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Pattern Analysis

A pattern is a general concept and means a form, a template, a model, or,
more abstractly, a set of rules or a data structure. Pattern recognition is the
detection of underlying patterns in data. By pattern analysis we mean analysis
of data on the basis of patterns, involving pattern recognition, classification,
modeling and statistics.

An important class of patterns is those related to images. Images are an
interesting form of biomedical data, and looking for patterns in images can give
useful information. Also, the analysis of images provide nice, comprehensive
examples of pattern analysis algorithms.

In this chapter we cover some pattern analysis algorithms. Pattern anal-
ysis is a broad field, with many applications and strong links to information
processing, computer science, biometrics and biostatistics. The size of bioin-
formatic data and databases excludes most manual operations on this data,
and the successful extraction of useful information relies heavily on the effec-
tiveness of automatic browsing, searching, and linking. Combining of browsing
bioinformatic data files with pattern analysis algorithms, such as automatic
classification, has great potential and can lead to very interesting findings.

4.1 Feature Extraction

A feature is a mapping from a pattern space or image space to a feature space
i.e., a space of numbers or vectors. Examples of features are the positions of
image fragments, the areas of parts of images, lengths of contours of objects
in images, the numbers of occurrences of certain strings in sequences, and the
coefficients of series expansions (Taylor, Fourier, etc.) of functions associated
to images or patterns related to experiments performed.

Feature extraction is one of the initial steps of pattern analysis. The def-
inition of features for a given situation is a crucial element in the art of con-
struction of pattern analysis algorithms. If the features defined correspond
well to the type of information one is looking for, then it is likely that the
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whole pattern analysis system will perform satisfactorily. However, it can also
happen that the relations between the defined features and patterns we are
after are so ambiguous that the pattern analysis system will eventually fail.

In the systems of measurements that are performed in molecular biology,
biochemistry or genetics, it often happens that experiments and the analysis
of them provide hundreds, thousands, or even more features, and the problem
is to reduce their dimensionality or to look for a hierarchy in the data.

4.2 Classification

The classification problem for patterns involves setting discrimination rules,
based on the features and a knowledge of the classes of the patterns. In the
sequel, we will treat terms “classes ” and “states of an experiment” as synony-
mous. The simplest formulation of the classification task is as follows. There
are two possible states of the experiment coded, for example, as 0 for normal
and 1 for disease. The feature extraction system has already been designed
and we have x1, x2, . . ., xn, which are feature vectors known to correspond to
state 0, and xn+1, xn+2, . . ., xn+m, which are feature vectors known to corre-
spond to state 1. The feature space is k-dimensional, i.e., x ∈ Rk. The problem
is to find a scalar function (a classifier) f(x) defined on the feature space such
that f(xi) = 0 for all i = 1, . . . , n and f(xi) = 1 for all i = n+ 1, . . . , n+m.
If we succeed in the construction of the classifier, it will allow automated
classification of experimental states on the basis of extracted features.

A more general formulation of the classification problem involves more
than two classes. Also, it may be either impossible or unsuitable to obtain a
perfect discrimination. As a result of noise in the data, the knowledge about
the classes may be erroneous, and so it can be more reasonable to allow for
some classification errors.

4.2.1 Linear Classifiers

Let us code the states of the experiment by −1 and 1 instead of 0 and 1. This
change of coding is motivated by our aim of using a “sign” function, which
returns values −1 and 1. By a linear classifier function or linear discriminant
function, we mean a function

f(x) = sign(wTx+ w0). (4.1)

In the above “sign” the a sign function, which returns −1 or 1 depending on
whether the argument is negative or positive; x is a feature vector, which is a
k-dimensional, column vector, wT is a k-dimensional row vector of weights, w0

is a scalar, and the superscript T denotes, as usual, vector transposition. The
function (4.1) could also be called an affine classifier owing to the occurrence
of the offset term w0. The geometric locus in the space x ∈ Rk
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L = {x : wTx+ w0 = 0} (4.2)

is called a separating hyperplane.
With the data x1, x2, . . ., xn and xn+1, xn+2, . . ., xn+m, belonging to

two classes as described above, the problem of the construction of the linear
classifier (4.1) can be formulated as follows. Find a vector w ∈ Rk and a
scalar w0 such that wTxi + w0 < 0 for all i = 1, . . . , n and wTxi + w0 > 0
for all i = n + 1, . . . , n + m. Using matrix and vector notation, these n + m
inequalities can be written as

M

[
w
w0

]

< 0 (4.3)

where [wT w0]T is a k + 1-dimensional column vector, and M is a matrix
defined as follows

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xT
1 1

...
...

xT
n 1
−xT

n+1 −1
...

...
−xT

n+m −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.4)

As we can see, the problem of constructing a linear classifier reduces to the
problem of looking for a vector [wT w0]T which satisfies the system of lin-
ear inequalities (4.3). The system (4.3) is homogeneous, which means that if
[wT w0]T solves it, then any other vector α[wT w0]T obtained by multiplica-
tion by a positive constant α > 0 is also a solution. So, equivalently to (4.3)
we can analyze

M

[
w
w0

]

≤ −1, (4.5)

where 1 means a vector with all entries equal to one.
One method for solving (4.3) or (4.5) with respect to [wT w0]T is by using

the linear programming algorithm mentioned in Chap. 5. One can easily define
a linear programming problem with the property that its solution solves the
system of inequalities (4.3). One possibility is as follows:

max z (4.6)

subject to

M

[
w
w0

]

≤ −1z (4.7)

and
0 ≤ z ≤ 1. (4.8)

In the above formulation, the variables of the linear programming problem are
w, w0, and z, (one scalar variable z has been added). If the optimal solution
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Fig. 4.1. Graphical representation of a model of an artificial neuron

to (4.6)–(4.8) is zopt = 1, then a solution to (4.3) exists. If zopt = 0, then the
system (4.3) is infeasible.

The method of choosing weights w1, . . ., wk by solving linear programming
problem, as shown above, is very efficient. However, many other methods are
also in use. One group of approaches to adjusting the weights in classifiers
uses iterative procedures [67], where weights are modified step by step and
the procedure stops when solution to (4.3) is achieved. Such procedures are
called training of the classifier. For single classifiers (4.1), they are only toy
algorithms, but become important when classifiers are organized in larger
structures, namely artificial neural networks, as we outline below.

4.2.2 Linear Classifier Functions and Artificial Neurons

The linear classifier functions (4.1) are closely related to artificial neurons. A
model of an artificial neuron can be represented graphically as shown in Fig.
4.1. Signals (the elements of the vector x) x1, . . ., xk are multiplied by weights
w1, . . ., wk, summed up with offset w0. This step of signal transformation is
the same as in the linear classifier (4.1). The threshold element “sign” which
appears in (4.1) is, in the neuron in Fig. 4.1 replaced by a smooth function,
for example a sigmoid [67]. The function in the output block of the artificial
neuron is called the neuron activation function. This function is chosen to
be a smooth approximation of a thresholding element, i.e., a sigmoid, logis-
tic, arctan function, etc. The smoothness makes neuron activation functions
more physically sound and, more importantly, makes it possible to construct
training algorithms based on derivatives.

4.2.3 Artificial Neural Networks

As discussed above, linear classifiers or single neurons can perform linear
discrimination; in other words the separation can only be done by means
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Fig. 4.2. An example of two classes which can be separated linearly. The feature
vectors are two-dimensional. The two classes are marked by circles and squares

of lines, planes, or hyperplanes. An example of a linear separation of feature
vectors belonging to two classes, depicted by circles and squares, is shown in
Fig. 4.2.

However, one may wish to design discriminant systems which allow more
complicated boundaries between classes. This aim can be achieved by combin-
ing several neurons into a network, as shown in Fig. 4.3. The neural network
presented in the upper part of Fig. 4.3 is called a multilayer perceptron, or
hidden-layer perceptron. This is a simple example, where the input vector x
has two components x1, x2 and the total number of neurons in the network is
three. This neural network is organized into three layers. The first, input layer
is built from the input signals x1, x2. The second, hidden layer contains two
neurons, which, as their inputs, take sums of the input signals with different
weights, w1

11 and w1
12 with an offset w1

10 for the first neuron, and w1
11 and

w1
12 with an offset w1

20 for the second neuron. The superscript 1 indexes the
first layer. The outputs from the neurons in the second layer are fed into the
last, third layer, which has only one neuron, with an output signal y. In the
lower plot in Fig. 4.3 we present the shape of a separation line which can be
obtained with the use of the neural net in the upper plot. This line separates
two different classes determined by states of the experiment, marked by circles
and squares. Such a shape of the separation line cannot be obtained with a
single-neuron classifier.

Artificial neural networks of the type shown in the upper part of Fig. 4.3
can have more than one hidden layer, as well as more neurons in each of the
layers. The crucial task is the training algorithms for artificial neural networks.
A well-known recursive algorithm for adjusting the values of the weights is
called back propagation [67].
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Fig. 4.3. Upper plot: a neural net with three layers, two input signals x1 and x2,
and one output signal y. Lower plot : the shape of a separation line, which can be
obtained with the use of neural net from the upper plot. The line separates two
classes marked by circles and squares

4.2.4 Support Vector Machines

We now return to the problem of the construction of linear classification func-
tions (4.1). In this subsection, we introduce an approach using supporting
vector machines (SVMs) (SVM). The idea of SVMs involves designing a lin-
ear classifier which is optimal in the sense of its distances to points belonging
to separated classes. Before explaining this idea in more detail, let us recall
the fact from the multidimensional analytical geometry, namely that the dis-
tance between a hyperplane H = {x : wTx + w0 = 0) and a point y ∈ Rk is
given by the formula

d(H, y) =

∣
∣wT y + w0

∣
∣

‖w‖ . (4.9)

In Fig. 4.4 we have shown a graphical representation of the situation where
the feature space is two-dimensional, i.e., the vector x has two components x1,
x2 and there are two classes, marked by circles and squares. This figure shows
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two plots, with identical locations of some feature vectors corresponding to
two classes. There are infinitely many possible linear discriminant functions for
separating the two classes. The left and right plots present two separating lines
related to two different linear discriminant functions. In the left-hand plot we
presented a “randomly chosen” separating line, obtained, for example, by some
recursive procedure for modification of the weights. In the right-hand plot, we
present a separating line related to a special discriminant function f∗(x) =
sign(w∗Tx + w∗

0). Denoting the feature vectors in Fig. 4.4 by x1, x2, . . ., xn

(those corresponding to circles), and xn+1, xn+2, . . ., xn+m (corresponding
to squares), the special property of this separating line can be explained as
follows. The separating line in the right-hand plot, L∗ = {x : w∗Tx+w∗

0 = 0),
has the property that (i) it separates the two classes and (ii) it maximizes the
minimal distance d(L∗, xk) between L∗ and the points x1, x2, . . ., xn+m:

w∗, w∗
0 ← max

w,w0
min

1≤k≤n+m
d(L, xk). (4.10)

The conditions (i) and (ii) determine uniquely the parameters w∗, w∗
0. Using

(4.9) and (4.10) and recalling the idea of construction of the matrix M in
(4.4), one can derive that the parameters w∗, w∗

0 can be obtained from the
solution to the quadratic programming problem

minwTw, (4.11)

subject to the constraints

M

[
w
w0

]

≤ −1. (4.12)

The symbols M and 1 have the same meaning as in (4.3)–(4.5). The quadratic
programming problem is also mentioned in Chap. 5 in (5.56) and (5.57).

There are many examples where the optimal discriminant function

f∗(x) = sign(w∗Tx+ w∗
0)

shown in the right-hand plot in Fig. 4.4 has better properties than a “randomly
chosen” discriminant function, such as the one in the left hand plot in Fig. 4.4.
One may also wish to extend the method to discriminating to more than two
classes and to more complicated shapes of the separating lines or surfaces. An
appropriate methodology can be designed by developing the ideas sketched
above, [45, 46]. Classifiers based on an optimal separation of the kind shown
in the right plot in Fig. 4.4 and described in (4.9)–(4.12) are called supporting
vector machines.

4.3 Clustering

Clustering involves a situation where there is a need to identify classes solely
on the basis of feature vectors. We infer classes by using the hypothesis that
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Fig. 4.4. In the left-hand plot a “randomly chosen” separating line is presented.
In the right-hand plot we show the separating line which maximizes the minimal
distance d(L∗, xk) between L∗ and points x1, x2, . . ., xn+m

separate classes correspond to regions where data points occur with increased
density. We call such regions of increased density clusters. An example is
shown in Fig. 4.5. In the plot in figure 4.5 we can see clearly that the data
points, representing some features or patterns, tend to be concentrated around
two points, forming two data clusters. So it may be reasonable to hypothesize
that these two clusters are related to two different classes in the data.

We shall present two algorithms for clustering, the K-means algorithm
and the hierarchical clustering algorithm. Both of these approaches are re-
lated to methods presented also in other chapters of this book. The K-means
algorithm can be interpreted in terms of analyzing mixtures by using EM
methods (Chap. 2), and hierarchical clustering is closely related to inferring
trees (Chap. 7). In order to decide whether the data points are densely or
sparsely located, one needs to use some distance measure. The most natural
is the Euclidean distance, but other distances can also be used.

4.3.1 K-means Clustering

The idea behind the algorithm for K-means clustering is very simple, and
similar to the idea the EM algorithm for estimating the parameters of mixtures
of distributions.

Concerning the construction of the algorithm, we do the following:

(I) We assume that the number K of clusters is known, and we make two
more assumptions, as follows.
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Fig. 4.5. Example of a pattern of feature vectors. The classes are not predefined.
The hyporthesis of the existence of two classes is made based on the fact that points
tend to be concentrated around two centers, forming two data clusters

(II) Each of the clusters has a center point xC
i , i = 1, . . ., K, with the coordi-

nates equal to the mean of the coordinates of the data points that belong
to that cluster.

(III) For each of the data points x, we decide which of the clusters does it
belong to by computing the distances between that point and centers of all
clusters d(x, xC

i ), i = 1, . . ., K. We take the index i of xC
i that minimizes

the distance d(x, xC
i ) to indicate the cluster containing x.

On the basis of the assumptions (I)–(III), the following design of the clus-
tering algorithm is quite obvious. We choose randomly some initial values for
the centers of the clusters xC

i , i = 1, . . ., K, and then iterate the following
two steps until convergence is obtained:

Step 1. Assign each data point to a cluster, on the basis of the criterion in
(III).

Step 2. On the basis of the assignment in step 1, update values for centers
of clusters as defined in (II).

The above algorithm is both simple and an efficient tool for searching for
clusters.

4.3.2 Hierarchical Clustering

The drawback of the K-means clustering algorithm is the need to know the
number of clusters in advance. There are several methods to overcome this
difficulty. The natural approach is to perform clustering for different numbers
of clusters and try to estimate number of clusters by some method of assessing
the quality of the clustering.
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It is also worthwhile to consider another approach, hierarchical clustering.
In this approach, a tree or a treelike structure is constructed on the basis of
pairwise distances between feature vectors. Clusters are obtained by “cutting”
the tree at some level, and the number of clusters is controlled by deciding
at which level of the hierarchy of the tree the splitting is performed. The
construction of the tree is based on neighbor joining, an idea described also
in Chap. 7. There are several variants of the hierarchical-clustering algorithm
[67]. Here we shall describe the basic idea and some of the possible modifica-
tions.

Assume that the data points (feature vectors) are x1, x2, . . ., xn and define
a matrix D0 of distances between them

D0 = [d(xi, xj)] . (4.13)

In the above, d(xi, xj) denotes the Euclidean distance between the feature
vectors xi and xj . The idea of neighbor joining is (i) to find a pair of feature
vectors xi∗ and xj∗ with a minimal distance

i∗, j∗ ← min
i,j

d(xi, xj), (4.14)

and (ii) to join xi∗ and xj∗. Joining xi∗ and xj∗ is often realized by replacing
xi∗ and xj∗ by their mean:

xi∗, xj∗ → 1
2
(xi∗ + xj∗) = y. (4.15)

After joining xi∗ and xj∗ we update the matrix of distances between feature
vectors, i.e.,D0 → D1; the entries ofD1 which need updating are the distances
d(xi, y) between the new vector y and the feature vectors xi that were not
involved in the joining operation. Performing the above-described operations
sequentially leads to the construction of a neighbor-joining tree for the vectors.
x1, x2, . . ., xn.

Sequential joining of vectors, as defined in (4.15), leads to the formation of
clusters. By keeping track of the indexes of the vectors that have been joined
to each other, we know which vectors belong to which cluster. Since we are
focused on clusters rather than on a tree, we may make some modifications
to the algorithm described by (4.13)–(4.15). The sequential application of the
replacement rule (4.15) leads to defining vectors y, which can be interpreted
as centers of clusters. Then, one can use a modification of the rule (4.15),
defined by

xi∗, cluster(xj1, ..., xjm)→ cluster(xj1, ..., xjm, xi∗) (4.16)

and

y = cluster center(xj1, ..., xjm, xi∗) =
xj1 + ...+ xjm + xi∗

m+ 1
, (4.17)
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for merging xi∗ with cluster(xj1, ..., xjm) and for computing the center of the
cluster. When deciding about merging vectors with clusters, we can use the
distances between the vectors and the centers of clusters.

Other variants of the hierarchical-clustering algorithm are also possible,
for example one may use using other definitions of the distance function or
other rules for merging vectors with existing clusters [235, 67]. Some possible
definitions of distances are the euclidean, correlation, Pearson or Spearman,
and Manhattan distances. The rules used most often for defining clusters are
single-linkage clustering, where the distance between two clusters i and j is
the minimum of distances between members of clusters i and j; complete-
linkage clustering, where the distance between two clusters is the maximum
of the distances between their members; and average-linkage clustering, where
the distance between two clusters is the mean value of the distances between
members of the clusters.

4.4 Dimensionality Reduction, Principal Component
Analysis

A need for dimensionality reduction arises when the number of features is
large. Experimental results in molecular biology and biochemistry often lead
to the creation of a large number of measurement data points. Examples
are gene expression intensities in DNA microarrays, proteomic spectra, and
data concerning conformations of large molecules such as proteins. In such
situations the number of features (measurements) obtained in each experiment
is much bigger than the number of experiments. One expects that only some
of the measurements will be correlated with the state of the experiment under
study.

Two cases are possible. The first possibility is that the state of the exper-
iment (e.g. diseased versus healthy) is known. A related problem is to select
the subset of features most suitable for differentiating between experimental
states. Some aspects of this problem are discussed in this book, in Chap. 11.
The second possibility is that inference must be done solely on the basis of
the set of feature vectors, without any knowledge about the underlying struc-
ture. A well-established methodology for this problem is principal component
analysis [131]. The searching for principal components in the data is based
on analysis of the variances along different directions in the feature space.
The method of principal component analysis (PCA) can also be applied to
the situation where the classes of experimental states are known. Below we
present some of the computational aspects of these applications of principal
component analysis.
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4.4.1 Singular-Value Decomposition (SVD)

We start from a theorem on SVD of a real matrix. Let us define a real m× n
matrix

A =

⎡

⎢
⎢
⎢
⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 xm2 · · · xmn

⎤

⎥
⎥
⎥
⎦
.

The SVD theorem, [103, 131], states that A can always be represented as
follows:

A = UΣV T (4.18)

where U and V T are (nonsingular) real orthogonal transformation matrices,
of dimensions m×m and n×n respectively and the superscript T represents
matrix transposition. The m × n-dimensional matrix Σ is composed of the
following blocks:

Σ =
[
Ξr×r Or×(n−r)

O(m−r)×r O(m−r)×(n−r)

]

,

where Ok×l denotes k × l-dimensional matrix with all entries equal to zero,
and Ξr×r is a diagonal matrix

Ξr×r =

⎡

⎢
⎢
⎢
⎣

σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σr

⎤

⎥
⎥
⎥
⎦
,

with real elements σ1 ≥ σ2 ≥ ... ≥ σr > 0, and where r = rank(A). Clearly,
r ≤ min(n,m).

The numbers σ1, σ2, ..., σr are called the singular values of the matrix A
and the first r columns of the matrix U are called the principal directions of the
matrix A. More precisely, the first r columns of U are the principal directions
for the columns of the matrix A and the first r rows of the matrix V T are
the principal directions for the rows of the matrix A. The singular values and
orthogonal matrices U and V T are related to eigenvalues and eigenvectors of
the Grammian matrices AAT and ATA, which can be clearly seen from (4.18).
Recalling that the orthogonality of U and V implies that UTU = Im×m and
V TV = In×n, where Ik×k denotes the k × k identity matrix, we have the
following equalities for the Grammian matrices AAT and ATA

AAT = UΣΣTUT = UΞ2
m×mU

T (4.19)

ATA = V ΣTΣV T = V Ξ2
n×nV

T . (4.20)

In the above expressions, Ξ2
k×k (where k equals either m or n) stands the

diagonal matrix
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Ξ2
k×k =

[
Ξ2

r×r Or×(k−r)

O(k−r)×r O(k−r)×(k−r)

]

,

where

Ξ2
r×r =

⎡

⎢
⎢
⎢
⎣

σ2
1 0 · · · 0

0 σ2
2 · · · 0

...
...

. . .
...

0 0 · · · σ2
r

⎤

⎥
⎥
⎥
⎦
.

Since the expressions on the right-hand sides of (4.19) and (4.20) are Jordan
canonical forms, the columns of the orthogonal matrix U are eigenvectors of
the Grammian matrix AAT and the columns of the orthogonal matrix V are
eigenvectors of the Grammian matrix ATA. One can also see that nonzero
eigenvalues of both AAT and ATA are equal to the squares of the singular
values σ2

1 , σ
2
2 , ..., σ

2
r of the matrix A.

4.4.2 Geometric Interpretation of SVD

The representation (4.18) has several interesting geometric interpretations.
One geometric interpretation is as follows. Let us understand A as a linear
operator mapping n-dimensional vectors x ∈ Rn to m-dimensional vectors
y = Ax, y ∈ Rm. The representation (4.18) implies that for every linear
operator of rank r, one can find two orthogonal bases, in the domain and
image spaces Rn and Rm, respectively, such that the first r vectors of the
orthogonal basis in the domain space Rn are mapped to first r vectors of the
orthogonal basis in the image space Rm. The orthogonal basis in the domain
space is given by the rows of the matrix V T , and the orthogonal basis in the
image space by the columns of the matrix U .

Another important geometric interpretation of the decomposition (4.18),
which will be used in this book in several contexts, is related to expressing
the principal directions of the matrix in terms of solutions to optimization
problems and to computing projections onto subspaces. Let us interpret the
matrix A as a set of n column vectors, each belonging to the space Rm:

A = [a1 a2 . . . an] , (4.21)

ak =

⎡

⎢
⎢
⎢
⎣

a1k

a2k

...
amk

⎤

⎥
⎥
⎥
⎦
∈ Rm, k = 1, 2, ..., n.

We now ask a somewhat imprecise question: Which direction in the space Rm

is most representative for the vectors ak, k = 1, 2, ..., n? Precisely, we call a
vector c ∈ Rm the most representative for the set of vectors ak, k = 1, 2, ..., n,
if:
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(1) c is a linear combination of vectors ak,

c =
n∑

k=1

βkak, (4.22)

with scalar coefficients βk;
(2) the coefficients βk, k = 1, 2, ..., n are normalized to 1, i.e.,

∑n
k=1 β

2
k = 1;

and
(3) the vector c is the longest possible under conditions (1) and (2).

By “longest possible” we mean the one with the largest Euclidean norm.
Conditions (1)–(3) lead to the following maximization problem:

max ‖c‖
under the constraints

c =
n∑

k=1

βkak,
n∑

k=1

β2
k = 1.

Noting that max ‖c‖ is equivalent to max ‖c‖2 and introducing the vector of
coefficients

b =

⎡

⎢
⎢
⎢
⎣

β1

β2

...
βn

⎤

⎥
⎥
⎥
⎦
, (4.23)

we can write the above maximization problem as

max bTATAb (4.24)

under the constraints
bT b = 1. (4.25)

A necessary conditions for optimality for the constrained optimization prob-
lem (4.24), (4.25) (see Chap. 5) are that (b, λ) is the stationary point of the
Lagrange functional

L(b, λ) = bTATAb+ λ(1− bT b). (4.26)

In the above λ is a scalar Lagrange multiplier. Stationarity is verified by
comparing the gradients of L(b, λ) with respect to λ and b, with zero and a
zero vector. The condition

∂L

∂λ
= 0 (4.27)

is equivalent to (4.25), and
∂L

∂b
= 0 (4.28)
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leads to
ATAb− λb = 0, (4.29)

or
λb = ATAb. (4.30)

This is an eigenvalue–eigenvector problem. So the problem of maximizing
(4.24) with the constraint (4.25) leads to computing the eigenvector b and
the eigenvalue λ of the symmetric matrix ATA. The solution is nonunique
since in general there are n (nonnegative, real) eigenvalues λ1, λ2, . . . , λn of
ATA. Nonuniqueness is a consequence of using only necessary optimality con-
ditions. However, among those satisfying (4.30), the optimal (b, λ) can easily
be identified. Substituting (4.30) in (4.24) results in

max bTATAb = maxλbT b = maxλ = λmax. (4.31)

So the solution (λ, b) is the maximal eigenvalue λmax(ATA) and the corre-
sponding eigenvector b. From (4.30), (4.20), and (4.18) we now see that the
eigenvector b corresponding to λmax(ATA) is the first column of the matrix
V .

Let us return to the representative direction c. The relation (4.22) can be
represented in vector notation as

c = Ab.

Multiplying both sides of the above equation by AAT and recalling (4.30) and
(4.25) we obtain

λmaxc = AAT c.

The conclusion is that the representative direction c, defined by conditions
(1)–(3) above is, up to some scaling factor, the first principal direction of the
matrix A. It turns out that the first principal direction (the first column of the
matrix U) of the matrix A has the interpretation given by conditions (1)–(3)
above. Repeating the above with the matrix A understood as a set of m rows,
rather than a set of n columns as in (4.21), we obtain an interpretation of the
first row of the matrix V T as the first principal direction for the rows of the
matrix A.

After establishing the meaning of the first principal direction of the matrix
A, one can ask about other principal directions (the other columns of the
matrix U). The second, third, and further principal directions of the matrix A,
can again be interpreted as representative directions determined by some sets
of vectors, in the following sense. Let us represent all vectors ak, k = 1, 2, . . . , n
as sums of two components, parallel and orthogonal to c:

ak = âk + ãk. (4.32)

In the above âk is parallel to c, which means that âk = ρkc for some scalar
value ρk, and ãk is orthogonal to c, which means that their scalar product
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equals zero, i.e., cT ãk = 0. Taking the scalar products of both sides of (4.32)
with c, we obtain ρk = cTak/c

T c, and consequently

âk =
cTak

cT c
c

and

ãk = ak − cTak

cT c
c. (4.33)

By defining the row vector

ρT = [ρ1 ρ2 ... ρn]

we can express the relation (4.33) in matrix–vector notation, as follows:

Ã = A− cρT (4.34)

where Ã is defined as
Ã = [ã1 ã2 ... ãn] . (4.35)

The matrix Ã is composed of the residual vectors ãk (4.33), and it can be
verified (we give it as Exercise 6) that, if the matrix A has a set of singular
values σ1 > σ2 . . . σr > 0 then matrix Ã will have singular values σ2 >
σ3 . . . σr > 0, or in other words the largest singular value σ1 = σmax is
replaced by zero. Now, solving the problem (4.24)–(4.25) with A replaced by
Ã will lead to computing the second singular value and the second principal
direction of A, and so forth. This leads to the following representation of the
matrix A:

A =
r∑

k=1

ckρ
T
k

where two sets of orthogonal vectors ck and ρT
k , k = 1, 2, . . . , r are called load-

ings and scores, respectively. The above representation also follows directly
from the form of the singular-value decomposition (4.18).

The principal components and the singular-value decomposition also have
a very important statistical interpretation in terms of variances of random
variables. Let us consider a set of n random variables X1, X2, . . ., Xn. For
each of them, m realizations are given (i.e., measured), which are denoted as
follows: x11, x21, . . ., xm1, x12, x22, . . ., xm2, . . ., x1n, x2n, . . ., xmn. We form
the matrix of data (measurements) X ,

X =

⎡

⎢
⎢
⎢
⎣

x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

⎤

⎥
⎥
⎥
⎦
. (4.36)

Assume that the realizations are centered, which means that for each column
k we have

∑m
i=1 xik = 0. The total sampling variance Var(X) of the data

(4.36) is then defined as
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Fig. 4.6. Scatterplot of ten pairs of realizations of random vectors x1, x2. The
vectors vT

1 and vT
2 , the principal directions of the matrix X, are marked by line

segments. The longer segment is for the first principal direction, and the shorter
segment is for the second principal direction

Var(X) =
1

m− 1
trace(XTX), (4.37)

where trace(A) means the trace (sum of diagonal elements) of the matrix A.
We can see that the sampling variance as defined by (4.37) is invariant with
respect to orthogonal transformations of the data, that is, if Y = XWT , where
WT is anm×m-dimensional orthogonal matrix, then Var(Y ) = Var(X). From
(4.20) it follows that the total sampling variance can be expressed in terms
of the squares of the singular values of matrix X , σ1, σ2, . . . , σr, where r =
rank(A):

Var(X) =
1

m− 1

r∑

k=1

σ2
k.

Let us consider the SVD decomposition of the matrix X

X = UΣV T

and its equivalent form
XV = ΣU. (4.38)

Denoting by Ur the matrix composed of the first r columns of U , and by Vr

the matrix composed of the first r columns of V we can express the relation
(4.38) as follows:
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XVr = ΣUr = [σ1u1 σ2u2 . . . σrur],

where u1, u2, . . ., ur are the columns of the matrix Ur (the principal directions
of X). Since Var(XVr) = Var(ΣUr) = Var(X) and the columns of Ur are
orthogonal, we can characterize each of principal directions u1, u2, . . ., ur in
terms of how much of total variance they include. It is common to say that the
first principal direction or component captures (σ2

1/
∑r

k=1 σ
2
k) · 100% of total

variance, the first two principal components capture (σ2
1+σ2

2)/
∑r

k=1 σ
2
k ·100%,

and the first j principal components capture
∑j

k=1 σ
2
k∑r

k=1 σ
2
k

· 100% (4.39)

of the total variance.
As an example, let us consider the following data matrix

X =
[

3 −3 −8 4 0 −4 5 8 0 −5
2 −2 −4 −2 0 1 0 2 3 −1

]T

, (4.40)

consisting of ten realizations of two random variables X1 and X2, written as
two columns of the matrix X . The superscript T stands for transposition.
Columns of X are mean-centered. A scatterplot for pairs of realizations of X1

and X2 is shown by asterisks in Fig. 4.6. The SVD decomposition of X is

X = UΣV T , (4.41)

where

U=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.237 0.364 0.559 −0.168 0.000 0.196 −0.279 −0.503 −0.084 0.307
0.220 −0.194 −0.269 −0.567 0.000 0.392 −0.270 −0.082 0.527 0.095
0.563 −0.291 0.726 −0.017 0.000 −0.021 0.075 0.197 0.116 −0.113
−0.211 −0.534 0.032 0.655 0.000 0.262 −0.225 −0.196 0.246 0.143
0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
0.229 0.364 −0.058 0.256 0.000 0.801 0.178 0.172 −0.170 −0.122
−0.308 −0.243 0.106 −0.210 0.000 0.171 0.836 −0.184 0.118 0.125
−0.528 −0.049 0.222 −0.159 0.000 0.147 −0.169 0.754 0.036 0.157
−0.053 0.510 0.079 0.265 0.000 −0.189 0.141 0.073 0.772 −0.065

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.42)

Σ =
[

15.621 0 0 0 0 0 0 0 0 0
0 5.657 0 0 0 0 0 0 0 0

]T

, (4.43)

and

V T =
[−0.962 −0.275

0.962 −0.274

]

.

In the above r = n. The nonzero entries of Σ are the singular values of X,
and the rows of V T ,

vT
1 = [−0.962 −0.275 ]
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and
vT
2 = [0.962 −0.274 ],

are two principal directions of the rows of X . The vectors given by the prin-
cipal directions, with lengths scaled by the corresponding singular values, are
also shown in Fig. 4.6. For rectangular matrices, such as X in (4.40), the ma-
trix of singular values Σ always contains zero rows or columns, as does Σ in
(4.43). So, instead of the decomposition (4.18) it may be reasonable to use
an “economy” SVD, where zero columns or rows of the matrix Σ are skipped
and the corresponding rows or columns of the matrix U or V T are removed.
For example, we have the following economy-size decomposition for (4.41):

X = U0Σ0V T , (4.44)

where

U0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.237 0.364
0.220 −0.194
0.563 −0.291
−0.211 −0.534
0.000 0.000
0.229 0.364
−0.308 −0.243
−0.528 −0.049
−0.053 0.510

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and

Σ0 =
[

15.621 0
0 5.657

]

.

The columns removed from the matrix U have no influence on the product
representation of the matrix X .

In cases where data sets to be analyzed are large, using economy-size SVD
can save a lot of computational time and memory space.

4.4.3 Partial-Least-Squares (PLS) Method

Here we assume that the input measurement data (also called the explaining
or predictor variables) given by (4.36) are accompanied by measurements of
a scalar output (also called the dependent variable) Y . So our data structure
is now

X =

⎡

⎢
⎢
⎢
⎣

x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

⎤

⎥
⎥
⎥
⎦
, y =

⎡

⎢
⎢
⎢
⎣

y1
y2
...
ym

⎤

⎥
⎥
⎥
⎦
. (4.45)

In a general setting we would assume a vector-valued output. However, here
we shall confine the presentation to a scalar output, as given in (4.45). Now we
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try to form a linear combination of columns of the matrix X (the vectors x1,
. . ., xn), with coefficients βk, k = 1, 2, . . . , n, normalized to 1,

∑n
k=1 β

2
k = 1,

such that the resulting vector

c =
n∑

k=1

βkxk

maximizes the covariance or, equivalently, the scaled scalar product cT y/(m−
1). Using a vector notation analogous to (4.24) and (4.25), we can state this
maximization problem as

max
1

m− 1
yTXb

with the constraint
bT b = 1,

where b is a vector of parameters βk as in (4.23). Using the technique of con-
strained optimization (Chap. 5), we obtain, analogously as to (4.26)–(4.29),
the following optimal vector,

b =
XT y

√
yTXXTy

and the first PLS direction (component),

c =
XXTy

√
yTXXTy

.

The second, third, and further PLS components are obtained by projections
onto the direction given by c in the above expression and analyzing the residual
vectors, analogously to (4.33)–(4.35).

4.5 Parametric Transformations

Transformations are workhorses in all areas of applied mathematics. Some ex-
amples already shown are generating functions and characteristic functions,
discussed in Chap. 2. The characteristic function is actually the Fourier trans-
form of the probability density function of a random variable. One- and two-
dimensional Fourier transforms are also widely applied in pattern analysis, for
example for noise reduction and extraction of image features. Fourier trans-
formation is also used in bioinformatics, for example for analysis of repetitive
structure of sequences. A DNA sequence is changed to numerical symbols
by some method, then a Fourier transformation is applied to the numerical
sequence obtained, and the resulting spectrum is used to search for special
geometric-like or repetitive patterns. There are numerous textbooks (e.g., [66])
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devoted to transforms including the Fourier, Laplace, Laurent, Hankel, and
Hilbert transforms.

However, in this section, we focus on transformations which are not
as widely known as the above, but underline interesting relations between
computer-science algorithms and pattern analysis methods. They come un-
der different names, such as parametric transforms, Hough transforms, and
geometric hashing, but share the idea of using a process of pattern scanning
in conjunction with addressing and operating on a data structure to record
occurrences of data objects. The contents of this data structure can be then
used to obtain useful information about the objects under study. Clearly, this
idea has some similarity to the method of hashing and hash tables, presented
in Chap 3.

In this section we discuss some of these approaches from the pattern anal-
ysis perspective. Owing to their flexibility they have large potential to serve
in numerous procedures for browsing databases for correlations, similarities
of different types, etc. Later we also show some applications of these methods
in genomics and in protein docking.

4.5.1 Hough Transform

The Hough transform [132] provides a method for detecting parametric curves
in images and estimating the values of their parameters. Most often, Hough
transforms use contours in a binary as input data and apply a duality between
points on the curve and the parameters of the curve. The Hough transform
can also be understood as a feature extraction technique based on interpreting
the contents of a digital image by using a feature space. The basic example
is the detection of straight lines in images, as presented in Fig. 4.7. The task
is to detect occurrences of straight lines in the image. We assume that the
image to be analyzed is binary, as shown in the left plot in Fig. 4.7, and so it
contains a number of discrete image points. The equation of a straight line in
the image space x, y is

y = ax+ b. (4.46)

To accomplish the aim of detecting straight lines in the image, we create
a parameter space (a plane) with coordinates a, b, as shown in the right-
hand part of Fig. 4.7. For each of the points in the image xi, yi, we draw a
corresponding line in the parameter space a, b,

yi = axi + b. (4.47)

Because all points in the image space x, y are collinear, all lines in the param-
eters space a, b intersect in one point. The occurrence of the point of intersec-
tion, a∗, b∗ of many lines in the parameter space a, b indicates detection of a
line in the image space y = a∗x+ b∗.

In practical situations, the parameter space is discretized and consists
of a finite number of pixels. The discretized parameter space is called an
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Fig. 4.7. The idea of the Hough transform. For each point xi, yi in the image space
x, y, we draw a corresponding line yi = axi + b in the parameter space a, b. If the
points in the image space belong to a line, as shown in the left-hand plot, their
correponding lines in the parameter space intersect at one point, as depicted in the
right-hand plot

accumulator array. Drawing lines corresponding to points found in the image
is equivalent to incrementing memory locations in the accumulator array. The
procedure of incrementing entries of accumulator array is often called voting.
Detecting lines can be accomplished by browsing through the accumulator
array and searching for local maxima.

The idea described above can also be used for detecting other parametric
curves in images, for example circles and ellipses.

4.5.2 Generalized Hough Transforms

Generalized Hough transforms extend the idea described above to the non-
parametric curves. The most straightforward generalization is as follows. As-
sume we are searching for occurrences of a shape, such as the one shown by
the dashed curve in the left plot in Fig. 4.8. The binary image to be analyzed
consists of points, also depicted in the left plot in Fig. 4.8. The problem is,
does the shape occur in the image? We are not allowing rotations of the target
shape, so it is natural to define a parameter space with translations Δx and
Δy along the axes as coordinates. The procedure for updating the accumu-
lator array associated with this parameter space is very similar to the one
described in the previous subsection. We browse through the image and, after
detecting a point with coordinates xi, yi, we draw the target shape in the
parameter space translated by the vector Δx = xi, Δy = yi. This is shown in
the right plot in Fig. 4.8. Again, the intersection of many of the drawn shapes
at one point indicates the occurrence of the target shape in the image.
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Fig. 4.8. The idea of the generalized Hough transform. For each point xi, yi in the
image space (left plot) we draw the target shape (dashed curve) in the parameter
space translated by the vector Δx = xi, Δy = yi. This is shown in the right image
The intersection of many of drawn shapes at one point indicates the occurrence of
the target shape in the image.

The algorithm described here does not allow us to detect rotated or
rescaled target shapes. However, extensions that overcome this limitation have
been proposed in several papers [17, 215, 228].

4.5.3 Geometric Hashing

Ideas similar to the above has been used to construct another algorithm called
geometric hashing. [120, 292] Let us assume that we aim to search for occur-
rences in images of a pattern of points, x1, x2, . . ., xn, xi ∈ R2. The first
step of the algorithm is to compute a signature that is invariant under trans-
lations, rotations and scale changes. The signature is the set of points in R2

obtained by the following procedure. Go through all pairs of points xi, xj ,
1 ≤ i, j ≤ n. For each pair xi, xj , (I) find a transformation T that maps
xi → T (xi) = (−1, 0) and xj → T (xj) = (1, 0), and (II) add all transformed
points T (xm), m �= i, m �= j to the signature.

Let us analyze a binary image given by another set of points y1, y2, . . .,
ym, yi ∈ R2. From the above definition it is clear that if the set {y1, y2, . . .,
ym} contains {x1, x2, . . ., xn} possibly translated, rotated and rescaled, then
the signature of {y1, y2, ..., ym} contains the signature of {x1, x2, ..., xn}.
In the programs developed in practice the coordinates of the vectors of the
signatures are discretized and stored with by use of data structures that are
of the form of accumulator arrays.

4.6 Exercises

1. Assume the data points given in Table 4.1.
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a) Assume that the points with numbers 1–5 correspond to class 1 and
those with numbers 6–10 to class 2. Find a linear discriminant func-
tion for classes 1 and 2 using the method of linear programming as
described in (4.6)–(4.8). A linear-programming algorithm can be found
in many software packages. Draw the data from the Table 4.1 in the
plane x, y. Draw the separating line obtained by solving (4.6)–(4.8).

b) For the same data and the same assumption that points with numbers
1–5 correspond to class 1 and those with numbers 6–10 to class 2,
find the optimal linear discriminant function for classes 1 and 2 by
solving the quadratic programming problem (4.11)–(4.12). Draw the
data and the optimal separating line. Again, a quadratic programming
algorithm can be found in many software packages.

Table 4.1. Table of data points to be used in exercises

No. x y

1 1 1.5
2 1.5 3
3 3 1
4 3 2
5 3.5 2
6 −0.5 −0.5
7 −0.5 2
8 −1 0.5
9 1 −1
10 2 −1

2. Separate the classes 1 and 2 defined in the previous exercise by using
the artificial neural network shown in Fig. 4.3. There are many software
packages that support the designing and training and artificial neural
networks. One of them can be used to solve this exercise.

3. Decompose the data set from Table 4.1 into two classes using the K-means
algorithm. Decompose the data set from Table 4.1 into three classes using
the K-means algorithm.

4. Construct a neighbor-joining tree for the data set from Table 4.1 by using
rules (4.13) and (4.15).

5. Build a hierarchical clustering tree by using an algorithm with the rules
(4.16)–(4.17).

6. Prove that the largest singular value of the matrix Ã in (4.35) is the second
largest singular value of the matrix A in (4.21).

7. The transformation T ([xi, yi]) mentioned in Sect. 4.5.3, is defined by
T ([x1, y1]) = [−1, 0] and T ([x2, y2]) = [1, 0], where [x1, y1] and [x2, y2]
are given in Table 4.1. Compute T ([xiyi]) for all points in Table 4.1.

8. Develop a computer program for geometric hashing.
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9. Study the problem of extending the geometric hashing algorithm described
in Sect. 4.5.3 to the case of three-dimensional feature space [211].


