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2 Chaos in Laser Systems

Starting from the Maxwell equation in a laser medium based on the model
of two-level atoms, we derive the time dependent Maxwell-Bloch equations
for field, polarization of matter, and population inversion. Then, we prove
that the three differential equations are the same as those of Lorenz chaos.
Well above the laser threshold, the laser reaches an unstable point at a cer-
tain pump level, which is called second laser threshold. However, only a few
real lasers show chaotic dynamics with a second threshold and most other
lasers do not have the second threshold, resulting in stable oscillations for the
increase of the pump. Stable and unstable oscillations of lasers are related
to the scales of the relaxation times for the laser variables. We discuss sta-
bility and instability of lasers based on the rate equations and present their
classifications from the stability point of view.

2.1 Laser Model and Bloch Equations

2.1.1 Laser Model in a Ring Resonator

The theory of lasers should be treated by the interaction between matter and
electro-magnetic field based on quantum mechanics. However, we employ here
the semi-classical treatment followed by Haken (1985) and van Tartwijk and
Agrawal (1998), which is very easy to understand. Figure 2.1 shows a ring
resonator for a laser model with two-level atoms. The model treats only uni-
directional wave propagation without considering the backward propagation
of light, therefore the development of the equations for the model is very easy.
Actual lasers are composed of a Fabry-Perot resonator and have forward and
backward waves of light propagations in the laser medium. A few contain
a unidirectional ring resonator. The semiconductor laser, which is the main
issue of this book, is also basically a Fabry-Perot laser (Abraham et al. 1988).
Although the model is not always applicable to real lasers, the description for
a unidirectional traveling-wave ring resonator is very simple and the theory
can be easily extended to ordinary Fabry-Perot lasers.
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Fig. 2.1. Laser model with ring resonator

The light propagation equation in the laser medium is derived first. The
electric field E (vector field) is written by a time dependent Maxwell equation
as

∇2E − 1
c2
∂2εE
∂t2

= μ0
∂2P
∂t2

(2.1)

where P is the polarization vector of matter, ε is the electric permittivity
tensor, c is the speed of light in vacuum, and μ0 is the magnetic permeability
in vacuum. Assuming a uniform refractive index of the laser medium and
linearly polarized spatial modes for the x and y directions with the propaga-
tion for the z axis, the field and the polarization of matter reduce to scalar
quantities propagating only to the z direction and (2.1) can be reduced to
the following scalar equation:

∂2E
∂z2

− η2

c2
∂2E
∂t2

= μ0
∂2P
∂t2

(2.2)

where η is the refractive index of the laser medium.
The field and the polarization propagate for the z direction with the

wavenumber k = ηω0/c and the angular oscillation frequency ω0, are then
written as

E(z, t) =
1
2
E(z, t) exp[i(kz − ω0t)] + c.c. (2.3)

P(z, t) =
1
2
P (z, t) exp[i(kz − ω0t)] + c.c. (2.4)

Here, c.c. represents the complex conjugate of the preceding terms. E(z, t)
and P (z, t) are the amplitudes of the respective variables and are assumed to
vary slowly compared with the optical frequency (Slowly Varying Envelope
Approximation: SVEA). Neglecting the second order small infinities and sub-
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stituting (2.3) and (2.4) into (2.2), we obtain an equation for the amplitudes

∂E

∂z
+
η

c

∂E

∂t
= i

k

2ε0η2
P (2.5)

2.1.2 Light Emission and Absorption in Two-Level Atoms

Before deriving the complete form of the propagation equation, we discuss
absorption and emission of light from two-level atoms based on the semi-
classical quantum theory and, then, derive the Bloch equation. The Hamil-
tonian H0 without perturbation for the electric field E , the Hamiltonian H
of the two-level atom is given by

H = H0 − μ · E (2.6)

where μ = er is the moment of the transition between the two levels (r
and e are the position vector and the fundamental electric charge). For the
eigenstates ϕj(j = 1, 2) of the two levels and the energy of each level as
�ωj (� being the Planck constant), the interaction between the two levels is
written by

〈ϕj |H0|ϕk〉 = �ωjδjk (2.7)

where δij represents the Kronecker delta. The angular frequency of light
emitted or absorbed in the two-level atoms is given by ωA = ω2 − ω1. In the
presence of the optical field, the quantum state |ψ > of the two-level atoms
is written by the linear addition of the two states as

|ψ〉 = c1(t) exp(−iω1t)|ϕ1〉 + c2(t) exp(−iω2t)|ϕ2〉 (2.8)

Substituting the above equation into the Schrödinger equation, the coef-
ficients c1 and c2 for the two states are calculated by solving the following
coupled equations

dc1
dt

=
ic2
�

exp(−iωAt)〈ϕ1|μ · E |ϕ2〉 (2.9)

dc2
dt

=
ic1
�

exp(iωA t)〈ϕ2|μ · E|ϕ1〉 (2.10)

These are known as the Bloch equations (1946).
Using the number NA of atoms in the unit volume, the macroscopic po-

larization of the medium is defined by

P = NA〈ψ|μ|ψ〉 (2.11)

From (2.8), the above equation reads as

P = NA{p(t)μ12 + p∗(t)μ21} (2.12)
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Then, the microscopic polarization p(t) for each atom is given by

p(t) = c∗1(t)c2(t) exp(−iωAt) (2.13)
μij = 〈ϕj |μ|ϕi〉 (2.14)

where μij(i, j = 1, 2) is the moment of the transition from the lower to the
upper state or vice versa. Finally, substituting the above equations into (2.9)
and (2.10), we obtain the equation for the polarization of atoms

dp
dt

= −iωAp+
i
�
Eμ21w (2.15)

and the distribution w = |c2(t)|2 −|c1(t)|2 for the population inversion of the
two-level atoms

dw
dt

=
2
i�
E(p∗μ21 − pμ12) (2.16)

2.1.3 Maxwell-Bloch Equations

Rearranging the equations obtained for the field and the polarization and
considering the time development of the population inversion in the laser
medium, we derive the complete set of laser rate equations, which are the
same expressions as those of Lorenz chaos.

Differentiating (2.4) with time and using the relations of (2.12) and (2.15),
the macroscopic polarization equation is calculated as

dP
dt

= −i(ωA − ω0)P +
iμ2

�2
W [E + E∗ exp{−2i(kz − ω0t)}] (2.17)

where W = NAw is the macroscopic population inversion and μ = |μ12|.
From (2.16), the equation for the population inversion is given by

dW
dt

=
1
i�

[EP ∗ − EP exp{2i(kz − ω0t)} − c.c.] (2.18)

Since we are concerned with slowly varying variables compared with optical
frequency (Rotating-Wave Approximation: RWA), we can omit the terms re-
lated to fast oscillation terms of the angular frequency 2ω0 in (2.17) and (2.18)
(Milloni and Eberly, 1988).

We need the external pump to lase, so that we add an extra term to (2.18)
for lasing in the actual laser. Further, we add the phenomenological terms for
the damping oscillations to (2.5), (2.17), and (2.18). The resulting equations,
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the Maxwell-Bloch equations, for field E, polarization P , and population
inversion W are given by

∂E

∂z
+
η

c

∂E

∂t
= i

k

2ε0η2
P − n

2Tphc
E (2.19)

∂P

∂t
= −i(ωA − ω0)P +

iμ2

�2
EW − P

T2
(2.20)

dW
dt

=
1
i�

(EP ∗ − E∗P ) +
W0 −W

T1
(2.21)

whereW0 is the population inversion induced by the pump at the laser thresh-
old. Tph, T2, and T1 are the relaxation times of the photons (photon lifetime),
the polarization (transverse relaxation), and the population inversion (longi-
tudinal relaxation), respectively. The actual laser exhibits spontaneous emis-
sion and, then, statistical Langevin noise terms are added to each equation
to explain the noise effects (Pertermann 1988 and Risken 1996). However,
statistical noises and irregular chaotic oscillations are of different origins and
they can be discussed separately. Chaos is a phenomenon described by deter-
ministic equations, so that such terms are excluded for investigating the pure
laser dynamics. Noises are only introduced to account for the effects of laser
oscillations when necessary. The Langevin noises will be briefly discussed in
Chap. 3.

2.2 Lorenz-Haken Equations

2.2.1 Lorenz-Haken Equations

We have derived the laser equations for field amplitudes and polarization,
and population inversion. In the following, we show that these equations are
equivalent to Lorenz equations, which describe a model of the convective
fluid flow for the atmosphere. Scaling the field E, the polarization P , and
the population inversion W in (2.19), (2.20), and (2.21) as Ē =

√
ε0cη/2E,

P̄ = k/ε0η
2
√
ε0cη/2P , and w = σsW (with σs = μ2ω0T2/2ε0�cη), and

neglecting the term ∂E/∂z as a small mean field that propagates in the
z direction, the Maxwell-Bloch equations are written as follows (Haken 1975);

dĒ
dt

= i
c

2η
P̄ − 1

2Tph
Ē (2.22)

T2
dP̄
dt

= −(1 − iδ)P̄ − iĒw (2.23)

T1
dw
dt

= w0 − w +
Im[Ē∗P̄ ]
Isat

(2.24)

where δ = (ω0 − ωA)T2 is the scaled atomic detuning and Isat = �
2cηε0/2μ2

T1T2 is the saturation intensity.
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In the meantime, Lorenz proposed the differential equations for three
variables X , Y , and Z as a model of atmospheric flow (Rayleigh-Bénard
configuration) and proved the existence of chaos in the system (Lorenz 1963).
Using chaotic parameters Σ, R, and β, the Lorenz equations are written as

dX
dt

= −Σ(X − Y ) (2.25)

dY
dt

= RX − Y −XZ (2.26)

dZ
dt

= −βZ +XY (2.27)

Lorenz suggested that systems described by nonlinearly coupled differen-
tial equations with three variables are candidates for chaotic systems. By
normalizing the variables as x =

√
b/IsatĒ, y = (icTph/η)

√
b/IsatP̄ , and

z = (w0 − w)cTph/η, and replacing time by t/T2 → t, the Maxwell-Bloch
equations in (2.22)–(2.24) are written as

dx
dt

= −σ(x − y) (2.28)

dy
dt

= −(1 − iδ)y + (r − z)x (2.29)

dz
dt

= −bz + Re[x∗y] (2.30)

where σ = T2/2Tph, b = T2/T1, and r = w0cTph/η. It is easily proved that
the above three equations are the same as those of the Lorenz model and
lasers described by two-level atoms are essentially the same chaotic system
as the convective fluid in the atmospheric flow. Thus, (2.28)–(2.30) are called
the Lorenz-Haken equations.

2.2.2 First Laser Threshold

A laser oscillation starts when the population inversion exceeds a certain
level, namely the pumping threshold. The laser threshold can be calculated
from (2.28)–(2.30) based on the linear stability analysis. The linear stability
analysis, which applies small perturbations on the steady-states of the laser
variables, is frequently used for obtaining the stability conditions. Assuming
the stable solutions in (2.28)–(2.30) as xs, ys, and zs, and applying small
perturbations on the steady-state values, we write the time developments
of the variables as x(t) = xs + δx(t), y(t) = ys + δy(t), and z(t) = zs +
δz(t), where δx(t), δy(t), δz(t) are small perturbations. Substituting these
values into (2.28)–(2.30), we obtain the following differential equations for
the perturbations
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dδx
dt

= −σ(δx− δy) (2.31)

dδy
dt

= −(1 − iδ)δy − (r − δz)δx (2.32)

dδz
dt

= −bδz + Re[δx∗δy] (2.33)

We can neglect the second small infinities such as δzδx and δx∗δy, thus the
equations are linearized.

When we put the time developments of the variables as δh = δh0 exp(γt)
(h = x, y, z), the laser is stable for solutions of negative real parts of γ.
On the other hand, it is unstable for solutions of positive real parts and the
solutions diverge to infinities for the time development. Substituting the time
developments δh = δh0 exp(γt) into (2.31)–(2.33), we obtain the following
characteristic relation for the non-trivial solutions

∣
∣∣
∣
∣
∣

γ + σ −δ 0
−r γ + 1 − iδ 0
0 0 γ + b

∣
∣∣
∣
∣
∣
= 0 (2.34)

The real parts of the solutions in the above equations represent the measure
for stability or instability of the solutions and the imaginary parts denote
the oscillation frequencies of the corresponding solutions. Since b = T2/T1 is
positive, one of the solutions γ = −b is a stable solution with uniform conver-
gence. The other solutions are calculated by solving the following equations

γ2 + (σ + 1 − iδ)γ − σ(r − 1 + iδ) = 0 (2.35)

When the pumping r reaches a certain value, the laser exceeds the threshold
and laser oscillation starts. Above the threshold, the solutions of the imagin-
ary parts are enough to take into account. Putting the form of the solutions
as γ = iΩ and substituting it into (2.35), we obtain the laser threshold from
the conditions having zero values for the real and imaginary parts of (2.35) as

r
(1)
th = 1 +

δ2

(σ + 1)2
(2.36)

For the laser oscillation, there is an accompanying frequency ν = Ω/2π that
corresponds to the solution of the imaginary part for the characteristic equa-
tion. Using the threshold, the frequency is given by

νR =
σ

2π

√
r
(1)
th − 1 (2.37)

The frequency νR is known as the relaxation oscillation frequency. When the
detuning δ is zero, the threshold is r(1)th = 1 or w0 = η/cTph, as expected.
The extra term in the threshold in (2.36) is the increase of the threshold,
which compensates the loss due to the detuning. As we discuss in the follow-
ing section, there is another threshold that is called second laser threshold.
Therefore, r(1)th is called first laser threshold.



18 2 Chaos in Laser Systems

2.2.3 Second Laser Threshold

Laser oscillation starts above the first threshold and shows a stable output
power at a certain pump. Here, we again apply linear stability analysis for
the laser operation. As we are considering the oscillation above the threshold,
the field and the polarization vary with time at the same optical frequency
for the steady-state values of xs, ys, and zs. Assuming the difference of the
angular detuning frequency Δω between the laser oscillation and the internal
cavity frequencies and the phase fluctuation φs of the complex field, we put
the forms of the steady-state solutions as

xs = x0 exp{−i(Δωst+ φs)} (2.38)
ys = y0 exp(−iΔωst) (2.39)
zs = z0 (2.40)

where x0 =
√
bz0 , y0 =

√
r
(1)
th bz0, z0 = r − r

(1)
th , Δωs = −δσ/(σ + 1), and

tanφs = δ/(σ + 1). The laser output power is given by the square of x0 and
reads

x2
0 = b

(
r − r

(1)
th

)
(2.41)

This is the well-known result that the laser output power linearly increases
with the increase of the pump r well above the threshold r(1)th .

For a pump below the laser threshold, the laser does not reach laser oscil-
lation and it only exhibits a faint light output due to spontaneous emission,
thus the laser is also under another stable condition. For the increase of the
pump r over the threshold, whether the laser output power increases with
the increase of the pump or not? In actual fact, there are nonlinear effects,
such as saturation of gains of the laser material, to limit the optical output
power. The effects also induce the change of laser parameter values describ-
ing the laser rate equations. Of course, what we are considering is not such
effects, but the nonlinear effects intrinsically involved in the laser rate equa-
tions in (2.28)–(2.30). Here, consider the unstable phenomena induced by
the increase of the pump r for these equations. For this purpose, we again
employ the linear stability analysis for (2.38)–(2.40) near the steady-state
values for the variables. The procedure is almost the same as the previous
calculations. For simplicity, we calculate the stability solutions for the con-
dition δ = 0 (zero detuning condition). After some calculations, the same as
the derivation for (2.35), the characteristic equation reads

γ3 + a2γ
2 + a1γ + a0 = 0 (2.42)

where a2 = σ + b + 1, a1 = b(σ + r), and a0 = 2bσ(r − 1). The stability
solutions are calculated by solving the above equation.
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At the threshold of the stable solution, the variable γ is purely imaginary,
and it is assumed as γ = iΩ. From the comparison between the real and
imaginary parts for the solution, we obtain the threshold as

r
(2)
th =

σ(σ + b+ 3)
σ − b− 1

(2.43)

Over the pump r exceeding the threshold r(2)th , the laser gets unstable states
and exhibits irregular oscillations of chaos via Hopf bifurcations (see Ap-
pendix A.1). In actual evolution processes for bifurcations, there are various
routes to chaos, for example, chaos follows immediately after period-1 oscilla-
tion (quasi-period-doubling bifurcation). The other example is that instability
to chaos follows after intermittent oscillations like spiky irregular oscillations.
The details of routes to chaos in semiconductor lasers will be demonstrated
in the following chapters. The threshold r(2)th is called second threshold to dis-
tinguish it from the first laser threshold r(1)th . For example, for the conditions
of T2 >> T1, b ≈ 0, and σ = 2(T2 = 4Tph), the threshold value is equal to
r
(2)
th = 10 and it is much higher than the first threshold r(1)th = 1 without de-

tuning. Actual unstable lasers have the second threshold values around tens
to one hundred.

The typical frequency of the irregular pulsing can also be calculated from
the characteristic equation for the pure imaginary part value of the variable Γ ,
and it is given by

νR2 =
1
2π

√

b
(
σ + r

(2)
th

)
(2.44)

For the existence of the second threshold, the condition of σ > b+1 must be
satisfied from (2.43). This is known as the bad-cavity condition of a laser that
gives rise to unstable laser oscillations. The bad-cavity condition is rewritten
by using the actual time constants as follows;

1
2Tph

>
1
T2

+
1
T1

(2.45)

Namely, the bad-cavity of a laser oscillation is a lossy and dissipative system
for photons having a low quality factor Q of the resonator. Further discus-
sion of the bad-cavity conditions and instabilities above the second laser
threshold can be found in the reference (van Tartwijk and Agrawal 1998).
Equations (2.43) and (2.44) were derived for the condition of zero frequency
detuning δ = 0. For non-zero detuning δ 	= 0, the analysis becomes much
more complex, but the expression for this case has been given and almost the
same order of the second laser threshold r(2)th has been obtained (Mandel and
Zeghlache 1983, Zeghlache and Mandel 1985, and Ning and Haken 1990).
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2.3 Classifications of Lasers

2.3.1 Classes of Lasers

We have taken into consideration all of the time constants for the field, the po-
larization of matter, and the population inversion in the laser rate equations.
The second laser threshold has been calculated for the inclusions of these
parameters. However, lasers do not always show instabilities and chaotic be-
haviors with increased pumping, and most lasers are indeed stable. Only few
lasers emitting infrared lines exhibit chaotic oscillations. For stability and
instability of lasers, we have assumed the model of a ring laser with two-level
atoms. On the other hand, most lasers in practical use are modeled by three-
or four-level atoms. Therefore, lasers must be modeled by these in a strict
sense and some modifications may be required for the above derivations.
However, the results derived for the two-level atoms can here be extended
to three- or four-level atoms and still be applicable for the discussion of the
stability and instability for practical lasers.

Even for the same material, the laser may have several oscillation lines.
In such a case, the laser has a different gain for each line and has different
time constants for the relaxation oscillations depending on the oscillation fre-
quency. Therefore, a laser with a certain material may be stable for a certain
oscillation line and have no second threshold, while it may be unstable and
have the second threshold for another line. The stability and instability of
lasers intrinsically involved in laser rate equations are classified according to
the scales of time constants for the relaxation oscillations Tph, T2, and T1

introduced in Sect. 2.2.1. Namely, one or two of the time constants among
the three in the differential equations may be adiabatically eliminated and
one or two of the laser rate equations are enough to describe actual laser
operations. Depending on the scales of the time constants, the stabilities of
lasers are classified into the following three classes; class A, B, and C lasers
(Arrechi et al. 1984a, b and Tredicce et al. 1985).

2.3.2 Class C Lasers

When the time constants of the relaxations are of the same order, we must
consider all of the Lorenz-Haken differential equations. As already discussed,
the laser oscillation starts at the first threshold with stable light output for
a certain pump and it reaches the second laser threshold for the increase of the
pump. Over pumping above the second threshold in the bad-cavity condition
with low Q factor, the laser shows unstable oscillation like irregular pulsations
and chaotic oscillations. According to the classifications of laser operations
by Arecchi et al. (1984a), these lasers are called class C lasers. Class C lasers
are generally infrared lasers and far-infrared lasers are almost classified into
class C. This is originated from the fact that the three time constants of
the relaxation oscillations for the field, the polarization of matter, and the
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population inversion tend to be the same order. Examples of class C lasers
are NH3 lasers (Weiss et al. 1985 and Hogenboom et al. 1985), Ne-Xe lasers
(3.51 µm line) (Casperson 1978 and Special issue J. Opt. Soc. Am B 1985),
and He-Ne lasers at 3.39 µm line (Weiss and King 1982, and Weiss et al.
1983). Though He-Ne lasers operating at infrared lines are class C lasers, He-
Ne lasers at visible oscillations are categorized into a different class because
the constants of the polarization and the population inversion have different
time scales from those of the infrared operations. In general, these class C
lasers do not have any commercial application.

Figure 2.2 is an example of experimentally observed chaotic waveforms
in an infrared He-Ne laser at 3.39 µm oscillation (Weiss 1983). The bad-
cavity condition was realized by tilting the angle of one of the mirrors in
the laser resonator. A stable laser state a evolves into unstable oscillations
b–d to chaotic state e with the increase of the mirror tilting angle. Figure 2.3
shows the oscillation spectra of the laser corresponding to period-doubling
bifurcations to chaos for the increase of the mirror tilting angle. Figure 2.4

Fig. 2.2. Experimentally observed chaotic time series in an infrared He-Ne laser.
Stable oscillation state (a) to chaotic state e. One of the mirrors in the laser cav-
ity is tilted and the bad-cavity condition is realized (after Weiss CO, Godone A,
Olafsson A (1983); © 1983 APS)
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Fig. 2.3. Experimentally observed optical power spectra in an infrared He-Ne laser
for period-doubling route to chaos. Tilting of one of the resonator mirrors leads to
oscillations to a period-1, b period-2, c period-4, d period-8, and e chaos (after
Weiss CO, Godone A, Olafsson A (1983); © 1983 APS)

is another experimental example of chaos showing pulsation instability in
a Xe laser at 3.51µm oscillation (Casperson 1978). With increasing pump,
period-1 pulsation at first appears in Fig. 2.4a and the laser switches to
period-2 pulsation in Fig. 2.4b. Thus, routes to chaos are not unique and
depend on systems and parameters.
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Fig. 2.4. Experimental plots of pulsation instabilities in an Xe laser at 3.51 µm
oscillation for a period-1 pulsation at a discharge current of 40 mA and b period-2
pulsations at a discharge current of 50 mA (after Casperson LW (1978); © 1978
IEEE)

2.3.3 Class B Lasers

The time constant T2 of the polarization of matter (transverse relaxation) is
small enough compared with the other time constants, i.e., Tph, T1 
 T2, the
differential equation for the polarization is adiabatically eliminated and we
obtain for the representation of the polarization in (2.32) (Haken 1985)

y =
r − z

1 − iδ
x (2.46)

Then, the laser rate equations can be described by the two differential equa-
tions for the field x and the population inversion z. These lasers are called
class B lasers and they are stable in nature, since the lasers have the first
threshold but do not have the second threshold. The electric field is complex
and the complex field equation can be split into two differential equations,
the amplitude and phase equations. However, the phase equation has no ef-
fect on other variables, so that these systems can still be characterized by
two differential equations. Therefore, class B lasers are intrinsically stable.

However, they are easily destabilized by the introduction of external
perturbations, resulting in the addition of extra degrees of freedom. If the
equations for the field amplitude and the phase couple with each other
through a perturbation, the laser must be described by the rate equations
coupled with three variables. A laser coupled with three variables becomes
a chaotic system and shows instabilities. Examples of external perturbations
are modulation for the accessible laser parameters, external optical injection,
and optical self-feedback from external optical components. Semiconductor
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laser, which is the main topic of this book, are classified into class B laser,
as discussed later. Indeed, semiconductor lasers are easily destabilized and
show chaotic behaviors by external perturbations, such as external optical
feedback (van Tartwijk and Agrawal 1998 and Ohtsubo 2002a). One of the
typical features of class B lasers is a relaxation oscillation of the laser output
that is observed for a step time response when the population inversion does
not follow the photon decay rate, i.e., T1 > Tph. Many lasers are classified
into class B lasers and other examples are CO2 lasers and solid state lasers
including fiber lasers.

2.3.4 Class A Lasers

When the lifetime of photons in a laser medium is large enough compared with
the other time constants of the relaxations, i.e., Tph � T1, T2, the differential
equations for the polarization of matter and the population inversion are
adiabatically eliminated. In the same manner as class B lasers, the steady-
state population inversion is given by (Haken 1985)

z =
1
b
Re[x∗y] . (2.47)

Then, the laser oscillation is only described by the differential equation for
the field. Lasers satisfying the relations are called class A lasers and they are
the most stable lasers with a high Q factor among the three classes. Even for
class A lasers, they may be destabilized and show chaotic behaviors by exter-
nal perturbations with two or more extra degrees of freedom as described in
class B lasers. Visible He-Ne lasers, Ar-ion lasers, and dye lasers are examples
of class A lasers.


