and passes to the next
statement. To order a sequence of numbers using this construction would require the
following arrangement.

43

public static void main(String [] args){
IO.writeString("Please enter three values: ");
int a = IO.readInteger(); int b = IO.readInteger(); int c = IO.readInteger();

if ((a<b)&&(b<c)) { IO.writeInteger(a,9); IO.writeInteger (b,9); IO.writeInteger (c,9);}
else if((a<c)&&(c<b)) { IO.writeInteger(a,9); IO.writeInteger (c,9); IO.writeInteger (b,9);}
else if((c<a)&&(a<b)) { IO.writeInteger(c,9); IO.writeInteger (a,9); IO.writeInteger (b,9);}
else if((b<a)&&(a<c)) { IO.writeInteger(b,9); IO.writeInteger (a,9); IO.writeInteger (c,9);}
else if((b<c)&&(c<a)) { IO.writeInteger(b,9); IO.writeInteger (c,9); IO.writeInteger (a,9);}
else if(((c<b)&&(b<a)) { IO.writeInteger(c,9); IO.writeInteger (b,9); IO.writeInteger (a,9);}
else IO.writeString("Impossible case :except ring order ");

}

In this example the tests are clear but more complex. Each test is an expression,
which combines the truth-values of two simple binary relationship tests such as (a<c)
to give a final single truth-value, the result of evaluating the overall test expression.

These truth-values are called Boolean values, which can be represented in the
program by literal representations in the same way that numerical values can. In this
case they are one of two values represented by the words true and false. Boolean
expressions are formed by combining Boolean variables using the operators “not”,
“and” and “or”. These are represented in Java by the characters: !, &&, ||,
respectively. The following operator, “truth-tables” define their actions.

input output input input output output
A X ! A A B X A&&B X A||B

true true X true X true true X false
true false X false X true
false true X false X true false X true

false false X false X false

Expressions can be constructed using operator precedence rules (not > and > or)
and brackets in much the same way that arithmetic algebraic expressions are built up
and the resulting values can be assigned to Boolean variables.

boolean itIsRaining = true;
boolean result = !((a < b) && (b < c)&& itIsRaining || (a == b))||(x != y)

The <switch statement> provides an alternative statement to the nested conditional

that allows a similar kind of multiple-choice. In this case there is not a sequence of
tests for true or false, but a function that generates an integer value. This number is
used to select the label case-number that it matches, and then the code associated
with the case is executed. Notice in this case that the break statement is necessary to
pass control on to the next command. Where it is missing control passes to the next
case in sequence, below. In the example shown above, if the selection function gives
an integer value 7 then actions 3 and actions 4 are executed. If the selection function
gives 8 or 9 then only action 4 is executed.

Conditional Statements

44 2 Computer Languages: & Java Programming

switch(<selection function>){

case 2: <action 2>; break;
case 7: <action 3>;
case 8:
case 9: <action 4>; break;
….
default:<default action>;

}

switch function

action 2

case 2

case 8

case 7

action 3

follow on sequence

case 9

default
action

action 4

lead in sequence

The application of this statement to sorting three numbers can be carried out in the

following way.

public static void main(String[] args){

IO.writeString("Please enter three values: ");
int a = IO.readInteger(); int b = IO.readInteger(); int c = IO.readInteger();

int j = 0;
if(a<b)j=j+1;
if(a<c)j=j+2;
if(b<c)j=j+4;

switch(j){

case 0: IO.writeInteger(c,9); IO.writeInteger (b,9); IO.writeInteger (a,9);break;
case 1: IO.writeInteger(c,9); IO.writeInteger (a,9); IO.writeInteger (b,9);break;
case 3: IO.writeInteger(a,9); IO.writeInteger (c,9); IO.writeInteger (b,9);break;
case 4: IO.writeInteger(b,9); IO.writeInteger (c,9); IO.writeInteger (a,9);break;
case 6: IO.writeInteger(b,9); IO.writeInteger (a,9); IO.writeInteger (c,9);break;
case 7: IO.writeInteger(a,9); IO.writeInteger (b,9); IO.writeInteger (c,9);break;
default:IO.writeString("Impossible case :except ring order ");break;

}
IO.writeLine();

}

45

Decision Tables

These three examples lead to a useful programming construct, which is helpful in
designing programs that handle complex relationships. This is the decision table.
When a relationship test is evaluated or when a boolean variable is defined,
combinations of their truth values can be used to select different actions. When these
conditions and actions are complex then it is useful to set out all the possible
combination of boolean variable values to ensure that each outcome, from all
possible inputs, is allocated to an appropriate action. In essence this is giving all input
combinations of values an output action rather than a value, which is done in the case
of the truth table definition of boolean operator functions. Laying out these
relationships in a table allows the relationships between the tests and the actions they
require to be systematically examined and reduced to their simplest form, it also
saves mistakes resulting from unaccounted cases being overlooked.

The ordering of three numbers depends on the primitive operation of comparing
pairs of numbers. There are six relationship pairs generated by three variables {a, b,
c} which are (a, b), (a, c), (b, c) and (b, a), (c, a), (c, b). If these are all tested using
the < test, then this gives six boolean values and six possible tests of the form if(a<b)
A1 else A2, if (b<a) A3 else A4 etc.. However the results of these tests are not all
independent. If (a<b) is true then (b<a) will be false. These tests are not opposites
and cannot therefore be treated by one test if(a<b) then A1(or A4) else A2 (or A3).
The problem is the case where (a==b). Where (a==b) both (a<b) and (b<a) will be
false. When the actions A1 and A2 are considered for ordering the two values a and
b, it is clear that where (a == b) either outputting (a, b) or (b, a) gives the same
result. Analysing the actions in relationship to the tested conditions in this case
allows a single test to be used to replace two. A decision table for this problem can be
set up as follows:

(a<b) true false
(a<c) true false true false
(b<c) true false true false true false true false

Action A7 A6 A5 A4 A3 A2 A1 A0

Output

a, b, c

a, c, b

error

c, a, b

b, a, c

error

b, c, a

c, b, a

In each of these examples the program is designed to select and then output the
sorted numbers in one step as a complete ordered list of numbers. There is a limit to
the number of elements that can be treated in this “one-shot” way, with three
numbers there are only 3! in other words 6 possible output lists. When the number of
elements in the unordered list is raised to 4, then the number of output orders goes up
to 24. With seven numbers, this number would expand to 7! in other words 5040

Decision Tables

46 2 Computer Languages: & Java Programming

output statements would be needed in the program to carry out the task in the same
way. Laying out the decision table would show that 7 numbers would require 7*6/2
binary relationship tests. As a decision table this would set up 221, in other words
over 2 million potential actions. Since only 5040 of these are not error messages, this
approach clearly has strict practical limits.

The sorting program can be greatly simplified if the sorted output is built up step
by step rather than being generated in a single step as a one-shot operation. If each
step removes the current largest element in the input list, only n steps will be required
to create the output list in the modified operation to order n values. This sequential
process can be greatly simplified as a program if it can be expressed as an operation,
which can be applied repeatedly, to the same set of data.

Repeat Statements

The next commands that modify the way sequences of code are processed are the
repeat commands. There are three main forms commonly used. The first is the for-
loop. This contains three fields in a control section followed by a sequence of
dependent statements within { } brackets. The first field sets up initial conditions,
usually a counting variable. The second field sets up a finishing condition usually a
relationship test applied to the counting variable and finally the third field defines the
changes that must be executed at the end of each repetition cycle. The latter is usually
the increment or decrement of the counting variable.

 for(int i = 0; i< integerArray.length; i++){

IO.writeInteger(integerArray[i],6);
 }

follow on sequence

repeat
sequence

intialise conditions

test

true

false

lead in sequence

increments

The for-loop is often associated with actions on arrays. An array is a collection of

objects where each object can be accessed by giving the array name followed by the
index of the object in the array, in square brackets. If the counter in a for-loop is used
to index elements in the array then each object in it can be visited in order. A
program to write out all the integers in an array of integer numbers can be written in

test

47

the way shown above. The other two repeat commands are more primitive in that
they merely control the repetition of a block of code by a terminating test. The two
forms of this command apply this test at the beginning and at the end of the repetition
cycle respectively. The following diagrams illustrate the flow of control set up by
these statements using the equivalent programs to the one above for writing out the
contents of an array.

 int i = 0;
 while(i< integerArray.length){

 IO.writeInteger(integerArray[i],6);
 i = i+1;

 }

follow on sequence

repeat
sequence

lead in sequence

test

true

false

 int i = 0;
 do{

 IO.writeInteger(integerArray[i],6);
 i = i +1;

 } while(i< integerArray.length);

follow on sequence

repeat
sequence

lead in sequence

test

true

false

The difference between these two examples is that the first can cope with an array

with no contents, while the second needs the array to have at least one entry if an
error is not to be generated by the system attempting to access a non-existent
element.

Using the repeat command allows a set of numbers held in an array to be ordered
by a simple repetitive swapping operation. If the largest element is selected each
cycle through an array and the value is stored at the beginning of the array, then after
n passes for an array of n elements the array will end up being sorted into descending
order.

test

test

Repeat Statements

48 2 Computer Languages: & Java Programming

public static void main(String[] args){
int[] integerArray = new int[7];
IO.writeString("Please enter seven values: ");

for(int i=0;i<7;i++) integerArray[i] = IO.readInteger();
for(int j=0;j<7;j++){

for(int i=j+1;i<7;i++){
if(integerArray[j]<integerArray[i]){

int temp=integerArray[j];
integerArray[j]=integerArray[i];
integerArray[i]=temp;

}
}

}
for(int i=0;i<7; i++)IO.writeInteger(integerArray[i],6);
IO.writeLine();
for(int i=6;i>=0;i--)IO.writeInteger(integerArray[i],6);

}

The application of the second form of repeat command allows the program to be
set up to handle variable amounts of input data. A program to convert Fahrenheit
temperature measures to Celsius values can be written in the following way, where
the system asks at the end of each calculation if another is required.

public class Program 4{

static TextWindow IO = new TextWindow(20,170,500,200);

public static void main(String[] args){

String str = "";
do{ IO.writeString("Please enter a Fahrenheit value: ");

double f = IO.readLongReal();IO.newLine();
double c = (f-32.0)/9.0*5.0;
IO.writeString("The Celsius value is: ");
IO.writeLongReal(c,6,3); IO.writeLine();
IO.writeString("Do you wish to continue? y/n: ");
str = IO.readString();IO.newLine();

}while(str.equals("y"));
IO.writeString("calculation complete \n");

}
}

49

The sequences of commands in a repeat loop have to be designed carefully, to be
applicable again and again as the program cycles. An example of a construction,
which can be applied repetitively to a sequence of data, can be seen in the case of the
formulae used to define the sum, the average, and the variance of a list of values.

Sum: ∑
=

=

=
ni

i
ixS

1

Average: ∑∑
=

=

=

=

==
ni

i
i

ni

i

i x
nn

xx
11

.1

Variance:
()∑σ

=

=

−
=

ni

i

i

n
xx

1

2
2

() ()

∑

∑

∑∑∑

∑ ∑

=

=

=

=

=

=

=

=

=

=

=

=

=

=

−=

+−=

+−=

+−
=

−

ni

i

i

ni

i

i

ni

i

i
ni

i

i
ni

i

ni

i

ni

i

iii

x
n
x

n
xxxx

n
x

n
xxx

n

n
xxxx

n
xx

1

2
2

1

2
2

1

2

11

2

1 1

222

..2

..21

..2

The sum is simple to calculate within a “for” loop or a “while” loop. The average

also can be calculated in a single repeat loop, in one of two ways depending on
whether the length of the list is known at the beginning of the repeat command or

Repeat Statements

50 2 Computer Languages: & Java Programming

only when the list has been completely processed. In the first case if the length of the
list is known then each element can be divided by the list length and then added to
the total. In the second case a count has to be kept of each new element added to the
sum of list elements, when the list is complete the answer is the sum divided by the
number of elements.

The variance in contrast, appears to require two loops the first to calculate the
average, the second to calculate the variance. Rearranging the formula, algebraically
in the way shown above allows the variance to be calculated in one loop. By
calculating the sum of the squared elements, (xi.xi) and the average x within the
loop, the final result can be obtained by squaring the average and subtracting it from
the average of the sum of the squares. This is one example from a variety of different
“recurrence relationships” designed to use repeat commands to provide compact and
efficient program code.

Another example of this process occurs with the choice of names for variables. A
program to generate the Fibonacci series can be set up by defining the nth element as
the sum of the n-1th and the n-2th elements in the series.

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

nextElement = lastElement + lastButOneElement;

Once this statement has been executed the lastElement and the lastButOneElement
no longer hold the values appropriate to their names. In order to complete a sequence
of statements that can be repeated, it is necessary to redefine these variables in the
following way:

nextElement = lastElement + lastButOneElement;
output(nextElement);
lastButOneElement = lastElement;
lastElement = nextElement;

Exactly the same redefinition is needed to draw a curve based on plotting a string

of line segments.

plotLine(leadingPoint, laggingPoint, colour);
laggingPoint = leadingPoint;
leadingPoint = calculateNextPoint();

A more complex repeat pattern can be set up to implement a “finite state

machine”. This is a program where the current state determines the action, and the
next state is determined by the combination of new inputs and the current state. A
diagram of this kind of mechanism is a very useful tool for programming a variety of
problems. It is often easier to visualise the interactions needed to make a program
function correctly if bubbles labelled by the state names are drawn out to represent
the states, and state transitions are shown by arrows, from one bubble to another,
with each arrow associated with the inputs that cause the transition.

51

Start

First
Character

Finish

not
alphabetic

not alphabetic
or numeric

alphabetic

alphabetic
or numeric

alphabetic
or numeric

not alphabetic
or numeric

Subsequent
Characters

Next Input
Character

Figure 2.1 State transition diagram for a name recognition program

public static void main(String[] args){

String str = ""; char ch = '\0';
boolean notFinished = true;
int start = 0, nextCharacter = 1;
int firstCharacter= 2, subsequentCharacters = 3, finish=4;
int state = start;
while(notFinished){

switch(state){
case 0:state = nextCharacter; break;
case 1:ch = IO.readCharacter();
 if(((ch>='a')&&(ch<='z'))||((ch>='A')&&(ch<='Z'))) state = firstCharacter;
 break;
case 2:str = str+ch;
 ch = IO.readCharacter();
 if(((ch<'a')||(ch>'z'))&&((ch<'A')||(ch>'Z')) &&((ch<'0')||(ch>'9')))state = finish;
 else state = subsequentCharacters;
 break;
case 3:str = str + ch;
 ch = IO.readCharacter();
 if(((ch<'a')||(ch>'z'))&&((ch<'A')||(ch>'Z'))&&((ch<'0')||(ch>'9'))) state = finish;
 break;
case 4:notFinished= false; break;
}

}
IO.writeString(str + "\n");

}

Repeat Statements

52 2 Computer Languages: & Java Programming

A switch statement, acting on a state variable, contained within a repeat loop, can
be used to implement this kind of process in the way shown in Figure 2.1 to
recognise a name within a sequence of characters. Though this structure is very
powerful and will cope with many programming tasks, its limitation is its fixed
number of state variables. Many programming tasks require more memory than this
in order to build up a varying number of partial results, before the overall task can be
completed, the amount of memory depending on the nature of the input received: the
classical example of this kind of task is evaluating an expression.

Sub-programs, Procedures, Functions and Methods

One way of getting this extra memory as it is needed is to use recursive procedures –
sub-programs, which call themselves. The terms: sub-program, subroutine,
procedure, function, and method; are with small variations interchangeable and
depend on the computer language being used. In object oriented languages the
preferred term referring to a sub program is the term “method”. In Pascal and
Modula-2 the terms procedure and function-procedure are used to distinguish sub-
programs which returned no value, and sub-programs which returned a value, like
value = sin(alpha);. In Java and C, because statements are considered to have values,
(allowing strings of assignments such as a = b = c = d; to be written) any subprogram
can be written as a function. However, methods are allowed to return a void value,
and therefore can behave as procedures that cannot be used in assignment statements!

Public class Program5{

static TextWindow IO = new TextWindow(20,170,500,200);
static double mul (double x,double y) {return x*y;}
static double div (double x,double y) {return x/y;}
static double sub (double x,double y) {return x-y;}
static double add (double x,double y) {return x+y;}
public static void main(String[] args){

double a=2,b=3,c=4,d=10,e=1,f=4,g=2;
double expression1 = a*b+c*(d-f)/(e+g);
double expression2 = add(mul(a,b),mul(c,div(sub(d,f),add(e,g))));
IO.writeString(“exrpession 1: “+ expression1+”\n”);
IO.writeString(“exrpession 2: “+ expression2+”\n”);

}
}

The declaration of functions in a simple program to evaluate an arithmetic
expression using function calls is shown in Program 5. As before it is necessary to
qualify the definition of each method by the keyword static. In this example the same
expression is presented in two different ways. In the first it is written in the
conventional form using arithmetic operators and brackets. In the second each
operator is replaced by a function call. Each function method executes its
corresponding arithmetic operation in a standard way on the two values passed to it
and returns the result. This example illustrates the way methods are defined and the
way they are called. In the function definition the type of the return value has to
precede the function name, and the values passed to the function have to be given

53

working names in order for the function code to be written, and each has to have its
type defined. When the function is “called” the real parameter names matching the
dummy, working names in the function definition have to be placed in the method’s
argument list, in the correct order to match the dummy arguments in the method
definition. This matching process allows the function to be applied to any variables
that the calling statement specifies.

When a method is called, control is passed to the sub-program code. The
parameter values in the calling statement are copied to the dummy variables in the
sub-program code. When the method’s computation is complete its resulting value is
passed back, and treated, as a value associated with the function name in the calling
statement, as if the calling name were a simple variable.

add(x, y)
{return x+y}

10, 4

add(,)

div(x, y)
{return x/y}

mul(x, y)
{return x*y}

mul(a , b) mul(c ,)

div(,)

sub(d , f) add(e , g)

sub(x, y)
{return x-y}

6

6

1, 2
3

3

2

2 4
8

8

mul(x, y)
{return x*y}

2, 3 6

6

add(x, y)
{return x+y}

14 14 add(mul(a,b),mul(c,div(sub(d,f),add(e,g))))

 a*b + c*(d-f)/(e+g)

Figure 2.2 Parameter matching for sub routine calls

When a more complex object is passed as an argument to a sub-program, its

indirect reference will be copied to a local variable in the method. This means, in this
case, the object is not duplicated. For simple objects such as integers the value is
passed and therefore it is duplicated. Arrays are more complex objects and they have
their references passed to methods rather than the whole array being duplicated.
Consequently an array with one element will act as a convenient example of a pass
by reference. An example, where this treatment makes a difference is the subprogram
to swap the contents of two variables.

Sub-programs, Procedures, Functions and Methods

54 2 Computer Languages: & Java Programming

Public class Program6{
static TextWindow IO = new TextWindow(20,170,500,200);
static void swap1(double x, double y){ double temp = x; x = y; y = temp; }
static void swap2(double [] x, double[] y){ double temp = x[0]; x[0] = y[0]; y[0] = temp;}

public static void main(String[] args){

IO.writeString(“please enter two different numbers: ”);
double a = IO.readLongReal(); double b = IO.readLongReal();
double[] c = new double[]{a}; double[] d = new double[]{b};
swap1(a,b);
IO.writeString(“swap1: ” + a + “ ”+ b +”\n”);
swap2(c,d);
IO.writeString(“swap2: ” + c[0]+ “ ” + d[0] +”\n”);

}
}

In program 6, swap1 shows a swapping function which exchanges the contents of
the local parameter variables, but which has no effect in the space of the calling
program. In contrast swap2, by passing the references to two arrays, by exchanging
their contents, provides the result back to the calling program, because it uses the
same references to the arrays in the function that are used in the calling program.

When a subroutine is called, storage space for its internal and parameter variables,
(local variables) are allocated to the program automatically by the language system.
This extra memory space is arranged in a stack data-structure, where the last element
added to the stack, is the first element returned from the stack. If a procedure calls
itself then it will build up a sequence of memory spaces on the stack, which will be
taken off the stack as the procedure returns to its calling statement. This recursive
procedure calling supports a different way of implementing a repetitive operation.
For example writing out the contents of an array can be done either forwards or
backwards, by the following procedures:

static void forwardOrder(int i, double[] array){
if(i<array.length)IO.writeLongReal(array[i],6,2);else return;
forwardOrder(i+1, array);

}
static void backwardOrder(int i, double[] array){

if(i<array.length)backwardOrder(i+1, array);else return;
IO.writeLongReal(array[i],6,2);

}

55

In these examples each call to the routine will set up a local variable i, which
will be placed in the stack starting with 0. A new value for i will be generated, and
incrementally increased, by each routine call, until it is equal to the length of the
array, when the procedure will return through all its intermediate calls back to its
start, releasing memory space for i as it goes. By placing a write statement before
the recursive call the local values of i will be used as they increase, by placing the
write statement after the recursive call the local value of i will be used as they
decrease during the return path of the calling sequence. It is essential that some
way of stopping such a chain of recursive calls be built into recursive procedures,
in this case testing to see if the end of the array has been reached stops the
sequence of calls.

Two standard data structures can be handled in an elegant way using this
approach. The first is the simple list, either as an array in the way shown in the
example, or as a dynamic linked list data structure. The second is the tree data
structure where elements are hierarchically linked to two or more lower level
elements. The expression used in Program 5 can be represented as the operator tree
shown diagrammatically in Figure 2.3. This will be explored more fully in a later
chapter.

+

c

*

/

−

f d

+

g e

*

b a

a*b+c*(d-f)/(e+g)

Figure 2.3 An arithmetic expression operator tree

Recursive programs can handle more complex data structures than simple finite
state machines, mainly because of the way they can manage the growth and release
of data stored on a stack.

Associated with the tree structure is a programming strategy called “divide and
conquer”. Where this approach is applicable it usually provides a more efficient
algorithm, than alternatives. Consider the sorting problem. To order a list of values
that can appear in any order, it is necessary to remove the largest value n times from
a list of n elements, and each selection will take n comparisons. Overall this requires
n2 comparison operations. If the original list is divided into two halves, and this is
done recursively until there is only one element in each list, then the return operation
can be one of merging lists in order. At any level this will consist of systematically
merging lists already ordered lower down the recursive chain. Program 7 shows an
example of a merge-sorting algorithm of this type. Figure 2.4 shows that the number
of comparisons in this approach is reduced to the order of n.log(n) for a list of n
elements.

+

+

∗

/

−

∗

b a

g e f

c

d

a*b + c*(d - f) / (e + g)

Sub-programs, Procedures, Functions and Methods

56 2 Computer Languages: & Java Programming

Subdividing
Recursive
Calls

9 6 4 7 2 3 8 5

9 6 4 7 2 3 8 5

9 6 4 7

9 6 4 7

2 3

2 3

8 5

8 5

2 3 4 5 6 7 8 9

4 6 7 9 2 3 5 8

6 9 4 7 2 3 5 8

Merging
Recursive
Returns

Figure 2.4 Divide and conquer mergeSort procedure

public class Program7{

static TextWindow IO = new TextWindow(20,170,500,200); static int num= 9;
public static void main(String[] args){

double[][] a = new double[2][num]; int level=0, left=0, right =num;
IO.writeString("please enter "+num+" different numbers: ");
for(int i=0;i<num;i++) a[0][i]= IO.readLongReal();
mergeSort(level,left,right,a);
for(int i=0;i<num;i++) IO.writeLongReal(a[0][i],6,2);

}
static void mergeSort(int level, int left, int right, double[][] a){

int nextLevel = (level+1)%2;
if((right - left)==1){ a[1][left] = a[0][left]; return;}
int middle = (left+right)/2;
mergeSort(nextLevel, left, middle, a); mergeSort(nextLevel, middle, right, a);
merge(nextLevel, left, middle, right, a);

}
static void merge(int level, int left, int middle, int right, double[][]a){

int r = (level+1)%2, s = level, t, i =left ,j = middle, k = left;
while(((i<middle)||(j<right))){ t = 0;

if((i>=middle)|| ((j<right) &&(a[s][j]<=a[s][i]))) {a[r][k++]= a[s][j];t=t+1;}
if((j>=right) || ((i<middle)&&(a[s][j]>=a[s][i]))) {a[r][k++]= a[s][i];t=t+2;}
switch(t) {case 1: j++; break; case 3: j++; case 2: i++; }

}
}

}

57

The merging operation is a linear sequential operation analogous to the action of
closing a zip fastener, in the way shown schematically in Figure 2.5!

1 3 5

2 4 7

9

9

10 23

19 25

27

28

30

32

35

40

43

44

47

55

49
56

linear merge

Figure 2.5 Linear merging

Types, Classes and Objects

Java is an object-oriented language. This means that it provides more than the basic
structured programming constructs discussed above. The object-oriented approach
extends the way data types are handled, including more complex data structures and
algorithms within a common, unified conceptual framework.

A data-type appears to be a relatively simple idea when viewed at the text level.
The symbols used to represent numbers and words immediately indicate that their
interpretation must be handled in a different way. They are different data types. At
the machine level in the computer system all the information is in the same form:
strings of binary digits. In this setting the data gives no indication of its type. Its type
is only determined by the context in which it can be used correctly. A bit string is a
number when it is processed as a number, but it could equally well be processed as a
character string if it were passed to the input-stream of a printer. A data type is
defined by the permitted operations that can be carried out on data of that type. The
structure of the data and the valid operations on it are inextricably entwined.

Data Structures and Algorithms

The way data structures and algorithms have to be considered together can be
illustrated by the following example. If an eight-bit data value is used to represent
whole numbers then it can be used to represent positive integers in the range 0 -- 255,
but the information defining the use that can be made of these bit patterns has to be
held outside the pattern itself. If the number is negative this will change its type and
hence for example, the way it can be added to a positive number. It is quite possible
to use one bit from the eight bits to determine which of these two types is present,

Data Structures and Algorithms

58 2 Computer Languages: & Java Programming

though the number range held in the remaining 7 bits of data would be limited to half
the original, only giving: 0 to 127: and the program to process the two data formats
would still have to be different.

If the bit patterns, in positive binary numeric order are placed round a circle from
0 to 255, then the value range from –128 to +127 can represented by a shift round the
circle: shown by the red and blue labels in Figure 2.6. If 0 to 255 is represented by
00000000 to 11111111 (blue) then –128 to 0 to +127 can be represented by the
sequence 10000000 to 00000000 to 01111111 (red). This allows the addition of
positive and negative numbers to be the same operation merely giving a result offset
along the original positive number line. To turn a positive number to a negative
number in this representation, or vice versa, merely requires the number’s bit pattern
to be mapped horizontally across the circle, shown by the green arrows in Figure 2.6

Figure 2.6 Two integer types: mapped onto the same bit patterns

This mapping gives the two’s complement representation for negative numbers.

00000001 as a positive 1 becomes 11111111 as negative 1, and 127 with bit pattern
01111111 becomes 10000001 as –127. If the binary values in each bit position are
inverted (0B1 and 1B0), and a binary 1 added to the new overall 8-bit binary
number, the result is a conversion from a positive to a negative number, and the
reverse process converts values the other way. In this case the number range for
positive or negative numbers is still halved but the permitted operations become the
same for both.

Element Names, Object Names and Collection Names

Simple variable names are ways of accessing memory locations, which contain
changeable bit patterns. The type associated with the name determines the correct
operations that can be carried out on these bit patterns. Object names in contrast are
also ways of accessing memory locations that hold bit patterns, but these bit patterns
are the address of objects, which can consist of many words of data. The first is a
direct reference to the value the second is the reference to a reference in other words

00000000

01000000

10000000

11000000

-128

64 -64

0

192

128

64

255 011111111

01111111

127

-1

127

59

an indirect reference. The two names directly reference different types of data, the
first a variable value the second an address or a pointer. Simple variable names are
not sufficient to allow useful programs to be written. Names for more complex
objects are necessary and this can be demonstrated by attempting to sort a collection
of numerical values stored as individually named, simple variables for example {a, b,
c, d, e, f }. If the “repeated selection of the largest” algorithm is used then the only
way it can be coded is as a sequence of commands of the form:

 int a= 5, b=8, c= -9, d=23, e=14, f=3, t=0;
 int m= Integer.MIN_VALUE;
 if(m<a){ t= a; a=m; m=t;}
 if(m<b){ t= b; b=m; m=t;}
 if(m<c){ t= c; c=m; m=t;}
 if(m<d){ t= d; d=m; m=t;}
 if(m<e){ t= e; e=m; m=t;}
 if(m<f){ t= f; f=m; m=t;}
 Output.writeString("largest value is "+ m +"\n");

This requires as many statements as there are variables. To order the set of

numbers this sequence could be placed in a repeat loop as long as ordered output is
all that is wanted: writing out the value of m at the end of each iteration.

int a= 5,b=8,c=-9,d=23,e=14,f=3,t=0;
for(int i=0;i<6;i++){

int m= Integer.MIN_VALUE;
if(m<a){ t= a; a=m; m=t;}
if(m<b){ t= b; b=m; m=t;}
if(m<c){ t= c; c=m; m=t;}
if(m<d){ t= d; d=m; m=t;}
if(m<e){ t= e; e=m; m=t;}
if(m<f){ t= f; f=m; m=t;}
Output.writeString("largest value is"+ m +"\n");

 }

If a new list of ordered variables, is wanted then this selection sequence will have

to be duplicated for each value, or included in a list of procedure calls to this
selection code structured as the sub program selectTheLargest.

 int X1= selectTheLargest(); Output.writeString(" X1 is "+ X1 +"\n");
 int X2= selectTheLargest(); Output.writeString(" X2 is "+ X2 +"\n");
 int X3= selectTheLargest(); Output.writeString(" X3 is "+ X3 +"\n");
 int X4= selectTheLargest(); Output.writeString(" X4 is "+ X4 +"\n");
 int X5= selectTheLargest(); Output.writeString(" X5 is "+ X5 +"\n");
 int X6= selectTheLargest(); Output.writeString(" X6 is "+ X6 +"\n");

To make this work it is necessary to make the variables a to f static global variables.

Element Names, Object Names and Collection Names

60 2 Computer Languages: & Java Programming

static int selectTheLargest(){
int m= Integer.MIN_VALUE;
for(int i=0;i < 6;i++){

if(m<a){ t= a; a=m; m=t;} if(m<b){ t= b; b=m; m=t;} if(m<c){ t= c; c=m; m=t;}
if(m<d){ t= d; d=m; m=t;} if(m<e){ t= e; e=m; m=t;} if(m<f){ t= f; f=m; m=t; }

} return m;
}

The solution to this potentially massive duplication of the same code pattern is the

use of array naming. The collection of numbers is treated as a single object and is
given a group name. Within the group the individual elements are identified by a
second, variable name holding an index value. This is implemented by storing the
collection of numbers in neighbouring locations in memory. The array name is then
associated with the base-address of the first location in memory used for the block of
data, and the index is used to give the offset from this position for each element in the
collection by adding the index value to the base-address of the array. This allows a
short single program to handle different sized arrays of numbers with the same code.

int[] a = new int[]{5,8,-9,23,14,3};
int t;
for(int i=0;i<a.length;i++)

for(int j=1;j<a.length;j++)
if(a[j]>a[j-1]){ t=a[j]; a[j]=a[j-1]; a[j-1]=t;}

for(int i=0;i<a.length;i++)
jOutput.writeString(" a["+i+"] is "+ a[i] + "\n");

If many arrays are defined in a program, and they are placed next door to each

other in memory: they cannot be increased in size. This becomes a limitation for
example if more data are entered into the program than space has been allocated for
them. Another limitation of this particular form of group naming is that an array has
to be a collection of elements of the same type. It is often useful to have a name for a
bundle of elements that are of different types. In C, Pascal and various, other
programming languages this possibility has been catered for by providing “structure”
names for collections of differently typed variables. In order to access these
individually a different naming convention has evolved. The name of the group is
followed by a period, followed by the name of the individual variable. The structure
is not of great use by itself but duplicated it provides a building block for more
flexible linked data structures to handle collections of data that vary in size: dynamic
data structures.

In an array, neighbouring elements can be obtained by adding offsets from a
current index value. Stepping one by one through an array’s index values allows all
its elements to be processed. This depends on the data being stored in adjacent
memory locations. An alternative approach to this task of storing data collections,
allows individual elements to be stored anywhere in memory, so that collections can
be incrementally built up or reduced in size as required. To do this reference
information must be included with each data-element to allow its neighbours to be
located. “structure” data types proved particularly suited to this construction. Such a
structure can be made up from variables for holding the primary data, along with

61

variables of the type of the structure itself. These structure variables hold the location
addresses of neighbouring structures in a collection. In Java these structures will be
objects containing link variables of their own type, as references to neighbours.

Arrays allow lists of elements to be stored. An equivalent dynamic data structure
can be built up from structures of the type ListElement defined in the following way:

class ListElement{

public ListElement left=null, right=null;
public Object object = null;
public boolean comparable = true;
ListElement(){}
ListElement(boolean comparable){ this.comparable=comparable; }

}

This class definition is a template, which defines the data framework that each
ListElement must have. It also provides two procedures, which create new structures
of this type called constructors. A list is a sequence of these objects linked by the
references left and right.

 List Element1 ListElement2 ListElement3

Figure 2.7 Double linked list

Although this list does not have a name for the data collection as a whole, the linked

list structure allows all objects in its length to be processed using code of the form:

reference = firstElement;
while(reference != null){

output(reference.object);
reference = reference.right;

}

The list is accessed through a variable of type ListElement. Multiple lists can be
set up and accessed by holding their leftmost element in a ListElement variable. This
is the approach found in C, Pascal, Modula2 and similar languages. The only
problem is that it is possible to build a variety of linked list structures using the
ListElement as the building block. Since different accessing functions need to be used
with these data structures, more information needs to be stored with each
construction than a simple ListElement reference. In other words these list structures
are of different types, and to handle them in a consistent way they should be given
individual variable names with a type that reflects the kind of list-object that they
reference.

object1

left null

right ListElement2

object2

left ListElement1

right ListElement3

object3

left ListElement2

right null

Element Names, Object Names and Collection Names

62 2 Computer Languages: & Java Programming

Object Oriented languages such as Java not only allow these more complex data
collections to be constructed but also to be given names as single objects. As objects
of the same type, it will be possible to operated on them in common ways, and these
operations implicitly define the type of object they are. The class definition of a List
provides a reference to the first ListElement in the list and the last ListElement. More
than this it includes the methods for operating on these structures in the following
way:

class List{

public int length = 0;
public boolean comparable = true;
public ListElement start = null, finish = null;

List(){ };
List(boolean c){this.comparable = c;};

public List makeNewList(List lst){

List lst0 = new List(true); ListElement ref = lst.start;
while(ref!=null){ lst0.append(ref.object); ref=ref.right; }
return lst0;

}

public void setComparable(boolean c){comparable = c;}

public ListElement push(Object n){

if (n==null) return null;
ListElement m = new ListElement(comparable);
m.object = n; m.right = this.start; m.left = null;
if (this.start == null){this.finish = m;} else{ this.start.left = m;}
this.start = m; this.length = this.length + 1;
return m;

}
public Object pop(){

if (this.start == null)return null;
Object m = this.start.object; this.start = this.start.right;
if(this.start != null) this.start.left = null; else this.finish = null;
this.length = this.length - 1;
return m;

}
public ListElement append(Object n){

if (n==null) return null;
ListElement m = new ListElement(comparable); m.object = n;
if(this.finish == null){ this.finish = this.start = m;}
else{ this.finish.right = m; m.left = this.finish; finish = m; }
this.length = this.length + 1;
return m;

}

63

public Object remove(){
if(this.finish == null)return null;
Object m = this.finish.object;
if(finish.left == null){ this.start= this.finish = null;}
else{ this.finish.left.right = null; this.finish = this.finish.left; }
this.length = this.length - 1;
return m;

}
public Object delete(ListElement m){

if(m == null) return null;
else if (m.left == null) return this.pop();
else if (m.right == null) return this.remove();
else{ m.left.right = m.right; m.right.left = m.left;
 this.length = this.length - 1;
} return m.object;

}
public ListElement insertBefore(ListElement after,Object n){

ListElement m=null;
if (n==null) return null;
if(after == null) m=this.append(n);
else if(after.left == null) return this.push(n);
else{

m = new ListElement(comparable); m.object = n;
ListElement before = after.left; before.right = m; m.left = before;
m.right = after; after.left = m; this.length = this.length + 1;

} return m;
}
public ListElement insertAfter(ListElement before,Object n){

ListElement m=null;
if (n==null) return null;
if(before == null) m=this.push(n);
else if (before.right == null)return this.append(n);
else{

m = new ListElement(comparable); m.object = n;
ListElement after = before.right; after.left = m; before.right = m;
m.left = before; m.right = after; this.length = this.length + 1;

} return m;
}
public List joinTo(List b){

if(this.start==null)return b;
if(b.start==null)return this;
List a = new List();
a.start = this.start; a.finish = b.finish; this.finish.right= b.start;
b.start.left = this.finish;
return a;

}
}

Element Names, Object Names and Collection Names

64 2 Computer Languages: & Java Programming

Lists and Trees

Compared with an array a list has a major draw back. Finding an element in a list
involves following the links from one end of the list to the other searching for the
required element. The same is true for an array where elements are stored in any
order. However, if values are stored in order in an array, elements can be found by
dividing the array into two halves selecting the half containing the target and then
recursively subdividing the new reduced sub-array in the same way until the target is
“found” or determined to be “not present”. Instead of taking ‘n’ steps for a list of ‘n’
elements long this process requires ‘log(n)’ steps. However adding values to an
ordered array of values will involve moving entries along to make room for a new
member, which on average still adds a serious overhead to the work.

In contrast the tree data structure allows a fast “find” operation to be applied while
at the same time providing a fast insertion method. Tree data structures can be
constructed from ListElement objects in the way shown in Figure 2.8 merely by
employing a different linking strategy. Like bit patterns, the data element, building
blocks, are the same but the overall type is determined by the permitted operations on
the data. These will be provided by the Tree class methods. The only draw back is
that tree building operations based on inserting new elements can distort the balanced
shape of the tree, which is the property that makes fast ‘find’ operations work.

Figure 2.8 ListElements linked as a tree data structure

TreeNode F

left E

right G

TreeNode B

left A

right C

TreeNode E

left null

right null

TreeNode C

left null

right null

TreeNode G

left null

right null

Tree TreeNode D

left B

right F

TreeNode A

left null

right null

65

The tree like the list can be accessed and used through recursive procedures.
Accessing elements in trees can be done in various ways depending on the
application, however there are three simple tree traversal algorithms, which are used
again and again. These can be expressed using the same three code statements but
arranged in three different orders. Where the tree is used to store an ordered list of
values shown in Figure 2.9, the output order for the prefix traversal will be D, B, A,
C, F, E, G. The output order will be A, B, C, D, E, F, G for the infix traversal, and A,
C, B, E, G, F, D for the postfix traversal.

abstract class Tree{

static TextWindow IO = null;
public boolean comparable = true; public ListElement root = null;
public Tree(){ };
public Tree(TextWindow IO){Tree.IO = IO;};
public abstract ListElement insert(ListElement ls, ListElement nw);
public abstract void output(Object o);
public void prefixTraversal(ListElement tree){

if(tree==null)return;
output(tree.object);
prefixTraversal(tree.left);
prefixTraversal(tree.right);

}
public void infixTraversal(ListElement tree){

if(tree==null)return;
infixTraversal(tree.left);
output(tree.object);
infixTraversal(tree.right);

}
public void postfixTraversal(ListElement tree){

if(tree==null)return;
postfixTraversal(tree.left);
postfixTraversal(tree.right);
output(tree.object);

}
}
class StringTree extends Tree{

public StringTree(TextWindow IO){Tree.IO = IO;};
public ListElement insert(ListElement ls,ListElement ln){

if(ls==null)ls= ln;
else{String o1 = (String) ls.object, o2 = (String)ln.object;

int test = o1.compareTo(o2);
if (test > 0) {ls.left = insert(ls.left, ln);}
else if(test < 0){ls.right = insert(ls.right,ln);} // new string matches existing string

}return ls;
}
public void output(Object o){IO.writeString((String)o+" ");}

}

Lists and Trees

66 2 Computer Languages: & Java Programming

public static void main(String[] args){
ListElement root = null;String str=" ";
StringTree stree = new StringTree(IO);
IO.writeString("please enter 7 strings: ");
for(int i=0; i<7;i++){

str= IO.readTextString();
ListElement treeNode = new ListElement();
treeNode.object=str;
root= stree.insert(root, treeNode);

}
stree.infixTraversal(root); IO.writeLine();
stree.prefixTraversal(root); IO.writeLine();
stree.postfixTraversal(root);IO.writeLine();
}

}

Figure 2.9 Rebalancing tree structures

If an already ordered sequence of input values is used to build a tree, using these
procedures will create a single list, not a tree. There are several more sophisticated
tree-building algorithms designed to keep the resulting tree reasonably well balanced
as it is constructed. These can be found presented in detail in books on data structures
and algorithms. However, an alternative, simpler approach to this problem is to
record the number of levels in each tree-object, and when it becomes too unbalanced
restructure the tree.

D

F B

E C G A

A B C D E F G

67

In practice it is often useful to switch the data structures used to implement data
collections when processing different steps in a task. An example of the way this can
be done is provided by tree data structures. An array can be used to rebalance a
linked list tree structure built from an ordered list of values. If the linked list is
traversed in infix order and the output is placed in an array of the appropriate size.
The entries in the array will, by design, be in value order. If these are then accessed
using a recursive binary subdivision of the array, selecting the middle value, and
entering it back into a new linked list tree, the resulting tree will be balanced in the
way shown in Figure 2.9.

Figure 2.10 A tree in an array

public void infixTraversal(char[] tree, int index){
if(index >= tree.length)return;
infixTraversal(tree, index*2+1);
output(tree[index]);
infixTraversal(tree, index*2+2);

}

This arrangement is used to implement an alternative set of tree data types called
heap structures: access is still based on the order of values but not in the same way.

Stacks, Queues and Deques

The same data structures are used again and again in different contexts, so it is
natural that they should be considered as objects from the same class. However there
are a series of common, dynamic, list based data structures that are essentially
different types, that can be built up from the same ListElement units. The most
general structure is the List, with the accessing methods given in the class listed
above. However, a list that can only be accessed at one end is called a “stack” or a
LIFO (last in first out list), similarly a list which has inputs at one end and outputs at
the other is called a “queue” or a FIFO (first in first out list), and a queue that can go
forwards or backwards is called a “deque” or double ended queue.

To identify these specialised lists as distinct types in Java can be achieved by
grouping the methods that define these types in a similar construct to a “class” called
an “interface”. The methods can all be implemented in the same class, however
access to them can be limited by declaring variables of the types defined by the

D B F A C E G

Stacks, Queues and Deques

A tree structure can be implemented either using an array or a double linked list. The
tree given in Figure 2.8 could be stored in an array in the way shown in Figure 2.10,
and output in infix-order A, B, C, D, E, F, G produced using the following code:

68 2 Computer Languages: & Java Programming

interface names. The implementation class is then set up to “implement” these
interfaces.

interface Stack{
public ListElement push(Object n);
public Object pop();

}
interface Queue{

public ListElement append(Object n);
public Object pop();

}
class List implements Stack, Queue{

// as above
}

This allows Stack and Queue objects to be generated by statements of the form:

Stack stack1 = new List();
Queue queue = new List();

In these two cases stack1 and queue can only use the methods in their interface

definitions, not all the methods available in the List class.
Although Java provides a library of such structures in the Collections package, it

is often necessary to build purpose-built linked list structures for graphics
applications. An important example is producing an ordered threaded list of a
polygon boundary. A list of coordinates representing a polygon boundary cannot be
changed without losing the structure of the boundary however it is often necessary to
arrange the coordinates in sequential order.

Although it is possible to create two coordinate lists each with its own order, they
are of little use unless they can be cross-linked. This requires the ListElement
structure to be extended to allow list elements to be linked together where they refer
to the same coordinate object. The extended ListElement structure used in later
examples is defined in the following way. The reference names link1 and link2 are
provided to support this cross-reference between different list structures.

class ListElement{

public ListElement left=null, right=null, link1=null, link2=null;
public Object object = null;
public int tag = 0;
public String name = "";
public boolean comparable = true;

ListElement(){ }
ListElement(boolean comparable){ this.comparable=comparable; }

}

69

Sets, Abstract Data Types and Encapsulation

What emerges is a collection of types, which can be implemented as linked lists,
indexed arrays, or as tree structures without changing their external overall
behaviour. If a “black box” approach is taken to defining a data type, then only the
operations needed to define the correct behaviour of objects of the type need to be
made visible to the user. All that needs to be known is the correct output that can be
expected from an operation, generate from a given set of inputs, without the need to
specify any mechanism for turning one into the other. This introduces abstraction
and hierarchy.

Set objects provide a good example of this kind of data type where there are a
variety of ways that they can be implemented. One way in which the set operations of
union, intersection difference and symmetric difference can be implemented is based
on ordered lists and a merge operation outlined in the merge-sort algorithm illustrated
in Figure 2.5. The set must be represented by an ordered list of objects where no
element is duplicated. The union of two sets can then be implemented by processing
the two lists sequentially the smallest values first. The two lists are merged by
comparing the two “next” elements from each list, and outputting the smaller if they
are different, but outputting only one, and discarding the other, if they are the same.
This gives a new list that conforms to the structure of the set, having no duplicate
elements and holding an ordered series of values. The intersection of the sets can be
implemented by only outputting one copy of any elements that match, discarding the
rest. Clearly the implementation can use linked lists or arrays, and the user does not
need to know which.

If the programmer wishes to work with the abstract properties of a polygon
without having to consider its implementation at a “lower” level, the true
representation of a polygon can be hidden in a polygon class. When the class is
implemented in a program, a particular data structure to represent the polygon can be
chosen, for example a list of vertex co-ordinates. A method called area can then be
written to calculate the area of a polygon modelled in this way. However, the user
may provide information in various ways through different class constructors to
define the polygon. The system will then have to generate the internal representation
of the polygon as a list of co-ordinates from the information given to the
constructors. If a particular polygon has been given the variable name polygon1 then
the area of the polygon can be returned by the “area” method using a statement of the
form polygon1.area(), and the real data structure need never be referred to.

Java allows objects like polygons to be treated in the same way that numbers are
treated in simpler languages. Their type is defined by a class definition, which
includes the operations that are permitted on the objects from the class of that type.
The class definition also contains the data structures used by the sub-programs
(called methods), to implement the operations on objects of the class.

If the polygon class is implemented well, then a polygon object can be worked
with in much the same way that an integer object can be worked with, in expressions,
relationship-tests and the like. The rules governing these operations will be different
and often more complex for “higher level” objects, but a more unified programming
environment results.

Sets, Abstract Data Types and Encapsulation

70 2 Computer Languages: & Java Programming

The object-oriented approach also allows a more natural use of names to be
adopted so that program code reflects the objects, which are being worked on, like
polygons, in a more direct way, than was possible in previous programming
languages. In Java the main program building blocks become the class and interface
definitions. These define the data structures necessary to implement objects of the
class, and to manage the set of objects generated by the class. Each class has the
potential mechanism to generate data structures to represent or “instantiate” multiple
objects of the type that the class defines. These objects can be worked with using
variables of the type the class defines, which can be used in programs, very much
like variables holding numbers, by assigning object to them.

Hierarchy Inheritance and Abstraction.

This process of hiding implementation details is called encapsulation and makes
many programming tasks much clearer. An important aspect of the hierarchy
supported by the class structure is that one class can be defined as a refinement or
modification of another class. The new class “inherits” much of its structure from its
parent class, but has properties and methods of its own. This makes it possible to
implement programs in a way that minimises duplication, which is very important in
maintaining programs, so that changes can be carried out in as few locations as
possible. It also allows template classes to be defined where the full implementation
is left unfinished to be implemented by inherited classes. These are called Abstract
classes illustrated by the Tree class given above. For example a StringTree class can
inherit from the Tree class its general tree traversal methods but must provide the
output and the insert procedures in the specialised form required by String objects for
their write and compareTo methods.

In Java direct inheritance is permitted from only one “super” class. In real life,
objects can be thought of belonging to many classificational sets. A car is a “vehicle”
and also a “manufactured object”. The flexibility this demands in a programming
language, however, can lead to ambiguities and complex errors. Consequently, Java
provides the different construction called an Interface illustrated in the case of List
objects. This extends the methods and names, which can be applied to objects in one
class as though they were objects from a different class of a different type

The next step is to provide equivalent input output facilities for graphic objects to
that provided for text. One of the operations necessary for spatial objects such as
polygons is presenting them in graphic displays. In the next chapter a simple display
window class is introduced which will allow basic display operation to be executed.

