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Chapter One

Introduction

1.1 Impulsive and Hybrid Dynamical Systems

Modern complex engineering systems are highly interconnected and
mutually interdependent, both physically and through a multitude of
information and communication network constraints. The complex-
ity of modern controlled dynamical systems is further exacerbated by
the use of hierarchical embedded control subsystems within the feed-
back control system, that is, abstract decision-making units perform-
ing logical checks that identify system mode operation and specify
the continuous-variable subcontroller to be activated. These multi-
echelon systems (see Figure 1.1) are classified as hybrid systems (see
[6,126,161] and the numerous references therein) and involve an in-
teracting countable collection of dynamical systems possessing a hier-
archical structure characterized by continuous-time dynamics at the
lower-level units and logical decision-making units at the higher level
of the hierarchy. The lower-level units directly interact with the dy-
namical system to be controlled, while the logical decision-making,
higher-level units receive information from the lower-level units as in-
puts and provide (possibly discrete) output commands, which serve
to coordinate and reconcile the (sometimes competing) actions of the
lower-level units.

The hierarchical controller organization reduces processor cost and
controller complexity by breaking up the processing task into rela-
tively small pieces and decomposing the fast and slow control func-
tions. Typically, the higher-level units perform logical checks that
determine system mode operation, while the lower-level units exe-
cute continuous-variable commands for a given system mode of oper-
ation. Due to their multiechelon hierarchical structure, hybrid dynam-
ical systems are capable of simultaneously exhibiting continuous-time
dynamics, discrete-time dynamics, logic commands, discrete events,
and resetting events. Such systems include dynamical switching sys-
tems [29,101, 140], nonsmooth impact systems [28,32], biological sys-
tems [93], sampled-data systems [71], discrete-event systems [139)],
intelligent vehicle/highway systems [113], constrained mechanical sys-
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Figure 1.1 Multiechelon dynamical system [87].

tems [28], and flight control systems [158], to cite but a few examples.

The mathematical descriptions of many hybrid dynamical systems
can be characterized by impulsive differential equations [12,14,79,93,
148]. Impulsive dynamical systems can be viewed as a subclass of
hybrid systems and consist of three elements—namely, a continuous-
time differential equation, which governs the motion of the dynamical
system between impulsive or resetting events; a difference equation,
which governs the way the system states are instantaneously changed
when a resetting event occurs; and a criterion for determining when
the states of the system are to be reset. Since impulsive systems can
involve impulses at variable times, they are in general time-varying
systems, wherein the resetting events are both a function of time
and the system’s state. In the case where the resetting events are
defined by a prescribed sequence of times which are independent of the
system state, the equations are known as time-dependent differential
equations [12,14,35,61,62,93]. Alternatively, in the case where the
resetting events are defined by a manifold in the state space that is
independent of time, the equations are autonomous and are known as
state-dependent differential equations [12,14,35,61,62,93].

Hybrid and impulsive dynamical systems exhibit a very rich dynam-
ical behavior. In particular, the trajectories of hybrid and impulsive
dynamical systems can exhibit multiple complex phenomena such as
Zeno solutions, noncontinuability of solutions or deadlock, beating or
livelock, and confluence or merging of solutions. A Zeno solution in-
volves a system trajectory with infinitely many resettings in finite
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time. Deadlock corresponds to a dynamical system state from which
no continuation, continuous or discrete, is possible. A hybrid dynami-
cal system experiences beating when the system trajectory encounters
the same resetting surface a finite or infinite number of times in zero
time. Finally, confluence involves system solutions that coincide after
a certain point in time. These phenomena, along with the breakdown
of many of the fundamental properties of classical dynamical system
theory, such as continuity of solutions and continuous dependence of
solutions on the system’s initial conditions, make the analysis of hy-
brid and impulsive dynamical systems extremely challenging.

The range of applications of hybrid and impulsive dynamical sys-
tems is not limited to controlled dynamical systems. Their usage
arises in several different fields of science, including computer sci-
ence, mathematical programming, and modeling and simulation. In
computer science, discrete program verification and logic is interwo-
ven with a continuous environment giving rise to hybrid dynamical
systems. Specifically, computer software systems interact with the
physical system to admit feedback algorithms that improve system
performance and system robustness. Alternatively, in mathematical
linear and nonlinear optimization with inequality constraints, changes
in continuous and discrete states can be computed by a switching
dynamic framework. Modeling and simulating complex dynamical
systems with multiple modes of operation involving multiple system
transitions also give rise to hybrid dynamical systems. Among the
earliest investigations of dynamical systems involving continuous dy-
namics and discrete switchings can be traced back to relay control
systems and bang-bang optimal control.

Dynamical systems involving an interacting mixture of continuous
and discrete dynamics abound in nature and are not limited to en-
gineering systems with programmable logic controllers. Hybrid sys-
tems arise naturally in biology, physiology, pharmacology, economics,
biocenology, demography, chemistry, neuroscience, impact mechan-
ics, quantum mechanics, systems with shock effects, and cosmology,
among numerous other fields of science. For example, mechanical sys-
tems subject to unilateral constraints on system positions give rise
to hybrid dynamical systems. These systems involve discontinuous
solutions, wherein discontinuities arise primarily from impacts (or
collisions) when the system trajectories encounter the unilateral con-
straints. In physiological systems the blood pressure and blood flow to
different tissues of the human body are controlled to provide sufficient
oxygen to the cells of each organ. Certain organs such as the kidneys
normally require higher blood flows than is necessary to satisfy ba-
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sic oxygen needs. However, during stress (such as hemorrhage) when
perfusion pressure falls, perfusion of certain regions (e.g., brain and
heart) takes precedence over perfusion of other regions, and hierarchi-
cal controls (overriding controls) shut down flow to these other regions.
This shutting down process can be modeled as a resetting event giv-
ing rise to a hybrid system. As another example, biomolecular genetic
systems also combine discrete events, wherein a gene is turned on or
off for transcription, with continuous dynamics involving concentra-
tions of chemicals in a given cell. Even though many scientists and
engineers recognize that a large number of life science and engineering
systems are hybrid in nature, these systems have been traditionally
modeled, analyzed, and designed as purely discrete or purely continu-
ous systems. The reason for this is that only recently has the theory of
impulsive and hybrid dynamical systems been sufficiently developed
to fully capture the interaction between the continuous and discrete
dynamics of these systems.

Even though impulsive dynamical systems were first formulated by
Mil’'man and Myshkis [123,124],! the fundamental theory of impulsive
differential equations is developed in the monographs by Bainov, Lak-
shmikantham, Perestyuk, Samoilenko, and Simeonov [12-14, 93, 148].
These monographs develop qualitative solution properties, existence
of solutions, asymptotic properties of solutions, and stability theory
of impulsive dynamical systems. In this monograph we build on the
results of [12-14,93,148] to develop invariant set stability theorems,
partial stability, Lagrange stability, boundedness and ultimate bound-
edness, dissipativity theory, vector dissipativity theory, energy-based
hybrid control, optimal control, disturbance rejection control, and ro-
bust control for nonlinear impulsive and hybrid dynamical systems.

1.2 A Brief Outline of the Monograph

The main objective of this monograph is to develop a general analy-
sis and control design framework for nonlinear impulsive and hybrid

Mil’'man and Myshkis were the first to develop qualitative analysis results for
impulsive dynamical systems. However, work on impact and hybrid systems can
be traced back to ancient Greek scientists and mathematicians such as Aristotle,
Archimedes, and Heron. Problems related to Heron’s work on hybrid automata
(Ilepl avTopaTomownTLkns) as well as problems on impact dynamics attracted the
interest of numerous physicists and mathematicians who followed with relevant
contributions made in the last three centuries. Notable contributions include the
work of Leibniz, Newton, (Jacob) Bernoulli, d’Alembert, Poisson, Huygens, Cori-
olis, Darboux, Routh, Appell, and Lyapunov.
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dynamical systems. The main contents of the monograph are as fol-
lows. In Chapter 2, we establish notation and definitions, and develop
stability theory for nonlinear impulsive dynamical systems. Specifi-
cally, Lyapunov stability theorems are developed for time-dependent
and state-dependent impulsive dynamical systems. Furthermore, we
state and prove a fundamental result on positive limit sets for state-
dependent impulsive dynamical systems. Using this result, we gen-
eralize the Krasovskii-LaSalle invariant set theorem to impulsive dy-
namical systems. In addition, partial stability, Lagrange stability,
boundedness, ultimate boundedness, and stability theorems via vec-
tor Lyapunov functions are also established.

In Chapter 3, we extend the notion of dissipative dynamical sys-
tems [165,166] to develop the concept of dissipativity for impulsive dy-
namical systems. Specifically, the classical concepts of system storage
functions and system supply rates are extended to impulsive dynami-
cal systems. In addition, we develop extended Kalman-Yakubovitch-
Popov conditions in terms of the hybrid system dynamics for charac-
terizing dissipativeness via system storage functions and hybrid supply
rates for impulsive dynamical systems. Furthermore, a generalized
hybrid energy balance interpretation involving the system’s stored
or accumulated energy, dissipated energy over the continuous-time
dynamics, and dissipated energy at the resetting instants is given.
Specialization of these results to passive and nonexpansive impulsive
systems is also provided. In Chapter 4, we extend the results of Chap-
ters 2 and 3 to develop stability and dissipativity results for impulsive
nonnegative and compartmental dynamical systems.

In Chapter 5, we develop vector dissipativity notions for large-scale
nonlinear impulsive dynamical systems. In particular, we introduce a
generalized definition of dissipativity for large-scale nonlinear impul-
sive dynamical systems in terms of a hybrid vector inequality, a vector
hybrid supply rate, and a vector storage function. Dissipativity prop-
erties of the large-scale impulsive system are shown to be determined
from the dissipativity properties of the individual impulsive subsys-
tems making up the large-scale system and the nature of the system
interconnections. Using the concepts of dissipativity and vector dis-
sipativity, in Chapter 6 we develop feedback interconnection stability
results for impulsive nonlinear dynamical systems. General stability
criteria are given for Lyapunov, asymptotic, and exponential stability
of feedback impulsive dynamical systems. In the case of quadratic
hybrid supply rates corresponding to net system power and weighted
input-output energy, these results generalize the positivity and small
gain theorems to the case of nonlinear impulsive dynamical systems.
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In Chapter 7, we develop a hybrid control framework for impulsive
port-controlled Hamiltonian systems. In particular, we obtain con-
structive sufficient conditions for hybrid feedback stabilization that
provide a shaped energy function for the closed-loop system while
preserving a hybrid Hamiltonian structure at the closed-loop level. A
novel class of energy-based hybrid controllers is proposed in Chap-
ter 8 as a means for achieving enhanced energy dissipation in Euler-
Lagrange, port-controlled Hamiltonian, and dissipative dynamical sys-
tems. These controllers combine a logical switching architecture with
continuous dynamics to guarantee that the system plant energy is
strictly decreasing across resetting events. The general framework
leads to closed-loop systems described by impulsive differential equa-
tions. In addition, we construct hybrid controllers that guarantee
that the closed-loop system is consistent with basic thermodynamic
principles. In particular, the existence of an entropy function for the
closed-loop system is established that satisfies a hybrid Clausius-type
inequality. Extensions to hybrid Euler-Lagrange systems and impul-
sive dynamical systems are also developed.

In Chapter 9, a unified framework for hybrid feedback optimal and
inverse optimal control involving a hybrid nonlinear nonquadratic per-
formance functional is developed. It is shown that the hybrid cost
functional can be evaluated in closed form as long as the cost func-
tional considered is related in a specific way to an underlying Lya-
punov function that guarantees asymptotic stability of the nonlinear
closed-loop impulsive system. Furthermore, the Lyapunov function
is shown to be a solution of a steady-state, hybrid Hamilton-Jacobi-
Bellman equation. Extensions of the hybrid feedback optimal control
framework to disturbance rejection control and robust control are ad-
dressed in Chapters 10 and 11, respectively.

In Chapter 12, we develop a unified dynamical systems framework
for a general class of systems possessing left-continuous flows, that
is, left-continuous dynamical systems. These systems are shown to
generalize virtually all existing notions of dynamical systems and in-
clude hybrid, impulsive, and switching dynamical systems as special
cases. Furthermore, we generalize dissipativity, passivity, and nonex-
pansivity theory to left-continuous dynamical systems. Specifically,
the classical concepts of system storage functions and supply rates
are extended to left-continuous dynamical systems providing a gener-
alized hybrid system energy interpretation in terms of stored energy,
dissipated energy over the continuous-time dynamics, and dissipated
energy over the resetting events. Finally, the generalized dissipativ-
ity notions are used to develop general stability criteria for feedback
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interconnections of left-continuous dynamical systems. These results
generalize the positivity and small gain theorems to the case of left-
continuous and hybrid dynamical systems.

Finally, in Chapter 13 we generalize Poincaré’s theorem to dynam-
ical systems possessing left-continuous flows to address the stability
of limit cycles and periodic orbits of left-continuous, hybrid, and im-
pulsive dynamical systems. It is shown that the resetting manifold
provides a natural hyperplane for defining a Poincaré return map. In
the special case of impulsive dynamical systems, we show that the
Poincaré map replaces an nth-order impulsive dynamical system by
an (n — 1)th-order discrete-time system for analyzing the stability of
periodic orbits.





