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Chapter 2
Thermodynamic limit in the Ising model

Modern statistical mechanics rests on the Gibbs hypothesis that in a system in
equilibrium with a reservoir at temperature T , the probability of observing a state
is proportional to e−E/kT , where E is the energy of the state, k the Boltzmann
constant, and T the absolute temperature. Macroscopic equilibrium behavior (in
particular thermodynamics) can then be derived via a sharp separation of scales
implemented mathematically by requiring that the ratio between inter-atomic dis-
tances and macroscopic lengths vanishes. Such a scaling limit procedure is then
referred to as “the thermodynamic limit.”

We will discuss all that in the simpler context of the Ising model. In Sect. 2.1
we will study the Gibbs measures in bounded domains, and in Sect. 2.2 their infi-
nite volume limits (thermodynamic limit). The limit measures obtained in this way
will be characterized by the DLR property (DLR stands for Dobrushin, Lanford
and Ruelle); the general structure of the DLR measures will then be examined in
detail. Thermodynamic phases will be related to “extremal” DLR measures and
consequently the occurrence of a phase transition to the non-uniqueness of DLR
measures.

In Sects. 2.3 and 2.4 we will focus on the thermodynamic potentials of the Ising
model. Using only the Boltzmann hypothesis to identify the thermodynamic entropy
as the log of the number of states with given energy, we will derive the well known
formula which relates the pressure to the log of the partition function; see Sect. 2.3.
Formulas for all the other thermodynamic potentials will then be obtained by using
the thermodynamic relations establishing a bridge between the macroscopic prop-
erties of a body and its microscopic interactions. The power of the thermodynamic
formalism will become evident in Sect. 2.4, where it is applied in several different
contexts. In particular, we shall see that the Gibbs assumption and DLR measures
can be actually derived from the thermodynamic potentials, and we shall also show
that large deviations naturally fall in the formalism.

2.1 Finite volume Gibbs measures

In this section we will study the finite volume Gibbs measures in the context of the
Ising model. Ising configurations are collections of spins on the lattice Z

d . Gibbs
measures are then probabilities on the phase space of Ising configurations, they are
defined by the Gibbs formula Ce−E/kT , C a normalization constant (whose inverse
is called the “partition function”), E the energy, k the Boltzmann constant and T the
absolute temperature. The energy of an Ising configuration will be specified by the
spin–spin interaction, the interaction of the spins with an external magnetic field and
with the “external” spins, which act as boundary conditions.
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18 2 Thermodynamic limit in the Ising model

2.1.1 Spin configurations, phase space

The Ising spin configurations (denoted by σ ) are ±1 valued functions on Z
d ; the

collection of all spin configurations is the Ising phase space X = {−1,1}Z
d
. A spin

configuration is therefore the collection

σ = {σ(x), x ∈ Z
d},

σ (x) = ±1 (up or down) being the spin at site x in the configuration σ .
Analogously, spin configurations in Λ ⊂ Z

d are functions on Λ with values ±1,
namely elements σΛ of XΛ = {−1,1}Λ,

σΛ = {σΛ(x), x ∈ Λ}.
The restriction map from X to XΛ, denoted by �Λ, is defined as

�Λ (σ) = σΛ = {σ(x), x ∈ Λ}, (2.1.1.1)

and when there is no room for doubt, we will simply write σΛ for �Λ (σ). We will
often use the expression (σΛ,σΔ), Λ∩Δ = ∅ to denote the element in XΛ�Δ whose
restrictions to Λ and Δ are respectively σΛ and σΔ.

We regard X as a topological space with the product topology, namely a sequence
σ (n) → σ if and only if for any x ∈ Z

d , σ (n)(x) = σ(x) for all n large enough.
A countable basis of open sets is the collection of cylindrical sets. We define

Cylindrical functions and sets A function f on X is cylindrical in Δ if it only
depends on the restriction σΔ of σ to Δ. A set is cylindrical in Δ if its characteristic
function is cylindrical in Δ. A function or a set is cylindrical if it is cylindrical in a
bounded region Δ. Elementary cylinders are sets of the form CσΛ = {σ ′ ∈ X : σ ′

Λ =
σΛ} with Λ bounded and σΛ ∈ XΛ. Their collection is denoted by C .

Cylindrical sets are both open and closed; cylindrical functions are evidently
continuous, and vice versa any continuous function can be approximated in sup
norm by cylindrical functions; see Appendix A.

2.1.2 Energy

The energy of an Ising spin system is a family {HΛ(σΛ)} with Λ running over
all the bounded subsets of Z

d and σΛ ∈ XΛ. HΛ(σΛ) is the energy in Λ of the spin
configuration σΛ, it includes all the interactions of the spins of Λ among themselves
and the interaction of the spins of Λ with an external magnetic field, if present. The
interaction between two disjoint, bounded regions Λ and Δ is then defined by

WΛ,Δ(σΛ,σΔ) = HΛ∪Δ(σΛ,σΔ) − HΛ(σΛ) − HΔ(σΔ), (2.1.2.1)
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where (σΛ,σΔ) ∈ XΛ�Δ is the configuration whose restrictions to Λ and Δ are σΛ

and σΔ. The energy in Λ under the field produced by the spins in Δ, Λ ∩ Δ = ∅ is

HΛ,Δ(σΛ|σΔ) = HΛ�Δ(σΛ,σΔ) − HΔ(σΔ), (2.1.2.2)

and

HΛ,Λc(σΛ|σΛc) = lim
Δ↗Λc

(
HΛ∪Δ(σΛ,σΔ) − HΔ(σΔ)

)
, (2.1.2.3)

if the limit exists independently of the sequence approximating Λc. The above nota-
tion is redundant because the region appearing as a suffix in the energy can be read
off from the spin configurations, so that when no confusion arises we may drop them
from the notation. In particular, HΛ(σΛ|σΛc) will always stand for HΛ,Λc(σΛ|σΛc).

We will restrict in the sequel to energies of the form

HΛ(σΛ) = −1

2

∑

x �=y∈Λ

J(x, y)σΛ(x)σΛ(y) − h
∑

x∈Λ

σΛ(x). (2.1.2.4)

If Λ is a singleton, Λ = {x},
H{x}(σ{x}(x)) = −hσ{x}(x).

h is interpreted as an external magnetic field and −hσΛ(x) is the energy of the spin
at x under the sole influence of the external magnetic field; indeed such a term is the
only one surviving when Λ = {x}. −J (x, y)σΛ(x)σΛ(y) is the interaction energy
between the spins at x and y as follows from (2.1.2.1) with Λ = {x} ∪ {y}. Notice
finally that (2.1.2.2) with {HΛ(σΛ)} as in (2.1.2.4) becomes

HΛ,Δ(σΛ|σΔ) = HΛ(σΛ) −
∑

x∈Λ

∑

y ∈Δ

J(x, y)σΛ(x)σΔ(y). (2.1.2.5)

Assumptions on the interaction

• symmetry: J (x, y) = J (y, x).
• translational invariance: J (x + z, y + z) = J (x, y), for all x, y and z in Z

d .
• summability:

∑
x �=0 |J (0, x)| < ∞ (by the summability assumption, the series in

(2.1.2.5) is convergent).

Under the above summability assumption, (2.1.2.3) becomes

HΛ(σΛ|σΛc) = HΛ(σΛ) −
∑

x∈Λ

∑

y∈Λc

J (x, y)σΛ(x)σΛc(y).

Examples

• Classical Ising model. The only active bonds are those connecting nearest neigh-
bor (n.n.) sites, with ferromagnetic coupling constants all equal to J > 0.
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• Kac potentials. The coupling constants Jγ (x, y) depend on a parameter γ > 0:

Jγ (x, y) = γ dJ (γ x, γy),

where J (r, r ′) = J (r + a, r ′ + a) ≥ 0, for all r , r ′ and a in R
d ; J (0, r) is contin-

uous with compact support and normalized as a probability kernel:
∫

Rd

dr J (0, r) = 1.

We are interested in small γ , a regime characterized by (i) long range interactions
≈ γ −1, and a large, ≈ γ −d , connectivity of each site (i.e. the number of active
bonds starting from that site); (ii) the coupling constants of the bonds are small,
≈ γ d , and (iii) the total strength of a site (i.e. the sum of all the coupling constants
of bonds originating from that site) is ≈ 1.

• Mean field models. Here the coupling constants depend on the region Λ where the
system is studied. If Λ has N sites J (x, y) = N−1, x, y in Λ. The model shares
the properties (i), (ii) and (iii) of the previous one, which was indeed conceived of
as a refinement of the mean field model to correct its various unphysical features.
The mean field model, though, has the great advantage of providing a simple and
not too unrealistic mechanism for phase transitions.

2.1.3 Potentials

Often the energy of the system is given indirectly by assigning its potential. The
potential is a family {UΔ(σΔ)}, Δ running over the bounded sets and σΔ ∈ XΔ.
Given a potential, its energy is

H(σΛ) =
∑

Δ⊆Λ

UΔ(σΔ), (2.1.3.1)

where σΔ above is the restriction to Δ of σΛ.
As already observed the potential associated to the energy (2.1.2.4) is made by

the potential with U{x}(σ{x}) = −hσ{x}(x), U{x,y}(σ{x,y}) = −J (x, y)σ{x,y}(x) ×
σ{x,y}(y), while all other UΔ = 0.

The relation (2.1.3.1) can be inverted, namely, given {HΛ(σΛ)}, we can recover
uniquely {UΔ(σΔ)} in such a way that (2.1.3.1) holds. This is done iteratively start-
ing from sets of cardinality 1 and then increasing progressively the cardinality, notic-
ing that the potential with the set having maximal cardinality can be expressed using
(2.1.3.1) in terms of the energy and of the potentials with smaller cardinality.

As stated earlier we will restrict ourselves to one and two body potentials only,
but in magnetic systems also quadrupole and multipole interactions may be relevant.
Theoretically the many body interactions are quite important, and an example is pro-
vided in Sect. 2.4.2 where a relation is established between DLR measures and the
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thermodynamic pressure as a function of the general many body potential. In gen-
eral, many body potentials arise after coarse graining transformations and describe
effective hamiltonians, as discussed in Chaps. 9 and 10.

Example Potentials are often written as

U{x1,...,xn}(σ{x1,...,xn}) = −J (x1, . . . , xn)σ{x1,...,xn}(x1) · · ·σ{x1,...,xn}(xn), (2.1.3.2)

where J (x1, . . . , xn) is a symmetric function on (Zd)n. Then (2.1.3.1) yields

H(σΛ) = −
|Λ|∑

n=1

1

n!
∑

x1 �=···�=xn∈Λ

J(x1, . . . , xn)σΛ(x1) · · ·σΛ(xn).

One may wonder why one would take only a multi-linear dependence on the spins
in (2.1.3.2). This is specific of Ising spins where all functions are necessarily sums
of multi-linear terms as shown below. A function f cylindrical in Δ, Δ bounded,
can be written as

f (σ ) =
∑

aΔ∈XΔ

f (aΔ)
∏

x∈Δ

1 + aΔ(x)σ (x)

2
, (2.1.3.3)

where f (aΔ) denotes the values of f (σ ) when the restriction of σ to Δ is aΔ.
Thus any cylindrical function in Δ is a multi-linear polynomial of the variables
{σ(x), x ∈ Δ}. In particular, if C is a cylindrical set in Δ, Δ bounded,

1σ∈C =
∑

aΔ∈C

∏

x∈Δ

1 + aΔ(x)σ (x)

2
.

2.1.4 Finite volume Gibbs measures

In the context of the Ising model the Gibbs hypothesis says that the equilibrium state
at temperature T of the Ising spin system in a bounded region Λ is described by a
probability distribution on XΛ given by the formula

probability of observing σΛ = e−βEΛ(σΛ)

ZΛ

, (2.1.4.1)

where β = 1/kT , EΛ(σΛ) is the energy of the configuration σΛ and ZΛ a nor-
malization constant. The energy EΛ is not necessarily the same as the energy HΛ

of (2.1.2.4), as there may be interactions with the “walls” and/or with “the world”
outside Λ.
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Remarks

Equation (2.1.4.1) is supposed to describe the equilibrium states of the collection of
spins σΛ in contact with a thermal reservoir at fixed temperature T which exchanges
energy with the spins in Λ at a rate determined by T . The physical assumption is
that the interaction is so weak that the energy levels EΛ are not affected by the
reservoir, yet it is at the same time so strong that it eventually drives the system to
a final equilibrium, independently of its initial conditions. Equilibrium is eventu-
ally established throughout the system due to complex mechanisms which involve
various space and time scales, hydrodynamic behaviors and all the other relevant
non-equilibrium phenomena. But no matter how complicated the pattern to equi-
librium is, according to Gibbs the final equilibrium has the very simple expression
(2.1.4.1).

The physical meaning of representing a state as a probability and in particular the
equilibrium state as in (2.1.4.1) is that if we (ideally) make repeated observations of
the system after equilibrium is established, the frequency with which we observe a
configuration σΛ is given by the Gibbs formula (2.1.4.1).

The energy EΛ(σΛ)

With reference to the system defined in Sect. 2.1.2, the energy EΛ(σΛ) is not neces-
sarily the same as the energy HΛ(σΛ) of (2.1.2.4), as there may be interactions with
the “walls,” namely interactions with “the world” outside Λ. They are usually quite
complex, but they affect significantly only the spins close to the boundaries of Λ.
We may thus suppose that

EΛ(σΛ) = HΛ(σΛ) −
∑

x∈Λ

hΛc

x σΛ(x), (2.1.4.2)

where hΛc

x is an “effective” magnetic field which takes into account the interactions
with Λc and which decays as dist(x,Λc) increases. If the interaction has many
body potentials, more general expressions will arise, but for simplicity we will only
consider here the case (2.1.4.2). The energy (2.1.4.2) refers to the ideal case where
the effective magnetic field hΛc

x does not fluctuate, i.e. when outside Λ everything
is frozen and does not change in time. We will also suppose (most of the times) that
hΛc

x arises from the interaction with a fixed spin configuration σΛc so that

hΛc

x = −
∑

y∈Λc

J (x, y)σΛc(y), and EΛ(σΛ) = HΛ(σΛ|σΛc). (2.1.4.3)

This is not a very realistic model of a wall, but it has considerable theoretical im-
portance as we shall see.
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The Gibbs measure GΛ(σΛ|σΛc)

When we use the choice (2.1.4.3) we will write (2.1.4.1) as

GΛ(σΛ|σΛc) = e−βHΛ(σΛ|σΛc )

ZΛ(σΛc)
, ZΛ(σΛc) =

∑

σ ′
Λ∈XΛ

e−βHΛ(σ ′
Λ|σΛc ). (2.1.4.4)

The dependence on β and on the parameters defining the energy are not made
explicit; if necessary they will be added as subscripts. The “partition function”
ZΛ(σΛc), which in (2.1.4.4) appears just as a normalization factor, has instead a
meaning that is important physically, being directly related to the thermodynamic
pressures; see Sect. 2.3.

By abuse of notation, we will use the same symbol GΛ(·|σΛc) for the probability
on X which is a finite sum of Dirac deltas, namely calling {σ ′} the set consisting of
the singleton σ ′, GΛ({σ ′}|σΛc) is equal to 0 for all σ ′ except those whose restriction
to Λc is exactly σΛc ; thus

GΛ({σ ′}|σΛc) = 1σ ′
Λc=σΛc

e−βHΛ(σ ′
Λ|σΛc )

ZΛ(σΛc)
, (2.1.4.5)

where, to make notation easier, we may just write GΛ(σ ′|σΛc) for GΛ({σ ′}|σΛc).
We shall switch from (2.1.4.4) to (2.1.4.5) freely, and the reader should understand
from the context the meaning of GΛ(·|σΛc).

2.1.5 A consistency property of Gibbs measures

In this subsection we will prove that the conditional probability of a Gibbs measure
is also Gibbs (hence the title of the subsection) and show that this has a nice physical
meaning.

Marginal distributions

Let mΛ be a probability on XΛ, Λ a bounded set in Z
d , and Δ a proper subset

of Λ. Then the marginal distribution [or simply the marginal] of mΛ on XΔ is the
probability (mΛ)Δ on XΔ defined by

(mΛ)Δ(σ ∗
Δ) =

∑

σΛ:σΛ(x)=σ ∗
Δ(x)x∈Δ

mΛ(σΛ) ≡
∑

σΛ\Δ∈XΛ\Δ

mΛ(σ ∗
Δ,σΛ\Δ).

The marginal of GΛ(σΛ|σΛc) on XΛ\Δ is

(GΛ(·|σΛc))Λ\Δ(σ ∗
Λ\Δ) =

∑

σΛ:σΛ=σ ∗
Λ\Δ onΛ\Δ

GΛ(σΛ|σΛc).
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Theorem 2.1.5.1 With the above notation

GΔ(σ ∗
Δ|σ ∗

Λ\Δ,σΛc) = GΛ(σ ∗
Δ,σ ∗

Λ\Δ|σΛc)

(GΛ(·|σΛc))Λ\Δ(σ ∗
Λ\Δ)

. (2.1.5.1)

Proof

r.h.s. of (2.1.5.1) = e
−βHΛ

(
σ ∗

Δ,σ ∗
Λ\Δ|σΛc

)

∑
σΔ

e
−βHΛ

(
σΔ,σ ∗

Λ\Δ|σΛc
) . (2.1.5.2)

Equation (2.1.5.1) then follows by using the identity

HΛ

(
σ ′

Δ,σ ∗
Λ\Δ|σΛc

) = HΔ

(
σ ′

Δ|σ ∗
Λ\Δ,σΛc

) + HΛ\Δ,Λc

(
σ ∗

Λ\Δ|σΛc

);
see (2.1.2.5) for notation, with σ ′

Δ = σ ∗
Δ in the numerator of the fraction in (2.1.5.2)

and σ ′
Δ = σΔ in the denominator. �

Remarks

Equation (2.1.5.1) has a nice physical interpretation. Suppose we make an ideal ex-
periment where we measure N times the state of the system in equilibrium. By the
Gibbs hypothesis the number of times we find in Λ \ Δ the configuration σ ∗

Λ\Δ is
≈ (GΛ(·|σΛc))Λ\Δ(σ ∗

Λ\Δ)N . We then select those experiments where we have seen
σ ∗

Λ\Δ and count the relative frequency of appearance of σ ∗
Δ ∈ XΔ, namely the num-

ber of times when we see both σ ∗
Δ and σ ∗

Λ\Δ, that is ≈ N × GΛ(σ ∗
Δ,σ ∗

Λ\Δ|σΛc),
over the number of times when we see σ ∗

Λ\Δ, i.e. ≈ N × (GΛ(·|σΛc))Λ\Δ(σ ∗
Λ\Δ).

Thus the conditional frequency in the limit N → ∞ is
GΛ(σ ∗

Δ,σ ∗
Λ\Δ|σΛc )

(GΛ(·|σΛc ))Λ\Δ(σ ∗
Λ\Δ)

which is

equal to the r.h.s. of (2.1.5.1), hence to GΔ(σ ∗
Δ|σ ∗

Λ\Δ,σΛc), i.e. to the Gibbs prob-
ability in Δ as if the spins in Λ \ Δ were frozen, just like those in Λc. Thus the
Gibbs probability GΔ(σ ∗

Δ|σ ∗
Λ\Δ,σΛc) is not only the probability of observing σ ∗

Δ

when σ ∗
Λ\Δ and σΛc are frozen, but also the conditional probability of observing σ ∗

Δ

conditioned to having observed σ ∗
Λ\Δ (and with σΛc frozen).

Equation (2.1.5.1) can be read as meaning that he conditional GΛ(·|σΛc)-
probability of σ ∗

Δ given σ ∗
Λ\Δ is equal to GΔ(σ ∗

Δ|σ ∗
Λ\Δ,σΛc) because we have the

following.

Conditional probabilities

Let m be a probability on a space Ω , C ⊂ Ω , m(C) > 0. Then the ratio
m(A∩C)

m(C)
=: m(A|C) is the m-conditional probability of A given C. If π = (C1, . . . ,

Cn) is a partition of Ω with m(Ci) > 0, i = 1, . . . , n, then

m(A) =
n∑

i=1

m(A|Ci)m(Ci). (2.1.5.3)
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Thus (2.1.5.1) is just the statement at the beginning of the subsection that the
Gibbs GΛ(·|σΛc) conditional probability of observing σ ∗

Δ given σ ∗
Λ\Δ is equal to

GΔ(σ ∗
Δ|σ ∗

Λ\Δ,σΛc). Indeed the numerator on the r.h.s. of (2.1.5.1) is the probabil-
ity of having σ ∗

Δ in Δ intersected with the event σ ∗
Λ\Δ in Λ \ Δ; the denominator,

being the marginal probability of σ ∗
Λ\Δ, is the probability of σ ∗

Λ\Δ. The ratio is by
definition the conditional probability of σ ∗

Δ given σ ∗
Λ\Δ.

Consider (2.1.5.3) with the partition π = {Cσ ∗
Λ\Δ,σ ∗

Λ\Δ ∈ XΛ\Δ}, Cσ ∗
Λ\Δ being

the set of all σΛ whose restriction to Λ \ Δ is σ ∗
Λ\Δ. Then (2.1.5.3) reads

(GΛ(·|σΛc))Δ(σ ∗
Δ)

=
∑

σ ∗
Λ\Δ∈XΛ\Δ

GΔ(σ ∗
Δ|σ ∗

Λ\Δ,σΛc) (GΛ(·|σΛc))Λ\Δ(σ ∗
Λ\Δ). (2.1.5.4)

2.1.6 Random boundary conditions

The Gibbs measures GΛ(·|σΛc) cannot exhaust the set of all equilibrium measures
in Λ as the correct notion should reflect the physical request that if a system is in
equilibrium in a region Λ then it is also in equilibrium in all subregions Δ of Λ.
However, the equilibrium state GΛ(·|σΛc) observed in the subregion Δ is described
by the marginal of GΛ(·|σΛc) on XΔ, and it is thus given by (2.1.5.4) which does
not have the expression (2.1.4.1) unless Δ = Λ.

We thus need to relax the statement that the equilibrium measures have the form
GΛ(·|σΛc). Since by (2.1.5.4) the marginal of GΛ(·|σΛc) on XΔ is a convex com-
bination of measures GΔ(σΔ|σΔc), we certainly want to include among the equilib-
rium measures in Δ probabilities of the form

μ(σ ∗
Δ) =

∑

σ ∗
Λ\Δ∈XΛ\Δ

GΔ(σ ∗
Δ|σ ∗

Λ\Δ,σΛc) m(σ ∗
Λ\Δ), (2.1.6.1)

with m a probability on XΛ\Δ. Referring to Appendix A for definitions and nota-
tion relative to measures on Ising spaces we formalize the above considerations as
follows.

Definition A probability μ on X is a “Gibbs measure in Λ with random boundary
conditions” if (μ(f ) is the integral of f )

μ(f ) =
∫

X

∑

σ ′∈X
GΛ

(
σ ′|σΛc

)
f (σ ′) ν(dσ ),

for any bounded, measurable f , (2.1.6.2)
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where ν is a Borel probability on X and measurability means Borel measurability.
GΛ denotes the set of Gibbs measures in Λ with random boundary conditions and it
is identified with the set of equilibrium measures in Λ.

The integral on the r.h.s. of (2.1.6.2) is well defined because

Lemma 2.1.6.1 For any bounded, measurable function f ,

bf (σ ) := GΛ

(
f |σΛc

) ≡
∑

σ ′∈X
GΛ

(
σ ′|σΛc

)
f (σ ′) (2.1.6.3)

is a bounded, measurable function of σ , which is continuous if f is.

Proof Obviously |bf (σ )| ≤ ‖f ‖∞. Writing (σ ′
Λ,σΛc) for the configuration whose

restrictions to Λ and Λc are σ ′
Λ and σΛc , we have

bf (σ ) =
∑

σ ′
Λ

GΛ

(
(σ ′

Λ,σΛc)
∣∣σΛc

)
f

(
(σ ′

Λ,σΛc)
)
.

Since the sum is finite, it is sufficient to prove that each term is measurable. σ →
f ((σ ′

Λ,σΛc)) is measurable by assumption, while
∣∣GΛ

(
σ ′

Λ

∣∣σΛc

) − GΛ

(
σ ′

Λ

∣∣σN
Λc

)∣∣ ≤ ε(N), (2.1.6.4)

where σN is obtained from σ by replacing σ(x) by +1 whenever |x| > N and
ε(N) is a function of N which vanishes as N → ∞. (2.1.6.4) follows from the
summability assumption on the interaction.

Since σ → GΛ(σ ′
Λ|σN

Λc) is continuous (being a cylindrical function), the above
shows that GΛ(σ ′

Λ|σΛc) is approximated in sup norm by cylindrical functions
and it is therefore itself a continuous function of σ (see Theorem A.1). We have
proved that bf (σ ) is measurable and continuous as well if f is continuous; hence
Lemma 2.1.6.1 is proved. �

We conclude the subsection with another lemma which will play an important
role in the sequel.

Lemma 2.1.6.2 μ ∈ GΛ if and only if for any bounded, measurable f

μ(f ) =
∫

X

∑

σ ′
GΛ

(
σ ′|σΛc

)
f (σ ′) μ(dσ). (2.1.6.5)

Proof μ is obviously in GΛ if (2.1.6.5) holds. If μ is given by (2.1.6.2), then for any
f μ(f ) = ν(bf ), bf as in (2.1.6.3). We denote by BΛc the σ -algebra generated by
the cylindrical sets in Λc. If f is BΛc measurable by (2.1.6.3) bf (σ ) = f (σ ), and
since in general μ(f ) = ν(bf ) we have μ(f ) = ν(f ) for all BΛc measurable func-
tions f . Take now any (bounded, measurable) f , then μ(f ) = ν(bf ), by (2.1.6.2),
and since bf is BΛc measurable, μ(f ) = ν(bf ) = μ(bf ), which is (2.1.6.5). �
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Remarks Let ν in (2.1.6.2) be the measure supported by the single configuration σ ,
then μ = GΛ(·|σΛc), thus GΛ(·|σΛc) ∈ GΛ as implicit in the whole discussion so
far.

2.1.7 Structure of finite volume Gibbs measures

With the identification of the equilibrium measures as Gibbs measures with random
boundary conditions, the original Gibbs measures GΛ(·|σΛc) do not only belong to
GΛ as stated in the last remark of Sect. 2.1.6, but, as a consequence of (2.1.5.4), they
are also in any GΔ, Δ ⊂ Λ. Indeed, we have the following.

Theorem 2.1.7.1 GΛ is a convex, weakly compact set and

GΛ ⊂ GΔ, for any Δ ⊂ Λ.

In particular, GΛ(·|σΛc) ∈ GΔ for any Δ ⊂ Λ.

Proof It directly follows from the representation (2.1.6.2) that GΛ is a convex set.
We will next prove that GΛ is closed (and since the space M(X ) of all probabili-
ties on X is compact, see Sect. A.4 of Appendix A, it will also follow that GΛ is
compact).

Let μn ∈ GΛ, n ≥ 1, and μn → μ weakly, i.e. for all continuous f (f ∈ C(X )),
μn(f ) → μ(f ). We need to prove that μ ∈ GΛ. Let f ∈ C(X ). By (2.1.6.5),
μn(f ) = μn(bf ), bf as in (2.1.6.3). We have proved in Lemma 2.1.6 that bf ∈
C(X ), i.e. it is continuous, since we are supposing that f ∈ C(X ). By letting
n → ∞, μ(f ) = μ(bf ), which, recalling the expression (2.1.6.3) for bf proves
(2.1.6.2) for continuous f . On the other hand if the integrals of all continuous func-
tions are equal, then the two measures are the same and (2.1.6.2) holds also for all
bounded, measurable f , so that μ ∈ GΛ and the latter is weakly closed.

By (2.1.5.1), GΛ(f |σΛc), f a bounded measurable function, is equal to
∑

σ ′
Λ\Δ

∑

σΔ

f (σΔ,σ ′
Λ\Δ,σΛc)GΔ(σΔ|σ ′

Λ\Δ,σΛc)(GΛ(·|σΛc))Λ\Δ(σ ′
Λ\Δ),

which can be rewritten as

∑

σ ′∈X

{∑

σΔ

f (σΔ,σ ′
Λ\Δ,σΛc)GΔ(σΔ|σ ′

Λ\Δ,σΛc)

}
GΛ(σ ′|σΛc),

so that GΛ(·|σΛc) ∈ GΔ.
Let now μ ∈ GΛ; then μ(f ) = ∫ {∑σ ′ GΛ(σ ′|σΛc)f (σ ′)} μ(dσ), hence

μ(f ) =
∫ {∑

σ ′
GΛ(σ ′|σΛc)

∑

σ ′′
GΔ(σ ′′|σ ′

Δc)f (σ ′′)
}
μ(dσ).
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Then

μ(f ) =
∫ ∑

σ ′′
f (σ ′′)GΔ(σ ′′|σ ′

Δc) ν(dσ ′), (2.1.7.1)

where ν is such that ν(g) = ∫ ∑
σ ′ GΛ(σ ′|σΛc)g(σ ′) μ(dσ). Since ν is a probabil-

ity, the last expression in (2.1.7.1) is by (2.1.6.2) in GΔ and the theorem is proved. �

2.2 Thermodynamic limit and DLR measures

We will derive a macroscopic theory from the Gibbs hypothesis by separating bulk
from surface effects. Bulk properties are those which refer to the behavior of the
spins [in our Ising model] which are far from the boundaries; if the region occupied
by the system is not too weird, indeed most spins will be far from the boundaries.
To make this quantitative, we must specify the meaning of “most” and “far from
the boundaries.” There is here an evident degree of arbitrariness, which has to be
lifted if we want a mathematical theory with precise statements. Modern statistical
mechanics defines the bulk properties as those which emerge in an infinite volume
limit, which is usually referred to as “the thermodynamic limit.” In this limit in fact
the bulk thermodynamics of the system is singled out.

As we will see in the next two sections the notion is well defined for intensive
thermodynamic potentials like pressure and free energy density, for which, under
quite general assumptions on the interaction, the infinite volume limit exists and is
essentially independent of the sequence of regions and boundary conditions used in
the limit procedure. The situation is different when we look at the full equilibrium
states, the object of our present analysis, where, as we will argue below, we cannot
expect in general the existence of a limit independent of the sequence of regions and
boundary conditions.

The modern rigorous theory of equilibrium states is founded on an hypothesis
which avoids [or better, it seems to avoid] the thermodynamic limit procedure by
extending the original Gibbs hypothesis to one formulated directly in infinite sys-
tems, the so called DLR condition. DLR stands for Dobrushin, Lanford and Ruelle,
who are the founders of the theory. The condition translates the physically obvious
notion that if a system is globally in equilibrium, then it is also locally in equilib-
rium. According to what we have argued so far, a state is in equilibrium in a bounded
region Λ if it is in GΛ; thus DLR define the set of all equilibrium measures G as

G :=
⋂

Λbounded in Zd

GΛ. (2.2.0.1)

The definition (2.2.0.1) immediately raises three questions: the existence of DLR
measures, the meaning of possible non-uniqueness, and the way the notion is related
to the thermodynamic limit procedure discussed earlier.

We shall prove that G is non-empty, weakly compact and convex. Convexity al-
lows one to distinguish in G extremal elements and mixtures of extremal elements.
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We will see that the extremal measures in G are obtained as infinite volume limits,
Δn → Z

d , of Gibbs measures GΔn(·|σΔc
n
), where σ is a fixed configuration and

σΔc
n

is the restriction of σ to Δc
n. They will be interpreted as pure phases. The non-

uniqueness of the limit then means that G has several pure phases (selected by the
appropriate boundary conditions) and we have a phase transition. Thus phase tran-
sitions are related to a persistent diversity among Gibbs states in large domains Λ

when the boundary conditions are varied: from such a perspective, phase transitions
means “sensitive dependence” on the boundary conditions. As we vary the spins
at the boundary, we cause a chain reaction which propagates inside Λ, affecting
eventually all the spins; thus a volume effect is produced by a comparatively small
surface change. The context when phase transitions occur must therefore be criti-
cal and phase transitions rare. Indeed, thermodynamics tells us that they occur on
surfaces [of the phase diagram] with positive codimension; in this sense they are
“exceptional.” In the next section we will see that a formulation of this property
(that unfortunately is very weak) is true in general.

Outline of the main results As already mentioned, the set G of DLR measures (at
fixed inverse temperature β) is a non-empty, convex, weakly compact set, just as GΛ

and indeed G is structurally similar to GΛ, and we may in fact think of G as GΛ with
Λ = Z

d , as we are going to argue. Recall that for finite Λ the extremal elements of
GΛ are obtained by taking any σ ∈ X and constructing the measure GΛ(·|σΛc). Any
element in GΛ can then be written as

∫
GΛ(·|σΛc)p(dσ), p a probability on X ;

it is namely a convex combination of extremal states, and any such integral de-
fines an element of GΛ. The extremal elements of G are obtained in a similar way.
Fix arbitrarily an increasing sequence {Δn} of regions invading Z

d ; take any con-
figuration σ , not as before in the whole X , but only in a suitable set Xgg (which
depends on {Δn}, “gg” for very good); take as before the measure GΔn(·|σΔc

n
) and

let Δn → Z
d . The weak limit, which is proved to exist in Xgg , defines an extremal

measure Gσ in G . It is also true that any element in G is an integral
∫

Gσ (·)p(dσ)

with p a probability with support on Xgg .
To continue with the analogy between GΛ and G , observe that the measures

{GΛ(·|σΛc), σ ∈ X } define a natural partition πΛ of X : σ ′ and σ ′′ are in the same
atom of πΛ if and only if GΛ(σΛ|σ ′

Λc) = GΛ(σΛ|σ ′′
Λc) for all σΛ ∈ XΛ. If we

change σ ′ only inside Λ, the new configuration σ ′′ is trivially in the same atom
as σ ′, and the partition is thus called measurable on Λc. Analogously the measures
{Gσ , σ ∈ Xgg} are extremal in G and define a partition π∞ of Xgg by the equiv-
alence relation σ ′ ∼ σ ′′ if and only if Gσ ′ = Gσ ′′ . The atoms Ωσ are such that if
σ ′ ∈ Ωσ then any modification of σ in a bounded set gives rise to a new configura-
tion which however is in the same Ωσ , for this reason the partition π∞ is said to be
“measurable at infinity.” Moreover, let Ωσ , σ ∈ Xgg the atom of π∞ containing σ ,
then Gσ (Ωσ ) = 1, and distinct extremal measures have therefore disjoint support
and the decomposition of an element of G as

∫
Gσ (·)p(dσ) is unique.

We will conclude the section by discussing the group of space translations and
its action on G ; see Sects. 2.2.6 and 2.2.7. We shall introduce the notion of “ergodic
DLR measures” and prove that any translation invariant DLR measure is an integral
over ergodic DLR measures, an ergodic decomposition.
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2.2.1 DLR measures

We fix hereafter β > 0 and drop it from the notation when no ambiguity may arise;
all measures in the sequel are meant as Gibbs measures at the inverse temperature β .
With such an understanding we define:

Definition 1 A probability measure μ on X is an equilibrium measure if μ belongs
to GΛ for any bounded Λ in Z

d . The set of all equilibrium measures is denoted by
G with G given in (2.2.0.1).

Theorem 2.2.1.1 The set G is non-empty, convex and weakly compact. Moreover, if
Δn is any sequence of increasing regions which invades Z

d , GΔn is non-increasing
and

G =
⋂

Δn

GΔn. (2.2.1.1)

Proof (2.2.1.1) follows from (2.2.0.1) because GΛ ⊂ GΔ if Δ ⊂ Λ (by Theo-
rem 2.1.7.1). The l.h.s. of (2.2.1.1) is a non-empty, convex, weakly compact set,
because all GΔn are convex and weakly compact sets (again by Theorem 2.1.7.1),
each one containing the successive one. �

Thus Definition 1 is non-empty and equilibrium measures do indeed exist. The
elements of G have a nice interpretation in terms of conditional probabilities which,
as we will see, is the key to their analysis. The definition and properties of con-
ditional probabilities are given in Appendix A, see Sect. A.6; all proofs hereafter
strongly depend on Appendix A. Call BΛc , Λ a finite subset of Z

d , the minimal σ

algebra which contains all the cylinders in Λc.

Definition 2 [DLR measures] A probability measure μ on X is called DLR if for
any bounded Λ ⊂ Z

d , {X ,GΛ(·|σΛc)} is a version of the conditional probability of
μ given BΛc ; see Sect. A.6.

Theorem 2.2.1.2 μ is DLR if and only if μ ∈ G .

Proof Suppose μ ∈ G and let Λ be a bounded set. Then μ ∈ GΛ and by (2.1.6.5)
with f = 1A∩B , A ∈ B, B ∈ BΛc ,

μ(A ∩ B) =
∫

X

∑

σ ′
GΛ

(
σ ′|σΛc

)
1σ ′∈A1σ ′∈B μ(dσ).

Since B ∈ BΛc and GΛ(σ ′|σΛc) = 0 unless σ ′ = σ on Λc, 1σ ′∈B = 1σ∈B ,

μ(A ∩ B) =
∫

B

{∑

σ ′
GΛ

(
σ ′|σΛc

)
1σ ′∈A

}
μ(dσ) =

∫

B

GΛ

(
A|σΛc

)
μ(dσ),
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which, by (A.6.1), proves that {X ,GΛ(·|σΛc)} is a version of the conditional prob-
ability of μ given BΛc . By the arbitrariness of Λ, μ is DLR.

Vice versa, suppose that μ is DLR. Then by (A.6.1),

μ(A) =
∫

X

∑

σ ′
GΛ

(
σ ′|σΛc

)
1σ ′∈A μ(dσ),

which proves (2.1.6.3) for functions f which are characteristic functions of Borel
sets. By a density argument (details are omitted) the equality extends to all bounded,
Borel measurable functions. Thus μ ∈ GΛ and by the arbitrariness of Λ, μ ∈ G . �

2.2.2 Thermodynamic limits of Gibbs measures

In this subsection we will establish a first relation between DLR measures and ther-
modynamic limits of finite volume Gibbs measures. Let {Δn} be an increasing se-
quence of finite regions which invades the whole space; the construction below will
depend on the choice of {Δn}, but, as we shall see, the final conclusions about the
elements of G are structural and independent of {Δn}. Recalling from Sect. 2.1.3
that C denotes the family of all elementary cylindrical sets, we introduce “the good
set”

Xg =
{
σ ∈ X : lim

n→∞GΔn

(
C|σΔc

n

)
exists for all C ∈ C

}

(we shall later introduce a very good set Xgg). A priori Xg may be empty, but the
following theorem excludes such a possibility:

Theorem 2.2.2.1 Xg is a non-empty Borel set and μ(Xg) = 1 for any μ ∈ G . More-
over, for any σ ∈ Xg there is a unique measure Gσ (·) such that

Gσ (f ) = lim
n→∞GΔn

(
f |σΔc

n

)
for all continuous functions f . (2.2.2.1)

All Gσ , σ ∈ Xg , are in G .

Proof Let μ ∈ G ; recall that we have proved in Theorem 2.2.1.1 that G �= ∅. Then
μ is DLR and the pair {X ,GΔn(·|σΔc

n
)} is a version of the conditional probability

of μ given the σ -algebra {BΔc
n
}. We can then apply Theorem A.11 with Σn = BΔc

n
,

Xn = X and μ(·|Σn)(σ ) = GΔn(·|σΔc
n
). Then the set X ′ in (A.10.1) is our set Xg ;

hence by Theorem A.11, Xg ∈ B and μ(Xg) = 1 (thus Xg �= ∅). Theorem A.11 also
states that for any σ ∈ Xg there is a unique probability μ(·|B∞)(σ ), μ(·|Σ)(σ) in
the notation of Theorem A.11 (that we identify with Gσ of (2.2.2.1)), such that

lim
n→∞GΔn

(
C|σΔc

n

) = μ
(
C|B∞

)
(σ ).

By Theorem A.4 it follows that, for any σ ∈ Xg , GΔn(f |σΔc
n
) = μ(f |B∞)(σ ) for

all continuous functions.
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Finally, the statement Gσ ∈ G is an immediate consequence of (2.2.2.1), as the
latter states that Gσ is the weak limit of a sequence which is definitively in GΛ (as
soon as n is such that Λ ⊂ Δn). Since GΛ is weakly closed, Gσ ∈ GΛ, and by the
arbitrariness of Λ it is in the intersection of all GΛ; hence it is in G . �

The set Xg is good but not very good! For any σ ∈ Xg , call

Ωσ = {
σ ′ ∈ Xg : Gσ ′ = Gσ

}
, Xgg = {

σ ∈ Xg : Gσ (Ωσ ) = 1
}
. (2.2.2.2)

Xgg is the “very good” set we are looking for and which has been described in the
beginning of the section, in the paragraph “Outline of main results.”

Theorem 2.2.2.2 Xgg is a non-empty Borel set and for any σ ∈ Xg either Ωσ ∈ Xgg

or Ωσ ∩ Xgg = ∅. For any μ ∈ G , μ(Xgg) = 1 and for any bounded measurable
function f , Gσ (f ), σ ∈ Xgg , is a measurable function and

μ(f ) =
∫

Xgg

Gσ (f ) μ(dσ). (2.2.2.3)

Conversely, for any probability ν on Xgg , the measure μ defined by

μ(f ) =
∫

Xgg

Gσ (f ) ν(dσ ) (2.2.2.4)

is in G .

Proof It immediately follows from the definition (2.2.2.2) that for any σ ∈ Xg either
Ωσ ∈ Xgg or Ωσ ∩ Xgg = ∅. Suppose μ ∈ G . By Theorem A.11 and the identifica-
tion Gσ = μ(·|B∞)(σ ), the pair (Xg,Gσ ) is a version of the conditional probability
of μ with respect to the σ -algebra B∞, which is defined as the minimal σ -algebra
which contains the sets B ∈ B which are in BΔc

n
for all n (for this reason we will

also write Gσ = μ(·|B∞)(σ ), σ ∈ Xg). By Theorem A.8 (Xgg,Gσ ) is also a ver-
sion of the conditional probability given B∞, hence Xgg is a Borel set, μ(Xgg) = 1
and (2.2.2.3) holds. Since μ(Xgg) = 1, Xgg is non-empty. Equation (2.2.2.3) then
follows from (Xgg,Gσ ) being a conditional probability.

Let μ be as in (2.2.2.4). Since Gσ ∈ G , Gσ ∈ GΛ, Λ bounded,

μ(f ) =
∫

Xgg

{∫

X
GΛ(f |σ ′

Λc)Gσ (dσ ′)
}

ν(dσ )

=
∫

X
GΛ(f |σ ′

Λc)μ(dσ ′). (2.2.2.5)

Equation (2.2.2.5) shows that μ ∈ GΛ and by the arbitrariness of Λ that μ ∈ G . �

We will next improve the above analysis by establishing fine and detailed prop-
erties of the DLR measures. The analysis is more technical and heavily relies on
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the theory of conditional probabilities in Appendix A. In a first reading one may go
directly to Sect. 2.2.6 (however, the proof of Theorem 2.2.7.2 will use some of the
following results).

The sets Xg and Xgg depend on the choice of the sequence {Δn} used in the
definition of Gσ . If we take another sequence {Δ′

n} we will have in general new
X ′

g and X ′
gg and new measures G′

σ ′, σ ′ ∈ X ′
g . The two families are however strictly

related to each other.

Theorem 2.2.2.3 The set X0 := Xgg ∩ X ′
gg is non-empty, Ωσ ∩ X0 �= ∅ for all σ ∈

Xgg and Ω ′
σ ∩ X0 �= ∅ for all σ ∈ X ′

gg . Moreover, μ(X0) = 1 for any μ ∈ G ; for any
σ ∈ X0, Gσ = G′

σ , Ωσ ∩ X0 = Ω ′
σ ∩ X0 and Gσ (Ωσ ∩ X0) = 1.

Proof By (2.2.2.3) with μ = Gσ and f = 1Ωσ ,

Gσ (Ωσ ) =
∫

X ′
gg

G′
σ ′(Ωσ ) Gσ (dσ ′).

Since Gσ (Ωσ ) = 1 and G′
σ ′(Ωσ ) ≤ 1,

Gσ

({
σ ′ ∈ Ωσ ∩ X ′

gg : G′
σ ′(Ωσ ) = 1

}) = 1.

Then Ωσ ∩ X ′
gg �= ∅ and if σ ′ ∈ Ωσ ∩ X ′

gg , Gσ = G′
σ ′ . If Ω ′

σ ′ ∩ Ω ′
σ ′′ = ∅, then

G′
σ ′ �= G′

σ ′′ ; hence Gσ �= G′
σ ′′ so that Ωσ ∩ Ω ′

σ ′′ = ∅. �

2.2.3 Pure states and extremal DLR measures

G is a convex set and, being weakly compact, its extremal points, whose collection
is denoted by Gextr, are also in G . By the Krein–Millman theorem, see I.3.10 in the
book by Naimark [175], elements in G \ Gextr are convex combinations (in general
integrals) over the extremal elements and are therefore called “mixture states,” while
the extremal elements are “pure states.” We will see at the end of this subsection that
pure states can be identified as the pure phases of the system. In the next theorem
we will characterize the extremal DLR measures as the measures Gσ ,σ ∈ Xgg ; then
the decomposition into extremal measures is just (2.2.2.3).

Theorem 2.2.3.1 The following two statements are equivalent:

• μ ∈ G and μ(Ωσ ) = 1 for some σ ∈ Xgg. • μ = Gσ ,σ ∈ Xgg. (2.2.3.1)

The set Gextr of extremal elements of G is Gextr = {Gσ ,σ ∈ Xgg} so that (2.2.2.3) is
a decomposition of μ into extremal states.

Proof If μ = Gσ for some σ ∈ Xgg , then μ ∈ G and μ(Ωσ ) = 1 by the definition
of Xgg . Suppose conversely that μ ∈ G and μ(Ωσ ) = 1, then by (2.2.2.3) μ(f ) =∫
Ωσ

Gσ ′(f ) μ(dσ ′) = Gσ (f )
∫
Ωσ

μ(dσ ′) = Gσ (f ), hence (2.2.3.1).
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Let us next prove the statements about Gextr. Suppose first that μ ∈ Gextr. Arguing
by contradiction, we will show that if μ �= Gσ (·) for all σ ∈ Xgg , then the integral
decomposition in (2.2.2.3) can be reduced to a convex combination of two distinct
measures in G . We first observe that σ → Gσ on Xgg cannot be μ-a.s. constant,
otherwise, by (2.2.2.3), it would be equal to μ. Then there must be f and b ∈ R

such that

μ
({

σ ∈ Xgg : Gσ (f ) ≤ b
}) = α, α �= 0,1. (2.2.3.2)

Calling B the set in curly brackets, we define the probabilities

μ′(·) = α−1
∫

B

Gσ (·) μ(dσ),

(2.2.3.3)

μ′′(·) = (1 − α)−1
∫

Bc

Gσ (·) μ(dσ).

By (2.2.2.4), both μ′ and μ′′ are in G ; moreover, μ′ �= μ′′ because, by construction,
μ′(f ) ≤ b and μ′′(f ) > b. Also by construction μ = αμ′ + (1 − α)μ′′, hence the
desired contradiction, which proves that μ = Gσ for some σ ∈ Xgg .

Conversely, suppose that for σ ∈ Xgg , Gσ /∈ Gextr. Then there are α ∈ [0,1], μ′
and μ′′ in G for which Gσ = αμ′ + (1 − α)μ′′. By applying (2.2.2.3) to μ = Gσ ,
we get, for any measurable set A,

Gσ (A) =
∫

Xgg

Gσ ′(A) [αμ′ + (1 − α)μ′′](dσ ′). (2.2.3.4)

Since for all σ ′ ∈ Xgg , Gσ ′(Ωσ ) = 1σ ′∈Ωσ
, (2.2.3.4) with A = Ωσ yields

αμ′(Ωσ ) + (1 − α)μ′′(Ωσ ) = 1.

If α ∈ (0,1), this implies μ′(Ωσ ) = μ′′(Ωσ ) = 1, so that, by (2.2.3.1) which has
already been proved, μ′ = μ′′ = Gσ . �

We will next argue that extremal measures have the physical interpretation of
“pure phases.” The idea is to start from the particular case that G is a singleton, in
which case there is no doubt that its only element is a pure phase. We will prove
for the singleton properties that in the general case are satisfied by the extremal
measures of G , thus interpreting the latter as pure phases.

Theorem 2.2.3.2 If G = {μ} is a singleton, then Xg = Xgg = X , and, given any
increasing sequence Λn → Z

d , for any continuous function f

limΛn→Zd GΛn(f |σ c
Λn

) = μ(f ), σ ∈ X ;
(2.2.3.5)

limΛn→Zd

∫ |GΛn(f |σ c
Λn

) − μ(f )|μ(dσ) = 0.
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Proof By compactness GΛn(·|σ c
Λn

) converges weakly by subsequences, and since
GΔ is weakly compact any limit point is in GΔ and, by the arbitrariness of Δ it is
in G . Since G is a singleton the limit point is μ and the sequence actually converges.
We have thus proved the first limit in (2.2.3.6); the second one follows from the first
one by the Lebesgue dominated convergence theorem. �

If G is not a singleton, we have

Theorem 2.2.3.3 If μ ∈ Gextr, given any increasing sequence Λn → Z
d then for any

continuous function f , μ({σ : limΛn→Zd GΛn(f |σ c
Λn

) = μ(f )}) = 1 and

lim
Λn→Zd

∫
|GΛn(f |σ c

Λn
) − μ(f )|μ(dσ) = 0. (2.2.3.6)

Proof Let Xgg be the set associated to the sequence Λn. Then by Theorem 2.2.3.1
there is σ ∈ Xgg such that μ = Gσ ; hence

μ
({

σ : lim
Λn→Zd

GΛn(f |σ c
Λn

) = μ(f )
})

≥ Gσ (Ωσ ) = 1,

which proves the first statement in the theorem. Actually by taking countably many
intersections, the set where there is convergence can be chosen once for all f . The
limit in (2.2.3.6) then follows by the Lebesgue dominated convergence theorem. �

Extremal measures as pure phases

By comparing Theorems 2.2.3.2 and 2.2.3.3 we see that the extremal measures en-
joy the same properties as the unique measure when G is a singleton, provided we
replace “everywhere” by “almost everywhere” (i.e. with probability 1). That is, if
we view the phase space from the viewpoint of an extremal measure μ then we see
the same homogeneous behavior as when G is a singleton. For such reasons we will
call the states in Gextr pure phases.

To exemplify the discussion let us refer to the d = 2 ferromagnetic Ising model
with n.n. interactions and no magnetic field. We will prove in the next chapter that
at small temperatures there exists an extremal measure, the so called plus measure,
where with probability 1 all configurations have a positive magnetization. There
is also another extremal measure, the minus measure, where with probability 1 all
configurations have negative magnetization. There are then mixture states where in a
fraction of configurations we observe a positive and in the other one a negative mag-
netization. Mixtures in this example are convex combinations of the two pure states.

2.2.4 Simplicial structure of DLR measures

The are two opposite types of convex sets, as far as the decomposition into their ex-
tremal points is concerned, which in the plane are visualized as circles and triangles.
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In the former the decomposition into extremal elements is highly non-unique, just
the opposite of what happens in the latter. G belongs to the latter category; we are
going to show that the decomposition of an element μ ∈ G into extremal DLR states
is unique.

We want to write any μ ∈ G as an integral over Gextr. Thus the first step requires
us to introduce a measurable space (Ω,Σ), i.e. a space Ω and a σ -algebra Σ ,
with Ω in one to one correspondence with Gextr. By (2.2.3.1) we can take for Ω the
space whose points ω are the sets Ωσ , σ ∈ Xgg . Call φ the map from Xgg onto Ω ,
which associates to any σ ∈ Xgg the element Ωσ ∈ Ω . We then define Σ as the
σ -algebra made of all sets A ⊂ Ω such that φ−1(A) is measurable in X . We also
define for any μ ∈ G a measure pμ on (Ω,Σ) by setting pμ(A) = μ(φ−1(A)),

A ∈ Σ , so that (Ω,Σ,pμ) is isomorphic to the restriction of μ to the σ -algebra
φ−1(Σ).

Theorem 2.2.4.1 Let μ ∈ G ; then there is a unique measure p on (Ω,Σ) such that
for any bounded measurable function f on X ,

μ(f ) =
∫

Ω

Gω(f ) p(dω),

where, by abuse of notation, Gω ≡ Gσ , σ ∈ φ−1(ω); recall that Gσ is the same for
all σ ∈ φ−1(ω). The measure p is equal to pμ.

Proof By Theorem 2.2.2.2, σ → Gσ (f ) is measurable and constant on each Ωσ ;
hence it is measurable on the σ -algebra φ−1(Σ). Calling μ′ the restriction of μ to
φ−1(Σ), we thus conclude from (2.2.2.3) that

μ(f ) =
∫

Xgg

Gσ (f ) μ′(dσ ) =
∫

Ω

Gω(f ) pμ(dω).

To prove uniqueness, let (Ω,Σ,q) be a probability space and

μ(f ) =
∫

Ω

Gω(f ) q(dω).

We claim that q = pμ. For B ∈ Σ we have

μ(φ−1(B)) =
∫

Gω(φ−1(B)) q(dω) =
∫

B

Gω(φ−1(B)) pμ(dω). (2.2.4.1)

Since Gφ−1(ω)(φ
−1(B)) = 1ω∈B , (2.2.4.1) yields q(B) = pμ(B). �

2.2.5 Sigma algebra at infinity

In the course of the proof of Theorem 2.2.2 we have introduced the σ -algebra B∞
whose definition is made explicit here.
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Definition The σ -algebra B∞ = ⋂
Λ bounded BΛc is called the σ -algebra at infinity,

or tail field.

Sets in B∞ have the following property: if A ∈ B∞ and σ ∈ A, then any local
modification σ ′ of σ is also in A. Given a measure μ, a set A is μ-modulo 0 in B∞
if there is a set N ∈ B∞ such that μ(N) = 0 and A∩Nc ∈ B∞. Functions which are
μ-modulo 0 measurable at infinity are defined analogously.

The next theorem shows that measure theoretically the sets Ωσ are the smallest
ones among those measurable at infinity. Indeed, we shall see that if μ ∈ G, then any
function f which is μ-modulo 0 measurable at infinity is μ almost surely constant
on each set Ωσ .

Theorem 2.2.5.1 If μ ∈ G and f is μ-almost surely measurable at infinity, then

μ
({σ ∈ Xgg : f (σ ′) = Gσ (f ), for Gσ -almost all σ ′ ∈ Ωσ }) = 1. (2.2.5.1)

In particular for any μ ∈ Gextr if A is μ-modulo 0 in B∞, then μ(A) is either 0 or 1,
namely B∞ = {∅, X }, μ-modulo 0.

Proof By assumption there is N ∈ B∞ so that μ(N) = 0 and f ((σ ′
Λ,σΛc)) =

f ((σΛ,σΛc)), for all bounded Λ, all σ /∈ N and all σ ′
Λ. By (2.2.2.3), μ({σ :

Gσ (N) = 0} = 1, and (2.2.5.1) will be proved by showing that if σ : Gσ (N) = 0,
then f (σ ′) = Gσ (f ) for Gσ -almost all σ ′ ∈ Ωσ .

Let σ : Gσ (N) = 0. Arguing by contradiction, similarly to the proof of Theo-
rem 2.2.3 (see (2.2.3.2)–(2.2.3.4)), suppose that there are α �= 0,1 and b such that
Gσ (B) = α, B := {σ ′ ∈ Ωσ � Nc : f (σ ′) ≤ b}. Let

μ′ = α−11BGσ , μ′′ = (1 − α)−11BcGσ ,

so that Gσ = αμ′ + (1 − α)μ′′ and μ′ �= μ′′. The contradiction will arise once we
show that μ′ and μ′′ are in G , because by Theorem 2.2.3, Gσ ∈ Gextr. Let us prove
that μ′ ∈ GΛ, Λ bounded, namely that (2.1.6.5) holds with μ → μ′. We have for any
bounded measurable function h,

∫
GΛ(h|σ ′rΛc) μ′(dσ ′) = α−1

∫

Ωσ ∩Nc

1f (σ ′)≤bGΛ(h|σ ′
Λc) Gσ (dσ ′)

= α−1
∫

Ωσ ∩Nc

GΛ(h1f ≤b|σ ′
Λc) Gσ (dσ ′)

= α−1
∫

Ωσ ∩Nc

h1f ≤b Gσ (dσ ′) = μ′(h),

where we have used that {f (σ ′) ≤ b} does not depend on σΛ, and it is therefore a
constant with respect to the measure GΛ(·|σ ′

Λc( )). Thus μ′ ∈ GΛ and by the arbi-
trariness of Λ, μ′ ∈ G ; the same proof shows that μ′′ ∈ G hence the desired contra-
diction. �
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2.2.6 Pure phases, phase transitions

Here we discuss another aspect of phase transitions, related to the notion of intensive
variables, which will lead to a different definition of pure phases, alternative to the
one used so far, where pure phases have been associated to extremal DLR measures.
In the new notion pure phases still correspond to extremal DLR measures but with
extremality referring to the set of translational invariant DLR measures. The new
notion is related to that of intensive variables. From a physical point of view in
fact the intensive variables are expected to have sharp values in a pure phase, while
in mixtures they fluctuate, as their values will depend on which pure state of the
mixture the system is actually in. The notion of an intensive variable is related to
space translations, which have been so far ignored, and which are going to enter
strongly in the game.

We start with some simple basic considerations. Observe that, while the proba-
bility of a spin configuration with energy E is just given by the Gibbs formula (and
it is therefore proportional to e−βE), the probability that the system has an energy
E is instead not at all as simple. In fact, counting the number of states with a given
energy is in general a very complex task. Let us denote their number by eSΛ(E),
Λ the bounded domain where the system is confined. SΛ(E) is thus an entropy, the
entropy for the given values of Λ and E; see Sect. 2.3 where the notion will become
central. The energy distribution is then proportional to exp{−βE + SΛ(E)}. Both
energy and entropy are extensive quantities; the corresponding intensive quantities
are e = E/|Λ| and sΛ(e) = SΛ(E)/|Λ|, respectively the energy and the entropy
densities. We thus get for the energy distribution exp{−|Λ|(βe − sΛ(e))}. Suppos-
ing that sΛ(e) has the limit s(e) as Λ → Z

d , we may then conclude that the energy
distribution is concentrated for large |Λ| around the minimizers of the free energy
e − β−1s(e). When there is a unique minimizer, the distribution is uni-modal and
most of the mass of the distribution is in its neighborhood: the fluctuations of the
energy density are thus small and disappear in the thermodynamic limit. On the
other hand, when the minimizer is not unique (the distribution is then called multi-
modal), the energy density has macroscopic fluctuations which survive in the limit
and the system exhibits a phase transition. But phase transitions may also come
from the loss of uni-modality of other intensive variables rather than the energy, as
in the classical Ising model, where the relevant order parameter is the magnetization
density.

As we shall see, the theory of Gibbs measures encodes the above ideas in an
elegant formulation which involves the action of the group of space translations
on G . Referring to Appendix A for our notation, for any i ∈ Z

d we denote by
τi the map on Z

d defined by τi(x) = x + i and by τi(σ ), τi(f ) and τi(μ) its
dual actions, respectively, on spin configurations, on functions of the spin con-
figurations and on probabilities on the space of spin configurations. Explicitly
τi(σ )(x) = σ(x − i), τi(f )(σ ) = f (τ−i (σ )), τi(μ)(f ) = μ(τ−i (f )).

Theorem 2.2.6.1 The set of DLR measure is invariant under translations,

τi(G) = G, for any i ∈ Z
d , (2.2.6.1)
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and its subset G 0 of translational invariant measures is a non-empty, convex, com-
pact set.

Proof For any bounded Δ, τi(GΔ) = Gτi (Δ), see Appendix A after (A.1.10), hence
(2.2.6.1). Let Δn be an increasing sequence of cubes which invades Z

d , μ ∈ G and

μ(n) = 1

|Δn|
∑

i∈Δn

τi(μ). (2.2.6.2)

For all this, μ(n) ∈ G and let ν be a weak limit point of {μ(n)}, whose existence
follows from compactness. ν = τi(ν) as ν is the limit of Cesaro’s averages, and
ν ∈ G because G is weakly closed; thus G 0 �= ∅. Convexity and compactness also
easily follow. �

2.2.7 Ergodic decomposition

In the first part of this subsection we will recall the ergodic decomposition of a
translational invariant measure μ into its ergodic components, and in the second
part we shall use it to determine the structure of the translational invariant DLR
measures. Recall that a translational invariant measure μ is ergodic if and only if
μ(A) is either 0 or 1 for any measurable, translational invariant set A.

The ergodic decomposition consists in writing μ as an integral over measures
which are translational invariant and ergodic. We state the results here without
proofs, as they are well known from the literature; however, for the sake of com-
pleteness, a proof is given in Sect. A.9 of Appendix A.

Let Δn be an increasing sequence of cubes which invades Z
d . Call

A(n)f (σ ) = 1

|Δn|
∑

i∈Δn

τif (σ ),

and denote by C the set of all elementary cylinders; finally, define, in analogy with
(2.2.2.2),

X 0
g =

{
σ : lim

n→∞A(n)1C(σ ) exists for all C ∈ C
}
.

Analogously to Theorem 2.2.2.1, X 0
g is non-empty and for any σ ∈ X 0

g there is a
translational invariant measure Aσ such that

Aσ (f ) = lim
n→∞A(n)f (σ ) for all continuous functions f . (2.2.7.1)

The proof of the above statements uses the Birkhoff theorem. Fix arbitrarily a trans-
lational invariant measure, for instance a Bernoulli measure ν (Bernoulli measures
are measures such that all spins are independent and identically distributed, hence
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they are translational invariant). Then by the Birkhoff theorem ν(X 0
g ) = 1 and hence

X 0
g is non-empty. The analogue of (2.2.2.2) is

Ω0
σ = {

σ ′ ∈ X 0
g : Aσ ′ = Aσ

}
, X 0

gg = {
σ ∈ X 0

g : Aσ (Ω0
σ ) = 1

}
,

and the analogue of Theorem 2.2.2.2 holds as well.

Theorem 2.2.7.1 X 0
gg is non-empty and for any translational invariant measure μ,

μ(X 0
gg) = 1. The measures Aσ , σ ∈ X 0

gg , are ergodic with respect to space trans-
lations. Moreover for any bounded measurable function f , Aσ (f ) is a measurable
function and for any probability ν on X 0

gg , the measure μ defined by

μ(f ) =
∫

X 0
gg

Aσ (f ) ν(dσ )

is translational invariant. Vice versa, if μ is translational invariant then

μ(f ) =
∫

X 0
gg

Aσ (f ) μ(dσ).

Finally, a translational invariant measure μ is ergodic if and only if μ = Aσ for
some σ ∈ X 0

gg .

So far everything was general with no relations with the Gibbs measures. Let us
now specify μ as a translational invariant DLR measure, namely μ ∈ G 0. If μ is
ergodic, then for μ a.a. σ , μ = Aσ , which shows that Aσ ∈ G 0, μ almost surely.
The above conclusion extends to any μ ∈ G 0.

Theorem 2.2.7.2 If μ ∈ G 0, μ(X 0
gg) = 1 and for μ almost all σ ∈ X 0

gg , Aσ ∈ G 0.
Namely any translational invariant DLR measure μ is supported by configurations
σ such that their ergodic averages Aσ defined in (2.2.7.1) exist and are ergodic DLR
measures (so that the set of ergodic DLR measures is non-empty). As a consequence

μ(f ) =
∫

X 0
gg∩G 0

Aσ (f ) μ(dσ). (2.2.7.2)

Proof The set X 0
g is B∞ measurable because the value of Aσ (·) does not change

after a local modification of σ . On the other hand, by the Birkhoff theorem,
μ(X 0

g ) = 1 and by (2.2.2.3), μ({σ ∈ Xgg : Gσ (X 0
g ) = 1}) = 1. Calling K the inter-

section of {σ ∈ Xgg : Gσ (X 0
g ) = 1} and {σ ∈ Xgg ∩ X 0

g : for any C ∈ C , Aσ ′(1C) =
Gσ (Aσ ′′(1C)) for Gσ a.a. σ ′}, by (2.2.5.1) μ(K) = 1. By (2.2.7.1) and the Lebesgue
dominated convergence theorem, for σ ∈ K

∫

Ωσ

Aσ ′′(f ) Gσ (dσ ′′) = lim
n→∞

∫

Ωσ

A
(n)

σ ′′ (f ) Gσ (dσ ′′),
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since
∫
Ωσ

A
(n)

σ ′′ (f ) Gσ (dσ ′′) = 1
|Δn|

∑
i∈Δn

τi(Gσ )(f ) =: ν(n)(f ), ν(n) ∈ G, being a
convex combination of Gibbs measures (Gσ ∈ G and τi(Gσ ) as well by (2.2.6.1)).
Thus, by definition of K , if σ ∈ K , for Gσ a.a. σ ′ ∈ Ωσ , ν(n) → Aσ ′ on the cylinders
and, by a density argument (see Theorem A.4)

Aσ ′(f ) = lim
n→∞ν(n)(f ), for all continuous functions f .

Then Aσ ′ is weak limit of Gibbs measures and hence Aσ ′ ∈ G 0. Since this holds for
Gσ a.a. σ ′ and for all σ ∈ K , Aσ ′ ∈ G 0 for μ a.a. σ ′. �

Let us next see how the theorem fits with what we have said before about phase
transitions. Intensive variables are defined in physics as spatial averages of local ob-
servables, represented, for instance, by continuous functions. We then recognize in
Aσ (f ) the value in the state σ of the intensive variable associated to the continuous
function f . Particular cases occur when f (σ ) = σ(0); the intensive variable then
has the meaning of the magnetization density of the system. The energy density is
also an intensive variable, with

u(σ ) = −1

2

∑

y �=0

J (0, y)σ (0)σ (y) − hσ(0). (2.2.7.3)

The relevant quantities for phase transitions, according to what we have said before,
are the probability distributions of the intensive variables Aσ ′(f ). If a measure is
ergodic, by Theorem 2.2.7.1, it coincides with a measure Aσ and it is supported by a
set Ω0

σ . Then any intensive variable Aσ ′(f ) is constant in the support of the ergodic
measure, i.e. when σ ′ ∈ Ωσ . By Theorems 2.2.7.2 and 2.2.7.1, any translational in-
variant Gibbs measure can be decomposed into Gibbs measures which are ergodic,
hence in each one of these all intensive variables do not fluctuate. The absence
of fluctuations of the intensive variables characterizes the pure phases; hence the
ergodic Gibbs measures represent pure phases. We have thus proved that any trans-
lational invariant Gibbs measure is a mixture of pure phases with weights which are
uniquely determined. The existence of intensive variables which have non-trivial
fluctuations is then the indication that there is a phase transition and the variables
which fluctuate can be used as order parameters to classify the transition.

We denote by G 0
extr the extremal points of G 0, which are ergodic DLR measures

and represent the pure phases of the system, described above. If the cardinality of
G 0

extr is larger than 1, there are several pure phases and there is a phase transition.
However, a phase transition can occur also if |G 0| = 1, due to a break of the trans-
lational symmetry. It may in fact be that the unique element μ ∈ G 0 can be non-
trivially decomposed into non-translational invariant states, if the cardinality of Ge

is larger than 1. Such effects may be related to the appearance of crystalline struc-
tures and states of the solid phase, but also to the existence of states describing co-
existence of phases, like the Dobrushin states in d ≥ 3 ferromagnetic Ising systems
at low temperatures.
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2.3 Boltzmann hypothesis, entropy and pressure

In this section we completely change perspective, now focusing on thermodynamics
rather than Gibbs and DLR measures. In a sense we go back to the origins as the
derivation of thermodynamics was historically the first goal of statistical mechanics
with the aim of establishing a quantitative link between the macroscopic thermody-
namic potentials and the microscopic inter-molecular interactions.

The analysis in this section is entirely based on the postulate that “entropy is pro-
portional to the log of the number of states,” the famous Boltzmann hypothesis. We
will study the Ising model starting from such an assumption and derive expressions
for the thermodynamic potentials in terms of the Ising hamiltonian, in particular we
will relate thermodynamic pressure to partition functions. The Gibbs assumption on
the structure of the equilibrium states is not needed, nonetheless our proofs will use
extensively the DLR theory but only as a technical tool.

2.3.1 An example from information theory

A simple example of what we are going to do is borrowed from information theory.
Consider a channel which transmits messages with a finite alphabet Ω ; we want to
compute its capacity by counting how many messages can be emitted by a source
which is “sending f with frequency φ.” By this we mean the following: f is a
real valued function on Ω , φ ∈ (minf,maxf ), and the “normalized” number of
messages we want to count is

lim
δ→0

lim
N→∞

logKδ(N)

N
, (2.3.1.1)

where

Kδ(N) = card

{

(ω1, . . . ,ωN) ∈ ΩN : AN :=
∣∣∣∣∣

1

N

N∑

i=1

f (ωi) − φ

∣∣∣∣∣
≤ δ

}

. (2.3.1.2)

Instead of going into combinatorics and Stirling formulas, it is more instructive for
the applications to statistical mechanics to use a probabilistic approach. We start
from the identity

Kδ(N) =
∑

ω1,...,ωN

1AN≤δ

p(ω1) · · ·p(ωN)

p(ω1) · · ·p(ωN)
, (2.3.1.3)

and the whole trick is to choose properly the probability p(ω) on Ω . Calling
Zb = ∑

ω∈Ω ebf (ω), we will see that the “right choice” is

p(ω) = ebf (ω)

Zb

, b such that
∑

ω∈Ω

p(ω)f (ω) = φ. (2.3.1.4)
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Existence [and uniqueness] of b follows from the fact that
∑

ω∈Ω p(ω)f (ω) is an
increasing function of b which converges to minf and maxf as b → ∓∞. With
the choice (2.3.1.4) for p(·), we get from (2.3.1.3)

Kδ(N) =
∑

ω1,...,ωN

1AN≤δ[p(ω1) · · ·p(ωN)]e−∑
(bf (ωi)−logZb). (2.3.1.5)

It is now clear why (2.3.1.4) is a good choice: the sum
∑N

i=1 bf (ωi) in the exponent
is, by (2.3.1.2), approximately the same as the one fixed by the condition AN ≤ δ,
while the second equality in (2.3.1.4) ensures that with probability converging to 1
the condition AN ≤ δ is satisfied. Indeed, call S := logZb − bφ and PN the product
probability p(ω1) · · ·p(ωN), then

PN(AN ≤ δ)e(S−bδ)N ≤ Kδ(N) ≤ e(S+bδ)N . (2.3.1.6)

By the law of large numbers, for any δ > 0 limN→∞ PN(AN ≤ δ) = 1 so that

lim
δ→0

lim
N→∞

logKδ(N)

N
= S, (2.3.1.7)

and by explicit computation

S = logZb − bφ = −
∑

ω∈Ω

p(ω) logp(ω) =: S(p). (2.3.1.8)

In conclusion, the capacity of the channel equals the “information entropy” S(p)

of the associated Gibbs measure p of (2.3.1.4). In our applications Ω = {−1,1},
N+ is replaced by Z

d , b by the inverse temperature β and f by an “energy func-
tion” u, which, however, unlike f , does not depend on a single spin. Independence
will then fail and the above law of large numbers for Bernoulli measures will be
replaced by ergodic theorems for DLR measures. The analysis will then identify the
thermodynamic entropy with the above information entropy.

2.3.2 Boltzmann hypothesis

We will consider in the sequel the Ising hamiltonian

HΛ(σΛ) = −1

2

∑

x �=y∈Λ

J(x, y)σΛ(x)σΛ(y) − h
∑

x∈Λ

σΛ(x), (2.3.2.1)

supposing that the J (x, y) are translational invariant and summable; see Sect. 2.1.2.
To formulate the Boltzmann hypothesis we first introduce the notion of “number of
states with given energy.”



44 2 Thermodynamic limit in the Ising model

Definition [Number of states with given energy density] For any bounded set Λ ⊂
Z

d , δ > 0 and E ∈ R, we define

NE,Λ,δ = card
{
σΛ : ∣∣HΛ(σΛ) − |Λ|E ∣∣ ≤ δ|Λ|}. (2.3.2.2)

With the above definition we have relaxed the notion of number of states with
given energy by introducing the accuracy parameter δ. This is technically convenient
but also natural in a lattice model where the finite volume hamiltonian has finitely
many values. We will eventually let δ → 0, but only after |Λ| → ∞. Notice that
E in (2.3.2.2) has the meaning of the energy density as HΛ(σΛ)/|Λ| is close to E

(by δ). Recalling that the Boltzmann hypothesis relates the entropy to the log of the
number of states, we next introduce

SE,Λ,δ = logNE,Λ,δ

|Λ| , (2.3.2.3)

having divided by |Λ| because we want the entropy per unit volume. SE,Λ,δ cannot
be a candidate for the Boltzmann entropy, as it is not a function of E, depending also
on Λ and δ. Thus we need to let Λ → Z

d and we want this to happen in “a regular
way”; namely, we want the volume of a neighborhood of the boundary to be much
smaller than the whole volume:

Definition 2.3.2.1 (van Hove sequences) A sequence Λn is “van Hove” if it is an
increasing sequence of bounded regions which invades the whole Z

d (for any x ∈
Z

d there is n so that x ∈ Λn) and verifies the following property. Given any cube
Δ ⊂ Z

d and any partition of Z
d into translates of Δ, call Λ′

n the union of those cubes
of the partition which are contained in Λn and Λ′′

n of those which have non-empty
intersection with Λn. Then

lim
n→∞

|Λ′
n|

|Λn| = lim
n→∞

|Λ′′
n|

|Λn| = 1. (2.3.2.4)

By default in the sequel Λ → Z
d is meant to be taken in the van Hove sense.

We would then like to have a theorem which says that there exists S(E) such that
for any van Hove sequence Λn

lim
δ→0

lim
n→∞SE,Λn,δ = S(E). (2.3.2.5)

With such a result we can then reasonably formulate the Boltzmann hypothesis in
our Ising model by saying that “S(E) as defined by (2.3.2.5) is the thermodynamic
entropy of a system whose microscopic interactions are described by (2.3.2.1).” The
definition poses consistency problems as S(E) should verify the properties that en-
tropy has in thermodynamics and a great success of the theory is that all this can
indeed be rigorously established. Using the thermodynamic relations we can obtain
from S(E) other thermodynamic potentials, for instance the inverse temperature β



2.3 Boltzmann hypothesis, entropy and pressure 45

as a function of E is equal to the derivative dS(E)/dE. As we will see, there are
also formulas for computing the pressure Pβ as a function of β, once S(E) as a
function of E is known. We will prove that the pressure Pβ obtained from S(·) in
this way has a simple expression in terms of the Ising partition function. Let Λn be
any van Hove sequence; then

Pβ = lim
n→∞

logZβ,Λn

β|Λn| , Zβ,Λ =
∑

σΛ∈XΛ

e−βHΛ(σΛ). (2.3.2.6)

For practical and numerical purposes the expression (2.3.2.6) is much easier to
handle than (2.3.2.5); thus, while from an axiomatic viewpoint entropy is the starting
point from where all the other thermodynamic potentials are derived, often in the
literature (2.3.2.6) is taken as a definition of pressure and all thermodynamics can
then be derived.

The equality between the pressure computed from the entropy (2.3.2.5) via ther-
modynamic relations and the pressure computed via (2.3.2.6) goes under the name
of “equivalence of ensembles.” The ensembles in the statement are the “micro-
canonical ensemble,” which denotes the phase space reduced to the subset (2.3.2.2)
and the “grand-canonical ensemble” which is the full phase space XΛ where the
partition function is computed. This reminds one of the minimization of a function
in R

n where using Lagrange multipliers a constraint can be dropped and the problem
reduced to one in the whole R

n. The analogy is made more evident in the following
outline of the proof of (2.3.2.5); the real proof is postponed to the next subsections,
while (2.3.2.6) is proved in Sect. 2.3.3. We start from the trivial identity

NE,Λ,δ =
∑

σΛ∈XΛ

1|HΛ(σΛ)−|Λ|E|≤δ|Λ|

=
∑

σΛ∈XΛ

1|HΛ(σΛ)−|Λ|E|≤δ|Λ|
e−βHΛ(σΛ)

Zβ,Λ

{Zβ,ΛeβHΛ(σΛ)}.

We proceed by writing upper and lower bounds, which will hopefully coincide in
the limit, and bound the last term eβHΛ(σΛ) in the curly brackets by eβ(E±δ)|Λ|: we
then find for logNE,Λ,δ

|Λ| the bounds

≤ logZβ,Λ

|Λ| + β(E + δ)

≥ logZβ,Λ

|Λ| + β(E − δ)

+ 1

|Λ| logGβ,Λ

({|HΛ(σΛ) − |Λ|E| ≤ δ|Λ|}), (2.3.2.7)

where Gβ,Λ(σΛ) = e−βHΛ(σΛ)

Zβ,Λ
is the Gibbs measure (with zero boundary conditions).

We now face two problems: the first one, the easier one, solved in the next subsec-
tion, is to prove that the limit on the r.h.s. of (2.3.2.6) exists, thus defining a function
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Pβ which only afterwards will be identified with the thermodynamic pressure. This
yields

lim
δ→0

lim sup
Λ→Zd

logNE,Λ,δ

|Λ| ≤ inf
β>0

(βPβ + βE). (2.3.2.8)

The second and more serious problem concerns the lower bound, a problem that can
be avoided if we suppose that there is β∗ so that

lim
δ→0

lim
Λ→Zd

1

|Λ| logGβ∗,Λ

({∣∣∣∣
HΛ(σΛ)

|Λ| − E

∣∣∣∣ ≤ δ

})
= 0. (2.3.2.9)

Then

lim
δ→0

lim inf
Λ→Zd

logNE,Λ,δ

|Λ| ≥ β∗Pβ∗ + β∗E, (2.3.2.10)

which together with (2.3.2.8) yields the result that the limit in (2.3.2.5) exists and is
equal to

S(E) = β∗Pβ∗ + β∗E = inf
β>0

(βPβ + βE), (2.3.2.11)

which is the well known thermodynamic formula for the entropy in terms of the
pressure.

The problem is that (2.3.2.9) is not true in general. As we will see it holds for E

in a set Eerg: for any E ∈ Eerg there is a special value of β for which (2.3.2.9) holds.
We will discuss later how to proceed when E /∈ Eerg. The terminology hints that
the crucial estimate (2.3.2.9) is related to an ergodic theorem. Let τzu(σ ) be the
translate by z ∈ Z

d of the function u(σ ) defined in (2.2.7.3). Then

Aσ,Λ(u) := 1

|Λ|
∑

x∈Λ

τxu(σ ) (2.3.2.12)

is the “ergodic average” of u in Λ computed at σ . We claim that Aσ,Λ(u) is “close
to” HΛ(σΛ), the latter to be thought of as a function of σ ∈ X (with σΛ the restric-
tion of σ to Λ) and thus also denoted by HΛ(σ). Indeed

HΛ(σ) ≡ HΛ(σΛ) = |Λ|Aσ,Λ(u) + 1

2

∑

x∈Λ

∑

y∈Λc

J (x, y)σ (x)σ (y). (2.3.2.13)

Analogously, for any σΛ ∈ XΛ and σΛc ∈ XΛc , denoting σ = (σΛ,σΛc)

HΛ(σΛ|σΛc) = |Λ|Aσ,Λ(u) − 1

2

∑

x∈Λ,y∈Λc

J (x, y)σΛ(x)σΛc(y). (2.3.2.14)

We will see in the next subsection that if Λ → Z
d in the van Hove sense, then

lim
Λ→Zd

1

|Λ|
∑

x∈Λ

∑

y∈Λc

|J (x, y)| = 0, (2.3.2.15)
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so that the last term in (2.3.2.13)–(2.3.2.14) is a “negligible error” (once divided by
|Λ|) and HΛ(σ) is “essentially” the ergodic average of u in Λ.

If μ is an ergodic measure on X , Aσ,Λ(u) → μ(u) (μ(u) being the expectation
of u) for μ almost all σ . Thus, if μ(u) = E,

lim
δ→0

lim
Λ→Zd

μ

({∣
∣∣∣
HΛ(σΛ)

|Λ| − E

∣
∣∣∣ ≤ δ

})
= 1. (2.3.2.16)

As we shall see using (2.3.2.15) we can modify (2.3.2.7) so that instead of Gβ,Λ we
can put any DLR measure at inverse temperature β with an error such that its log,
divided by |Λ| vanishes as |Λ| → ∞. Thus (2.3.2.9) holds for all E ∈ Eerg where
the latter is the set of all μ(u) as μ varies over all the ergodic DLR measures at
β > 0 and β varies in the whole R+.

If all DLR measures were ergodic we will be in business, but as we have seen
in the previous section this is not true in case of phase transitions, when in fact
there are distinct ergodic DLR measures at the same β so that their convex combi-
nations are DLR at β but not ergodic. In such a case the approach which starts from
(2.3.2.7) must be aborted and we have to go one step back. Suppose the energy
density E belongs to an interval [E′,E′′], E = aE′ + (1 − a)E′′, a ∈ (0,1), whose
endpoints are both in Eerg, namely are expectations of u(σ ) relative to two ergodic
DLR measures at the same inverse temperature β , then the previous argument can be
reproduced in the following way. Suppose for simplicity Λ to be a cube and suppose
that it can be split into two rectangles Λ′ and Λ′′ such that a = |Λ′|/|Λ| (approx-
imate equality is however sufficient). By (2.3.2.15), if |Λ| is large enough the set
{|HΛ′(σΛ′) − |Λ′|E′| ≤ δ

4 |Λ′|} ∩ {|HΛ′′(σΛ′′) − |Λ′′|E′′| ≤ δ
4 |Λ′′|} is contained in

{|HΛ(σΛ) − |Λ|E| ≤ δ|Λ|}. Then the lower bound in (2.3.2.7) can be replaced by

logNE,Λ,δ

|Λ| ≥ logZβ,Λ

|Λ| + β(E − δ)

+ 1

|Λ| logGβ,Λ

({
|HΛ(σΛ′) − |Λ′|E′| ≤ δ

4
|Λ′|

}

∩
{
|HΛ(σΛ′′) − |Λ′′|E′′| ≤ δ

4
|Λ′′|

})
. (2.3.2.17)

Using again (2.3.2.15), we can also factorize the Gibbs measure in the sense that the
log of

Gβ,Λ({|HΛ′(σΛ′) − |Λ′|E′| ≤ δ
4 |Λ′|} ∩ {|HΛ′′(σΛ′′) − |Λ′′|E′′| ≤ δ

4 |Λ′′|})
Gβ,Λ′({|HΛ′(σΛ′) − |Λ′|E′| ≤ δ

4 |Λ′|})Gβ,Λ′′({|HΛ′′(σΛ′′) − |Λ′′|E′′| ≤ δ
4 |Λ′′|})

divided by |Λ vanishes as the cube Λ → Z
d . We can thus replace in (2.3.2.17) the

Gβ,Λ expectation by the product of expectations with Gβ,Λ′ and Gβ,Λ′′ and then
reproduce the argument used when E ∈ Eerg.

It remains for us to characterize the set Eallwd defined as the set of all E which
are contained in intervals [E′,E′′] with E′ and E′′ expectations of u with respect to
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two ergodic measures which are DLR at the same value of β . By the analysis of the
previous section we know that for each β > 0 there exist ergodic DLR measures;
moreover, any translational invariant DLR measure at β (their collection being de-
noted by G 0

β ) can be written as an integral over the subset of ergodic DLR measures
(ergodic decomposition theorem). It then follows that

Eallwd =
⋃

β>0

{E ∈ R : E = μ(u),μ ∈ G 0
β}. (2.3.2.18)

We will next see how the sets {E ∈ R : E = μ(u),μ ∈ G 0
β} are related to the pres-

sure Pβ . Together with the proof of existence of the limit (2.3.2.6) defining Pβ we
also have that πβ := βPβ is a continuous convex function of β . Then by general the-
orems on convex functions, see Sect. 2.3.6, its right and left derivatives D±πβ exist,
and D−πβ ≤ D+πβ . We will then prove that for any β > 0 the values E′′ = −D−πβ

and E′ = −D+πβ , E′ ≤ E′′ are both in Eerg; thus

E =: −Eallwd =
⋃

β>0

[D−πβ,D+πβ ]. (2.3.2.19)

It will also follow from general theorems on convex functions that both [D−πβ,

D+πβ ] and Eallwd are bounded intervals. The restriction to a bounded interval of
energies is a consequence of the system being a lattice model in which the energy
density is bounded both from above and below (in a continuum system it is generally
only bounded from below). We will see in the sequel that bounded spin systems
have strange properties; in particular negative temperatures can also be defined if
we enlarge the set Eallwd to all E for which the limit (2.3.2.5) exists, a phenomenon
which disappears if the energy density is unbounded from above.

2.3.3 Thermodynamic limit of the pressure

In this subsection we will prove

Theorem 2.3.3.1 For any van Hove sequence Λ → Z
d and any sequence of b.c.

σΛc ∈ XΛc ,

lim
Λ→Zd

Pβ,Λ(σΛc) =: Pβ, (2.3.3.1)

where, recalling that XΛ = {−1,1}Λ,

Pβ,Λ(σΛc) = 1

β|Λ| logZβ,Λ(σΛc),

(2.3.3.2)
Zβ,Λ(σΛc) =

∑

σΛ∈XΛ

e−βHΛ(σΛ|σΛc ).
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Before starting the proof of the theorem we state and prove the following lemma.

Lemma 2.3.3.2 There is a constant c so that for any bounded Λ, any σΛ and
any σΛc

|HΛ(σΛ|σΛc)| ≤ c|Λ|. (2.3.3.3)

Moreover, given any ε > 0 for all cubes Δ large enough

∑

x∈Δ,y∈Δc

|J (x, y)| ≤ ε|Δ|. (2.3.3.4)

Proof We have

|HΛ(σΛ|σΛc)| ≤
∑

x∈Λ

∑

y �=x

|J (x, y)| +
∑

x∈Λ

|h|,

which proves (2.3.3.3) with c = |h| + ∑
x �=0 |J (0, x)|.

Given R > 0 we split the sum in the l.h.s. of (2.3.3.4) as

∑

x∈Δ,dist(x,Δc)≤R

∑

y∈Δc

|J (x, y)| +
∑

x∈Δ,dist(x,Δc)>R

∑

y∈Δc

|J (x, y)|.

The first term is bounded by cLd−1R, L being the side of Δ; the second one by

|Δ|
∑

|x|>R

|J (0, x)| < ε

2
|Δ|,

if R is large enough. Given such a R we then choose L so large that cLd−1R ≤
(ε/2)Ld , hence (2.3.3.4). �

Proof of Theorem 2.3.3.1 In this proof we do not make explicit β in the notation.
By (2.3.3.3) there is c so that

|PΛ(σΛc)| = 1

β|Λ| | logZΛ(σΛc)| ≤ c. (2.3.3.5)

Then by compactness there exists an increasing sequence of cubes Δ → Z
d such

that

lim
Δ→Zd

PΔ =: P. (2.3.3.6)

Now, PΔ = logZΔ

β|Δ| , ZΔ = ∑
σΛ

e−βHΛ(σΛ), HΛ(σΛ) as in (2.3.2.1). Let Λ be a
van Hove sequence and σΛc a sequence of boundary conditions. We will prove
that limΛ→Zd PΛ(σΛc) = P , P as in (2.3.3.6). Let ε > 0 and let Δ be a cube
of the sequence in (2.3.3.6) as large as required for (2.3.3.4) to hold. Consider



50 2 Thermodynamic limit in the Ising model

a partition into translates of Δ, call Δ(i) those in Λ, and Λ′ their union. With
c = |h| + ∑

x �=0 |J (0, x)| we then have, using Lemma 2.3.3.2,

∣∣∣
∣HΛ(σΛ|σΛc) −

∑

Δ(i)⊂Λ′
HΔ(i)(σΔ(i))

∣∣∣
∣ ≤ ε|Λ′| + c|Λ \ Λ′|. (2.3.3.7)

From (2.3.3.7) we get

∣∣∣∣PΛ(σΛc) − |Λ′|
|Λ| PΔ

∣∣∣∣ ≤ ε
|Λ′|
|Λ| + c

|Λ \ Λ′|
|Λ| .

Letting Λ → Z
d and calling P ′ ≤ P ′′ the lim inf and lim sup of PΛ(σΛc)

PΔ − ε ≤ P ′ ≤ P ′′ ≤ PΔ + ε.

By letting Δ → Z
d along the sequence in (2.3.3.6) we get P −ε ≤ P ′ ≤ P ′′ ≤ P +ε

and by the arbitrariness of ε, (2.3.3.1). �

2.3.4 Thermodynamic limit of the entropy

The precise statement of the results outlined in Sect. 2.3.2 is

Theorem 2.3.4.1 (Main result) There is a non-empty interval E (defined in
(2.3.2.19)) such that for any E ∈ Eallw, Eallw := −E , and for any van Hove sequence
Λ → Z

d

lim
δ→0

lim sup
Λ→Zd

logNE,Λ,δ

|Λ| = lim
δ→0

lim inf
Λ→Zd

logNE,Λ,δ

|Λ| =: S(E), (2.3.4.1)

with S(E) a strictly increasing, concave function of E. Moreover, if Pβ denotes the
pressure defined in (2.3.3.1),

βPβ = sup
E∈Eallw

{β(−E) + S(E)}, −S(E) = sup
β>0

{β(−E) − βPβ}, (2.3.4.2)

so that the functions s(E) = −S(−E), E ∈ E , and πβ = βPβ , β ∈ R+, are Legendre
transforms of each other. S(E) and Pβ are both differentiable except at countably
many points, while left and right derivatives D± exist everywhere. We say that E and
β are conjugate if e = −E ∈ [D−πβ,D+πβ ]; in such a case β ∈ [D−s(e),D+s(e)]
and, if E and β are conjugate, then

Pβ = −E + β−1S(E). (2.3.4.3)

Finally, s(e) is linear in [D−πβ,D+πβ ] and πβ in [D−s(e),D+s(e)].



2.3 Boltzmann hypothesis, entropy and pressure 51

Thermodynamic interpretation

As discussed in Sect. 2.3.2, in agreement with the Boltzmann hypothesis we inter-
pret S(E) as the thermodynamic entropy, and then Pβ as given in (2.3.4.3) in terms
of S(E) is the thermodynamic pressure at the inverse temperature β , as thermo-
dynamics says that entropy and pressure are related as in (2.3.4.3). In conclusion,
Theorem 2.3.4.1 and the Boltzmann hypothesis completely determine the thermo-
dynamics of the Ising model and justify the identification of the limit (2.3.3.1) as
the thermodynamic pressure.

Proof of the statements of Theorem 2.3.4.1

The proof of the theorem takes most of this section. Convexity of the pressure is
proved in Theorem 2.3.5.1; (2.3.4.1) is proved in Theorem 2.3.7.5; (2.3.4.2) in The-
orem 2.3.8.1; the properties of S(E) stated in Theorem 2.3.4.1 are proved in Theo-
rem 2.3.8.2, while in Theorem 2.3.8.3 there is a characterization of the set E .

Scheme of the proof of Theorem 2.3.4.1

We will first prove (2.3.4.1) only for E ∈ Eerg, Eerg := {E : E = μ(u), μ ergodic
DLR at inverse temperature β,β > 0}. For such special values of E we can in fact
follow the heuristic argument presented in Sect. 2.3.2 to prove (2.3.4.1). The argu-
ment also proves (2.3.4.3), which is thus established for E ∈ Eerg. The extension to
E /∈ Eerg is based on the general properties of convex functions, which are recalled
together with the definition and properties of Legendre transforms in Sect. 2.3.6.

Proposition 2.3.4.2 For any E ∈ Eerg and for any van Hove sequence Λn, the limit
S(E) in (2.3.4.1) exists and S(E) satisfies (2.3.4.3).

We fix in the sequel E ∈ Eerg so that there is an ergodic DLR measure μ at some
β > 0 such that μ(u) = E. We postpone the proof of Proposition 2.3.4.2 to first deal
with the following three lemmas.

Lemma 2.3.4.3 For any δ > 0 and any van Hove sequence Λ → Z
d

lim
Λ→Zd

μ

(
1

|Λ|
∣∣∣∣
∑

x∈Λ

{τxu(σ ) − E}
∣∣∣∣ ≤ δ

)
= 1. (2.3.4.4)

Proof Since μ is ergodic, for any ε > 0 there is a cube Δε so that for any cube Δ,
|Δ| ≥ |Δε |,

μ

(∣∣∣∣
∑

x∈Δ

{τxu(σ ) − E}
∣∣∣∣

)
< ε|Δ|. (2.3.4.5)
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Define a partition of Z
d into cubes which are translates of Δ; call Δ(i) those con-

tained in Λ, and Λ′ their union. Then

μ

(
1

|Λ|
∣∣∣∣
∑

x∈Λ

{τxu(σ ) − E}
∣∣∣∣ > δ

)

≤ 1

δ|Λ|μ
(∣∣∣∣

∑

x∈Λ

{τxu(σ ) − E}
∣∣∣∣

)

≤ 1

δ|Λ|
{∑

Δ(i)

μ

(∣∣∣
∣

∑

x∈Δ(i)

{τxu(σ ) − E}
∣∣∣
∣

)
+ c|Λ \ Λ′|

}
, (2.3.4.6)

because u is bounded. By (2.3.4.5),

μ

(
1

|Λ|
∣∣∣∣
∑

x∈Λ

{τxu(σ ) − E}
∣∣∣∣ > δ

)
≤ c|Λ \ Λ′|

δ|Λ| + ε|Λ′|
δ|Λ| .

In the limit Λ → Z
d , c|Λ\Λ′|

δ|Λ| → 0,
ε|Λ′|
δ|Λ| → ε

δ
and by the arbitrariness of ε, (2.3.4.4)

is proved. �

Lemma 2.3.4.4 Given any ε > 0 for all cubes Δ large enough

sup
σΔ,σΔc

∣∣∣∣
∑

x∈Δ

[τxu((σΔ,σΔc)) − τxu((σΔ,0Δc))]
∣∣∣∣ ≤ ε|Δ|, (2.3.4.7)

where u((σΔ,0Δc)) is defined by (2.2.7.3) putting σ(·) = 0 on Δc;

sup
σΔ,σΔc

∣∣HΔ(σΔ) − HΔ((σΔ|σΔc))
∣∣ ≤ ε|Δ|. (2.3.4.8)

Proof Equations (2.3.4.7)–(2.3.4.8) follow straightforwardly from (2.3.3.4). �

Lemma 2.3.4.5 Let Λ → Z
d be a van Hove sequence; then, given any ε > 0 for all

Λ large enough, we have

sup
σΛ,σΛc

∣∣∣
∣HΛ(σΛ) −

∑

x∈Λ

τxu((σΛ,σΛc))

∣∣∣
∣ ≤ ε|Λ|, (2.3.4.9)

sup
σΛ,σΛc

∣∣HΛ(σΛ) − HΛ(σΛ|σΛc)
∣∣ ≤ ε|Λ|. (2.3.4.10)

Proof Let Δ(i) and Λ′ be defined as in the definition of the van Hove sequences;
then by (2.3.2.12), the l.h.s. of (2.3.4.9) is bounded by

∑

Δ(i)⊂Λ′

∣∣∣∣
∑

x∈Δ(i)

[τxu((σΛ,σΛc)) − τxu((σΛ,0Λc))]
∣∣∣∣ + c|Λ \ Λ′|,
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so that (2.3.4.9) follows from (2.3.4.7), because |Λ \ Λ′|/|Λ| → 0. Analogously,

HΛ(σΛ|σΛc) = HΛ\Δ(i)(σΛ\Δ(i)|σΛc) + HΔ(i)(σΔ(i)|σΛ\Δ(i), σΛc).

Hence by (2.3.4.8) for Δ(i) large enough

|HΛ(σΛ|σΛc) − HΔ(i)(σΔ(i)) − HΛ\Δ(i)(σΛ\Δ(i)|σΛc)| ≤ ε

4
|Δ(i)|.

By iteration
∣∣∣∣HΛ(σΛ|σΛc) −

∑

Δ(i)⊂Λ′
HΔ(i)(σΔ(i))

∣∣∣∣ ≤ c|Λ \ Λ′| + ε

4
|Λ|.

By the same argument
∣∣∣∣HΛ(σΛ) −

∑

Δ(i)⊂Λ′
HΔ(i)(σΔ(i))

∣∣∣∣ ≤ c|Λ \ Λ′| + ε

4
|Λ|, (2.3.4.11)

hence (2.3.4.10). �

Proof of Proposition 2.3.4.2 Let Λ → Z
d be a van Hove sequence. Then by Lem-

mas 2.3.4.3 and 2.3.4.5 for Λ large enough,

μ
(∣∣HΛ(σΛ) − |Λ|E∣∣ ≤ δ

) ≥ 1

2
, (2.3.4.12)

and by Theorem 2.3.3.1, given any ε for Λ large enough and any σΛc ,

e−βε|Λ| ≤ ZΛ(σΛc)

eβPβ |Λ| ≤ eβε|Λ|. (2.3.4.13)

We are now ready for the proof of Proposition 2.3.4.2. We first write

NE,Λ,δ =
∑

σΛ

1HΛ(σΛ)−|Λ|E|≤δ|Λ|,

=
∫

dμ(σΛc)
∑

σΛ

1|HΛ(σΛ)−|Λ|E|≤δ|Λ|
e−βHΛ(σΛ|σΛc )

ZΛ(σΛc)

× {ZΛ(σΛc)eβHΛ(σΛ|σΛc )}.
By (2.3.4.13) and (2.3.4.10) for any σΛ : |HΛ(σΛ) − |Λ|E| ≤ δ|Λ| and all Λ large
enough,

{ZΛ(σΛc)eβHΛ(σΛ|σΛc )} ≤ eβ(Pβ+ε)|Λ|eβ(HΛ(σΛ)+ε)|Λ| ≤ eβ(Pβ+E)|Λ|eβ(2ε+δ)|Λ|,

so that

NE,Λ,δ ≤ eβ(Pβ+E)|Λ|eβ(2ε+δ)|Λ|. (2.3.4.14)
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Notice that the upper bound (2.3.4.14) is valid for any E and not only for the special
value E = μ(u). For the lower bound, instead after proceeding similarly, we use
(2.3.4.12) to get

NE,Λ,δ ≥ eβ(Pβ+E)|Λ|e−β(2ε+δ)|Λ| 1

2
, (2.3.4.15)

and Proposition 2.3.4.2 is proved. �

2.3.5 Equivalence of ensembles

Proposition 2.3.4.2 is a first indication of it, but it is not yet a full justification for
interpreting the limit of logZΛ(σΛc)/(β|Λ|) as the thermodynamic pressure. One
reason is that the entropy S(E) has only been defined for E ∈ Eerg and therefore
the identity (2.3.4.3) is only established for such values of E. Notice however that
(2.3.4.3) covers all β > 0 as for any β there is an ergodic DLR measure, hence a
value E ∈ Eerg for which (2.3.4.3) holds. As we are going to explain this creates
a serious consistency problem, which could make the interpretation of Pβ as the
pressure dubious. In fact, according to thermodynamic principles, if Pβ is the ther-
modynamic pressure at the inverse temperature β, then the function

Std(E) := − sup
β>0

{β(−E) − βPβ} (2.3.5.1)

is the thermodynamic entropy. We thus have two entropies, S(E) defined directly
from the Boltzmann hypothesis, and Std(E) defined starting from Pβ . Consistency
requires that they coincide which indeed will be proved. There is also another con-
sistency problem to check: by thermodynamic principles the pressure is related to
the entropy by

βPβ = sup
E

{β(−E) − [−Std(E)]}, (2.3.5.2)

namely πβ = βPβ is the Legendre transform of s(E) = −Std(−E); hence πβ must
be a convex function of β—see the paragraph “Legendre transforms” at the begin-
ning of Sect. 2.3.8.

We thus need to prove (1) that the limit in (2.3.4.1) is well posed also for E /∈ Eerg;
(2) that S(E) = Std(E) for all E; (3) that βPβ is a convex function of β , a property
which implies (2.3.5.2) because by (2.3.5.1) s(E) = −Std(−E) is the Legendre
transform of βPβ (see again the paragraph “Legendre transforms” in Sect. 2.3.8).

Property (3) is proved as a corollary of Theorem 2.3.5.1 below, so that the
requirement (2.3.5.2) from thermodynamics is fulfilled. More serious is the con-
sistency problem (2), i.e. that S(E) = Std(E), which will be proved in the next
subsections together with (1), leading in the end to the proof of Theorem 2.3.4.1.
Problem (2) is usually referred to as “equivalence of ensembles.” The equivalence
is between the “grand-canonical ensemble” used in the definition of ZΛ(σΛc), i.e.
all σΛ ∈ XΛ, and the “micro-canonical ensemble” used in the definition of NE,Λ,δ ,
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where σΛ is restricted by the energy constraint, and, as we shall see, there are other
ensembles related to other variables than the energy.

We will next prove that the pressure is convex. Consider the convex family
of hamiltonians HΛ(σΛ) + VΛ(σΛ) where HΛ(σΛ) is defined in (2.3.2.13) and
VΛ(σΛ) := ∑

τxΔ⊂Λ τxv(σΛ), where v is a cylindrical function on Δ and the sum
is over all translates of Δ which are in Λ. Call ZΛ(v) the corresponding partition
function and, given any van Hove sequence, let

π(v) = lim
Λ→Zd

πΛ(v), πΛ(v) := logZΛ(v)

|Λ| . (2.3.5.3)

The existence of the above limit is proved as in Sect. 2.3.3 and it is omitted.

Theorem 2.3.5.1 The function π(v) defined in (2.3.5.3) is convex, i.e. for any a ∈
[0,1]

π
(
av(1) + (1 − a)v(2)

) = aπ(v(1)) + (1 − a)π(v(2)). (2.3.5.4)

Proof Let Λ be a bounded region and

v = av(1) + (1 − a)v(2), a ∈ [0,1].
Then calling H

(1)
Λ (σΛ) and H

(2)
Λ (σΛ) the energies with v(1) and v(2), respectively,

ZΛ(v) =
∑

σΛ

e−βaH
(1)
Λ (σΛ)e−β(1−a)H(2)(σΛ)

≤
[ ∑

σΛ∈XΛ

(
e−βaH(1)(σΛ)

)p
]1/p[ ∑

σΛ∈XΛ

(
e−β(1−a)H(2)(σΛ)

)q
]1/q

,

with 1/p + 1/q = 1. By choosing p = a−1 and q = (1 − a)−1 we get

ZΛ(v) ≤ ZΛ(v(1))a ZΛ(v(2))1−a,

which yields πΛ(v) ≤ aπΛ(v(1)) + (1 − a)πΛ(v(2)). Then πΛ is convex and π(U)

as well because of the limit of convex functions; see the paragraph “Properties of
convex functions” in the next subsection. �

By Theorem 2.3.5.1, βPβ is a convex function of β and (2.3.5.2) is proved.

2.3.6 Properties of convex functions

We recall here some properties of convex functions on R which will often be used
in the sequel, referring for their proofs to Chap. I.3 in Simon’s book on Statistical
Mechanics [200].
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• Definition. f (x), x ∈ R, is convex if f (αx + (1 − α)y) ≤ αf (x) + (1 − α)f (y)

for all x and y and α ∈ [0,1].
• Differentiability. If f is convex, f is differentiable at all but countably many

points, the right and left derivatives, D+f and D−f , exist everywhere and

D−f (x) ≤ D+f (x) ≤ D−f (y) ≤ D+f (y), x < y. (2.3.6.1)

• Limits of convex functions. If fn is a sequence of convex functions which con-
verges point-wise to f , then f is convex and for any x

D−f (x) ≤ lim infD−fn(x) ≤ lim supD+fn(x) ≤ D+f (x). (2.3.6.2)

• Legendre transforms. Let f (x) be a convex function, x ∈ R. Its Legendre trans-
form g(p), p ∈ R, is

g(p) = sup
x

{xy − f (x)}. (2.3.6.3)

• Properties of the Legendre transform. The Legendre transform g(p) of a function
f (x) is convex and, if f (x) is convex, then

f (x) = sup
p

{xy − g(p)}. (2.3.6.4)

In general, the Legendre transform h of the Legendre transform g of f is h =
CEf the convex envelope of f , namely the largest convex function ≤ f .

• Conjugate pairs. Let f be a convex function and g its Legendre transform. Then
x and p are conjugate if

p ∈ [D−f (x),D+f (x)] if and only if g(p) = px − f (x), (2.3.6.5)

and

if p ∈ [D−f (x),D+f (x)] then x ∈ [D−g(p),D+g(p)]. (2.3.6.6)

Notice that if D−f (x) < D+f (x) then g(p) is linear in [D−f (x),D+f (x)]. The
Legendre transform has the following geometric interpretation (see Fig. 2.1): for
each p consider all the straight lines px + c, all with the same slope p, which are
not above the graph of f , namely the set of all c so that f (x) − [px + c] ≥ 0 for
all x. Hence c ≤ infx{f (x) − px}. Call c∗ the sup of all such c, then g(p) = −c∗
and hence g(p) is minus the intersection with the vertical axis of the highest line
with slope p which is ≤ f (x) at all x.

2.3.7 Concavity of the Boltzmann entropy

With D below denoting derivative with respect to β , define

πβ = βPβ, A = {β > 0 : D−πβ = D+πβ = Dπβ}, (2.3.7.1)
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Fig. 2.1 The dashed line is
tangent at the graph of f at
Q, and the value of the
Legendre transform is P . The
convex envelope is obtained
by joining the points A and B

as shown

so that A covers the positive axis but for countably many points; let

G 0
β = the set of translational invariant DLR measures at β. (2.3.7.2)

Proposition 2.3.7.1 For any β > 0 and for any μ ∈ G 0
β , G 0

β as in (2.3.7.2),

D−πβ ≤ −μ(u) ≤ D+πβ. (2.3.7.3)

If β ∈ A, see (2.3.7.1), then

E := −Dπβ ∈ Eerg and for any μ ∈ G 0
β , μ(u) = E = −Dπβ. (2.3.7.4)

Proof Calling πβ,Λ(σΛc) := Zβ,Λ(σΛc)/|Λ|, we claim that for any probability ν

on X and any van Hove sequence Λ → Z
d ,

lim
Λ→Zd

∫
dν(σ )Dπβ,Λ(σΛc) ∈ [D−πβ,D+πβ ]. (2.3.7.5)

The proof of this claim is as follows. Since the pressure is independent of the
b.c., see Sect. 2.3.3, and since πβ,Λ(σΛc) is uniformly bounded, see (2.3.3.5), by
the Lebesgue dominated convergence theorem, limΛ→Zd

∫
ν(dσ )πβ,Λ(σΛc) = πβ .

Thus
∫

ν(dσ )πβ,Λ(σΛc) is a sequence of convex, differentiable functions of β

which converges to πβ and (2.3.7.5) follows from (2.3.6.2). Thus, the claim is
proved.

By explicit computation,

Dπβ,Λ(σΛc) = − 1

|Λ|
∑

x∈Λ

e−βHΛ(σΛ|σΛc )

Zβ,Λ(σΛc)
HΛ(σΛ|σΛc). (2.3.7.6)
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Rewrite (2.3.7.5) with (2.3.7.6) and use ν = μ ∈ G 0
β . By the DLR property we then

have

lim
Λ→Zd

μ

(
− HΛ(σΛ|σΛc)

|Λ|
)

∈ [D−πβ,D+πβ ]. (2.3.7.7)

By Lemma 2.3.4.5 given any ε > 0 for all Λ large enough,
∣∣∣∣μ

(
− HΛ(σΛ|σΛc)

|Λ|
)

+ 1

|Λ|μ
( ∑

x∈Λ

τxu

)∣∣∣∣ ≤ 2ε.

Since μ ∈ G 0
β , μ is translation invariant and μ(τxu) = μ(u), by (2.3.7.7)

μ(u) ∈ [D−πβ − 2ε,D+πβ + 2ε],
which by the arbitrariness of ε proves (2.3.7.3).

The second statement in (2.3.7.4) is a corollary of (2.3.7.3) and we only have
to prove that μ(u) ∈ Eerg, which follows because G 0

β contains at least one ergodic
measure, Theorem 2.2.7.2. �

Proposition 2.3.7.2 Let β /∈ A; then there are μ± ∈ G 0
β so that

−μ±(u) = D±πβ. (2.3.7.8)

Proof Since πβ is convex there exists an increasing sequence βn ∈ A which con-
verges to β as n → ∞. By (2.3.7.4) there are ergodic measures μn which are DLR
with respect to βn such that μn(u) = En = −Dπβn . By compactness there is a sub-
sequence nk so that μnk

converges weakly to some probability measure μ.
We claim that μ is in G 0

β . Let f be any cylindrical function, since μnk
(τxf ) =

μnk
(f ), then also μ(τxf ) = μ(f ), hence μ is translational invariant. We fix ar-

bitrarily a bounded set Λ and ε > 0 and call GΛ,β,σΛc (f ) the conditional Gibbs
expectation of f at β with b.c. σΛc . Then, by (2.3.3.3), for all nk large enough

sup
σΛc

|GΛ,βnk
,σΛc (f ) − GΛ,β,σΛc (f )| ≤ ε. (2.3.7.9)

Moreover, since both f (σ ) and GΛ,β,σΛc (f ) are continuous functions of σ , for all
nk large enough

∣∣μ
(
GΛ,β,σΛc (f )

) − μnk

(
GΛ,β,σΛc (f )

)∣∣ < ε,
(2.3.7.10)∣

∣μ(f ) − μnk
(f )

∣
∣ < ε.

By (2.3.7.9)–(2.3.7.11)
∣∣μ

(
GΛ,β,σΛc (f )

) − μ(f )
∣∣

≤ ∣∣μnk

(
GΛ,β,σΛc (f )

) − μnk
(f )

∣∣ + 2ε

≤ ∣∣μnk

(
GΛ,βnk

,σΛc (f )
) − μnk

(f )
∣∣ + 3ε. (2.3.7.11)
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Since μnk
is DLR at βnk

, μnk
(GΛ,βnk

,σΛc (f )) = μnk
(f ); hence, by the arbitrariness

of ε, μ(GΛ,β,σΛc (f )) = μ(f ). As the argument applies to any cylindrical f and
any bounded Λ, we may conclude the proof of the claim (namely that μ ∈ G 0

β ). By
(2.3.6.2),

limDπβnk
≤ D−πβ. (2.3.7.12)

By Proposition 2.3.7.1, μnk
(u) = −Dπβnk

, so that

−μ(u) ≤ D−πβ. (2.3.7.13)

By (2.3.7.3) it then follows that −μ(u) = D−πβ . By a completely analogous argu-
ment we conclude that there is a translational invariant DLR measure ν at inverse
temperature β so that −ν(u) = D+πβ . �

Corollary 2.3.7.3 If β /∈ A there are ergodic DLR measures μ± so that (2.3.7.8)
holds. Moreover, for any E such that −E ∈ [D−πβ,D+πβ ] there is μ ∈ G 0

β such
that μ(u) = E. The converse statement has been proved in (2.3.7.3).

Proof By Proposition 2.3.7.2, there are translational invariant DLR measures ν±
for which (2.3.7.8) holds. If ν+ is not ergodic, then by the ergodic decomposition,
(2.2.7.2),

−D+πβ = ν+(u) =
∫

X 0
gg∩G 0

Aσ (u) ν+(dσ ), (2.3.7.14)

where Aσ is an ergodic (as σ ∈ X 0
gg) DLR measure (as σ ∈ G 0). By (2.3.7.3)

−Aσ (u) ≤ D+πβ ; then by (2.3.7.14) the set of σ ∈ X 0
gg ∩ G 0 such that −Aσ (u) =

D+πβ has ν+ measure equal to 1 and it is therefore non-empty. The same argu-
ment applies to D−πβ . Finally, if −E ∈ [D−πβ,D+πβ ], −E = aD−πβ + (1 −
a)D+πβ = aν+(u) + (1 − a)ν−(u), a ∈ [0,1], hence −E = μ(u), μ = aν+ + (1 −
a)ν− and the corollary is proved. �

In summary, we have proved so far that

{−μ(u),μ ∈ G 0
β} = [D−πβ,D+πβ ], for any β > 0, (2.3.7.15)

which implies

E =
{
−μ(u),μ ∈

⋃

β>0

G 0
β

}
=

⋃

β>0

[D−πβ,D+πβ ]. (2.3.7.16)

By the above corollary we also know that Eerg contains the endpoints of [D−πβ,

D+πβ ] as well as those values E = −Dπβ for which Dπβ exists: recall that for
E ∈ Eerg we can use Proposition 2.3.4.2.
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Proposition 2.3.7.4 If E ∈ Eerg then

Std(E) = S(E), Std(E) as in (2.3.5.1). (2.3.7.17)

Proof If E ∈ Eerg there is β and an ergodic DLR measure μ at β such that
μ(u) = E. By Proposition 2.3.4.2, S(E) = β(Pβ + E). By Proposition 2.3.7.1,
−E ∈ [D−πβ,D+πβ ] and therefore by (2.3.6.5), −Std(E) = β(−E) − πβ , hence
(2.3.7.17). �

Theorem 2.3.7.5 For any −E ∈ E the limit (2.3.4.1) exists and

S(E) = Std(E), for all −E ∈ E (2.3.7.18)

(Std(E) as in (2.3.5.1)).

Proof We already know that S(E) = Std(E) for all E ∈ Eerg, and hence for all E

conjugate to β ∈ A. By (2.3.6.5) for any E conjugate to β /∈ A,

−Std(E) = β(−E) − πβ, −E ∈ [−E−,−E+], −E± = D±πβ. (2.3.7.19)

By Corollary 2.3.7.3, E± ∈ Eerg and by Proposition 2.3.7.4 Std(E±) = S(E±). The-
orem 2.3.7.5 then follows from the following proposition. �

Proposition 2.3.7.6 Suppose that there are two ergodic DLR measures, μ1 and μ2

at the same inverse temperature β so that μ1(u) = E1 < μ2(u) = E2. Then for any
E in [E1,E2] the limit in (2.3.4.1) exists and

S(E) − βE = βPβ. (2.3.7.20)

Proof Fix E ∈ (E1,E2) and let a ∈ (0,1) be such that E = aE1 + (1 − a)E2. Let
Λ → Z

d be a van Hove sequence; given any cube Δ and a partition into translates
of Δ, call Δ(i), i = 1, . . . ,N , the cubes of the partition contained in Λ; Λ′ is their
union. As Λ → Z

d , N → ∞ and |1 − N |Δ|
|Λ| | → 0. We then choose for any Λ a

positive integer n < N so that

lim
Λ→Zd

n

N
= a, lim

Λ→Zd

N − n

N
= 1 − a. (2.3.7.21)

Thus for any ζ > 0, as soon as |Λ| is large enough

∣
∣∣∣
n|Δ|
|Λ| − a

∣
∣∣∣ < ζ,

∣
∣∣∣
(N − n)|Δ|

|Λ| − (1 − a)

∣
∣∣∣ < ζ.

We can now bound NE,Λ,δ from below as follows. We choose δ′ < δ (its value will
be specified later) and consider all σΛ such that |HΔ(i)(σΔ(i)) − |Δ|E1| < δ′|Δ| for
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i = 1, . . . , n and |HΔ(i)(σΔ(i))−|Δ|E2| < δ′|Δ| for i = n+1, . . . ,N . By (2.3.4.11),
given any ε > 0 if |Δ| is large enough,

∣∣∣∣HΛ(σΛ) −
∑

Δ(i)⊂Λ0

HΔ(i)(σΔ(i))

∣∣∣∣ ≤ c|Λ \ Λ′| + ε

4
|Λ|,

and therefore if ζ , ε and δ′ are small enough and |Λ| large enough,

|HΛ(σΛ) − E|Λ| | ≤ c|Λ \ Λ′| + ε

4
|Λ| + δ′|Λ| + ζ |Λ| < δ|Λ|. (2.3.7.22)

We have

NE,Λ,δ ≥
{

n∏

i=1

NE1,Δ(i),δ′

}{
N∏

i=n+1

NE2,Δ(i),δ′

}

,

so that, by (2.3.7.21),

lim inf
Λ→Zd

logNE,Λ,δ

|Λ| ≥ a
logNE1,Δ,δ′

|Δ| + (1 − a)
logNE2,Δ,δ′

|Δ| .

We next let |Δ| → ∞ and then δ′ → 0 and, since E1 and E2 are in Eerg,

lim inf
δ→0

lim inf
Λ→Zd

logNE,Λ,δ

|Λ| ≥ aS(E1) + (1 − a)S(E2).

By (2.3.4.3) the r.h.s. is equal to

β{a[Pβ + E1] + (1 − a)[Pβ + E2]} = β{Pβ + E}.
By taking Λ → Z

d in (2.3.4.14) and then δ and ε to 0, we get the upper bound
lim supδ→0 lim supΛ→Zd

logNE,Λ,δ

|Λ| ≤ β{Pβ + E}. �

2.3.8 Variational principles and equivalence of ensembles

In this subsection we discuss three variational principles. The first two, see Theo-
rem 2.3.8.1, are just a reformulation of those stated in Theorem 2.3.4.1. The third
one, see Theorem 2.3.9.1, is instead of a rather different nature.

Theorem 2.3.8.1 For any β > 0 and with Pβ and S(E) as in Theorem 2.3.4.1 of
Sect. 2.3.4,

Pβ = sup
−E∈E

{−(E − β−1S(E))}, E as in (2.3.7.16), (2.3.8.1)

and for any −E ∈ E

S(E) = − sup
β>0

{−βE − βPβ}. (2.3.8.2)
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Proof As a consequence of the identification Std(E) = S(E), E ∈ Eallw, see
(2.3.7.18), we get (2.3.8.1) from (2.3.5.2) and (2.3.8.2) from (2.3.5.1). �

Remarks

The Gibbs formula and the theory of DLR states have been heavily used in the proofs
but they should be regarded just as auxiliary tools. The only physical assumption
in the theory has been the Boltzmann hypothesis. Equation (2.3.8.1) may also be
proved directly by arguments similar to those in Sect. 2.3.3 as traditionally is done
in texts on statistical mechanics. As we already had available the theory of DLR
measures, it was simpler to proceed the way we did.

The variational principle (2.3.8.2) may be viewed as a method for determining
the entropy in terms of the grand canonical partition function that more easily is
handled because the energy constraint is dropped.

Below are some consequences of the above variational principles which have
physical relevance.

Theorem 2.3.8.2 S(E) is an increasing function of E; its right and left derivatives
exist everywhere and β ∈ [D−S(E),D+S(E)] if and only if −E ∈ [D−πβ,D+πβ ].
The derivative of S(E) exists at all but countably many points and if DS(E) exists

DS(E) = β, β : −E ∈ [D−(βPβ),D+(βPβ)], (2.3.8.3)

and S(E) = βE + βPβ .

Proof Let s(e) = −S(−e), e ∈ E , and πβ = βPβ . Since s(e) is the Legendre trans-
form of πβ , see (2.3.8.2), it is convex and hence its derivative Ds(e) exists at all but
countably many e ∈ E ; we denote such a set E ′. Recalling from (2.3.7.3) that e is
related to β by the relation e ∈ [D−πβ,D+πβ ], then if e ∈ E ′, Ds(e) must be equal
to β by (2.3.6.6). Hence

s(e′′) − s(e′) =
∫

[e′,e′′]∩E ′
Ds(e)de > 0, e′′ > e′.

The claimed relation between e and β is a particular case of (2.3.6.5)–(2.3.6.6). �

Remarks

Theorem 2.3.8.2 establishes the basic principle of thermodynamics that the deriva-
tive of the entropy with respect to the energy is the inverse temperature and since
Theorem 2.3.8.2 proves that the entropy is an increasing function of the energy,
the temperatures are positive as they should (if S(E) is not differentiable, the val-
ues of β are identified with the slope of the tangent lines to the graph of S hence
β ∈ [D−s(e),D+s(e)] and therefore β > 0 in general).

There are two main questions though, which need to be clarified: where is the
limitation to −E ∈ E coming from? And what happens if we take −E /∈ E ?
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Theorem 2.3.8.3 We have

sup{E : −E ∈ E } = 0, sup
−E∈E

S(E) = ln 2. (2.3.8.4)

Moreover, for any increasing sequence Δ of cubes which invades Z
d , the following

limit exists:

lim
Δ→Zd

1

|Δ| min
σΔ

HΔ(σΔ) =: emin, (2.3.8.5)

and the set E in Theorem 2.3.4.1 is

E = (emin,0). (2.3.8.6)

Proof Recall from (2.3.7.16) that E = ⋃
β>0[D−πβ,D+πβ ]; then by (2.3.6.1)

sup{E,−E ∈ E } = − lim
β→0

D−πβ.

We can take the limit along a sequence βn where Dπβn exists. Then there are mea-
sures μn ∈ C 0

βn
so that −Dπβn = μn(u). Using the DLR property

μn(σ (0)) = μn

(
tanh{βnκ(σ )}), κ(σ ) = h +

∑

x �=0

J (0, x)σ (x),

and since supσ |κ(σ )| ≤ c, limn→∞ μn(σ (0)) = 0. An analogous argument proves
that for any x �= 0, limn→∞ μn(σ (0)σ (x)) = 0 and the first half of (2.3.8.4) is
proved.

By Theorem 2.3.8.2, S(E) is an increasing function of E; then by the first half
of (2.3.8.4), sup−E∈E S(E) = limE↗0 S(E). As before we take the limit along a se-
quence En such that Dπβn = −En and βn → 0. By (2.3.8.2), S(En) = βnEn + πβn

and the second half of (2.3.8.4) is then a consequence of the following inequality:
there is c > 0 so that for any bounded Λ and any σΛc , e−βc|Λ|2|Λ| ≤ Zβ,Λ(σΛc) ≤
eβc|Λ|2|Λ|, which thus proves the second half of (2.3.8.4).

The proof of (2.3.8.5) now follows. Since |HΔ(σΔ)| ≤ c|Δ|, c the sup norm of u,
there is a sub-sequence Δn → Z

d such that the limit below exists,

lim
Δn→Zd

1

|Δn| min
σΔn

HΔn(σΔn) =: e. (2.3.8.7)

By Lemma 2.3.4.4, given any ε > 0 if n is large enough the following holds. Given
any Δ, call Δn(i) the cubes of a partition into translates of Δn which are in Δ, and
Δ′ is their union. Then

∣∣∣∣HΔ(σΔ) −
∑

i

HΔn(i)(σΔn(i))

∣∣∣∣ ≤ ε|Δ| + c|Δ \ Δ′|. (2.3.8.8)
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Thus

lim inf
Δ→Zd

∣∣∣∣
1

|Δ| min
σΔ

HΔ(σΔ) − e

∣∣∣∣ ≤ ε,

with the same inequality holding for the limsup; hence (2.3.8.5). The proof of
(2.3.8.6) is omitted. �

Remarks

Notice that for any E and not only −E ∈ E ,

lim
δ→0

lim sup
Λ→Zd

logNE,Λ,δ

|Λ| ≤ log 2, (2.3.8.9)

as 2|Λ| = card(Λ). Thus, by Theorem 2.3.8.3, if E > 0, i.e. −E /∈ E , then the en-
tropy S(E) (which can be proved to be well defined) is smaller than the sup of the
entropy when −E ∈ E . Thus, the thermodynamic law that entropy is an increasing
function of E is violated, namely temperatures are negative at E > 0! The physi-
cal relevance of states with negative temperatures cannot be completely ruled out in
systems where the energy density is bounded, as in our Ising model. Indeed if we are
able to thermally isolate the system and to prepare an initial state with high energy,
then it must relax to some limit, and the limit state will have by conservation of en-
ergy the same high energy as the initial one. There are indeed practical applications
of such considerations. Negative temperatures are related to positive temperatures
for the hamiltonian H ′ = −H, which is in general limited to spin systems as it may
become pathological when variables are unbounded: the “stability condition” on the
hamiltonian required for the partition function to exist is in general not satisfied after
the transformation H → −H .

2.3.9 A variational principle for measures

We have seen that the pressure and the thermodynamics of the Ising model can be
derived under the assumption only that entropy is the log of the number of states at
the given energy. Using such an assumption we have then identified the pressure in
terms of the log of the partition function. On the other hand, as the partition function
is the normalization factor in the Gibbs formula, it seems natural to try to push the ar-
gument further to derive the full Gibbs formula as well. The variational principle in
Theorem 2.3.8.1 states that the pressure Pβ , at a given inverse temperature β , is ob-
tained by maximizing the entropy; see (2.3.8.1). But Propositions 2.3.7.1 and 2.3.7.2
complement the result by stating that the maximizing energy E is indeed the aver-
age value μ(u), with u as in (2.2.7.3), of a translational invariant measure μ DLR at
inverse temperature β . Thus, the maximizer gives information on μ; it specifies the
average of u. If we could repeat the argument with other functions, we would then
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identify other expectations of μ, and this may eventually lead to the identification of
μ itself. Such a program will be carried out by a generalization of the notion of en-
tropy which will be extended to the “entropy of probability measures,” and then the
assumption that equilibrium is reached when the entropy is maximal will identify
the translational invariant DLR measures.

We have already found in Sect. 2.3.1 an expression for the entropy S(μ) of a
measure μ, given by the formula (2.3.1.8). S(μ) in Sect. 2.3.1 counts how many
“typical messages” are emitted by an independent source μ (of sequences of sym-
bols); namely S(μ) gives a measure of the storage capacity of the system (it tells
how many messages can be stored by μ). The assumption of independence used
in Sect. 2.3.1 can be greatly relaxed. The Shannon–MacMillan–Breiman theorem
states that if μ is ergodic (on {−1,1}Z

d
in our specific application), then there is a

unique number S(μ) such that the following holds. Given any ε > 0, for any cube
Δ large enough we can split {−1,1}Δ into two sets, A1 and A2, so that

μ(A1) < ε,

∣∣∣∣
log cardA2

|Δ| − S(μ)

∣∣∣∣ < ε,

and moreover for any σΔ ∈ A2,

∣∣∣∣
logμ(σΔ)

|Δ| + S(μ)

∣∣∣∣ < ε. (2.3.9.1)

The number S(μ), called the [information] entropy of μ, is equal to

− lim
Δ→Zd

1

|Δ|
∑

σΔ

μ(σΔ) logμ(σΔ) =: S(μ). (2.3.9.2)

If μ is our ergodic DLR measure of Sect. 2.3.2 at inverse temperature β , then μ con-
centrates on configurations with energy (E±δ)|Δ|, E = μ(u), the complement hav-
ing vanishing measure as Δ → Z

d . We have seen that the number of configurations
with energy (E ± δ)|Δ| is NE,Δ,δ ≈ eS(E)|Δ| and moreover for any configuration
σΔ such that HΔ(σΔ) ∈ (E ± δ)|Δ|,

1

|Δ| logμ
({σ : σ � Δ = σΔ}) ≈ −β(E ± δ ± ε) + C,

C a constant, with ε|Δ| bounding the interaction with Δc . By taking |Δ| → ∞
this proves that S(μ) = S(E). Thus the notion of information entropy S(μ) reduces
to the S(E) entropy when E ∈ Eerg. We can then accept S(μ) as the entropy of a
measure without running into a conceptual conflict with our previous considerations.

Having S(μ), we can now invoke thermodynamic principles to find the equilib-
rium states. We start by considering the simple case of a finite region Λ. We suppose
that equilibrium states are maximizers of the entropy among all states with a given
energy. In the grand-canonical ensemble such a constraint is only imposed in the
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average by requiring that a measure μ representative of a state should verify

∑

σΛ

μ(σΛ)HΛ(σΛ) = E|Λ|. (2.3.9.3)

The equilibrium measure is then defined as the maximizer of the entropy SΛ(μ)

given by (2.3.9.2) (with Δ = Λ and without taking the limit) under the constraint
(2.3.9.3):

{
SΛ(μ),μ :

∑

σΛ

μ(σΛ)H(σΛ) = E|Λ|
}

−→ maximum. (2.3.9.4)

By using Lagrange multipliers we need to find the critical points of

SΛ(μ) − β
∑

σΛ

μ(σΛ)H(σΛ) − λ
∑

σΛ

μ(σΛ), (2.3.9.5)

with β the Lagrange multiplier for the energy constraint and λ for the normalization
of μ as a probability. By an elementary computation, we see that the critical point
is unique, and it is given by GΛ, the Gibbs measure at the inverse temperature β ,
which is a maximizer of (2.3.9.4) by the concavity of SΛ(μ). Notice also that the
variational problem

{
SΛ(μ) − β

|Λ|
∑

σΛ

μ(σΛ)H(σΛ)

}
−→ maximum (2.3.9.6)

is achieved at GΛ and that the maximum is equal to βPβ,Λ, Pβ,Λ being the finite
volume pressure, βPβ,Λ = logZΛ/|Λ|, namely

sup
μ

{
SΛ(μ) − β

|Λ|μ(HΛ)

}
= βPβ,Λ =

{
SΛ(GΛ) − β

|Λ|GΛ(HΛ)

}
. (2.3.9.7)

Equation (2.3.9.7) extends to infinite volumes with the finite volume Gibbs measures
replaced by the translational invariant DLR measures. We only state the result in
our setup (its validity being more general) and refer to the literature for the proof;
see for instance Theorems III.4.3, III.4.5 and III.4.9 in Simon’s book on statistical
mechanics [200].

Theorem 2.3.9.1 Let Δ → Z
d be an increasing sequence of cubes and call M0 the

set of all translational invariant probabilities on {−1,1}Z
d
. Then we have

(i) Existence of entropy: for any μ ∈ M0 the limit (2.3.9.2) exists.
(ii) Gibbs variational principle: For any μ ∈ M0 and with u defined in

(2.2.7.3),

Pβ = sup
μ∈M0

{β−1S(μ) − μ(u)}. (2.3.9.8)
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(iii) Ruelle’s theorem: μ ∈ M0 is in G 0
β if and only if

Pβ = β−1S(μ) − μ(u).

2.4 Thermodynamics and DLR measures

In this section we complete the analysis of the thermodynamics of the Ising model
by proving that the translational invariant DLR measures can be identified as the
functionals tangent to the graph of the pressure regarded as a function of the inter-
action potential. We thus have an alternative way to derive the Gibbs formula from
the Boltzmann hypothesis, besides the one in Theorem 2.3.9.1, based on an extended
notion of entropy of measures to which thermodynamic principles are then applied.
We will conclude the section by briefly discussing (proofs are omitted) a charac-
terization of the translational invariant DLR measures as “tangent functional to the
pressure” and the relation between large deviations for Gibbs measures and thermo-
dynamics potentials.

2.4.1 Canonical ensemble and free energy

The Boltzmann hypothesis actually states that entropy is equal to the log of the num-
ber of states available to the system. Supposing that the energy is a prime integral,
the phase space available to the system is the energy surface relative to the energy of
the system. There could, however, be other prime integrals or we can imagine that
by some external action on the system the phase space available to the system is re-
duced. The thermodynamic potentials are then modified and new order parameters
come into play.

Definitions Grand-canonical, canonical and micro-canonical ensembles. We will
suppose that the phase space available to the system is determined by the value of
an intensive quantity (also called observable). The subset of the phase space where
such a value is attained is the “canonical ensemble” (called micro-canonical when
the observable is the energy). Usually the notion is applied to the case where the
intensive quantity is the total number of particles or, in Ising systems, the total mag-
netization. In the case of particle systems “micro-canonical” usually refers to the
ensemble where in which both energy and total number of particles are fixed. The
grand-canonical ensemble is instead the unrestricted phase space.

The equivalence of ensembles is a property which states the equivalence of ther-
modynamics computed in the canonical ensemble and the thermodynamics com-
puted in the grand-canonical ensemble after a suitable term has been added to the
hamiltonian (which is referred to as the variable conjugate to the observable defin-
ing the canonical ensemble). We have proved that the micro-canonical ensemble
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in which energy is fixed gives the same thermodynamic potentials as the grand-
canonical ensemble with temperature the variable conjugate to the energy, (2.3.8.1)–
(2.3.8.2).

Suppose that the intensive quantity defining the canonical ensemble is

VΛ(σΛ) =
∑

x∈Zd :τxΔ⊂Λ

τxv(σΛ), (2.4.1.1)

where v is a cylindrical function in a bounded set Δ ⊂ Z
d , i.e. such that v(σ ) is

independent of σΔc . The “order parameter” is then the observable v and the values
w of its ergodic averages together with the energy E parameterize the equilibrium
states of the system. In such a scenario the analogue of the Boltzmann hypothesis
(2.3.2.3) is that the finite volume entropy density at the values E and w of the order
parameters is

SΛ,δ(E,w;v)

:= 1

|Λ| log

{∑

σΛ

1|VΛ(σΛ)−|Λ|w|≤δ|Λ|1|HΛ(σΛ)−|Λ|E|≤δ|Λ|
}
. (2.4.1.2)

We will study in the sequel a simplified scenario with only one order parameter;
namely, we will suppose that the energy is not conserved, because the system ex-
changes energy with a “reservoir” at inverse temperature β (thermal walls), which
thus fixes the temperature of the system at the value β−1. We suppose however that∑

x τxv is conserved and that the walls are impermeable to exchanges of this quan-
tity, which is then the only order parameter for the system (as the temperature is
fixed). In such a scenario the free energy rather than entropy is the relevant thermo-
dynamic quantity and the analogue of (2.4.1.2) is

Fβ,Λ,δ,σΛc (w;v) := − 1

β|Λ| log

{ ∑

σΛ:|VΛ(σΛ)−|Λ|w|≤δ|Λ|
e−βHΛ(σΛ|σΛc )

}
. (2.4.1.3)

The minus sign is there because we consider here the free energy and not the pres-
sure. The available phase space, i.e. the ensemble of configurations appearing in
(2.4.1.3), is called the (δ-relaxed) “canonical ensemble” relative to the variable v.

There is some arbitrariness in the definition (2.4.1.3) regarding the boundary con-
ditions, which is fortunately unimportant because any surface correction becomes
negligible in the thermodynamic limit.

As in the previous section the crucial point is an equivalence of ensemble prop-
erty which says that in the infinite volume limit it is equivalent to study the above
problem or another one where we drop the constraint in the phase space and add an
external field which forces VΛ(σΛ) to have the desired value (in the previous section
where v was u, this was achieved by choosing properly β). With the addition of the
external field the new energy with “zero boundary conditions” is

HΛ,λ,v(σΛ) = HΛ(σΛ) − λVΛ(σΛ) (2.4.1.4)
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(the minus sign in front of λ is just conventional), while if the boundary condition
is σΛc ,

HΛ;λ,v(σΛ|σΛc) = HΛ(σΛ|σΛc) − λVΛ(σΛ|σΛc), (2.4.1.5)

where VΛ(σΛ|σΛc) := ∑
x∈Zd :τxΔ∩Λ �=∅ τxv(σΛ,σΛc). The new pressure is

Pβ,Λ,σΛc (λ;v) := 1

β|Λ| log

{∑

σΛ

e−β[HΛ;λ,v(σΛ|σΛc )

}
. (2.4.1.6)

Notice that the additional energy in the hamiltonian has a finite range, as this is
equal to the diameter of the set Δ introduced above.

Theorem 2.4.1.1 For any β > 0 and any cylindrical function v the following holds:

• For any van Hove sequence {Λ}, any sequence σΛc and any λ ∈ R

lim
Λ→Zd

Pβ,Λ,σΛc (λ;v) exists and we call it Pβ(λ;v). (2.4.1.7)

Moreover, for any w ∈ Ev := ⋃
λ∈R

[D−Pβ(λ;v),D+Pβ(λ;v)],
lim
δ→0

lim inf
Λ→Zd

Fβ,Λ,δ,σΛc (w;v)

= lim
δ→0

lim sup
Λ→Zd

Fβ,Λ,δ,σΛc (w;v) =: Fβ(w;v). (2.4.1.8)

• Pβ(λ;v) and Fβ(w;v) are Legendre transforms of each other,

Pβ(λ;v) = sup
w∈Ev

{λw − Fβ(w;v)}, Fβ(w;v) = sup
λ∈R

{λw − Pβ(λ;v)}, (2.4.1.9)

so that w ∈ [D−Pβ(λ;v),D+Pβ(λ;v)] iff λ ∈ [D−Fβ(w;v),D+Fβ(w;v)] and for
such conjugate pairs,

Pβ(λ;v) = λw − Fβ(w;v). (2.4.1.10)

• (λ,w) is a conjugate pair if and only if there exists a translational invariant
measure μ DLR at β with hamiltonian (2.4.1.4)–(2.4.1.5) such that

μ(v) = w. (2.4.1.11)

Moreover, if w = D±Pβ(λ;v), then μ can be chosen to be ergodic and if the deriv-
ative DPβ(λ;v)|λ=0 =: w exists, then all μ ∈ G 0 are such that μ(v) = w.

• Finally,

Pβ(λ;v) = Pβ(1;λv) =: Pβ(λv), (2.4.1.12)

and Pβ(v) is a convex function on the space whose elements are the cylindrical
functions v.
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Proof The proof is completely analogous to the one for the entropy–energy conju-
gation and it will only be sketched. Using that the additional term in the hamiltonian
due to v has a finite range the proofs are essentially unchanged. We thus start by
considering all the ergodic measures μ which are DLR at (β,λ) for any λ ∈ R. Call
w = μ(v), then the analogue of Proposition 2.3.4.2 holds and proves that the limit
in (2.4.1.8) exists and is equal to

Fβ(w;v) = −Pβ(λ;v) + λw.

Analogously to Proposition 2.3.7.1, μ(v) ∈ [D−Pβ(λ;v),D+Pβ(λ;v)] for any
translational invariant measure μ DLR at β with hamiltonian (2.4.1.4). The converse
is also true; its proof is given by the analogues of Propositions 2.3.7.1 and 2.3.7.2:
namely for any w ∈ [D−Pβ(λ;v),D+Pβ(λ;v)], there is a translational invariant
measure μ DLR at β with hamiltonian (2.4.1.4), such that μ(v) = w. Since any
such measure μ verifies

μ(v) ∈ [D−Pβ(λ;v),D+Pβ(λ;v)]
there must be ergodic ones, μ±, such that μ±(v) = D±Pβ(λ;v), which is proved
as in (2.3.7.8). Then, calling w± := D±Pβ(λ;v), and repeating the proof of
Proposition 2.3.7.6, we conclude that the limit (2.4.1.8) exists also when w ∈
(D−Pβ(λ;v),D+Pβ(λ;v)) and, moreover,

Fβ(w;v) = aFβ(w−;v)+ (1−a)Fβ(w+;v), w = aw− + (1−a)w+, a ∈ [0,1].
Thus Fβ(w;v) is the Legendre transform of Pβ(λ;v) when

w ∈ (
D−Pβ(λ;v),D+Pβ(λ;v)

)

and since for the others we have already proved that (2.4.1.10) holds (as for such w

there are ergodic measures with μ(v) = w), we then conclude the proof of (2.4.1.9).
Equation (2.4.1.12) is obvious and the other statements in the theorem are either
already proved or are a consequence of general convexity properties. �

We conclude this subsection with an interesting corollary of Theorem 2.4.1.1
which gives a characterization of the absence or presence of phase transitions, iden-
tifying their absence in the DLR context (i.e. uniqueness of translational invariant
DLR measures) with the thermodynamic notion based on differentiability of the
pressure.

Theorem 2.4.1.2 (Phase transitions) There is only one invariant DLR measure at β

with hamiltonian defined by (2.3.2.13) if and only if for any cylindrical function v

D+Pβ(λ;v)|λ=0 = D−Pβ(λ;v)|λ=0. (2.4.1.13)

Proof Suppose there is only one DLR measure μ. In the proof of Theorem 2.4.1.1
we have seen that there are ergodic measures μ±;λ,v DLR at β with respect to the
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hamiltonian (2.4.1.4) and such that μ±;λ,v(v) = D±Pβ(λ;v). Since μ±;0,v are DLR
at β with hamiltonian (2.3.2.13), μ+;0,v = μ−;0,v ; hence (2.4.1.13). Thus Pβ(λ;v)

is differentiable at λ = 0 for any v.
Suppose now that Pβ(λ;v) is differentiable at λ = 0 for any v and let μ′ and μ′′

be two translational invariant DLR measures with hamiltonian (2.3.2.13). We need
to prove that μ′ = μ′′. By Theorem 2.4.1.1

μ′(v) ∈ [D−Pβ(λ;v)|λ=0,D
+Pβ(λ;v)|λ=0] ⇒ μ′(v) = DPβ(λ;v)|λ=0

by the assumption of differentiability. The same argument applied to μ′′ shows that
μ′(v) = μ′′(v). Since this holds for all v, by density μ′ = μ′′. �

2.4.2 Tangent functionals to the pressure

There is a converse to Theorem 2.4.1.2, which shows that the DLR measures are
characterized by the discontinuities in the intervals

[D−Pβ(λ;v)|λ=0,D
+Pβ(λ;v)|λ=0].

We need to introduce the notion of tangent functional to the graph of the pressure.
We fix β and regard Pβ(v), defined in (2.4.1.12), as a function on the space V of
all v.

Definition 2.4.2.1 A tangent functional to Pβ(·) at v is a linear functional α(·) on
V such that

α(v′) ≤ Pβ(v′) − Pβ(v), for any v′ ∈ V . (2.4.2.1)

Theorem 2.4.2.2 Any translational invariant measure μ DLR at β with hamiltonian
(2.3.2.13) is such that μ(v) is tangent to Pβ(·) at v = 0. Vice versa, if α is tangent
to Pβ(·) at v = 0 then there is a unique translational invariant DLR measure μ such
that μ(v) = α(v) for all v.

Proof Let μ be DLR at β with hamiltonian (2.3.2.13). Calling Pβ = Pβ(0;v), we
need to prove that μ(v) ≤ Pβ(v) − Pβ for any v ∈ V . Call E ′

v the set of all λ ∈ R

where DPβ(λ;v) exists, which is all R except for countably many points. Then

Pβ(v) − Pβ =
∫

E ′
v∩[0,1]

DPβ(λ;v)dλ. (2.4.2.2)

By (2.3.6.1) for λ > 0, DP −
β (λ;v) ≥ D+Pβ(λ;v)|λ=0, so that (2.4.2.2) yields

Pβ(v) − Pβ ≥ DP +
β (λ;v)|λ=0, (2.4.2.3)

and DP +
β (λ;v)|λ=0 ≥ μ(v): in fact, by (2.4.1.11), (0,μ(v)) is a conjugate pair and

μ(v) ∈ [DP −
β (0;v),D+Pβ(0;v)]. For the converse statement we refer to the liter-

ature; see for instance [200]. �
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Remarks

We can therefore recover the set of equilibrium states from the pressure, as the func-
tionals tangent to the pressure are the translational invariant DLR measures. Thus
ultimately the only axiom needed for the whole theory is the Boltzmann identifica-
tion of the entropy in terms of the number of states.

2.4.3 Large deviations

Suppose that our Ising system is in equilibrium at an inverse temperature β for
which there is a unique ergodic DLR measure μ. We then know that the ergodic
average AΛ,σ (u) defined in (2.3.2.12) is with large probability close to μ(u) so that
we can read out of σ what is the temperature of the system. In principle, at least
the quantity AΛ,σ (u) can be observed experimentally, thus providing an alternative
way to measure temperatures. However, AΛ,σ (u) is close to μ(u) “only with large
probability” and the question then arises of what the probability is to mistake the
correct values μ(u) and β . As we will see such a probability is exponentially small
with the volume and for such a reason it is called “a large deviation.” As already
discussed AΛ,σ (u) is for large |Λ| close to HΛ(σΛ). Let E be an energy density
corresponding to an ergodic DLR measure with inverse temperature β ′. Then

GΛ,β

(|HΛ(σΛ) − E|Λ|| ≤ δ
)

=
∑

|HΛ(σΛ)−E|Λ||≤δ

e−βHΛ(σΛ)

Zβ,Λ

e−(β ′−β)HΛ(σΛ)

Zβ ′,Λ
{e(β ′−β)HΛ(σΛ)Zβ ′,Λ}

≈ Zβ ′,Λ
Zβ,Λ

e(β ′−β)E|Λ|Gβ ′,Λ
(|HΛ(σΛ) − E|Λ|| ≤ δ

)
.

We thus expect that

logGΛ,β

(|HΛ(σΛ) − E|Λ|| ≤ δ
)

|Λ| ≈ (β ′ − β)E + β ′Pβ ′ − βPβ,

in which case the rate of large deviations, namely the l.h.s., is related to thermody-
namics and given by (β ′ − β)E + β ′Pβ ′ − βPβ . The above argument can be made
rigorous and generalized as follows (proofs will be omitted).

Let μ be a DLR measure at inverse temperature β with hamiltonian as in
(2.3.2.13). Let v be a cylindrical function, Δ → Z

d an increasing sequence of cubes,
w ∈ R and

Aw,δ;Δ := μ

(
1

|Δ|
∣∣
∣∣
∑

x∈Δ

(τxv − w)

∣∣
∣∣ ≤ δ

)
. (2.4.3.1)

We have
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Theorem 2.4.3.1 Let Δ be an increasing sequence of cubes; then

lim
δ→0

lim
Δ→Zd

logAw,δ;Δ
β|Δ| = −[λw − Pβ(λ;v) + Pβ ], (2.4.3.2)

where λ is such that w ∈ [D−Pβ(λ;v),D+Pβ(λ;v)]. If the Hamiltonian is instead
defined by u − λ0v (λ0 = 0 previously), then (2.4.3.2) becomes

lim
δ→0

lim
Δ→Zd

logAw,δ;Δ
β|Δ| = −[(λ − λ0)w − Pβ(λ;v) + Pβ(λ0;v)].


