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Chapter 2
Spatial Interaction and Spatial Autocorrelation:
A Cross-Product Approach

Arthur Getis

This Chapter was originally published in:
Getis, A. (1991) Spatial Interaction and Spatial Autocorrelation: Across-Product
Approach. Environment and Planning A 23:1269-1277. Reprinted with permission
of PION Limited, London

Abstract A cross-product statistic is used to demonstrate that spatial interaction
models are a special case of a general model of spatial autocorrelation. A series
of traditional measures of spatial autocorrelation is shown to have a cross-product
form. Several interaction models are shown to have a similar form. A general spatial
statistic is developed which indicates that the relationship between the two types of
models is particularly strong when the focus is on measurements from a single point.

2.1 Introduction

In casual conversation one rarely makes a distinction between those elements of our
environment that are associated and those that interact. It is commonly believed that
if tangible or intangible variables interact they are therefore in association with one
another. Spatial scientists, however, have made in the technical literature a distinc-
tion between spatial association, which implies correlation, and spatial interaction.
There is among them a deep-seated view that spatial interaction implies movement
of tangible entities, and that this has little to do with spatial correlation. A literature
on spatial autocorrelation has arisen that is nearly devoid of references to the litera-
ture on gravity and interaction models. Only on rare occasions will a spatial scientist
use the words “spatial interaction” to refer to the ideas of the spatial associationists
(Haining, 1978; Ord, 1975).

In this paper, I suggest that the family of spatial interaction models is a special
case of a general model of spatial autocorrelation. The goal is to bring the two
modeling “camps” together into a single group whose purpose is to develop further
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spatial models in a general way. In recent reviews of the interaction model and
spatial autocorrelation literature, such as in Haynes and Fotheringham (1984) and
in Anselin (1988), respectively, there is little recognition of the contributions of the
other group. There has not been a discussion that shows that the two types of models
can be described in a general way by the same spatial model. In order to solidify the
relationship I will present a statistic that I have developed with the assistance of Ord
that can be interpreted as either an indicator of spatial autocorrelation or a measure
of spatial interaction.

There have been a number of generalizations of gravity and spatial interaction
models (Tobler, 1983; Wilson, 1970). The most recent contribution is by Haynes
and Fotheringham (1984), who write the general model as

Tij = f(Vi, Uj, Sij),

where Tij is the interaction (tangible or intangible) between i and j, Vi and Uj

represent vectors of origin and destination attributes, respectively, and Sij represents
a vector of separation attributes. By introducing constraints and specifying the form
of the attributes, one can produce a model for validation. The relationship between
the dependent and independent variables is often constrained. In some instances
emphasis is on Vi (origin-specific, production-constrained gravity models), whereas
in others the Uj are most important (destination-specific, attraction-constrained),
and in some models there is a balance between the two (doubly constrained models).
Fotheringham (1983) adds a further general term to the system, Cj , which represents
a vector of competition variables. As he implies, however, Cj is a refinement of and
a more detailed specification for Uj .

The historic background that has led to the current understanding of spatial auto-
correlation models is very much different from that of interaction models. Spatial
autocorrelation modeling has had a shorter history. Interaction modeling has been
active for over 100 years although it was in the late 1950s when there was a resur-
gence of interest that has lasted to the current time. The field had already been
reinfused with the theoretical energy of Wilson in the early 1970s when Cliff and
Ord (1973) presented their ground-breaking explication of the spatial autocorre-
lation problem based on the work of Moran (1948), Geary (1954), and Whittle
(1954).

Since 1973 the development of spatial autocorrelation models has been slow
and tedious. The literature gives no evidence that Moran’s I model, the join-count
model, and the Geary model have been replaced or modified. Considerable progress
is clear, however, in the development of regression models that include one or
more spatial autocorrelation coefficients. In related developments, spectral mod-
els and especially variograms (Kriging) are being used to estimate the nature of
autocorrelation in spatial data.

The common elements of the various spatial autocorrelation models are (1) a
matrix of values representing the association between locations and (2) values rep-
resenting a vector of the attributes of the various locations. To my knowledge, only
Hubert and his associates Golledge, Costanzo, and Gale (Hubert and Golledge,
1982; Hubert et al., 1981, 1985) have developed a general form for the association
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of these elements. Their cross-product statistic, Γ, is written

Γ =
∑

i,j

WijYij , (2.1)

where Wij are elements of a matrix of measurements of spatial proximity of places
i to places j, and Yij is a measure of the association of i and j on some other
dimension. A slightly different form is

Γ =
∑

i,j

WijYj (2.2)

in which the relationship between the Yi and Yj is implicit rather than explicit
as in (2.1). In this and in all subsequent formulations where we use summation
signs, i does not equal j (that is, there is no self-association or self-interaction),
unless otherwise indicated. In addition, in all subsequent formulations stationarity
and isotropy are assumed where required. A common choice for Yij is

Yij = (xi − xj)2, (2.3)

where the x are the values observed for variate Xi. Clearly Yij could be some other
measure of the association between i and j. For example, Hubert et al. (1981) pro-
pose cos(di − dj) where di and dj are angular directions at i and j. In the following
paragraphs I shall identify briefly the differentiating elements of the various spatial
autocorrelation models.

2.2 Cross-Product Spatial Autocorrelation Models

In this section I give a survey of the models of spatial autocorrelation. In each case
attention is on the form of the model. The purpose is to show that nearly all of the
models are simply just another specification of a cross-product statistic.

2.2.1 The Join-Count Models

These models require a 0,1 attribute scale. That is, some places display the attributes
(1) whereas others do not (0). The Yij of the cross-product statistic differs according
to the particular model of which there are three: (1) association of places with the
attribute Yij = xixj ; (2) association of places with and without the attribute Yij =
(xi−xj)2; and (3) association of places without the attribute Yij = (1−xi)(1−xj).
The first and the third model exhibit a multiplicative form. Each of the models is
constrained by allowing only a value of one for a success and zero for a failure.
The model is evaluated against the expectation of the moments of Xi (see Cliff
and Ord, 1973). There are no constraints on the weight matrix although in practice
researchers usually choose a one-or-zero scheme to identify spatial proximity or no
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Table 2.1 A comparison of various spatial models and the cross-product statistic
Model Wij Yij Restrictions Scale

Wij Yij

Cross-product statistics

Γ =
∑ ∑

WijYij Wij Yij None None None

Γ =
∑ ∑

WijYj Wij Yj None None None

Spatial autocorrelation models

Joint count

BB = 1
2
∑ ∑

Wijxixj Wij xixj 0/1 0/1 1
2

BB = 1
2
∑ ∑

Wij(xi − xj)2 Wij (xi − xj)2 0/1 0/1 1
2

BB = 1
2
∑ ∑

Wij(1 − xi)(1 − xj) Wij (1 − xi)(1 − xj) 0/1 0/1 1
2

Moran’s

I =
n

∑ ∑
Wij(xi−x̄)(xj−x̄)

W
∑

(xi−x̄)2
Wij (xi − x̄)(xj − x̄) None None n

W
∑

(xi−x̄)2

Geary’s

c =
(n−1)

∑ ∑
Wij(xi−xj)2

2W
∑

(xix̄)2
Wij (xi − xj)2 None None n−1

2W
∑

(xi−x̄)2

Semi-variance

γ = 1
2
∑n−h

i=1
∑n

j=i+h Wij (xi − xj)2 Wij (xi − xj)2 1 None 1
2

Second-order

K(d) =

∑ ∑
Wi,j(d)xixj

(
∑

xi)2−∑
x2

i

Wij (d) xixj 0/1 Positive [(
∑

xi)
2 − ∑

x2
i ]−1

Getis model

Gi(d) = [
∑

j Wij(d)xixj ](
∑

j xixj)−1 Wij (d) xixj 0/1 Positive (
∑

j xixj)−1

Spatial interaction models

General gravity

Tij = kxα
i xτ

j W
−β
ij

W
−β
ij

xα
i xτ

j None Positive k

Origin-specific, production-constrained

Tij = (xixα
j W

−β
ij

)(
∑

j xjW
−β
ij

)−1 W
−β
ij

xixα
j None Positive (

∑
j xjW

−β
ij

)−1

General spatial models

i-to-all-j model

Gi = (
∑

j xixjW
−β
ij

)(
∑

j xixj)−1 W
−β
ij

xixj None Positive (
∑

j xixj)−1

i-to-j model

Gij = (xixjW
−β
ij

)(xixj)−1 W
−β
ij

xixj None Positive (xixj)−1

Note: BB black–black joins, BW black–white joins, WW white–white joins

spatial proximity. In Table 2.1 the cross-product characteristics of the models are
identified.

2.2.2 Moran’s I Models

The theoretical base for these models is interval-scale observations. There are two
models here, differentiated only by the procedures for the evaluation of results.
Unlike the join-count models, these are essentially a Pearson product-moment cor-
relation coefficient model altered to take into consideration the effect of a spatial
weight matrix. The cross-product, Yij , is the covariance, (xi − x̄)(xj − x̄). The
weight matrix has no restrictions. As in the Pearson statistic, Moran’s measurement
includes a scaling factor. No doubt the popularity of the Moran statistic is because
of the asymptotic normal distribution of the model as n increases (Cliff and Ord,
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1973). A roughly equivalent model based on a likelihood ratio statistic is by Haining
(1977).

2.2.3 Geary’s c Models

The two models here are similar to Moran’s models except for the way in which
the cross-product attributes are written. In this case the Yij is (xi − xj)2. This is
the same as the second join-count model. The variance is a scalar, and the weight
matrix is as in the Moran models. The value 1 for c implies that there is no spatial
autocorrelation.

2.2.4 The Semivariance Model

The semivariance is a geostatistical measure of autocorrelation based on a lattice of
evenly spaced data points. Estimation of the semivariance, γ(h), results from the
sum of multiples of the values of pairs of points that are separated by a constant
spatial lag h units of distance from one another in a single direction. Because of
the supposed dependence between nearby data points, as h increases one would
presume that the degree of autocorrelation would decline and the variance would
increase to the level of the population at large. The model gets its name from the
fact that the quantity is half the expected squared difference between two values.
As h increases the trend of the γ(h) values is called a variogram, not unlike the
correlogram often found in studies that use Moran’s I . For Hubert’s statistic the
value h is the equivalent of a one-or-zero weight matrix for a specified set of pairs of
points that are h distance units apart in one direction (say east to west) and the values
of Yij are of the form (xi − xj)2. The variogram can be written in cross-product
form as

γ(h) =
1
2

n−h∑

i=1

n∑

j=i+h

Wij(xi − xj)2. (2.4)

2.2.5 Second-Order Spatial Autocorrelation

In a measure of spatial autocorrelation I developed earlier (Getis, 1984) the distance
between xi and xj , is d. The d value generates a weight matrix of ones for all pairs
of points found within d of one another and gives zeroes for all other pairs of points.
The result is a cumulative measure of spatial autocorrelation for each distance. The
measure taken over many distances creates a cumulative correlogram. The main
difference between the second-order approach and the variogram is its cumulative
nature, the second-order model does not depend on a lattice of points. The model
for an area of size A is given by the expression

K(d) =

⎛

⎝A
∑

i,j

Wi,jxixj

⎞

⎠
[(∑

Xi

)2

−
∑

X2
i

]−1

, (2.5)
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where the elements Wi,j of the matrix are one or zero, with a one attributed to those
j within d of i, and the Yi,j matrix contains xixj pairs. The X variable has a natural
origin and xi ≥ 0. Clearly, the cross-product statistic describes the numerator and
the denominator is a scalar that describes the sum of all xixj pairs, revealing that
the measure K(d) is a proportion.

2.2.6 Spectral Analysis

Although I suspect that it is possible to squeeze a spectral view of spatial autocor-
relation into a cross-product form, spectral analysis is fundamentally different from
the analytical models presented above. In spectral techniques it is assumed that there
is a series of frequencies making up distinct periodicities in spatial data. The math-
ematics for identifying the harmonics are more complicated than those embodied
in cross-product analysis. Spectra result from the addition of successive harmonics
of a cosine wave. Spectral analysis is an effective analytical device if one is willing
to assume that spatial autocorrelation is a consequence of some sort of vibratory
motion or accumulation of wave-like forces.

2.2.7 The Spatial Autoregressive Model

A first-order autoregressive model is given by

Yi = α + ρ
∑

Wi,jYj + εi. (2.6)

For a spatial autoregressive interpretation ρ is the spatial autocorrelation coefficient,
Wij is an element of the spatial weight matrix, and ε is the uncorrected, normally
distributed, nonspatially autocorrelated, homoscedastic error term. The Wi,jYj is
a spatial variable which we construct from the dependent variable itself, and the
system is stationary. Thus, the model represents the spatial dependence structure
of Y . This is not a model of spatial autocorrelation per se but a model of the effect
of spatial autocorrelation on a dependent variable. The main difference with the
models described above is that the coefficient ρ is a parameter that relates the spatial
dependence form of Y with itself, whereas Moran’s I , for example, is strictly a
value representing the spatial autocorrelation characteristic of variable Y . In fact,
the numerators of both I and ρ are the covariance.

2.2.8 A Cross-Product View of Spatial Autocorrelation

The point of the above exercise is that the numerators of the autocorrelation models
are essentially cross-product statistics (see Table 2.1). The Wij matrix is not con-
strained or, if it is, the constraint is usually because of some maximum-distance rule,
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contiguity, or another condition that focuses attention on a specified set of interact-
ing locations. In Table 2.1, the values of the Yij are entered into the equation in a
multiplicative way, as a squared difference, or as a covariation. All other parts of the
equations define the base or scalar for the calibration of the various statistics.

Hubert et al. (1981) imply that for testing purposes scales in the formulations
are unnecessary. Scales are generally included in the various measures of spatial
autocorrelation in order to satisfy assumptions that allow for statistical tests on
well-known probability distributions. Hubert (1977) has developed a randomization
technique of matrix manipulation that allows one to make statements of statisti-
cal significance without making distributional assumptions. Thus not only have we
defined a family of cross-product statistics, but if we were to follow Hubert’s advice
we would use the same type of evaluation procedure for every formulation of Yij .

2.3 Interaction Models

I shall write the formulas for two common gravity and interaction models:

Tij = kP y
i Pα

j d−β
ij (2.7)

and

Tij = AiOiW
αi

j d−βi

ij . (2.8)

The first is the general unconstrained gravity model where the Pi and Pj represent
the magnitude of the variable under study at i and j, dij is the distance separating
i and j, the exponents on the P variable are sometimes used to differentiate the
effect of the origin from that of the destination. The exponent on the distance value
represents the friction of distance. The k is a scalar or constant of proportion.

The characteristics of interaction measures that help differentiate them from auto-
correlation measures are (1) a focus on a single ij relationship; (2) the use of
exponents to adjust variables; (3) constraints to draw attention to one or more of
the variables. In terms of the cross-product statistic there are significant similari-
ties between them. In Table 2.1, (2.7) is rewritten to conform to the nomenclature
of the cross-product statistic. Note that no summation sign is used in (2.7) or in
Table 2.1. The focus in interaction modeling is on a single association, although the
derivation of the parameters usually depends on the empirical data of all associa-
tions. The point, however, is that the form of the measure is similar to measures of
spatial autocorrelation. The Tij is simply one value that could be used in the devel-
opment of a spatial autocorrelation statistic. The elements of a Wij matrix contain
the values of d−β

ij . The Yij are simply the association values between the places
i and j. As in the spatial autocorrelation statistics, the Yij are defined in any of a
number of ways. The various constraints placed on the values at the i places can eas-
ily be accommodated in a cross-product statistic. Thus, the exponents that are used
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in interaction models represent more advanced development than in autocorrelation
models, but there is nothing standing in the way of the use of exponents to enhance
spatial autocorrelation measures (Cliff and Ord, 1969).

Equation (2.8), the origin-specific production-constrained interaction model, has
been rewritten in Table 2.1 to conform to the cross-product model. It is clear that
even with the complexity characteristic of many interaction models, the general
form remains that of a cross product.

2.4 A General Spatial Statistic1

The statistic developed below contains the elements of the cross-product statistic but
instead of it being a summary measure over an entire set of data it focuses on a single
point as in spatial interaction measures. As it is developed here, the translation from
spatial autocorrelation to interaction is not without problems.

The statistic is given by the equation

Gi(d) =
[∑

j

Wij(d)xj

](∑

j

xj

)−1

, (2.9)

where Wij is a one-or-zero spatial weight matrix with ones for all links defined as
being within distance d of a given place i and all other links are zero. The variable
X has a natural origin and is positive. The numerator is a cross product and the
denominator is the sum of all the x other than xi. If S is equal to x1 + · · · + xn, it
follows directly that

K(d) =
[∑

j

xi(S − xi)Gi(d)
](

S2 −
∑

i

x2
i

)−1

(2.10)

so that Gi(d) represents a partition of K(d) to provide an index for the ith
location.

Making use of a permutations argument and recognizing that the denominator is
invariant under permutations, we can consider the statistic as

Gi =
[∑

j

Qjxj

](∑

j

xj

)−1

,

where Qj = 1 if Wij = 1, otherwise Qj = 0. This means that P (Qj = 1) is equal
to W (n − 1)−1 where W =

∑
j Wij(d). Then

1 This section was developed with J K Ord.
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E(Gi) =
[∑

j

E(Qj)xj

](∑

j

xj

)−1

= W (n − 1)−1 (2.11)

and

E(G2
i ) =

(∑

j

xj

)−2[∑

j

x2
jE(Q2

j) +
∑

j,k

xjxkE(QjQk)
]

so that E(Q2
j) = E(Qj) as Qj = 0 or 1, and E(QjQk) = W (W−1)(n−1)−1(n−

2)−1 (that is, hypergeometric). This yields

E(G2
i ) =

(∑

j

xj

)−2{[

(n − 1)−1W
∑

j

x2
j +

W (W − 1)
(n − 1)(n − 2)

[(∑

j

xj

)2

−
∑

j

x2
j

]}

so

var (Gi) = E(G2
i ) − E2(Gi)

=
(∑

j xj

)−2

)
[
(n − 1)−1(n − 2)−2W (n − 1 − W )

∑
j x2

j

+ (n − 1)−2(n − 2)−1W (
∑

j xj)2
]
.

If we put (
∑

j xj)(n − 1)−1 = Y1 and (
∑

j x2
j)(n − 1)−1 − Y 2

1 = Y2, then

var (Gi) =
W (n − 1 − W )
(n − 1)2(n − 2)

Y2

Y 2
1

. (2.12)

In this paper we will not further discuss properties of Gi(d) except to say that
Gi(d) is normal as n → ∞ (from properties of sampling without replacement,
that is, a Moran-type argument). In a subsequent paper (Getis and Ord, 1992),
characteristics of Gi(d) will be discussed for the case when normality cannot be
assumed.

2.4.1 Further Development of the Statistic

The difficulty with the statistic shown in (2.9) is in its dependence on a one-or-zero
weight or distance matrix. Further development of the statistic would allow i to
equal j and the substitution of d−β

ij for Wij . For example, the following formulation
would replace (2.9):
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Gi =
∑

j

xixjd
−β
ij

(∑

j

xixj

)−1

, β > 0, (2.13)

where i = j is allowed. In (2.13) there is an obvious correspondence between
both the cross-product statistic and the general form of the interaction model. The
expected value would be based on the assumption that all x values were similar.
Thus,

E(Gi) =
1
n

∑

j

d−β
ij , β > 0. (2.14)

As with Gj(d), the new statistic Gi would have a value as follows: 0 ≤ Gi ≤ 1. If
i were not equal to j then the denominator of (2.14) would be (n − 1). Tests based
on the statistic would answer the fundamental question: “are the association and the
interaction between i and all j greater than chance would have it?”

A variation on (2.13) and (2.14) would focus on the single relationship between
a single i and a single j. These equations are

Gij =
xixjd

−β
ij

xixj
, β > 0 (2.15)

and
E(Gij) = d−β

ij . (2.16)

Equations (2.15) and (2.16) complete the merger of correlation and interaction
formulations.

2.4.2 Interpretation of Gi(d)

In order to test hypotheses, for example, if all xi are set to one, the pattern of xj

represents a condition of no spatial autocorrelation. In this case, the null hypothesis
is: there is no difference (and thus no spatial autocorrelation) among the xj within
distance d of i. By substituting a one for each xj , we find (2.9) and (2.12) become

E[Gi(d)] =
W

n − 1
(2.17)

and

E[varGi(d)] =
(n − 1 − W )2

(n − 1)2(n − 2)
. (2.18)

The estimated Gi(d) is found by solving (2.19) by using the observed xj values.
If

Z =
Gi(d) − E[Gi(d)]
{E[varGi(d)]}1/2
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is positively or negatively greater than some specified level of significance, then pos-
itive or negative spatial autocorrelation are obtained. A large positive Z implies that
large values (values above the mean xj) are spatially associated. A large negative Z
means that small xj are spatially associated with one another.

When Gi(d) represents a measure of interaction, the model is expanded from
(2.9) to

Gi(d) =
[∑

j

Wij(d)xixj

][∑

j

xixj

]−1

. (2.19)

A null hypotheses might call for interaction no greater (or less) than one might
expect when all xj are equal. The expectations are as in (2.17) and (2.18). Rejection
of the null hypothesis would indicate that there is greater (or less) interaction than
expected.

2.5 Conclusion

In verbal terms, the key words differentiating the two types of models are interaction
and association. The interaction implied in gravity models refers to the possible
movement of elements at i to or from places j. In the spatial autocorrelation model,
the link between i and j is a correlation in the sense of places having common or
different specified characteristics. As the development of the spatial autocorrelation
model has a statistical origin, one usually considers association as having positive
or negative statistical significance. For interaction models, statistical significance is
less important and prediction is more important. For interaction modelers, interest
is in the flow between places, whether or not the flow are greater or less than those
predicted by a normal random variable model. In this paper we were able to show
that the cross-product statistic of Hubert et al. (1981) allows for a unification of
the two types of models. This was accomplished by means of the development of
a spatial autocorrelation statistic that serves as a measure of spatial interaction as
well. An advantage to the approach taken here is that the way is now paved for the
development of statistical tests on interaction theory.
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