
Foundations of Empirical Software Engineering

The Legacy of Victor R. Basili

Bearbeitet von
Barry Boehm, Hans Dieter Rombach, Marvin V Zelkowitz

1. Auflage 2005. Buch. x, 432 S. Hardcover
ISBN 978 3 540 24547 6

Format (B x L): 15,5 x 23,5 cm
Gewicht: 1780 g

Weitere Fachgebiete > EDV, Informatik > Hardwaretechnische Grundlagen >
Systemverwaltung & Management

Zu Inhaltsverzeichnis

schnell und portofrei erhältlich bei

Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft.
Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm
durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr

als 8 Millionen Produkte.

http://www.beck-shop.de/Boehm-Rombach-Zelkowitz-Foundations-of-Empirical-Software-Engineering/productview.aspx?product=667280&utm_source=pdf&utm_medium=clickthru_lp&utm_campaign=pdf_667280&campaign=pdf/667280
http://www.beck-shop.de/trefferliste.aspx?toc=8257
http://www.beck-shop.de/trefferliste.aspx?toc=8257
http://www.beck-shop.de/fachbuch/inhaltsverzeichnis/9783540245476_TOC_001.pdf

The Role of Experimentation in Software
Engineering:
Past, Current, and Future

Victor R. Basili

Institute for Advanced Computer Studies and Department of Computer Science,
University of Maryland

Abstract. Software engineering needs to follow the model of other physi-
cal sciences and develop an experimental paradigm for the field. This paper
proposes the approach towards developing an experimental component of
such a paradigm. The approach is based upon a quality improvement para-
digm that addresses the role of experimentation and process improvement in
the context of industrial development. The paper outlines a classification
scheme for characterizing such experiments.

1. Introduction

Progress in any discipline depends on our ability to understand the basic units
necessary to solve a problem. It involves the building of models1 of the application
domain, e.g., domain specific primitives in the form of specifications and applica-
tion domain algorithms, and models of the problem solving processes, e.g., what
techniques are available for using the models to help address the problems. In or-
der to understand the effects of problem solving on the environment, we need to
be able to model various product characteristics, such as reliability, portability, ef-
ficiency, as well as model various project characteristics such as cost and sched-
ule. However, the most important thing to understand is the relationship between
various process characteristics and product characteristics, e.g., what algorithms
produce efficient solutions relevant to certain variables, what development proc-
esses produce what product characteristics and under what conditions.
 Our problem solving ability evolves over time. The evolution is based upon the
encapsulation of experience into models and the validation and verification of
those models based upon experimentation, empirical evidence, and reflection. This

1 We use the term model in a general sense to mean a simplified representation of a system
or phenomenon; it may or may not be mathematical or even formal.

2 Victor R. Basili

encapsulation of knowledge allows us to deal with higher levels of abstraction that
characterize the problem and the solution space. What works and doesn't work
will evolve over time based upon feedback and learning from applying the ideas
and analyzing the results.
 This is the approach that has been used in many fields, e.g., physics, medicine,
manufacturing. Physics aims at understanding the behavior of the physical uni-
verse and divides its researchers into theorists and experimentalists. Physics has
progressed because of the interplay between these two groups.
 Theorists build models to explain the universe - models that predict results of
events that can be measured. These models may be based upon theory or data
from prior experiments. Experimentalists observe and measure. Some experiments
are carried out to test or disprove a theory, some are designed to explore a new
domain. But at whatever point the cycle is entered, there is a modeling, experi-
menting, learning and remodeling pattern.
 Science to the early Greeks was observation followed by logical thought. It
took Galileo, and his dropping of balls off the tower at Pisa, to demonstrate the
value of experimentation. Modern physicists have learned to manipulate the
physical universe, e.g. particle physicists. However, physicists cannot change the
nature of the universe [8].
 Another example is medicine. Here we distinguish between the researcher and
the practitioner. Human intelligence was long thought to be centered in the heart.
The circulation of the blood throughout the body was a relatively recent discovery.
The medical researcher aims at understanding the workings of the human body in
order to predict the effects of various procedures and drugs and provide knowl-
edge about human health and well-being. The medical practitioner aims at apply-
ing that knowledge by manipulating the body for the purpose of curing it. There is
a clear relationship between the two and knowledge is often built by feedback
from the practitioner to the researcher.
 Medicine began as an art form. Practitioners applied various herbs and curing
processes based upon knowledge handed down, often in secret, from generation to
generation. Medicine as a field did not really progress, until various forms of
learning, based upon experimentation and model building, took place. Learning
from the application of medications and procedures formed a base for evolving
our knowledge of the relationship between these solutions and their effects. Ex-
perimentation takes on many forms, from controlled experiments to case studies.
Depending on the area of interest, data may be hard to acquire. However, our
knowledge of the human body has evolved over time. But both grew based upon
our understanding of the relationship between the procedures (processes) and its
effects on the body (product). The medical practitioner can and does manipulate
the body, but the essence of the body, which is physical, does not change. Again,
the understanding was based upon model building, experimentation, and teaming.
 A third and newer example is manufacturing. The goal of manufacturing is to
produce a product that meets a set of specifications. The same product is gener-
ated, over and over, based upon a set of processes. These processes are based upon
models of the problem domain and solution space and the relationship between the
two. Here the relationship between process and product characteristics is generally

 The Role of Experimentation in Software Engineering 3

well understood. But since the product is often a man-made artifact, we can im-
prove on the artifact itself, change its essence. Process improvement is performed
by experimenting with variations in the process, building models of what occurs,
and measuring its effect on the revised product. Models are built with good predic-
tive capabilities based upon a deep understanding of the relationship between
process and product.

2. The nature of the software engineering discipline

Like physics, medicine, manufacturing, and many other disciplines, software en-
gineering requires the same high level approach for evolving the knowledge of the
discipline; the cycle of model building, experimentation and teaming. We cannot
rely solely on observation followed by logical thought. Software engineering is a
laboratory science. It involves an experimental component to test or disprove theo-
ries, to explore new domains. We must experiment with techniques to see how and
when they really work, to understand their limits, and to understand how to im-
prove them. We must learn from application and improve our understanding.
 The researcher's role is to understand the nature of processes and products, and
the relationship between them. The practitioner's role is to build "improved" sys-
tems, using the knowledge available. Even more than in the other disciplines,
these roles are symbiotic. The researcher needs ‘laboratories’; they only exist
where practitioners build software systems. The practitioner needs to understand
how to build better systems; the researcher can provide the models to make this
happen.
 Unlike physics and medicine, but like manufacturing, we can change the es-
sence of the product. Our goal is to build improved products. However, unlike
manufacturing, software is development not production. We do not re-produce the
same object, each product is different from the last. Thus, the mechanisms for
model building are different; we do not have lots of data points to provide us with
reasonably accurate models for statistical quality control.
 Most of the technologies of the discipline are human based. It does not matter
how high we raise the level of discourse or the virtual machine, the development
of solutions is still based upon individual creativity, and so differences in human
ability will always create variations in the studies. This complicates the experi-
mental aspect of the discipline. Unlike physics, the same experiment can provide
different results depending on the people involved. This is a problem found in the
behavioral sciences.
 Besides the human factor, there are a large number of variables that affect the
outcome of an experiment. All software is not the same; process is a variable,
goals are variable, context is variable. That is, one set of processes might be more
effective for achieving certain goals in a particular context than another set of
processes. We have often made the simplifying assumption that all software is the
same, i.e., the same models will work independent of the goals, context size, ap-
plication, etc. But this is no more true than it is for hardware. Building a satellite

4 Victor R. Basili

and a toaster are not the same thing, anymore than developing the micro code for a
toaster and the flight dynamic software for the satellite are the same thing.
 A result of several of the above observations is that there is a lack of useful
models that allow us to reason about the software process, the software product
and the relationship between them. Possibly because we have been unable to build
reliable, mathematically tractable models, like in physics and manufacturing, we
have tended not to build any. And those that we have, are not always sensitive to
context. Like medicine, there are times when we need to use heuristics and models
based upon simple relationships among variables, even if the relationships cannot
be mathematically defined.

3. The available research paradigms

There are various experimental and analytic paradigms used in other disciplines.
The analytic paradigms involve proposing a set of axioms, developing a theory,
deriving results and, if possible, verifying the results with empirical observations.
This is a deductive model which does not require an experimental design in the
statistical sense, but provides an analytic framework for developing models and
understanding their boundaries based upon manipulation of the model itself. For
example the treatment of programs as mathematical objects and the analysis of the
mathematical object or its relationship to the program satisfies the paradigm. An-
other way of verifying the results is by an existence proof, i.e., the building of a
software solution to demonstrate that the theory holds. A software development to
demonstrate a theory is different from building a system ad hoc. The latter might
be an excellent art form but does not follow a research paradigm.
 The experimental paradigms involve an experimental design, observation, data
collection and validation on the process or product being studied. We will discuss
three experimental models; although they are similar, they tend to emphasize dif-
ferent things.
 First we define some terms for discussing experimentation. A hypothesis is a
tentative assumption made in order to draw out and test its logical or empirical
consequence. We define study broadly, as an act or operation for the purpose of
discovering something unknown or of testing a hypothesis. We will include vari-
ous forms of experimental, empirical and qualitative studies under this heading.
We will use the term experiment to mean a study undertaken in which the re-
searcher has control over some of the conditions in which the study takes place
and control over (some aspects of) the independent variables being studied. We
will use the term controlled experiment to mean an experiment in which the sub-
jects are randomly assigned to experimental conditions, the researcher manipulates
an independent variable, and the subjects in different experimental conditions are
treated similarly with regard to all variables except the independent variable.
 The experimental paradigm of physics is epitomized by the scientific method:
observe the world, propose a model or a theory of behavior, measure and analyze,

 The Role of Experimentation in Software Engineering 5

validate hypotheses of the model or theory (or invalidate them), and repeat the
procedure evolving our knowledge base.
 In the area of software engineering this inductive paradigm might best be used
when trying to understand the software process, product, people, or environment.
It attempts to extract from the world some form of model which tries to explain
the underlying phenomena, and evaluate whether the model is truly representative
of the phenomenon being observed. It is an approach to model building. An ex-
ample might be an attempt to understand the way software is being developed by
an organization to see if their process model can be abstracted or a tool can be
built to automate the process. The model or tool is then applied in an experiment
to verify the hypotheses. Two variations of this inductive approach can be used to
emphasize the evolutionary and revolutionary modes of discovery.
 The experimental paradigm in manufacturing is exemplified by an evolutionary
approach: observe existing solutions, propose better solutions, build/develop,
measure and analyze, and repeat the process until no more improvements appear
possible.
This evolutionary improvement oriented view assumes one already has models of
the software process, product, people and environment and modifies the model or
aspects of the model in order to improve the thing being studied. An example
might be the study of improvements to methods being used in the development of
software or the demonstration that some tool performs better than its predecessor
relative to certain characteristics. Note that a crucial part of this method is the
need for careful analysis and measurement.
 It is also possible for experimentation to be revolutionary, rather than evolu-
tionary, in which case we would begin by proposing a new model, developing sta-
tistical/qualitative methods, applying the model to case studies, measuring and
analyzing, validating the model and repeating the procedure.
 This revolutionary improvement oriented view begins by proposing a new
model, not necessarily based upon an existing model, and attempts to study the ef-
fects of the process or product suggested by the new model. The idea for the new
model is often based upon problems observed in the old model or approach. An
example might be the proposal of a new method or tool used to perform software
development in a new way. Again, measurement and analysis are crucial to the
success of this method.
 These approaches serve as a basis for distinguishing research activities from
development activities. If one of these paradigms is not being used in some form,
the study is most likely not a research project For example, building a system or
tool alone is development and not research. Research involves gaining understand-
ing about how and why a certain type of tool might be useful and by validating
that a tool has certain properties or certain effects by carefully designing an ex-
periment to measure the properties or to compare it with alternatives. An experi-
mental method can be used to understand the effects of a particular tool usage in
some environment and to validate hypotheses about how software development
can best be accomplished.

6 Victor R. Basili

4. Software engineering model building

A fair amount of research has been conducted in software engineering model
building, i.e., people are building technologies, methods, tools, life cycle models,
specification languages, etc. Some of the earliest modeling research centered on
the software product, specifically mathematical models of the program function.
There has also been some model building of product characteristics, such as reli-
ability models. There has been modeling in the process domain; a variety of nota-
tions exist for expressing the process at different levels for different purposes.
However, there has not been much experimenting on the part of the model build-
ers: implementation yes, experimentation no. This may in part be because they are
the theorists of the discipline and leave it to the experimenters to test their theo-
ries. It may in part be because they view their "models" as not needing to be tested
- they see them as self-evident.
 For example, in defining a notation for abstracting a program, the theorist may
find it sufficient to capture the abstraction perfectly, and not wonder whether it
can be applied by a practitioner, under what conditions its application is cost ef-
fective, what kind of training is needed for its successful use, etc. Similar things
might be said about the process modeler.
 It may also be that the theorists view their research domain as the whole unit,
rather than one component of the discipline. What is sometimes missing is the big
picture, i.e., what is the collection of components and how do they fit together?
What are the various program abstraction methods and when is each appropriate?
For what applications are they not effective? Under what conditions are they most
effective? What is the relationship between processes and product? What is the ef-
fect of a particular technique on product reliability, given an environment of ex-
pert programmers in a new domain, with tight schedule constraints, etc.
 One definition of science is the classification of components. We have not suf-
ficiently enumerated or emphasized the roles of different component models, e.g.,
processes, products, resources, defects, etc., the logical and physical integration of
these models, the evaluation and analysis of the models via experimentation, the
refinement and tailoring of the models to an application environment, and the ac-
cess and use of these models in an appropriate fashion, on various types of soft-
ware projects from an engineering point of view. The majority of software engi-
neering research has been bottom-up, done in isolation. It is the packaging of
technology rather than the solving of a problem or the understanding of a primi-
tive of the discipline.

5. What will our future look like?

We need research that helps establish a scientific and engineering basis for the
software engineering field. To this end, researchers need to build, analyze and
evaluate models of the software processes and products as well as various aspects
of the environment in which the software is being built, e.g. the people, the or-

 The Role of Experimentation in Software Engineering 7

ganization, etc. It is especially important to study the interactions of these models.
The goal is to develop the conceptual scientific foundations of software engineer-
ing upon which future researchers can build. This is often a process of discovering
and validating small but important concepts that can be applied in many different
ways and that can be used to build more complex and advanced ideas rather than
merely providing a tool or methodology without experimental validation of its un-
derlying assumptions or careful analysis and verification of its properties.
 This research should provide the software engineering practitioner with the
ability to control and manipulate project solutions based upon the environment
and goals set for the project, as well as knowledge based upon empirical and ex-
perimental evidence of what works and does not work and when. The practitioner
can then rely on a mix of scientific and engineering knowledge and human inge-
nuity.
 But where are the laboratories for software engineering? They can and should
be anywhere software is being developed. Software engineering researchers need
industry-based laboratories that allow them to observe, build and analyze models.
On the other hand, practitioners need to build quality systems productively and
profitably, e.g., estimate cost track progress, evaluate quality. The models of proc-
ess and product generated by researchers should be tailored based upon the data
collected within the organization and should be able to continually evolve based
upon the organization's evolving experiences. Thus the research and business per-
spectives of software engineering have a symbiotic relationship. From both per-
spectives we need a top down experimental, evolutionary framework in which re-
search and development can be logically and physically integrated to produce and
take advantage of models of the discipline that have been evaluated and tailored to
the application environment. However, since each such laboratory will only pro-
vide local, rather than global, models, we need many experimental laboratories at
multiple levels. These will help us generate the basic models and metrics of the
business and the science.
 This allows us to view our usable knowledge as growing over time and pro-
vides some insight into the relationship between software development as an art
and as an engineering discipline. As we progress with our deeper understanding of
the models and relationships, we can work on harder and harder problems. At the
top is always the need to create new ideas, to go where models do not exist. But
we can reach these new heights based upon our ability to build on packages of
knowledge, not just packages of technologies.

6. Can this be done?

There have been pockets of experimentation in software engineering but there is
certainly not a sufficient amount of it [5, 9, 11]. One explicit example, with which
the author is intimately familiar, is the work done in the Software Engineering
Laboratory at NASA/GSFC [6]. Here the overriding experimental paradigm has
been the Quality Improvement Paradigm [1, 4], which combines the evolutionary

8 Victor R. Basili

and revolutionary experimental aspects of the scientific method, tailored to the
study of software. The steps of the QIP are:

Characterize the project and environment, i.e., observe and model the existing
environment.
Set goals for successful project performance and improvement and organiza-
tional learning.
Choose the appropriate processes and supporting methods and tools for this
project and for study.
Execute the processes, construct the products, collect and validate the pre-
scribed data based upon the goals, and analyze it to provide real-time feedback
for corrective action.
Analyze the data to evaluate the current practices, determine problems, record
findings, and make recommendations for future project improvements.
Package the experience in the form of updated and refined models and other
forms of structured knowledge gained from this and prior projects and save it
in an experience base for future projects.

To help create the laboratory environment to benefit both the research and the de-
velopment aspects of software engineering, the Experience Factory concept was
created. The Experience Factory represents a form of laboratory environment for
software development where models can be built and provide direct benefit to the
projects under study. It represents an organizational structure that supports the QIP
by providing support for learning through the accumulation of experience, the
building of experience models in an experience base, and the use of this new
knowledge and understanding in the current and future project developments [2].

7. The maturing of the experimental discipline

In order to identify patterns in experimental activities in software engineering
from the past to the present, I relied on my experience, discussions with the Ex-
perimental Software Engineering Group here at the University of Maryland, and
some observations in the literature of experimental papers, i.e., papers that re-
ported on studies that were carried out.
 This identified some elements and characteristics of the experimental work in
software engineering, specifically (1) identification of the components and pur-
poses of the studies, (2) the types and characteristics of the experiments run, and
(3) some ideas on how to judge if the field is maturing. These have been formu-
lated as three questions. First, what are the components and goals of the software
engineering studies? Second, what kinds of experiments have been performed?
Third, how is software engineering experimentation maturing?

 The Role of Experimentation in Software Engineering 9

7.1. What are the components and goals of the software engineering
studies?

Our model for components method is the Goal/Question/Metric (GQM) Goal
Template [4]. The GQM method was defined as a mechanism for defining and in-
terpreting a set of operation goals, using measurement. It represents a systematic
approach for tailoring and integrating goals with models of the software processes,
products and quality perspectives of interest, based upon the specific needs of a
project and organization. However, here, we will only use the parameters of a goal
to characterize the types of studies performed. There are four parameters: the ob-
ject of study, the purpose, the focus, and the point of view. A sample goal might
be: analyze perspective based reading (object of interest), in order to evaluate
(purpose) it with respect to defect detection (focus) from the point of view of
quality assurance (point of view). Studies may have more than one goal but the
goals are usually related, i.e. there are several focuses of the same object being
analyzed or a related set of objects are being studied. In experimental papers, the
point of view is usually the researcher trying to gain some knowledge.

object of study: a process, product, or any form of model
purpose: to characterize (what is it?), evaluate (is it good?), predict (can

I estimate something in the future?), control (can I manipulate events?), improve
(can I improve event?)

focus: the aspect of the object of study that is of interest, e.g., reliability
of the product, defect detection/prevention capability of the process, accuracy of
the cost model

point of view: the person who benefits from the information, e.g., the re-
searcher in understanding something better
 In going through the literature, there appeared to be two patterns of empirical
studies, those I will call human factor studies, and those that appear to be more
broad-based software engineering. The first class includes studies aimed at under-
standing the human cognitive process, e.g., how individual programmers perceive
or solve problems. The second set of studies appear to be aimed more at under-
standing how to aid the practitioner, i.e., building models of the software process,
product, and their relationship. We will call these project-based studies. The rea-
son for making the distinction is that they appear to have different patterns. Many
of the human factor studies were done by or with cognitive psychologists who
were comfortable with the experimental paradigm. The object of study tended to
be small, the purpose was evaluation with respect to some performance measure.
The point of view was mostly the researcher, attempting to understand something
about programming.
 Although the project-based studies are also often from the point of view of the
researcher, it is clear that the perspectives are often practitioner based, i.e. the
point of view represented by the researcher is that of the organization, the man-
ager, the developer, etc. The object of study is often the software process or prod-
uct in some form. If we are looking at breadth, there have been an enormous vari-
ety of objects studied. The object set which once included only small, specific

10 Victor R. Basili

items, like particular programming language features, has evolved to include en-
tire development processes, like Cleanroom development
 Although the vast majority of such studies are also aimed at evaluation, and a
few at prediction; more recently, as the recognition of the complexity of the soft-
ware domain has grown, there are more studies that simply try to characterize and
understand something, like effort distribution, rather than evaluate whether or not
it is good.

7.2. What kinds of experiment have been performed?

There are several attributes of an experiment. Consider the following set:
 (1) Does the study present results which are descriptive, correlational, cause-
effect?

Descriptive: there may be patterns in the data but the relationship among the
variables has not been examined
Correlational: the variation in the dependent variable(s) is related to the
variation of the independent variable(s)
Cause-effect: the treatment variable(s) is the only possible cause of variation
in the dependent variable(s)

Most of the human factor studies were cause-effect. This appears to be a sign of
maturity of the experimentalists in that area as well as the size and nature of the
problem they were attacking. The project-based studies were dominated by corre-
lational studies early on but have evolved to more descriptive (and qualitative)
style studies over time. I believe this reflects early beliefs that the problem was
simpler than it was and some simple combination of metrics could easily explain
cost, quality, etc.
 (2) Is the study performed on novices or experts or both?

novice: students or individuals not experienced in the study domain
experts: practitioners of the task or people with experience in the study do-

main
There seems to be no pattern here, except possibly that there are more studies with
experts in the project based study set. This is especially true with the qualitative
studies of organizations and projects, but also with some of the controlled experi-
ments.
 (3) Is the study performed in vivo or in vitro?

In vivo: in the field under normal conditions
In vitro: in the laboratory under controlled conditions

Again, for project-based studies, there appear to be more studies under normal
conditions (in vivo).
 (4) Is it an experiment or an observational study? Although the term experi-
ment is often used to be synonymous with controlled experiment, as defined ear-
lier, I have taken a broader definition here. In this view, we distinguish between
experiments, where at least one treatment or controlled variable exists, and obser-
vational studies where there are no treatment or controlled variables.

 The Role of Experimentation in Software Engineering 11

 Experiments can be characterized by the number of teams replicating each pro-
ject and the number of different projects analyzed. As such, it consists of four dif-
ferent experimental classes, as shown in Table 1: blocked subject-project, repli-
cated project, multi-project variation, and a single project. Blocked subject-project
and replicated project experiments represent controlled experiments, as defined
earlier. Multi-project variation and single project experiments represent what have
been called quasi-experiments or pre-experimental designs [7].
 In the literature, typically, controlled experiments are in vitro. There is a mix of
both novice and expert treatments, most often the former. Sometimes, the novice
subjects are used to "debug" the experimental design, which is then run with pro-
fessional subjects. Also, controlled experiments can generate stronger statistical
confidence in the conclusions. A common approach in the blocked subject-project
study is the use of fractional factorial designs. Unfortunately, since controlled ex-
periments are expensive and difficult to control if the project is too large, the pro-
jects studied tend to be small.
Quasi-experiments can deal with large projects and be easily done in vivo with
experts. These experiments tend to involve a qualitative analysis component, in-
cluding at least some form of interviewing.

Projects
 One More than one

One Single Project Multi-Project Variation # of Teams
per Project More than one Replicated Project Blocked Subject-Project

Table 1: Experiments

 Observational studies can be characterized by the number of sites included and
whether or not a set of study variables are determined a priori, as shown in Table
2. Whether or not a set of study variables are predetermined by the researcher
separates the pure qualitative study (no a priori variables isolated by the observer),
from the mix of qualitative and quantitative analysis, where the observer has iden-
tified, a priori, a set of variables for observation.
 In purely qualitative analysis, deductions are made using non-mathematical
formal logic, e.g., verbal propositions [10]. I was only able to find one study that
fit in this category and since it involved multiple sites would be classified as a
Field Qualitative Study. On the other hand, there are a large number of case stud-
ies in the literature and some field studies. Almost all are in vivo with experts and
descriptive.

7.3. How is software engineering experimentation maturing?

One sign of maturity in a field is the level of sophistication of the goals of an ex-
periment and its relevance to understanding interesting (e.g., practical) things

12 Victor R. Basili

about the field. For example, a primitive question might be to determine experi-
mentally if various software processes and products could be measured and their
characteristics differentiated on the basis of measurement. This is a primitive
question but needed to be answered as a first step in the evolution of experimenta-
tion. Over time, the questions have become more sophisticated, e.g., Can a change
in an existing process produce a measurable effect on the product or environment?
Can the measurable characteristics of a process be used to predict the measurable
characteristics of the product or environment, within a particular context? Can we
control for product effects, based upon goals, given a particular set of context vari-
ables?
 Another sign of maturity is to see a pattern of knowledge building from a series
of experiments. This reflects the discipline's ability to build on prior work (knowl-
edge, models, experiments). There are various ways of viewing this. We can ask if
the study was an isolated event, if it led to other studies that made use of the in-
formation obtained from this particular study. We can ask if studies have been rep-
licated under similar or differing conditions. We can ask if this building of knowl-
edge exists in one research group or environment, or has spread to others, i.e.,
researchers are building on each other's work.
 In both these cases we have begun to see progress. Researchers appear to be
asking more sophisticated questions, trying to tackle questions about relationships
between processes and product characteristics, using more studies in the field than
in the controlled laboratory, and combining various experimental classes to build
knowledge.
 There are several examples of the evolution of knowledge over time, based
upon experimentation and learning, within a particular organization or research
group. The SEL at NASA/GSFC offers several examples [6]. One particular ex-
ample is the evolution of the SEL knowledge of the effectiveness of reading re-
lated techniques and methods [3]. In fact, inspections, in general, are well studied
experimentally.

 Variable Scope
 defined a priori not defined a priori

One Case Study Case Qualitative Study # of Sites

More than one Field Study Field Qualitative Study

Table 2: Observational Studies

There is also growing evidence of the results of one research group being used by
others. At least one group of researchers have organized explicitly for the purpose
of sharing knowledge and experiments. The group is called ISERN, the Interna-
tional Software Engineering Research Network. Its goal is to share experiences on
software engineering experimentation, by experimenting, learning, remodeling
and farther experimenting to build a body of knowledge, based upon empirical
evidence. They have begun replicating experiments, e.g., various forms of replica-
tion of the defect-based reading have been performed, and replications of the per-

 The Role of Experimentation in Software Engineering 13

spective-based reading experiment are being performed. Experiments are being
run to better understanding the parameters of inspection. ISERN has membership
in the U.S., Europe, Asia, and Australia representing both industry and academia.
 Another sign of progress for experimental software engineering is the new
journal by Kluwer, the International Journal of Empirical Software Engineering,
whose aim is to provide a forum for researchers and practitioners involved in the
empirical study of software engineering. It aims at publishing artifacts and labora-
tory manuals that support the replication of experiments. It plans to encourage and
publish replicated studies, successful and unsuccessful, highlighting what can be
learned from them for improving future studies.

Acknowledgements: I would like to thank the members of the Experimental Soft-
ware Engineering Group at the University of Maryland for their contributions to
the ideas in this paper, especially, Filippo Lanubile, Carolyn Seaman, Jyrki Kon-
tio, Walcelio Melo, Yong-Mi Kim, and Giovanni Cantone.

8. References

[1] Victor R. Basili, Quantitative Evaluation of Software Methodology, Keynote Address,
First Pan Pacific Computer Conference, Melbourne, Australia, September 1985.

[2] Victor R. Basili, Software Development: A Paradigm for the Future, COMPSAC '89,
Orlando, Florida, pp. 471-485, September 1989.

[3] Victor R. Basili and Scott Green, Software Process Evolution at the SEL, IEEE Soft-
ware, pp. 58-66, July 1994.

[4] Victor R. Basili and H. Dieter Rombach, The TAME Project: Towards Improvement-
Oriented Software Environments, IEEE Transactions on Software Engineering, vol.
14, no. 6, June 1988.

[5] V. R. Basili, R. W. Selby, D. H. Hutchens, "Experimentation in Software Engineering,"
IEEE Transactions on Software Engineering, vol. SE-12, no. 7, pp. 733-743, July
1986.

[6] Victor Basili, Marvin Zelkowitz, Frank McGarry, Jerry Page, Sharon Waligora, Rose
Pajerski, SEL's Software Development Process Improvement Program, IEEE Software
Magazine, pp. 83-87, November 1995.

[7] Campbell, Donald T. and Julian C. Stanley, Experimental and Quasi-experimental De-
signs for Research, Houghton Mifflin, Boston, MA.

[8] Lederman, Leon, "The God Particle", Houghton Mifflin, Boston, MA, 1993
[9] Norman Fenton, Shari Lawrence Pfleeger, and Robert L. Glass, Science and Substance:

A Challenge to Software Engineers, IEEE Software, pp. 86 – 94, July 1994.
[10] A. S. Lee, "A scientific methodology for MIS Case Studies", MIS Quarterly, pp.33-50

March 1989.
[11] W. L. Tichy, P. Lukowicz, L. Prechelt, and E. A. Heinz, Experimental

Evaluation in Computer Science: A Quantitative Study, Journal of Systems
and Software, vol. 28, pp. 1

