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Preface

Theory without Practice is empty,
Practice without Theory is blind.

The current text Mathematics for Engineers is a collection of four volumes covering the first three up
to  the  fifth  terms  in  undergraduate  education.  The  text  is  mainly  written  for  engineers  but  might  be
useful for students of applied mathematics and mathematical physics, too.
Students and lecturers will find more material in the volumes than a traditional lecture will be able to
cover. The organization of each of the volumes is done in a systematic way so that students will find an
approach  to  mathematics.  Lecturers  will  select  their  own  material  for  their  needs  and  purposes  to
conduct their lecture to students.
For students  the volumes are helpful  for  their  studies  at  home and for  their  preparation for  exams.  In
addition the books may be also useful for private study and continuing education in mathematics. The
large  number  of  examples,  applications,  and  comments  should  help  the  students  to  strengthen  their
knowledge.
The  volumes  are  organized  as  follows:  Volume  I  treats  basic  calculus  with  differential and  integral
calculus  of  single  valued  functions.  We use  a  systematic  approach  following a  bottom-up strategy to
introduce the different terms needed. Volume II covers series and sequences and first order differential
equations  as  a  calculus  part.  The  second  part  of  the  volume  is  related  to  linear  algebra.  Volume  III
treats vector calculus and differential  equations of higher order.  In Volume IV we use the material  of
the previous volumes in numerical applications; it related to numerical methods and practical
calculations.  Each  of  the  volumes  is  accompan ed  by  a  CD  containing  the  Mathematica
of the book.
As prerequisites we assume that students had the basic high school education in algebra and geometry.
However,  the  presentation  of  the  material  starts  with  the  very  elementary  subjects  like  numbers  and
introduces in a systematic way step by step the concepts for functions. This allows us to repeat most of
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the material known from high school in a systematic way, and in a broader frame. This way the reader
will be able to use and categorize his knowledge and extend his old frame work to a new one
The  numerous  examples  from  engineering  and  science  stress  on  the  applications  in  engineering.  The
idea behind the text concept is summarized in a three step process:

Theor � Example � Applications
 examples are discussed in connection with the theory then it turns out that the theory is not only valid

for this specific example but useful for a broader application. In fact  usually theorems or a collection of
theorems  can  even  handle  whole  classes  of  problems.  These  classes  are  sometimes  completely
separated  from  this  introductory example;  e.g.  the  calculation  of  areas  to  motivate  integration  or  the
calculation of the power of an engine, the maximal height of a satellite in space, the moment of inertia
of a wheel, or the probability of failure of an electronic component. All these problems are solvable by
one and the same method, integration.
However, the three step process is not a feature which is always used. Some times we have to introduce
mathematical terms which are used later on to extend our mathematical frame. This means that the text
is  not  organized  in  a  historic  sequence  of  facts  as  traditional  mathematics  texts.  We  introduce
definitions,  theorems, and corollaries in a way which is  useful to create progress in the understanding
of  relations.  This  way of  organizing  the  material  allows  us  to  use  the  complete  set  of  volumes  as  a
reference book for further studies. 
The present text uses Mathematica  as a tool to discuss and to solve examples from mathematics.  The
intention  of  this  book is  to  demonstrate  the  usefulness  of  Mathematica  in  everyday applications  and
calculations. We will not give a complete description of its syntax but demonstrate by examples the use
of  its  language.  In  particular,  we  show how this  modern  tool  is  used  to  solve  classical  problems  and

We hope that we have created a coherent way of a first approach to mathematics for engineers. 
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1.1. Introduction

During  the  years  in  circles  of  engineering  students  the  opinion  grew  that  calculus  and  higher
mathematics is a simple collection of recipes to solve standard problems in engineering. Also students
believed that a lecturer is responsible to convey these recipes to them in a nice and smooth way so that
they can use it as it is done in cooking books. This approach of thinking has the common short coming
that  with  such  kind  of  approach  only standard  problems  are  solvable  of  the  same  type  which  do  not
occur in real applications.

We believe that calculus for engineers offers a great wealth of concepts and methods which are useful
in  modelling   engineering  problems.  The  reader  should  be  aware  that  this  collection  of  definitions,
theorems,  and  corollaries  is  not  the  final  answer  of  mathematics  but  a  first  approach  to  organize
knowledge in a systematic way. The idea is  to organize methods and knowledge in a systematic way.
This text was compiled with the emphasis on understanding concepts. We think that nearly everybody
agrees that this should be the primary goal of calculus instruction. 

This first course of Engineering Mathematics will start with the basic foundation of mathematics. The
basis  are  numbers,  relations,  functions,  and  properties  of  functions.  This  first  chapter  will  give  you
tools  to  attack  simple  engineering  problems  in  different  fields.  As  an  engineer  you  first  have  to
understand  the  problem  you  are  going  to  tackle   and  after  that  you  will  apply  mathematical  tools  to
solve the problem. These two steps are common to any kind of problem solving in engineering as well
as  in  science.  To  understand  a problem in  engineering needs  to  be able  to  use and  apply engineering
knowledge  and  engineering  procedures.  To  solve  the  related  mathematical  problem  needs  the
knowledge of the basic steps how mathematics is working. Mathematics gives you the frame to handle
a problem in a systematic way and use the procedure and knowledge mathematical methods to derive a
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solution. Since mathematics sets up the frame for the solution of a problem you should be able to use it
efficiently. It is not to apply recipes to solve a problem but to use the appropriate concepts to solve it.

Mathematics  by itself  is  for  engineers  a  tool.  As  for  all  other  engineering  applications  working  with
tools you must know how they act and react in applications. The same is true for mathematics. If you
know how a mathematical procedure (tool) works and how the components of this tool are connected
by each  other  you  will  understand  its  application.  Mathematical  tools  consist  as  engineering  tools  of
components.  Each  component  is  usually  divisible  into  other  components  until  the  basic  component
(elements)  are  found.  The  same  idea  is  used  in  mathematics.  There  are  basic  elements  from
mathematics  you should know as an engineer. Combining these basic elements we are able to set up a
mathematical  frame  which  incorporates  all  those  elements  which  are  needed  to  solve  a  problem.  In
other  words,  we  use  always  basic  ideas  to  derive  advanced  structures.  All  mathematical  thinking
follows  a  simple  track  which  tries  to  apply  fundamental  ideas  used  to  handle  more  complicated
situations.  If  you  remember  this  simple  concept  you will  be  able  to  understand  advanced  concepts  in
mathematics as well as in engineering.

1.2. Concept of the Text

Concepts  and  conclusions  are  collected  in  definitions  and  theorems.  The  theorems  are  applied  in
examples  to  demonstrate  their  meaning.  Every concept  in  the  text  is  illustrated  by examples,  and  we
included  more  than  1,000  tested  exercises  for  assignments,  class  work  and  home  work  ranging  from
elementary applications of methods and algorithms to generalizations and extensions of the theory. In
addition,  we  included  many  applied  problems  from  diverse  areas  of  engineering.  The  applications
chosen  demonstrate  concisely how  basic  calculus  mathematics  can  be,  and  often  must  be,  applied  in
real life situations. 

During  the  last  25  years  a  number  of  symbolic  software  packages  have  been  developed  to  provide
symbolic  mathematical  computations on a computer.  The standard packages  widely used in  academic

applications are Mathematica®, Maple® and Derive®. The last one is a package which is used for basic

calculus  while  the  two  other  programs  are  able  to  handle  high  sophisticated  calculations.  Both
Mathematica  and  Maple  have  almost  the  same  mathematical  functionality  and  are  very  useful  in
symbolic  calculations.  However  the  author's  preference  is  Mathematica  because  the  experience  over
the  last  25  years  showed  that  Mathematica's  concepts  are  more  stable  than  Maple's  one.  The  author
used  both  of  the  programs  and  it  turned  out  during  the  years  that  programs  written  in   Mathematica
some  years  ago  still  work  with  the  latest  version  of  Mathematica  but  not  with  Maple.  Therefore  the
book and its calculations are based on a package which is sustainable for the future.

Having a symbolic  computer  algebra program available can  be very useful  in  the study of  techniques
used  in  calculus.  The  results  in  most  of  our  examples  and  exercises  have  been  generated  using
problems for which exact values can be determined, since this permits the performance of the calculus
method  to  be  monitored.  Exact  solutions  can  often  be  obtained  quite  easily  using  symbolic
computation.  In  addition,  for  many  techniques  the  analysis  of  a  problem  requires  a  high  amount  of
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laborious  steps,  which  can  be  a  tedious  task  and  one  that  is  not  particularly  instructive  once  the
techniques  of  calculus  have  been  mastered.  Derivatives  and  integrals  can  be  quickly  obtained
symbolically with computer algebra systems, and a little insight often permits a symbolic computation
to aid in understanding the process as well.

We have chosen Mathematica  as our standard package because of its wide distribution and reliability.
Examples and exercises have been added whenever we felt that a computer algebra system would be of
significant benefit. 

1.3. Organization of the Text

The book is  organized  in  chapters  which  continues  to  cover  the  basics  of  calculus.  We examine first
series and their basic properties.  We use series as a basis for discussing infinite series and the related
convergence  tests.  Sequences  are  introduced  and  the  relation  and  conditions  for  their  convergence  is
examined.  This  first  part  of  the  book  completes  the  calculus  elements  of  the  first  volume.  The  next
chapter  discusses  applications  of  calculus  in  the  field  of  differential  equations.  The  simplest kind of
differential  equations  are  examined  and  tools  for  their  solution  are  introduced.  Different  symbolic
solution methods for first order differential equations are discussed and applied. The second part of this
volume  deals  with  linear  algebra.  In  this  part  we  discus  the  basic  elements  of  linear  algebra  such  as
vectors and matrices. Operations on these elements are introduced and the properties of a vector space
are  examined.  The  main  subject  of  linear  algebra  is  to  deal  with  solutions  of  linear  systems  of
equations.  Strategies  for  solving linear  systems of  equations  are discussed  and applied to  engineering
applications. After each section there will be a test and exercise subsection divided into two parts. The
first part consists of a few test questions which examines the main topics of the previous section. The
second part contains exercises related to applications and advanced problems of the material discussed
in the previous section. The level of the exercises ranges from simple to advanced.

The  whole  material  is  organized  in  four  chapters  where  the  first  of  this  chapter  is  the  current
introduction.  In  Chapter  2  we  deal  with  series  and  sequences  and  their  convergence.  The  series  and
sequences  are  discussed  for  the  finite  and  infinite  case.  In  Chapter  3  we examine first  order  ordinary
differential  equations.  Different  solution  approaches  and  classifications  of  differential  equations  are
discussed.  In  Chapter  4  we  switch  to  linear  algebra.  The  subsections  of  this  chapter  cover vectors,
matrices, vector spaces, linear systems of equations, and linear transformations.

I - Chapter 1:  Introduction  3



1.4. Presentation of the Material

Throughout  the  book  we  will  use  the  traditional  presentation  of  mathematical  terms  using  symbols,
formulas,  definitions,  theorems,  etc.  to  set  up  the  working  frame.  This  representation  is  the  classical
mathematical  part.  In  addition  to  these  traditional  presentation  tools  we  will  use  Mathematica  as  a
symbolic,  numeric,  and  graphic  tool.  Mathematica  is  a  computer  algebra  syste  allowing  hybrid
calculations. This means calculations on a computer are either symbolic or/and numeric. Mathematica
is a tool allowing us in addition to write programs and do automatic calculations. Before you use such
kind of tool it is important to understand the mathematical concepts which are used by Mathematica to
derive  symbolic or  numeric  results.  The use of  Mathematica  allows you  to  minimize the  calculations
but you should be aware that you will only understand the concept if you do your own calculations by
pencil and paper. Once you have understood the way how to avoid errors in calculations and concepts
you  are  ready  to  use  the  symbolic  calculations  offered  by  Mathematica.  It  is  important  for  your
understanding that you make errors and derive an improved understanding from these errors. You will
never  reach  a  higher  level  of  understanding if  you  apply the  functionality of  Mathematica  as  a  black
box solver of your problems. Therefore I recommend to you first try to understand by using pencil and
paper calculations and then switch to the computer algebra system if you have understood the concepts.

You can get a t  version of Mathematica directly from Wolfram Research by requesting a download
address  from  where  you  can  download  the  trial  version  of  Mathematica.  The  corresponding  web
address to get Mathematica for free is:

 http://www.wolfram.com/products/mathematica/experience/request.cgi
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2
Power Series

2.1 Introduction

In this chapter we will  be concerned with infinite series,  which are sums that  involve infinitely many
terms. Infinite series play a fundamental role in both mathematics and engineering — they are used, for
example,  to  approximate  trigonometric  functions  and  logarithms,  to  solve  differential  equations,  to
evaluate difficult  integrals, to create new functions, and to construct  mathematical models of physical
laws.  Since  it  is  important  to  add  up  infinitely  many  numbers  directly,  one  goal  will  be  to  define
exactly what we mean by the sum of infinite series. However, unlike finite sums, it turns out that not all
infinite  series  actually  have  a  finite  value  or  in  short  a  sum,  so  we  will  need  to  develop  tools  for
determining  which  infinite  series  have  sums  and  which  do  not.  Once  the  basic  ideas  have  been
developed we will begin to apply our work. 

2.2 Approximations

In Vol. I  3.5 we used a tangent line to the graph of a function to obtain a linear approximation
to  the  function  near  the  point  of  tangency.  In  th  section  we  will  see  how  to  improve  such  local
approximations  by using  polynomials.  We conclude  the  section  by obtaining  a  bound on  the  error  in
these approximations. 

2.2.1 Local Quadratic Approximation
Recall that the local linear approximation of a function f  at x0 is

(2.1)f �x� � f �x0�� f ' �x0� �x� x0�.

Section
e current



In this formula, the approximating function

(2.2)p�x� � f �x0�� f ' �x0� �x� x0�
is  a  first-degree  polynomial  satisfying  p�x0� � f �x0�  and  p ' �x0� � f ' �x0�.  Thus  the  local  linear

approximation  of  f  at  x0  has  the  property that  its  value  and  the  values  of  its  first  derivatives  match

those of f  at x0. This kind of approach will lead us later on to interpolation of data points (see Vol. IV)

If the graph of a function f  has a pronounced bend at x0, then we can expect that the accuracy of the

local linear approximation of f  at x0 will decrease rapidly as we progress away from x0 (Figure 2.1)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

�1.0

�0.5

0.0

0.5

1.0

1.5

x

y

f

x0

local linear approximation

Figure 2.1. Graph of the function f �x� � x3 � x and its linear approximation at x0.�

One way to deal with this problem is to approximate the function f  at x0  by a polynomial of degree 2

with the property that the value of p and the values of its first two derivatives match those of f  at x0.

This ensures that the graphs of f  and p not only have the same tangent line at x0, but they also bend in

the same direction at x0. As a result, we can expect that the graph of p will remain close to the graph of

f  over a larger interval around x0  than the graph of the local linear approximation. Such a polynomial

p is called the local quadratic approximation of f  at x � x0.

To illustrate this idea, let us try to find a formula for the local quadratic approximation of a function f

at x � 0. This approximation has the form

(2.3)f �x� � c0 � c1 x� c2 x2

which reads in Mathematica as

eq11 � f �x� � c2 x2 � c1 x� c0

f �x� � c2 x2 � c1 x � c0

where c0, c1, and c2 must be chosen s  that the values of

6   
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(2.4)p�x� � c0 � c1 x� c2 x2

and its first two derivatives match those of f  at 0. Thus, we want

(2.5)p�0� � f �0�, p ' �0� � f ' �0�, p '' �0� � f '' �0�.
In Mathematica notation this reads

eq1 � �p0 � f �0�, pp0 � f ��0�, ppp0 � f ���0��; TableForm�eq1�
p0 � 0

pp0 � �1

ppp0 � 0

where  p0,  pp0,  and  ppp0  is  used  to  represent  the  polynomial,  its  first  and  second  order  derivative  at

x � 0. But the values of p�0�, p ' �0�, and p '' �0� are as follows:

p�x_� :� c0� c1 x� c2 x2

p�x�
c0 � c1 x � c2 x2

The determining equation for the term p0 is

eqh1 � p�0� � p0

c0 � p0

The first order derivative allows us to find a relation for the second coefficient

pd �
� p�x�
�x

c1 � 2 c2 x

This relation is valid for x0 � 0 so we replace x by 0 in Mathematica notation this is �. x �� 0

eqh2 � �pd �. x � 0� � pp0

c1 � pp0

The second order derivative in addition determines the higher order coefficient

pdd �
�2 p�x�
�x �x

2 c2

eqh3 � �pdd �. x � 0� � ppp0

2 c2 � ppp0
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Knowing  the  relations  among  the  coefficients  allows  us  to  eliminate  the  initial  conditions  for  the  p

coefficients which results to

sol � Flatten�Solve�Eliminate�Flatten��eq1, eqh1, eqh2, eqh3��, �p0, pp0, ppp0��, �c0, c1, c2���
�c0 � f �0�, c1 � f 	�0�, c2 �

f 		�0�
2

�

and  substituting these  in  the  representation  of  the  approximation  of  the  function  yields  the  following
formula for the local quadratic approximation of f  at x � 0.

eq11 �. sol

f �x� � 1

2
x2 f 		�0�� x f 	�0�� f �0�

Remark 2.1.  Observe  that  with  x0 � 0.  Formula  (2.1)  becomes  f �x� � f �0�� f ' �0� x  and  hence
the linear part of the local quadratic approximation if f  at 0 is the local linear approximation of f  at
0.

Example 2.1. Approximation

Find  the  local  linear  and  quadratic  approximation  of  
x  at  x � 0,  and  graph  
x  and  the  two
approximations together.

Solution 2.1.  If  we  let  f �x� � 
x,  then  f ' �x� � f '' �x� � 
x;  and  hence
f �0� � f ' �0� � f '' �0� � 
0 � 1

Thus, the local quadratic approximation of ex at x � 0 is

(2.6)
x � 1� x�
1

2
x2

and the actual linear approximation (which is the linear part of the quadratic approximation) is

(2.7)
x � 1� x.

The graph of 
x  and the two approximations are shown in the following Figure 2.2. As expected, the
local quadratic approximation is more accurate than the local linear approximation near x � 0.
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0

2

4

6

x

f

Figure 2.2. Linear and quadratic approximation of the function f �x� � 
x.The quadratic approximation is plotted as a dashed 
line.�

2.2.2 Maclaurin Polynomial
It  is  natural  to  ask  whether  one  can  improve  on  the  accuracy  of  a  local  quadratic  approximation  by
using  a  polynomial  of  order  3.  Specifically,  one  might  look  for  a  polynomial  of  degree  3  with  the
property that  its  value and values  of  its  first  three derivatives  match those of  f  at  a  point;  and if  this

provides an improvement in accuracy, why not go on polynomials of even higher degree? Thus, we are
led to consider the following general problem.

Given a function f  that can be differentiated n times at x � x0, find a polynomial p of degree n with the

property that the value of p and the values of its first n derivatives match those of f  at x0.

We will begin by solving this problem in the case where x0 � 0. Thus, we want a polynomial

(2.8)p�x� � c0 � c1 x� c2 x2 � c3 x3 �…� cn xn

such that

(2.9)f �0� � p�0�, f ' �0� � p ' �0�, …, f �n��0� � p�n��0�.
But

p�x� � c0 � c1 x� c2 x2 � c3 x3 �…� cn xn

p ' �x� � c1 � 2 c2 x� 3 c3 x2 �…� n cn xn�1

p '' �x� � 2 c2 � 3 � 2 c3 x�…� n �n� 1� cn xn�2

�
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p�n��x� � n �n� 1� �n� 2� … �1� cn

Thus, to satisfy (2.9), we must have

f �0� � p�0� � c0

f ' �0� � p ' �0� � c1

f '' �0� � p '' �0� � 2 c2 � 2� c2

f ''' �0� � p ''' �0� � 2 � 3 c3 � 3� c3

�

f �n��0� � p�n��0� � n �n� 1� �n� 2� …�1� cn � n� cn

which yields the following values for the coefficients of p�x�:
c0 � f �0�, c1 � f ' �0�, c2 �

f '' �0�
2�

, …, cn �
f �n��0�

n�
.

The polynomial that results by using these coefficients in (2.8) is called the nth Maclaurin polynomial
for f .

Definition 2.1. Maclaurin Polynomial

If f  can be differentiated n times at x � 0, then we define the nth Maclaurin polynomial for f  to be

pn�x� � f �0�� f ' �0� x�
f '' �0�

2�
x2 �…�

f �n��0�
n�

xn.

The  polynomial  has  the  property  that  its  value  and  the  values  of  its  first  n  derivatives  match  the
values of f  and its first n derivatives at x � 0.


Remark 2.2. Observe that p1�x� is the local linear approximation of f  at 0 and p2�x� is the local
quadratic approximation of f  at x0 � 0.

Example 2.2. Maclaurin Polynomial

Find the Maclaurin polynomials p0, p1, p2, p3, and pn for 
x.

Solution 2.2. For the exponential function, we know that the higher order derivatives are equal to
the exponential function. We generate this by the following table

Table	�
n�x

�xn
, �n, 1, 8�


�
x, 
x, 
x, 
x, 
x, 
x, 
x, 
x�
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and thus the expansion coefficients of the polynomial defined as f �n��0� follow by replacing x with 0
� �. x � 0�

Table	�
n�x

�xn
, �n, 1, 8�
 �. x � 0

�1, 1, 1, 1, 1, 1, 1, 1�
Therefore,  the  polynomials  of  order  0  up  to  5   generated  by  summation  which  is  defined  in  the
following line

p�n_, x_, f_� :� Fold	Plus, 0, Table	
xm � �m f

�xm �. x � 0�
m�

, �m, 0, n�


The different polynomial approximations are generated in the next line by using this function.

TableForm�Table�p�n, x, �x�, �n, 0, 5���
�1�
�x � 1�
� x2

2
� x � 1�

� x3

6
� x2

2
� x � 1�

� x4

24
� x3

6
� x2

2
� x � 1�

� x5

120
� x4

24
� x3

6
� x2

2
� x � 1�

Figure 2.3 shows the graph of  
x  and the graphs of  the first  four  Maclaurin polynomials.  Note that
the graphs of p1�x�, p2�x�,  and p3�x�  are virtually indistinguishable from the graph of 
x  near x � 0,
so that these polynomials are good approximations of 
x for x near 0.

�2 �1 0 1 2

0

2

4

6

x

f

Figure 2.3. Maclaurin approximations of the function f �x� � 
x.The approximations are shown by dashed curves.�
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However,  the  farther  x  is  from  0,  the  poorer  these  approximations  become.  This  is  typical  of  the
Maclaurin polynomials for  a function f �x�;  they provide good approximations of f �x�  near 0,  but  the

accuracy diminishes  as  x  progresses  away from 0.  However,  it  is  usually the  case  that  the  higher  the
degree of the polynomial, the larger the interval on which it provides a specified accuracy.

2.2.3 Taylor Polynomial
Up  to  now  we  have  focused  on  approximating  a  function  f  in  the  vicinity  of  x � 0.  Now  we  will

consider the more general case of approximating f  in the vicinity of an arbitrary domain value x0. The

basic idea is the same as before; we want to find an nth-degree polynomial p with the property that its

first n derivatives match those of f  at x0. However, rather than expressing p�x� in powers of x, it will

simplify the computations if we express it in powers of x� x0; that is,

(2.10)p�x� � c0 � c1�x� x0�� c2�x� x0�2 �…� cn�x� x0�n.

We  will  leave  it  as  an  exercise  for  you  to  imitate  the  computations  used  in  the  case  where  x0 � 0  to

show that

(2.11)c0 � f �x0�, c1 � f ' �x0�, c2 �
f '' �x0�

2�
, …, cn �

f �n��x0�
n�

.

Substituting  these  values  in  (2.10),  we  obtain  a  polynomial  called  the  nth  Taylor  polynomial  about
x � x0 for f .

Definition 2.2. Taylor Polynomial

If f  can be differentiated n times at x0, then we define the nth Taylor polynomial for f  about x � x0

to be

pn�x� � f �x0�� f ' �x0� �x� x0�� f '' �x0�
2�

�x� x0�2 �…�
f �n��x0�

n�
�x� x0�n.


Remark 2.3. Observe that the Maclaurin polynomials are special cases of the Taylor polynomials;
that is, the nth-order Maclaurin polynomial is the nth-order Taylor polynomial about x0 � 0. Observe
also that p1�x� is the local linear approximation of f  at x � x0 and p2�x� is the local quadratic approxi-
mation of f  at x � x0.

Example 2.3. Taylor Polynomial

Find the five Taylor polynomials for ln�x� about x � 2.

Solution 2.3. In Mathematica Taylor series are generated with the function Series[]. Series[] uses
the formula given in the definition to derive the approximation. The following line generates a table
for the first five Taylor polynomials at x � 2
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TableForm�Table�Normal�Series�ln�x�, �x, 2, m���, �m, 0, 4���
ln�2�
x�2

2
� ln�2�

� 1

8
�x � 2�2 � x�2

2
� ln�2�

1

24
�x � 2�3 � 1

8
�x � 2�2 � x�2

2
� ln�2�

� 1

64
�x � 2�4 � 1

24
�x � 2�3 � 1

8
�x � 2�2 � x�2

2
� ln�2�

The  graph  of  ln�x�  and  its  first  four  Taylor  polynomials  about  x � 2  are  shown  in  Figure  2.4.  As
expected these polynomials produce the best approximations to ln�x� near 2.

1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

x

f

Figure 2.4. Taylor approximations of the function f �x� � ln�x�.The approximations are shown by dashed curves.�

2.2.4 	-Notation
Frequently, we will want to express the sums in the definitions given in sigma notation. To do this, we
use the notation f �k��x0�  to denote the kth derivative of f  at  x � x0, and we make the convention that

f �0��x0� denotes f �x0�. This enables us to write

(2.12)�
k�0

n f �k��x0�
k �

�x� x0�k � f �x0�� f ' �x0� �x� x0�� f '' �x0�
2�

�x� x0�2 �…�
f �n��x0�

n�
�x� x0�n.

In particular, we can write the nth-order Maclaurin polynomial for f �x� as

(2.13)�
k�0

n f �k��0�
k �

xk � f �0�� f ' �0� x�
f '' �0�

2�
x2 �…�

f �n��0�
n�

xn.
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Find the nth Maclaurin polynomials for sin�x�, cos�x� and 1 � �1� x�.
Solution 2.4. We know that Maclaurin polynomials are generated by the function

MaclaurinPolynomial�n_, f_, x_� :� Fold	Plus, 0, Table	
xm � �m f

�xm �. x � 0�
m�

, �m, 0, n�


A table of Maclaurin polynomials can thus be generated by

TableForm�Table�MaclaurinPolynomial�m, sin�x�, x�, �m, 0, 5���
0
x
x

x � x3

6

x � x3

6

x5

120
� x3

6
� x

In the Maclaurin polynomials for sin�x�,  only the odd powers of x  appear explicitly.   the
zero terms, each even-order Maclaurin polynomial is the same as the preceding odd-order Maclaurin
polynomial. That is

(2.14)p2 k�1�x� � p2 k�2�x� � x�
x3

3�
�

x5

5�
�

x7

7�
�…� ��1�k x2 k�1

�2 k � 1�� k � 0, 1, 2, 3, ….

The graph and the related Maclaurin approximations are shown in Figure 2.5

�2 �1 0 1 2
�2

�1

0

1

2

x

f

Figure 2.5. Maclaurin approximations of the function f �x� � sin�x�.The approximations are shown by dashed curves.

In the Maclaurin polynomial for cos�x�, only the even powers of x appear explicitly; the computation
 similar to those for the sin�x�. The reader should be able to show th
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TableForm�Table�MaclaurinPolynomial�m, cos�x�, x�, �m, 0, 5���
1

1

1 � x2

2

1 � x2

2

x4

24
� x2

2
� 1

x4

24
� x2

2
� 1

The graph  of cos�x� and the approximations are shown in Figure 2.6.
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Figure 2.6. Maclaurin approximations of the function f �x� � cos�x�.The approximations are shown by dashed curves.

Let f �x� � 1 � �1� x�. The values of f  and its derivatives at x � 0 are collected in the results

TableForm	Table	MaclaurinPolynomial m,
1

1
 x
, x , �m, 0, 5�



1

x � 1

x2 � x � 1

x3 � x2 � x � 1

x4 � x3 � x2 � x � 1

x5 � x4 � x3 � x2 � x � 1

From this sequence the Maclaurin polynomial for 1 � �1� x� is
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pn�x� ��
k�0

n

xk � 1� x� x2 �…� xn, n � 0, 1, 2, ….�

Example 2.5. Approximation with Taylor Polynomials

Find the nth Taylor polynomial for 1 � x about x � 1.

Solution 2.5.  Let  f �x� � 1 � x.  The  computations  are  similar  to  those  done  in  the  last  example.
The results are

Series	 1

x
, �x, 1, 5�


1 � �x � 1�� �x � 1�2 � �x � 1�3 � �x � 1�4 � �x � 1�5 � O	�x � 1�6

This relation suggest the general formula

�
k�0

n

��1�k �x� 1�k � 1� �x� 1�� �x� 1�2 �…� ��1�n �x� 1�n.�

2.2.5 nth-Remainder
The  nth  Taylor  polynomial  pn  for  a  function  f  about  x � x0  has  been  introduced  as  a  tool  to  obtain

good approximations to values of f �x� for x near x0. We now develop a method to forecast how good

these approximations will be.

It  is  convenient  to  develop  a  notation  for  the  error  in  using  pn�x�  to  approximate  f �x�,  so  we  define

Rn�x� to be the difference between f �x� and its nth Taylor polynomial. That is

(2.15)Rn�x� � f �x�� pn�x� � f �x�� �
k�0

n f �k��x0�
k �

�x� x0�k.

This can also be written as

(2.16)f �x� � pn�x��Rn�x� � �
k�0

n f �k��x0�
k �

�x� x0�k �Rn�x�
which is called Taylor's formula with remainder.

Finding a bound for Rn�x�  gives an indication of the accuracy of the approximation pn�x� � f �x�.  The

following Theorem 2.1 given without proof states

Theorem 2.1. Remainder Estimation

If the function f  can be differentiated n� 1 times on an interval I  containing the number x0, and if
M is an upper bound for f �n�1��x�  on I, that is f �n�1��x� � M for all x in I , then
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Rn�x� �
M

�n� 1�� x� x0
n�1

for all x in I .


Example 2.6. Remainder of an Approximation

Use the nth Maclaurin polynomial for 
x to approximate 
 to five decimal-place accuracy.

Solution 2.6. We note first that the exponential function 
x  has derivatives of all orders for every
real number x. The Maclaurin polynomial is

�
k�0

n 1

k �
xk � 1� x�

x2

2�
�…�

xn

n�

from which we have


 � 
1 � �
k�0

n 1k

k �
� 1� 1�

1

2�
�…�

1

n�
.

Thus,  our  problem  is  to  determine  how  many  terms  to  include  in  a  Maclaurin  polynomial  for  
x  to
achieve  five  decimal-place  accuracy;  that  is,  we  want  to  choose  n  so  that  the  absolute  value  of  nth
remainder at x � 1 satisfies

Rn�1� � 0.000005.

To  determine  n  we  use  the  Remainder  Estimation  Theorem  2.1  with  f �x� � 
x,  x � 1,  x0 � 0,  and  I

being the interval [0,1]. In this case it follows from the Theorem that

(2.17)Rn�1� �
M

�n� 1��
where M  is an upper bound on the value of f �n�1��x� � 
x for x in the interval �0, 1�. However, 
x is an

increasing function, so its maximum value on the interval �0, 1� occurs at x � 1; that is, 
x � 
 on this
interval. Thus, we can take M � 
 in (2.17) to obtain

(2.18)Rn�1� �



�n� 1�� .

Unfortunately, this inequality is not very useful because it involves 
 which is the very quantity we are
trying to approximate. However, if we accept that 
 � 3, then we can replace (2.18) with the following
less precise, but more easily applied, inequality:

(2.19)Rn�1� �
3

�n� 1�� .

Thus, we can achieve five decimal-place accuracy by choosing n such that 
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3

�n� 1�� � 0.000005 or �n� 1�� � 600 000.

Since 9! = 362880 and 10!=3628800, the smallest value of n that meets this criterion is n � 9. Thus, 
five decimal-place accuracy


 � 1� 1�
1

2�
�

1

3�
�

1

4�
�

1

5�
�

1

6�
�

1

7�
�

1

8�
�

1

9�
� 2.71828

As a check, a calculator's twelve-digits representation of 
 is 
�2.71828182846, which agrees with the
preceding approximation when rounded to five decimal places.�

2.2.6 Tests and Exercises
The following two subsections  serve  to  test  your  understanding of  the  last  section.  Work  first  on  the
test examples and then try to solve the exercises.

2.2.6.1 Test Problems
T1. Describe the term approximation in mathematical terms.

T2. What kind of approximation polynomials do you know?

T3. How are Maclaurin polynomials defined?

T4. Describe the difference between Maclaurin and Taylor polynomials.

T5. How can we estimate the error in an approximation?

T6. What do we mean by truncation error?

2.2.6.2 Exercises
E1. Find the Maclaurin polynomials up to degree 6 for f �x� � cos�x�. Graph f  and these polynomials on a common screen.

Evaluate  f  and  these polynomials at  x � ��4,  ��2,  and �.  Comment on how the Maclaurin polynomials  converge to
f (x).

E2. Find  the  Taylor  polynomials  up  to  degree  3  for  f �x� � 1 �x.  Graph  f  and  these  polynomials  on  a  common  screen.
Evaluate f  and these polynomials at x � 0.8 and x � 1.4. Comment on how the Taylor polynomials converge to f (x).

E3. Find the Taylor polynomial Tn�x�  for the function f  at the number x0. Graph f  and T3�x�  on the same screen for the
following functions:

a. f �x� � x � 
�x,  at x0 � 0,

b. f �x� � 1 � x, at x0 � 2,

c. f �x� � 
�x cos�x�, at x0 � 0,

d. f �x� � arcsin�x�, at x0 � 0,

e. f �x� � ln�x� � x, at x0 � 1,

f. f �x� � x 
�x2
, at x0 � 0,

g. f �x� � sin�x�, at x0 � ��2.

E4. Use a computer algebra system to find the Taylor polynomials Tn�x� centered at x0 for n � 2, 3, 5, 6. Then graph these
polynomials and on the same screen the following functions:

a. f �x� � cot�x�, at x0 � ��4,

b. f �x� � 1 � x23
, at x0 � 0,

c. f �x� � 1
cosh�x�2, at x0 � 0.
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Approximate f  by a Taylor polynomial with degree n  at the number x0. Use Taylor’s Remainder formula to estimate

the  accuracy  of  the  approximation  f �x� � Tn�x�  when  x  lies  in  the  given  interval.  Check  your  result  by  graphing
Rn�x� .
a. f �x� � x�2, x0 � 1, n � 2, 0.9 � x � 1.1,

b. f �x� � x , x0 � 4, n � 2, 4.1 � x � 4.3,

c. f �x� � sin�x�, x0 � ��3, n � 3, 0 � x � �,

d. f �x� � 
�x2
, x0 � 0, n � 3, �1 � x � 1,

e. f �x� � ln	1 � x2
, x0 � 1, n � 3, 0.5 � x � 1.5,

f. f �x� � x sinh�4 x�, x0 � 2, n � 4, 1 � x � 2.5.

E6. Use Taylor's Remainder formula to determine the number of terms of the Maclaurin series for 
x  that should be used
to estimate 
0.1 to within 0.000001.

E7. Let  ƒ  (x)  have  derivatives  through  order  n  at  x � x0.  Show  that  theTaylor  polynomial  of  order  n  and  its  first  n
derivatives have the same values that ƒ and its first n derivatives have at x � x0.

E8. For approximately what  values of x  can you replace sin�x�  by x � 	x3 
6
  with an error  of magnitude no greater  than

5�10�4? Give reasons for your answer.

E9. Show that if the graph of a twice-differentiable function ƒ�x� has an inflection point at x � x0 then the linearization of ƒ
at  x � x0  is  also  the  quadratic  approximation of  ƒ  at  x � x0.  This  explains  why tangent  lines  fit  so  well  at  inflection

points.

E10 Graph a curve y � 1 �3 � x2 
5 and y � �x � arctan�x��
 x3 together with the line y � 1 �3. Use a Taylor series to explain

what you see. What is

(1)limx�0

x � arctan �x�
x3

2.3 Sequences

In  everyday  language,  the  term  sequence  means  a  succession  of  things  in  a  definite  order  —
chronological  order,  size  order,  or  logical  order,  for  example.  In  mathematics,  the  term  sequence  is
commonly used to denote a succession of numbers whose order is determined by a rule or a function.
In this section, we will develop some of the basic ideas concerning sequences of numbers.

2.3.1 Definition of a Sequence
An infinite sequence, or more simply a sequence, is an unending succession of numbers, called terms.
It is understood that the terms have a definite order; that is, there is a first term a1, a second term a2, a
third term a3, a fourth term a4, and so forth. Such a sequence would typically be written as

a1, a2, a3, a4, …

where the dots are used to indicate that the sequence continues indefinitely. Some specific examples are

1, 2, 3, 4, 5, 6, ...

1,
1

2
,

1

3
,

1

4
,

1

5
, …
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2, 4, 6, 8, …

1, �1, 1, �1, 1, �1, ….

Each  of  these  sequences  has  a  definite  pattern  that  makes  it  easy  to  generate  additional  terms  if  we
assume that those terms follow the same pattern as the displayed terms. However, such patterns can be
deceiving, so it is better to have a rule of formula for generating the terms. One way of doing this is to
look  for  a  function  that  relates  each  term  in  the  sequence  to  its  term  number.  For  example,  in  the
sequence

2, 4, 6, 8, …

each term is twice the term number;  that  is, the nth term in the sequence is  given by the formula 2 n.
We denote this by writing the sequence as

2, 4, 6, 8, …, 2 n, ….

We call the function f �n� � 2 n the general term of this sequence. Now, if we want to know a specific

term in the sequence, we need  substitute its term number into the formula for the general term. For
example, the 38th term in the sequence is 2  38 = 76.

Example 2.7. Sequences

In each part find the general term of the sequence.

a� 1

2
,

2

3
,

3

4
,

4

5
, …

b� 1

2
,

1

4
,

1

8
,

1

16
, …

c� 1

2
, �

2

3
,

3

4
, �

4

5
, …

d� 1, 3, 5, 7, …

Solution 2.7.  a)  To  find  the  general  formula  of  the  sequence,  we  create  a  table  containing  the
term numbers and the sequence terms .

n f �n�
1 1

2

2 2

3

3 3

4

4 4

5
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On the left we start counting the term number and on the right there are the results of the counting.
We see that  the numerator is  the same as  the term number and denominator  is  one greater than the
term  number.  This  suggests  that  the  nth  term  has  numerator  n  and  denominator  n� 1.  Thus  the
sequence can be generated by the following general expression

f �n_� :�
n

n� 1

We  introduce  this  Mathematica  expression  for  further  use.  The  application  of  this  function  to  a
sequence of numbers shows the equivalence of the sequences

Table� f �n�, �n, 1, 6��
� 1

2
,

2

3
,

3

4
,

4

5
,

5

6
,

6

7
�

b) The same procedure is used to find the general term expression for the sequence

n f �n�
1 1

2

2 1

4

3 1

8

4 1

16

Here the numerator  is  always the same and equals to  1.  The denominator for the four known terms
can be expressed as powers of 2. From the table we see that the exponent in the denominator is the
same as the term number. This suggests that the denominator of the nth term is 2n. Thus the sequence
can be expressed by

f �n_� :�
1

2n

The generation of a table shows the agreement of the f our erms with the given numbers

Table� f �n�, �n, 1, 6��
� 1

2
,

1

4
,

1

8
,

1

16
,

1

32
,

1

64
�

c) This sequence is identical to that in part a), except for the alternating signs.
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n f �n�
1 1

2

2 � 2

3

3 3

4

4 � 4

5

Thus the nth term in the sequence can be obtained by multiplying the nth term in part a) by ��1�n�1.
This factor produces the correct alternating signs, since its successive values, starting with n � 1 are
1, �1, 1, �1, …. Thus, the sequence can be written as

f �n_� :�
�
1�n�1 n

n� 1

and the verification shows agreement within the given numbers

Table� f �n�, �n, 1, 6��
� 1

2
, �

2

3
,

3

4
, �

4

5
,

5

6
, �

6

7
�

d) For this sequence, we have the table

n f �n�
1 1

2 3

3 5

4 7

from which we see that each term is one less than twice its term number. This suggests that the nth
term in the sequence is 2 n� 1. Thus we can generate the sequence by

f �n_� :� 2 n
 1

and show the congruence by

Table� f �n�, �n, 1, 6��
�1, 3, 5, 7, 9, 11�

�

When the general term of a sequence

(2.20)a1, a2, a3, …, an, …

is known, there is no need to write out the initial terms, and it is common to write only the general term
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enclosed in braces. Thus (2.20) might be written as

(2.21)�an�n�1
�� .

For  example  here  are  the  four  sequences  from  Example  2.7  expressed  in  brace  notation  and  the
corresponding results. Fo the first sequence we write


 n

n� 1
�

n�1

6

� 1

2
,

2

3
,

3

4
,

4

5
,

5

6
,

6

7
�

Here  we  introduced  a  definition  in  Mathematica  (s.  Appendix)  which  allows  us  to  use  the  same
notation as introduced in (2.21). For the second sequence we write


 1

2n
�

n�1

6

� 1

2
,

1

4
,

1

8
,

1

16
,

1

32
,

1

64
�

The third sequence is generated by


 �
1�n�1 n

n� 1
�

n�1

6

� 1

2
, �

2

3
,

3

4
, �

4

5
,

5

6
, �

6

7
�

and finally the last sequence of Example 2.7 is derived by

�2 n
 1�n�1
6

�1, 3, 5, 7, 9, 11�
The letter n in (2.21) is called the index of the sequence. It is not essential to use n for the index; any
letter not reserved for another purpose can be used. For example, we might view the general term of the
sequence  a1, a2, a3 …  to  be  the  kth  term,  in  which  case  we  would  denote  this  sequence  as  �ak�k�1

�� .

Moreover,  it  is  not essential  to start  the index at  1;  sometimes it  is  more convenient to start  at  0.  For
example, consider the sequence

1,
1

2
,

1

22
,

1

23
, …

One way to write this sequence is
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 1

2n
1
�

n�1

5

�1,
1

2
,

1

4
,

1

8
,

1

16
�

However, the general term will be simpler if we think of the initial term in the sequence as the zeroth
term, in which case we write the sequence as


 1

2n
�

n�0

6

�1,
1

2
,

1

4
,

1

8
,

1

16
,

1

32
,

1

64
�

Remark 2.4.  In  general  discussions  that  involve  sequences  in  which  the  specific  terms  and  the
starting point  for  the index are not important,  it  is  common to write �an�  rather than �an�n�1

� .  More-
over,  we  can  distinguish  between  different  sequences  by  using  different  letters  for  their  general
terms; thus �an�, �bn�, and �cn� denote three different sequences.

We began this section by describing a sequence as an unending succession of numbers. Although this
conveys  the general  idea,  it  is  not  a  satisfactory mathematical  definition  because it  relies  on the  term
succession, which is itself an undefined term. To motivate a precise definition, consider the sequence

2, 4, 6, 8, …, 2 n, …

If we denote the general term by f �n� � 2 n, then we can write this sequence as

f �1�, f �2�, f �3�, …, f �n�, ....

which is a list of values of the function

f �n� � 2 n n � 1, 2, 3, ....

whose domain is the set of positive integer. This suggests the following Definition 2.3.

Definition 2.3. Sequence

A sequence is  a function whose domain is a set of  integers. Specifically,  we will  regard the expres-
sion �an�n�1

�  to be an alternative notation for the function f �n� � an, n � 1, 2, 3, ….


2.3.2 Graphs of a Sequence
Since  sequences  are  functions,  it  makes  sense  to  talk  about  graphs  of  a  sequence.  For  example,  the
graph of a sequence �1 � n�n�1

�  is the graph of the equation
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y �
1

n
for n � 1, 2, 3, 4, ….

Because  the  right  side  of  this  equation  is  defined  only  for  positive  integer  values  of  n,  the  graph
consists of a succession of isolated points (Figure 2.7)

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

n

y

Figure 2.7. Graph of the sequence � 1

n
�

n�1

10
.

This graph is resembling us to the graph of

y �
1

x
for x � 1

which is a continuous curve in the �x, y�-plane.

2.3.3 Limit of a Sequence
Since Sequences are functions, we can inquire about their limits. However, because a sequence �an� is
only  defined  for  integer  values  of  n,  the  only limit  that  makes  sense  is  the  limit  of  an  as  n � �.  In
Figure 2.8 we have shown the graph of four sequences, each of which behave differently as n � �


 The terms in the sequence �n� 1� increases without bound.


 The terms in the sequence ���1�n�1� oscillate between -1 and 1.


 The terms in the sequence � n
n�1

� increases toward a limiting value of 1.


 The terms in the sequence �1� 	� 1
2

n� also tend toward a limiting value of 1, but do so in an 

oscillatory fashion.
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0 2 4 6 8 10
2

4

6

8

10

n

y

�n�1 �
n�1

10

0 2 4 6 8 10
�1.0

�0.5

0.0

0.5

1.0

n

y

���1�n�1 �
n�1

10

0 2 4 6 8 10
0.5

0.6

0.7

0.8

0.9

n

y

�n��n�1� �
n�1

10

0 2 4 6 8 10
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

n
y

�1� �1

2

n

� �
n�1

10

Figure 2.8. Graph of four different sequences.

Informally speaking, the limit of a sequence �an� is intended to describe how an  behaves as n � �. To
be  more  specific,  we  will  say that  a  sequence  �an�  approaches  a  limit  L  if  the  terms  in  the  sequence

eventually become arbitrarily close to L. Geometrically, this means that for any positive number � there
is a point in the sequence after which all terms lie between the lines y � L � � and y � L� �

0 2 4 6 8 10

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

n

y

y�L��

y�L��

N

Figure 2.9. Limit process of a sequence.

The following Definition 2.4 makes these ideas precise.
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Definition 2.4. Limit of a Sequence

A  sequence  �an�  is  said  to  converge  to  the  limit  L  if  given  any � � 0,  there  is  a  positive  integer  N
such that an � L � �  for n � N. In this case we write

limn�� an � L.

A sequence that does not converge to some finite limit is said to diverge.


Example 2.8. Limit of a Sequence

The first two sequences in Figure 2.8 diverge, and the second two converge to 1; that is

lim
n��

n

n� 1

1

and

lim
n��



1

2

n

� 1

1

The following Theorem 2.2, which we s ate without proof,  shows that  the familiar properties of limits
apply to sequences. This theorem ensures that the algebraic techniques used to find limits of the form
limx�� can be used for limits of the form limn��.

Theorem 2.2. Rules for Limits of Sequences

Suppose  that  the sequences  �an�  and  �bn�  converge to  the limits  L1  and L2,  respectively,  and  c is  a
constant. Then

a� limn�� c � c

b� limn�� c an � c limn�� an � c L1

c� limn�� �an � bn� � limn�� an � limn�� bn � L1 � L2

d� limn�� �an � bn� � limn�� an � limn�� bn � L1 �L2

e� limn�� �an bn� � limn�� an limn�� bn � L1 L2

f � limn��
an

bn

�
limn�� an

limn�� bn

�
L1

L2
if L2 � 0.
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In each part, determine whether the sequence converges or diverges. If it converges, find the limit

a� � n

2 n� 1
�

n�1

�
,

b� ���1�n 1

n
�

n�1

�

,

c� �8� 2 n�n�1
� .

Solution 2.9.  a) Dividing numerator and denominator by n yields

limn��
n

2 n� 1
� limn��

1

2� 1
n

�
limn�� 1

limn�� 2� limn��
1
n

�
1

2� 0
�

1

2

which agrees with the calculation done by Mathematica 

lim
n��

n

2 n� 1

1

2

b) Since the limn��
1
n
� 0, the product ��1�n�1 �1 � n� oscillates between positive and negative values,

with  the  odd-numbered  terms  approaching  0  through  positive  values  and  the  even-numbered  terms
approaching 0 through negative values. Thus,

limn�� ��1�n�1 1

n
� 0

which is also derived via

lim
n��

�
1�n�1

n

0

so the sequence converges to 0.

c) limn�� �8� 2 n� � ��, so the sequence �8� 2 n�n�1
�  diverges.�

If  the  general  term of  a  sequence  is  f �n�,  and  if  we replace  n  by x,  where  x  can vary over  the  entire

interval  �1, ��,  then  the  values  f  f �n�  can  be  viewed as  sample  values  of  f �x�  taken  at  the  positive

integers.  Thus,  if  f �x� � L  as  x � �,  then  it  must  also  be  true  that  f �n� � L  as  n � �  (see  Figure

2.10). However, the converse is not true; that is, one cannot infer that f �x� � L as x � � from the fact

that f �n� � L as n � � (see Figure 2.11).
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5 10 15 20

0.40

0.42

0.44

0.46

0.48

x

y

Figure 2.10. Replacement of a sequence � n

2 n�1
�

n�1

20
by a function f �x� � x

2 x�1
.

2 4 6 8 10

0.40

0.45

0.50

x

y

Figure 2.11. Replacement of a function f �x� � x

2 x�1
 by a sequence � n

2 n�1
�

n�1

10
.

Example 2.10. L'Hopital's Rule

Find the limit of the sequence �n � 
n�n�1
� .

Solution 2.10.  The expression n � 
n is an indeterminate form of type � �� as n � �, so L'Hopi-
tal's  rule  is  indicated.  However,  we cannot  apply this  rule  directly to  n � 
n  because  the  functions  n
and  
n  have  been  defined  here  only at  the  positive  integers,  and  hence  are  not  differentiable  func-
tions. To circumvent this problem we extend the domains of these functions to all real numbers, here
implied by replacing n by x, and apply L'Hopital's rule to the limit of the quotient x � 
x. This yields
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limx��
x


x
� limx��

1


x
� 0

from which we can conclude that

limn��
n


n
� 0

which can be verified by

lim
n��

n

�n

0

�

Sometimes the  even-numbered and odd-numbered terms  of  a  sequence behave sufficiently differentl
 it is desirable to investigate their convergence separately. The following Theorem 2.3, whose proof

is omitted, is helpful for that purpose.

Theorem 2.3. Even and Odd Sequences

A  sequence  converges  to  a  limit  L  if  and  only  if  the  sequences  of  even-numbered  terms  and  odd-
numbered terms both converge to L.


Example 2.11. Even and Odd Sequences

The sequence

1

2
,

1

3
,

1

22
,

1

32
,

1

23
, …

converges  to  0,  since the  odd-numbered terms  and the  even-numbered terms  both converge  to  0,  and
the sequence

1,
1

2
, 1,

1

3
, 1,

1

4
, 1, …

diverges, since the odd-numbered terms converge to 1 and the even-numbered terms converge to 0.�

2.3.4 Squeezing of a Sequence
The following Theorem 2.4, which we state without proof, is an adoption of the Squeezing Theorem to
sequences. This theorem will be useful for finding limits of sequences that cannot be obtained directly.

Theorem 2.4. The Squeezing Theorem for Sequences

Let �an�, �bn�, and �cn� be sequences such that
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an � bn � cn for all values of n beyond some index N .

If  the  sequence  �an�  and  �cn�  have  a  common  limit  L  as  n � �,  then  �bn�  also  has  the  limit  L  as
n � �.


Example 2.12. Squeezing

Use numerical evidence to make a conjecture about the limit of the sequence

� n�

nn
�

n�1

�

and then confirm that your conjecture is correct.

Solution 2.12. The following table shows the sequence for n from 1 to 12.

TableForm	N	Table	 n �

nn
, �n, 1, 12�




1.

0.5

0.222222

0.09375

0.0384

0.0154321

0.0061199

0.00240326

0.000936657

0.00036288

0.000139906

0.0000537232

The values suggest that the limit of the sequence may be 0. To confirm this we have to examine the
limit of

an �
n�

nn
as n � �.

Although this is an indeterminate form of type � ��, L'Hopital's rule is not helpful because we have
no definition of x� for values of x that are not integers. However, let us write out some of the initial
terms and the general term in the sequence

a1 � 1, a2 �
1� 2

2� 2
, a3 �

1� 2� 3

3� 3� 3
,

…, an �
1� 2� 3�…� n

n� n� n�…� n
, ….
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We can rewrite the general term as

an �
1

n

�2� 3�…n�
n� n�…� n

from which it is evident that

0 � an �
1

n
.

However, the two outside expressions have a limit of 0 as n � �; thus, the Squeezing Theorem 2.4
for sequences implies that an � 0 as n � �, which confirms our conjecture.�

The following Theorem 2.5 is  often useful  for  finding the limit  of  a  sequence with  both positive and
negative terms—it states that the sequence � an � that is obtained by taking the absolute value of each

term in the sequence �an� converges to 0, then �an� also converges to 0.

Theorem 2.5. Magnitude Sequences

If limn�� an � 0, then limn�� an � 0.


Example 2.13. Magnitude Sequence

Consider the sequence

1, �
1

2
,

1

22
, �

1

23
, …, ��1�n 1

2n
, ….

If we take the absolute value of each term, we obtain the sequence

1,
1

2
,

1

22
,

1

23
, …,

1

2n
, ….

which converges to 0. Thus from Theorem 2.5 we have

limn�� ��1�n 1

2n
� 0.�

2.3.5 Recursion of a Sequence
Some sequences did not arise from a formula for the general term, but rather form a formula or set of
formulas  that  specify  how  to  generate  each  term  in  the  sequence  from  terms  that  precede  it;  such
sequences are said to be defined recursively, and the defining formulas are called recursion formulas. A
good example is the mechanic's rule of approximating square roots. This can be done by

(2.22)x1 � 1, xn�1 �
1

2
xn �

a

xn
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describing the  sequence  produced  by Newton's  Method to  approximate  a  as  a  root  of  the  function

f �x� � x2 � a. The following table shows the first few ter  of the approximation of 2

tab1 � N�Transpose���i�i�19 , NestList� 1
2

�1 �
2

�1
&, 1, 8����;

�TableForm	�1, TableHeadings � ���, �"n", "xn"��
 &�	N	tab1


n xn

1. 1.

2. 1.5

3. 1.41667

4. 1.41422

5. 1.41421

6. 1.41421

7. 1.41421

8. 1.41421

9. 1.41421

It would take us to far afield to investigate the convergence of sequences defined recursively. Thus we
let  this  subject  as  a  challenge  for  the  reader.  However,  we  note  that  sequences  are  important  in
numerical procedures like Newton's root finding method (see Vol. IV).

2.3.6 Tests and Exercises
The following two subsections  serve  to  test  your  understanding of  the  last  section.  Work  first  on  the
test examples and then try to solve the exercises.

2.3.6.1 Test Problems
T1. What is an infinite sequence? What does it mean for such a sequence to converge? To diverge? Give examples.

T2. What theorems are available for calculating limits of sequences? Give examples.

T3. What is a non decreasing sequence? Under what circumstances does such a sequence have a limit? Give examples.

T4. What is the limit of a sequence? Give examples.

T5. How does squeezing work with sequences? Give examples.

2.3.6.2 Exercises
E1. Each of the following examples gives a formula for the nth term an of a sequence �an�. Find the values of a1, a3, a6.

a. an � 1

n�
,

b. an � 2n�1

2n ,

c. an � 2n

2n�1
,

d. an � ��1�2 n�1

3 n�1
.

E2. List the first five terms of the sequence.

a. an � 1 � 	 2

10

n,

b. an � 5 ��1�n
n�

,
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an � n�1

5 n�2
,

d. �2, 4, 6, …, �2 n��,
e. a1 � �1, an�1 � an�2 � 2n�.

E3. List the first six terms of the sequence defined by

(1)an �
n

3 n � 1
.

Does the sequence appear to have a limit? If so, find it.

E4. Each  of  the  following  examples  gives  the  first  term  or  two  of  a  sequence  along  with  a  recursion  formula  for  the
remaining terms. Write out the first ten terms of the sequence.

a. a1 � 1, an�1 � an � 2�n,

b.  a1 � 2, an�1 � an � �2 n � 1�, 
c.  a1 � �2, an�1 � ��1�n�2 an,
d.  a1 � 1, an�1 � n an � n2 an,

e. a1 � a2 � 1, an�2 � an�1 � an, 

f. a1 � 1, a2 � �1, an�2 � an � 2�n an�1. 

E5. Find a formula for the nth term of the sequences:

a. �1, �1, 1, �1, 1, �1, …�,
b. ��1, 1, �1, 1, �1, 1, …�,
c. �1, �4, 9, �16, 25, …�,
d. �1,

�1

4
,

1

9
,

�1

16
,

1

25
, …�,

e. �1, 5, 9, 13, 17, …�,
f. �1, 0, 1, 0, 1, 0, …�,
g. �2, 5, 11, 17, 23, …�.

Do the sequences converge? If so, to what value? In each case, begin by identifying the function ƒ that generates the
sequence.

E6. The following sequences come from the recursion formula for Newton’s method,

(2)xn�1 � xn �
f �xn�
f ' �xn�

Do the sequences converge? If so, to what value? In each case, begin by identifying the function ƒ that generates the
sequence.

a. x0 � 1,  xn�1 � xn �
xn

2�2

2 xn
� xn

2
� 1

xn
,

b. x0 � 1,  xn�1 � xn � 1,

c. x0 � 1,  xn�1 � xn � tan�xn��1

sec�xn�2 .

E7. Is it true that a sequence �an� of positive numbers must converge if it is bounded from above? Give reasons for your
answer.

E8. Which of the following sequences converge, and which diverge? Give reasons for your answers.

a. an � 1 � 1

n
,

b. an � n � 1

n
,

c. an � 2n�1

5n ,

d. an � 2n�3

2n ,
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an � ���1�n � 1� 	 n�1

n2

.

E9. Determine if the sequence is non decreasing and if it is bounded from above.

a. an � 2 � 2

n
� 2�n,

b. an � 2n 3n

n�
,

c. an � �2 n�3��
�n�1�� ,

d. an � 3 n�1

n�1
.

E10 Find the limit of the sequence

(3)� 5 , 5 5 , 5 5 5 , …�

2.4 Infinite Series

The  purpose  of  this  section  is  to  discuss  sums  that  contain  infinitely  many terms.  The  most  familiar
example  of  such  sums  occur  in  the  decimal  representation  of  real  numbers.  For  example,  when  we

write 1
3

 in the decimal form 1
3
� 0.3333333 …, we mean

1

3
� 0.3� 0.03� 0.003� 0.0003�…

which  suggests  that  the  decimal  representation  of  1
3

 can  be  viewed  as  a  sum  of  infinitely  many real

numbers.

2.4.1 Sums of Infinite Series
Our first objective is to define what is meant by the sum of infinite many real numbers. We begin with
some terminology.

Definition 2.5. Infinite Sum

An infinite series is an expression that can be written in the form

(2.23)�
k�1

�

uk � u1 � u2 � u3 �…� uk �….

The numbers u1, u2, u3,… are called the terms of the series.


Since  it  is  impossible  to  add  infinitely  many  numbers  together  directly,  sums  of  infinite  series  are
defined and computed by an indirect limiting process. To motivate the basic idea, consider the decimal
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