
Chapter 2

Traffic Flow Theory
for 1-D

2.1 Introduction

Interest in modeling traffic flow has been around since the appearance
of traffic jams. Ideally, if you can correctly predict the behavior of
vehicle flow given an initial set of data, then, in theory, adjusting the
flow in crucial areas can maximize the overall throughput of traffic
along a stretch of road. This is of particular interest in regions of
high traffic density, which may be caused by high volume peak time
traffic, accidents or closure of one or more lanes of the road.

The development of the pedestrian evacuation dynamic systems
follows from the traffic flow theory in 1-D space [2, 39, 51]. In many
ways, the pedestrian evacuation system is similar to the vehicle traffic
flow problem [73]. The main conservation equations used in modeling
the vehicle traffic flow and the pedestrian evacuation flow are the
same, with the exception that vehicle traffic is a 1-D space problem
and the evacuation system is a 2-D space problem. Other similarities
exist from having escape routes and escape times in both problems.
In most of the situations a vehicle or a pedestrian has more than one
route to a destination and each route has an associated cost, such
as time.

In this chapter we will give the necessary background on traffic
flow theory and survey the existing macroscopic mathematical mod-
els for single-lane, 1-D space traffic flow. These models will be used
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6 2 Traffic Flow Theory for 1-D

for crowd flow in 1-D, and they will be modified in Chap. 3 for
2-D flow. In Sect. 2.2, we start with the concept of macroscopic vs
microscopic ways of modeling the traffic flow problem, followed by
Sect. 2.3, where a microscopic model is introduced. The derivation
of the traffic flow theory based on conservation of mass law, and the
relationships between velocity and density are given in Sect. 2.4. In
Sect. 2.5, four macroscopic traffic flow models are presented, derived,
and analyzed based on their mathematical characteristics. Finally,
the exact and weak solutions to the scalar traffic flow PDE, and the
concepts of shock wave, rarefaction wave, and the admissibility of a
solution are considered.

2.2 Microscopic vs Macroscopic

In the traffic flow problem, there are two classes of models: Macro-
scopic, which is concerned with average behavior, such as traffic den-
sity, average speed and module area, and a second class of models
based on individual behavior referred to as microscopic models. The
latter is classified into different types. The most famous one is the
Car-Following models [6, 17, 57], where the driver adjusts his or her
acceleration according to the conditions in front. In these models the
vehicle position is treated as a continuous function and each vehicle is
governed by an ordinary differential equation (ODE) that depends on
speed and distance of the car in front. Another type of microscopic
models are the Cellular Automata or vehicle hopping which differs
from Car-Following in that it is a fully discrete model. It considers
the road as a string of cells which are either empty or occupied by one
vehicle. One such model is the Stochastic Traffic Cellular Automata,
given in [75]. However, microscopic approaches are computationally
expensive, as each car has an ODE to be solved at each time step,
and as the number of cars increases, so does the size of the system
to be solved. On the other hand, the macroscopic models are com-
putationally less expensive because they have fewer design details in
terms of interaction among vehicles and between vehicles and their
environment. Therefore, it is desirable to use macroscopic models if
a good model can be found satisfactorily to describe the traffic flow.
In addition, this idea provides flexibility since detailed interactions
are overlooked, and the model’s characteristics are shifted toward
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parameters such as flow rate f(ρ, v), concentration ρ (also known as
traffic density), and average speed v, all functions of 1-D or 2-D space
(x, y), and time (t). This is also true for first-order fluid dynamic
models of isothermal flow and gases through pipes.

Two main prototypes set the stage for macroscopic traffic flow:
the first is called the LWR model which is a non-linear, first-order
hyperbolic PDE based on law of conservation of mass. The second
one is a second-order model known as the PW model, which is based
on two coupled PDE’s one given by the conservation of mass and a
second equation that mimics traffic flow.

2.3 Car-Following Model

We present the well known car-following microscopic traffic flow
model. In [93], a 2-D version of this model was used for pedestrian
flow in 2-D space. To derive the 1-D model, first assume cars can
not pass each other. Then the idea is that a car in 1-D can move and
accelerate forward based on two parameters; the headway distance
between the current car and the one in front, and their speed differ-
ence. Hence, it is called following, where a car from behind follows
the one in front, and this is the anisotropic property. This property
is also desirable in macroscopic models, since it reflects the actual
observed behavior of traffic flow [23].

Suppose the nth car location is xn(t), then the nonlinear model
is given by

ẍn(t) = c
ẋn(t) − ẋn−1(t)
xn(t) − xn−1(t)

, (2.1)

The acceleration of the current car ẍn(t) depends on the front car
speed and location, c is the sensitivity parameter. Integrating the
above yields

ẋn(t) = c ln (xn(t) − xn−1(t)) + dn. (2.2)

Since by the definition of the density (number of cars per unit area)

1
ρ(x, t)

= xn(t) − xn−1(t), (2.3)
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and the integration constant dn is chosen such that at jam density
ρm, the velocity is zero. Then for steady-state we get

v = −c ln
ρ

ρm
. (2.4)

We see that for ρ → 0 we get in trouble, but from observations in
low traffic densities, car speed is the maximum allowed speed, hence
we can assume v = vmax, which is the maximum allowed speed.

2.4 Traffic Flow Theory

In this section we will cover the vehicle traffic flow fundamentals for
the macroscopic modeling approach. The relation between density,
velocity and flow is presented for traffic flow. Then we derive the
conservation of vehicles, which is the main governing equation for
scalar macroscopic traffic models. Finally, the velocity–density func-
tions that makes the conservation equation a function of only one
variable (density) are given.

2.4.1 Flow

In this section, we will illustrate the close relationship between the
three variables: density, velocity and traffic flow. Suppose there is
a road with cars moving with constant velocity v0, and constant
density ρ0 such that the distance between the cars is also constant
as shown in the Fig. 2.1a. Now let an observer measure the number
of cars per unit time τ that pass him (i.e. traffic flow f). In τ time,
each car has moved v0τ distance, and hence the number of cars that
pass the observer in τ time is the number of cars in v0τ distance, see
Fig. 2.1b.

Since the density ρ0 is the number of cars per unit area and there
is v0τ distance, then the traffic flow is given by

f = ρ0v0 (2.5)

This is the same equation as in the time varying case, i.e.,

f(ρ, v) = ρ(x, t)v(x, t). (2.6)
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Fig. 2.1. (a) Constant flow of cars; (b) Distance traveled in τ hours
for a single car

To show this, consider the number of cars that pass point x = x0 in a
very small time Δt. In this period of time the cars have not moved far
and hence v(x, t), and ρ(x, t) can be approximated by their constant
values at x = x0 and t = t0. Then, the number of cars passing the
observer occupy a short distance, and they are approximately equal
to ρ(x, t)v(x, t)Δt, where the traffic flow is given by (2.6).

2.4.2 Conservation Law

The models for traffic, whether they are one-equation or system of
equations, are based on the physical principle of conservation. When
physical quantities remain the same during some process, these quan-
tities are said to be conserved. Putting this principle into a mathe-
matical representation will make it possible to predict the densities
and velocities patterns at future time. In our case, the number of
cars in a segment of a highway [x1, x2] are our physical quantities,
and the process is to keep them fixed (i.e., the number of cars coming
in equals the number of cars going out of the segment). The deriva-
tion of the conservation law is given in [26, 37], and it is presented
here for completion. Consider a stretch of highway on which cars are
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Fig. 2.2. One-dimension flow

moving from left to right as show in Fig. 2.2. It is assumed here
that there are no exit or entrance ramps. The number of cars within
[x1, x2] at a given time t is the integral of the traffic density given by

N =
∫ x2

x1

ρ(x, t) dx. (2.7)

In the above equation, it is implied that the number of people
within [x1, x2] is at maximum when traffic density is equal to jam
density ρm which is associated with the maximum number of cars
that could possibly fit in a unit area.

The number of cars can still change (increase or decrease) in time
due to cars crossing both ends of the segment. Assuming no cars are
crated or destroyed, then the change of the number of cars is due to
the change at the boundaries only. Therefore, the rate of change of
the number of cars is given by

dN

dt
= fin(ρ, v) − fout(ρ, v), (2.8)

since the number of cars per unit time is the flow f(ρ, v). Combining
(2.7), and (2.8), yields the integral conservation law

d
dt

∫ x2

x1

ρ(x, t) dx = fin(ρ, v) − fout(ρ, v). (2.9)

This equation represents the fact that change in number of cars is due
to the flows at the boundaries. Now let the end points be independent
variables (not fixed with time), then the full derivative is replaced
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by partial derivative to get

∂

∂t

∫ x2

x1

ρ(x, t) dx = fin(ρ, v) − fout(ρ, v). (2.10)

The change in the number of cars with respect to distance is given
by

fin(ρ, v) − fout(ρ, v) = −
∫ x2

x1

∂f

∂x
(ρ, v) dx, (2.11)

and by setting the last two equations equal to each other, we get
∫ x2

x1

[
∂ρ

∂t
(x, t) +

∂f

∂x
(ρ, v)

]
dx = 0. (2.12)

This equation states that the definite integral of some quantity is
always zero for all values of the independent varying limits of the
integral. The only function with this feature is the zero function.
Therefore, assuming ρ(x, t), and q(x, t) are both smooth, the 1-D
conservation law is found to be

ρt + fx(ρ, v) = 0. (2.13)

We need to mention that this equation is valid for traffic and many
more physical quantities. The idea here is conservation, and for
vehicle traffic flow, the flow is given by (2.6).

2.4.3 Velocity–Density Relationship(s)

Traffic density and vehicle velocity are related by one equation, con-
servation of vehicles,

ρt(x, t) + (ρ(x, t)v(x, t))x = 0, (2.14)

where the notation (·)φ = ∂(·)
∂φ will be used from here on. If the initial

density and the velocity field are known, the above equation can be
used to predict future traffic density. This leads us to choose the
velocity function for the traffic flow model to be dependent on density
and call it V (ρ). The choice of such function depends on the behavior
the model is trying to mimic. The following is a brief description of
models that have been recognized and used by researchers [57], with
emphasis on Greenshield model that will be used in several traffic
(crowd) models throughout this book.
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Greenshield’s Model [34]

This model is simple and widely used. It is assumed here that the
velocity is a linearly decreasing function of the traffic flow density,
and it is given by

V (ρ) = vf (1 − ρ

ρm
) (2.15)

where vf is the free flow speed and ρm is the maximum density.
Figure 2.3 shows the speed V (ρ(x, t)) as a monotonically decreasing
function. For zero density the model allows free flow speed vf , while
for maximum density ρm no car can move in or out.

The flux–density relationship for Greenshield’s model (2.15) is
given in Fig. 2.4, where it shows the flux increases to a maximum
which occurs at some density ρ̂ and then it goes back to zero. This
kind of behavior is due to the fact that f ′′(ρ) < 0 (note that f(ρ) =
ρV (ρ) is the flux flow).

Greenberg Model [33]

In this model the speed–density function is given by

V (ρ) = vf ln(
ρ

ρm
) (2.16)

Underwood Model [33]

In the Underwood model the velocity–density function is represented
by

V (ρ) = vf exp(
−ρ

ρm
) (2.17)

fv

( ( , ))V x t

( , )x tm

Fig. 2.3. Greenshield’s model for traffic flow speed
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Fig. 2.4. Traffic flow flux as a function of density

Diffusion Model [14, 74]

Diffusion is a good extension to the model given by (2.15), where the
effect of gradual rather than instantaneous reduction of speed by the
driver takes place in response to shock waves. This kind of reaction
can be accomplished by adding an extra term such that the modified
Greenshield model will become

V (ρ) = vf (1 − ρ

ρm
) − D

ρ
(
∂ρ

∂x
) (2.18)

where D is a diffusion coefficient given by

D = τ v2
r

and vr is a random velocity, τ is a relaxation parameter.

2.5 Traffic Flow Model 1-D

In this section, we will present four different models for traffic flow
in 1-D space. The first model is one equation model, and the rest
are systems of two-equation models. All the models are described by
partial differential equations and based on conservation of mass and a
second equation that is intended to capture the complex interactions
observed in traffic flow motion. In addition, this second equation
provides another way to couple velocity and density. Hence the flow
is not in equilibrium like the one equation model. This is one of the
main differences between the scalar and the system models.
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2.5.1 LWR Model

The first model used in describing the traffic flow problem known
as the LWR model, named after the authors in [68] and [87]. The
LWR model is a scalar, time-varying, non-linear, hyperbolic partial
differential equation. The model governing equation is (2.14). In this
equation, traffic density is the conserved quantity, and we rewrite the
model as

ρt(x, t) + (ρ(x, t)V (ρ(x, t)))x = 0 (2.19)

with the flux being replaced by the velocity–density relationship

f(x, t) = ρ(x, t)V (ρ(x, t)) (2.20)

and V (ρ(x, t)) is the velocity function given by (2.15).
One of the basic assumptions in the LWR model regarding the

velocity is its dependence on density alone. Any changes to density
will be reflected in the velocity. The drawback for this assumption,
as pointed out in [23], is that traffic is in equilibrium when such
velocity–density functions are used, i.e., given a particular density,
especially for light traffic, the velocity will be fixed and the model
does not recognize that there is a distribution of desired velocities
across vehicles. Therefore the model is not able to describe observed
behavior in light traffic, although one can argue that vf is an average
speed which might take care of this issue. On the plus side, the model
is anisotropic as the nature of the observed traffic flow, i.e. vehicle
behavior is affected by mostly the car in front. This can be found
from the model eigenvalue given by

f ′(ρ(x, t)) =
∂f

∂ρ
(ρ(x, t)) = V (ρ(x, t)) + ρV ′(ρ(x, t)), (2.21)

which means that the model allows information to travel as fast as
the flow of traffic, and not more, since it satisfies 0 < f ′(ρ) < V (ρ),
because

V ′(ρ) = − vf

ρm
. (2.22)

The LWR model given by (2.19) and (2.15) is a simple model and
it is unable to capture all of the complex interactions for a realistic
traffic flow model. For this reason, modifications to the LWR model
have been suggested. One way is by the various velocity–density
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functions we gave in Sect. 2.4.3. The second way is by coupling
the conservation of mass with a second equation that tries to mimic
traffic motion instead of the velocity–density models as given next.

2.5.2 PW Model

The first system model to be presented is a two-equation model pro-
posed in the 1970s independently in [82] and [102]. Their model was
the first model to couple velocity dynamics as a second equation,
and it is referred to as the PW model. The first equation is the
conservation of mass as discussed in the previous sections

ρt + (ρv)x = 0, (2.23)

where the flux function f(ρ, v) = ρv. In the LWR scalar equation
model, a particular form of v was assumed where velocity is a function
of density, but in high order models, v and ρ are assumed to be
independent and a second equation is formed to link them, as in fluid
and gas models. The second equation is derived from the Navier-
Stokes equation of motion for a 1-D compressible flow, but with the
pressure term replaced by P = C2

0ρ, where C0 is the anticipation term
that describes the response of macroscopic driver to traffic density,
i.e. space concentration, and the pressure now is not “pressure” as
such. The model also includes a traffic relaxation term that keeps
speed concentration in equilibrium

V (ρ) − v

τ
,

where τ is a relaxation time, and the velocity V (ρ) is the maximum
out-of-danger velocity meant to mimic driver’s behavior given ear-
lier by (2.15) to (2.18). The second equation of the PW model in
nonconservative form is then given by

vt + v vx =
V (ρ) − v

τ
− C2

0

ρ
ρx. (2.24)

To study this model, we have to find its eigenvalues by first rewriting
the model in conservation form. The first step is to use the product
rule

(ρv)t = ρvt + vρt, (2.25)
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and by multiplying (2.23) by v, we get

vρt + v(ρv)x = 0. (2.26)

Then by substituting in for vρt from the product rule (2.25), we get

v(ρv)x + (ρv)t − ρvt = 0, (2.27)

and by substituting (2.27) into (2.24), and multiply the result by ρ
we get

ρvt + ρv vx = ρ

(
V (ρ) − v

τ

)
− C2

0ρx.

Then by substituting for ρvt from (2.27) we get

v(ρv)x + (ρv)t + ρv vx = ρ

(
V (ρ) − v

τ

)
− C2

0ρx. (2.28)

Again using the product rule on (ρvv)x, i.e.,

(ρvv)x = (ρv)xv + (ρv)vx (2.29)

and substituting in (2.28) we obtain

(ρv2)(ρv)t + (ρv2)x = ρ

(
V (ρ) − v

τ

)
− C2

0ρx. (2.30)

Hence we obtain (2.24) with the lefthand side in conservation
form

(ρv)t + (ρv2 + C2
0ρ)x = ρ

(
V (ρ) − v

τ

)
(2.31)

where now ρ and ρv are the conserved variables. Equations (2.23)
and (2.31) can be written in vector form as

Qt + F (Q)x = S (2.32)

where,

Q =
[

ρ
ρv

]
, F (Q) =

[
ρv

ρv2 + C2
0ρ

]
, S =

⎡
⎣ 0

ρ

(
V (ρ) − v

τ

)
⎤
⎦ .

(2.33)
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Setting the source term S = 0, we can rewrite the system in
quasi-linear form as

Qt + A(Q)Qx = 0, (2.34)

where

A(Q) =
∂F

∂Q
=
[

0 1
C2

0 − ρv2 2 v

]
. (2.35)

Finally by solving for the eigenvalues from

|A(Q) − λI| = 0 (2.36)

we get two distinct and real eigenvalues

λ1,2 = v ± C0, (2.37)

therefore, the system is strictly hyperbolic.
The model has a major drawback that researchers (see for exam-

ple [23]) are concerned about, mainly, that the model strongly follows
the fluid flow theory. In fluids, the behavior of a particle is affected
by its surrounding particles. Thus the anisotropic nature of traffic
is not preserved since the vehicles are allowed to move with nega-
tive velocity, i.e. against the flow. This is clear from the eigenvalue,
where one of λ1,2 = v±C0 is always greater than the vehicle speed v.
So, information from behind affects the behavior of the driver, and
this is not true for observed traffic flow. This is called the isotropic
property.

2.5.3 AR Model

A new model in [4] and improved in [84] is argued to be an im-
provement on the PW model. The authors of this model say that
other researchers have stuck too closely to fluid flow models and
have not allowed for a significant difference between traffic and flu-
ids, e.g., traffic is more concerned with the flow in front, rather than
behind. Therefore in order to move away from fluids and toward
the anisotropic property of traffic, they argue that replacing the
“pressure” term with an anticipation term describing how the av-
erage driver behaves is not a sufficient fix for the differences between
the two types of flow. They claim that the drawback in the PW
model (letting information travel faster than the flow) is due to an
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incorrect anticipation factor involving the derivative of the pressure
w.r.t. x. Therefore they suggest the correct dependence must involve
the convective derivative (full derivative) of the pressure term. The
convective derivative in its general form is given by

Dφ

Dt
=

∂φ

∂t
+ (�v · ∇)φ, (2.38)

for φ(�x, t), and �x ∈ �n. They support their claim by the following
example: “Assuming that in front of a driver traveling with speed
v the density is increasing with respect to x, but decreasing with
respect to (x−vt). Then the PW type models predict that this driver
would slow down, since the density ahead is increasing with respect
to x! On the contrary, any reasonable driver would accelerate, since
this denser traffic travels faster than him.”

We call the model AR for short, and the first PDE equation is the
same conservation of cars given by (2.23). However, in the AR model
the next lagrangian equation replaces the second PDE equation given
in the PW model. This second equation is found by applying the
full derivative (2.38) to describe traffic motion dynamics, and it is
given by

(v + P (ρ))t + v (v + P (ρ))x = 0, (2.39)

where P (ρ) is an increasing function of density. This choice is to en-
sure that this model caries the anisotropic property, and it is given by

P (ρ) = C2
0 ργ , (2.40)

where γ > 0, and C0 = 1. Next we will put the second equation in
conservation form, and find the system eigenvalues. First multiply
(2.39) by ρ, then by using the product rule

(ρ (v + P (ρ)))t = ρt(v + P (ρ)) + ρ (v + P (ρ))t, (2.41)
(ρv (v + P (ρ)))x = (ρv)x(v + P (ρ)) + (ρv)(v + P (ρ))x, (2.42)

we obtain

(ρ (v+P (ρ))t−ρt(v+P (ρ))+(ρv (v+P (ρ)))x− (ρv)x(v+P (ρ)) = 0.
(2.43)

Now, using the conservation law (2.23) for ρt, we can simplify the
above equation to

(ρ (v + P (ρ)))t + (ρv (v + P (ρ)))x = 0, (2.44)
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which is the conservation form of (2.39). Then our conserved vari-
ables are ρ, and ρ (v + P (ρ)). We proceed now to find the system
eigenvalues, let X = ρ (v + P (ρ)) for simplification, then the AR
model given by (2.23), and (2.44) can be rewritten as

⎧⎨
⎩

ρt + (X − ρP (ρ))x = 0

Xt +
(

X2

ρ
− XP (ρ)

)
x

= 0
(2.45)

and in vector form (2.32), the stats and the flux are given by

Q =
[

ρ
X

]
, F (Q) =

⎡
⎣ X − ρP (ρ)

X2

ρ
− XP (ρ)

⎤
⎦ . (2.46)

For the quasi-linear form (2.34), the Jacobian is given by

A(Q) =
∂F

∂Q
=

⎡
⎣ −(γ + 1) 1

−
(

X2

ρ2
+

γXP (ρ)
ρ

) (
2X
ρ

− P (ρ)
)
⎤
⎦ . (2.47)

Finally, solving for the eigenvalues from |A(Q)−λI| = 0, we find two
distinct and real eigenvalues

λ1 = v − γP (ρ) & λ2 = v. (2.48)

Therefore, the system is strictly hyperbolic and since the “pressure”
is an increasing function, then it is guaranteed that λ1 < λ2 due to
the fact that the maximum wave speed is equal to the velocity of the
flow v. Hence, the anisotropic property of traffic is preserved.

2.5.4 Zhang Model

We present here a model that was proposed in [104, 105], and it
claims not to be of fluid, or gas-like behavior. The model caries the
anisotropic property, because the second equation is derived from
the microscopic car-following model. Hence, a micro-to-macro link
is established for this model. Again, as in the PW and AR models,
the Zhang model is also a system consisting of the conservation of
cars (2.23), and coupled with a second PDE that describe car motion
given by

vt + vvx + ρV ′(ρ)vx = 0 (2.49)
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We start the micro-to-macro derivation from the homogeneous mi-
croscopic car-following model (the relaxation term can be added for
2-D crowd flow given in the next chapter) given by

τ(sn(t)) ẍn(t) = ẋn−1(t) − ẋn(t), (2.50)

where
sn(t) = xn−1(t) − xn(t), (2.51)

and sn(t) is a function of the local spacing between cars, xn(t) is the
position of the nth car, ẍn(t) is the acceleration, ẋn(t) is the velocity,
and τ(sn(t)) is the average response time to the headway distance.
Using the above notations, we rewrite (2.50), and define the velocity
as v(x, t) = ẋ(t) to obtain the following

τ(s(x(t), t))
dv(x, t)

dt
=

d(s(x(t), t))
dt

, (2.52)

and by using convective derivative ∂t + v∂x on the velocity compo-
nent, we get

τ(s) (vt + vvx) = (st + vsx). (2.53)

From the conservation law (2.23), let ρ = 1/s, and by using the
following derivative form

Dx(
a

b
) =

bDxa − aDxb

b2
, (2.54)

for any a and b �= 0, we get

st + vsx + usy = svx + suy, (2.55)

and by direct substituting in the right hand side of (2.53), we obtain
our desired equation in the following form

(vt + vvx) =
s

τ(s)
vx, (2.56)

where
s

τ(s)
= −C(ρ) = −ρV ′(ρ) ≥ 0 (2.57)

is the sound wave speed. This completes the derivation of the macro-
scopic model (2.49) from its microscopic counterpart.
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The conservative form of this model is derived next. First collect
terms and rewrite (2.49) to get

vt + (v + ρV ′(ρ)) vx = 0, (2.58)

then expand the conservation of mass equation

ρt + ρvx + vρx = 0. (2.59)

We substitute for ρvx from (2.59) into (2.58) to obtain

vt + vvx + V ′(ρ) (−ρt − vρx) = 0, (2.60)

which can be rewritten as

vt + vvx − (V (ρ))t − v (V (ρ))x = 0, (2.61)

or in lagrangian form as

(v − V (ρ))t + v (v − V (ρ))x = 0. (2.62)

We now proceed to find the conservation form by multiplying (2.62)
by ρ and using the product rules

(ρ(v − V (ρ)))t = ρt(v − V (ρ)) + ρ(v − V (ρ))t, (2.63)
(ρ v (v − V (ρ)))x = (ρv)x(v − V (ρ)) + ρv (v − V (ρ))x,(2.64)

to get

(ρ(v−V (ρ)))t−ρt(v−V (ρ))+(ρv (v−V (ρ)))x−(vρ)x(v−V (ρ)) = 0.
(2.65)

From (2.59), we substitute for ρt in the above equation to obtain our
final conservation form given by

(ρ (v − V (ρ)))t + (ρv (v − V (ρ)))x = 0, (2.66)

where our states are given by ρ and ρ(v−V (ρ)). For the quasi-linear
form (2.34), let X = ρ(v − V (ρ)), and write the system in vector
form (2.32), such that

Q =
[

ρ
X

]
, F (Q) =

⎡
⎣ X + ρV (ρ)

X2

ρ
− XV (ρ)

⎤
⎦ . (2.67)
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The Jacobian is then can be found to be

A(Q) =
∂F

∂Q
=

⎡
⎣ V (ρ) + ρV ′(ρ) 1

−
(

X2

ρ2
− XV ′(ρ)

) (
2X
ρ

+ V (ρ)
)
⎤
⎦ . (2.68)

Finally by solving for the eigenvalues from |A(Q) − λI| = 0, we find
two distinct and real eigenvalues

λ1 = v + ρV ′(ρ) & λ2 = v (2.69)

therefore the system is strictly hyperbolic. Since V ′(ρ) is negative
and given by (2.22), then the maximum the information can travel
is equal to the vehicle speed v.

2.5.5 Models Summary

The one-equation LWR model consists of a single wave whose velocity
is given by the derivative of the flux function, and information travels
forward at a maximum not faster than the speed of traffic. There-
fore the model behavior is anisotropic, i.e. only reacts to conditions
ahead. For the two-equation models, the PW has two waves traveling
at speeds given by v±C0, one of them will always be traveling faster
than the current speed v. This is a major cause of criticism of this
model. The AR model has wave speeds given by v and v − γP (ρ).
This seems reasonable since, as in the LWR model, the faster wave
will move at the same speed as the traffic v. This is also true for the
Zhang model, whose wave speeds are given by v and v + ρV ′(ρ) with
V ′(ρ) ≤ 0. This demonstrates the desirable anisotropic nature of the
LWR, AR and Zhang models, and the isotropic nature of the PW
model, for which it is severely criticized. In addition, Zhang model
has a microscopic counterpart, which is not true for the PW and AR
models. Although, the AR model has an indirect micro-to-macro re-
lationship [4], where a numerical discretization of the AR model and
a microscopic car-following model gave the same numerical formula.
This suggest that the macroscopic AR model can be considered as
an upper limit to the microscopic model.
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2.6 Method of Characteristics

A typical problem in partial differential equation consists of finding
the solution of a PDE subject to boundary conditions (BVP), initial
conditions (IVP), or both (IBVP). In most cases it is difficult to find
the exact (classical) solution of a hyperbolic PDE, but due to the
simplicity of the LWR model and the fact it is a scalar 1-D space
model we are able to find the exact solution by method of character-
istics. The method of characteristics is a widely used technique to
solve hyperbolic PDE’s [24, 58, 77, 86].

2.6.1 LWR Model Classification

The partial derivative scalar conservation law in (2.19) is classified
as first-order quasi-linear partial differential equation. This is due to
the fact that the derivative of the highest partial occurs linearly. We
can rewrite (2.19) as

ρt(x, t) + f ′(ρ(x, t)) ρx = 0 (2.70)

where f ′(ρ) is the vehicle speed, and it is called the characteristic
slop or the eigenvalue of the PDE. By using Greenshield’s model
(2.15), we get

f ′(ρ(x, t)) =
df(ρ(x, t))

dx
= vf − 2 vf ρ(x, t)

ρm
, (2.71)

where we see that this eigenvalue is real. Therefore, the LWR model
is classified as strictly hyperbolic PDE. Figure 2.5 below shows the
changes in speed f ′(ρ) with respect to the changes in density ρ.
This relationship is important in finding the solution to the traffic
flow model (2.70) by using method of characteristics discussed in the
following section.

2.6.2 Exact Solution

Here we will use the method of characteristics to solve the initial
value problem (IVP) and also called the Cauchy problem given by

{
ρt(x, t) + f(ρ(x, t))x = 0

ρ(x, 0) = ρ0(x)
(2.72)
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Fig. 2.5. Characteristic slops vs density

where x ∈ � and time t ∈ �+. Flow rate f : � 	→ � is assumed to
be a smooth function, at least C2 (i.e., twice differentiable) and the
initial condition ρ0 : � 	→ � is continuous. For the single conserva-
tion law, the eigenvalue of the PDE in (2.72) is given by the slope of
the characteristic curve found from the quasi-linear form (2.70) as

λ(ρ) = f ′(ρ) (2.73)

Theorem 2.6.1 Any C1 solution of the single conservation law in
(2.72) is constant along its characteristics. Accordingly, character-
istic curves for the partial derivative conservation law in (2.72) are
straight lines.

Proof See [86].
The above theorem implies that any curve of the form

x(t) = k t + x(0) (2.74)

is a characteristic curve where x(t) is the solution, k = f ′(ρ(x(t), t))
is the constant slope of the characteristic rays and x(0) is the initial
position of the characteristics rays. To show that (2.74) is indeed a
solution to our Cauchy problem, let us first define what is meant by
a solution.

Definition 2.6.1 Let f : � 	→ � be smooth, and let ρ0 : � 	→ � be
continuous. We say that ρ(x, t) : (�×�+) 	→ � is a classical solution
of the Cauchy problem if ρ(x, t) ∈ C1 (� × �+) ∩ C0 (� × �+) and
(2.70) is satisfied.
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We can verify that it is indeed a solution by substituting for
x(0) = x − f ′t from (2.74) to get

ρ(x, t) = ρ0(x − f ′ t), (2.75)

then, by taking partial derivatives with respect to t and x, respec-
tively, we obtain

ρt = ρ′0(x − f ′ t)(−f ′), and ρx = ρ′0(x − f ′ t).

Substituting the above in (2.70), we get

ρ′0(x − f ′ t)(−f ′) + f ′ρ′0(x − f ′ t) = 0,

which shows (2.72) is satisfied. So, the exact solution is basically
the initial data shifted by the slope of the characteristic as shown in
Fig. 2.6.

From the initial data we are able to generate the slopes of the
characteristic rays originating from the x-axis. For some certain pro-
files of initial data, this gives us a method for solving the Cauchy
problem. To illustrate this method, let us consider the initial data
in Fig. 2.7, where we have the density profile of heavy traffic density
at one end and light at the other end. Substituting for the initial
density values in (2.71) will give the slopes of each of the character-
istics. Then the solution follows from (2.74) along the rays of the
characteristics as shown on the same figure.

2.6.3 Blowup of Smooth Solutions

Unfortunately, other examples with different initial data show how
easily the procedure above fails. In Fig. 2.8, we see a density profile

x

0 ( )x

'
0 ( )x f t

( , )x t

Fig. 2.6. Exact solution is achieved by shifting the initial density
profile
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Fig. 2.7. Density distribution in the upper part, and the correspond-
ing characteristic rays in the lower part

that describes road condition when cars are approaching red traf-
fic light. Although initial density is continuous, the characteristics
overlap at some later point in time. Since our solution cannot be
multi-valued, we must conclude (in light of Theorem 2.6.1) that the
solution shown cannot be smooth. For this type of initial data, a
theory of discontinuous solutions, or shock wave solution is used.

Moreover, in Fig. 2.9, we face a different kind of problem. This
time we have initial profile corresponding to heavy traffic at the
beginning, then at some point xk it is lighter. This example can

x
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t

x

/ 2m

m

kx

Fig. 2.8. Overlapping characteristics from continuous initial data
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Fig. 2.9. Characteristics do not specify solution in the wedge

be related to conditions of a red light turns to green. As we all ob-
serve in real situation, cars start to accelerate from high density (low
speed) to low density (higher speed). The exact solution for this data
shows that there is a region untouched by any characteristics from
the given initial data. Thus, the method of characteristics did not
identify a solution in this region. As we shall see next, for this case
we will be able to identify a continuous solution called a rarefaction
or fan wave solution to fill the wedge.

2.6.4 Weak Solution

From the discussion above, smooth solutions of a single conservation
laws can blow up (develop discontinuities or singularities) in finite
time which fails to make any sense. Therefore, one cannot follow the
practice of accepting solutions to the hyperbolic partial differential
equations as given directly by method of characteristics. In order to
understand discontinuous solutions, one needs to extend the notion
of solution itself. One of the main features of the quasi-linear theory
for hyperbolic PDE’s is the notion of weak solutions. For a given
initial data,

Definition 2.6.2 Let ρ0 ∈ L∞. Then ρ is a weak solution or a
solution in the distributional sense of (2.72) if and only if ρ ∈ L∞(�×
�+) and,
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∫ ∞

0

∫ ∞

−∞
[ρ(x, t)φt(x, t) + f(ρ(x, t))φx(x, t)] dxdt

+
∫ ∞

−∞
ρ0(x)φ(x, 0) dx = 0 (2.76)

is satisfied for every φ ∈ C∞
0 (�× [0,∞[)

and C∞
0 (� × [0,∞[) := {C∞

0 (� × [0,∞[) | ∃ r > 0 s.t. support of
φ ⊂ Br(0, 0) ∩ (� × [0,∞[)}.

Here φ(x, t) is a test function with compact support on the bound-
ary (i.e., φ(x, t) is zero outside the boundary). In the weak solution
(2.76), the partial derivative is moved to the test function that is
guaranteed to be smooth. In addition, the definition above is an
extension of the classical solution according to

Theorem 2.6.2 Suppose ρ ∈ C1(� × [0,∞[) is a classical solution
of (2.72). Then ρ is also a weak solution.

Proof is given in [86].
We have to keep in mind that a weak solution might not be a

classical solution. So we need necessary and sufficient conditions
for the weak solutions to be the correct solution. We start by the
necessary condition for a piecewise-smooth weak solution known as
the Rankine-Hugoniot condition given by

s =
[f(ρ)]

[ρ]
=

f(ρR) − f(ρL)
ρR,−ρL

(2.77)

where s is the shock speed. Let’s look at the earlier example in
Fig. 2.8, where the initial density was given by

ρ(x, 0) =
{ ρm

2 x < 0,
ρm x ≥ 0,

(2.78)

and we seek a solution to our Cauchy problem (2.72), using the
method of characteristics. Since the characteristics do overlap at
some point in time, the shock speed is calculated from (2.77)

s =
(vfρR − vfρ2

R/ρm) − (vfρL − vfρ2
L/ρm)

ρR − ρL

= vf − vf

ρm
(ρR + ρL)

= vf − vf

ρm
(ρm +

ρm

2
)

= −0.5 vf
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and the solution is given by

ρ(x, t) =
{ ρm

2 x < s t,
ρm x ≥ s t.

(2.79)

This solution is shown in Fig. 2.10.
Let’s look now at the example of Fig. 2.9, and try to solve the

traffic flow problem there. We will give two methods to find the solu-
tion and discuss which one must be used to get the correct solution.
Using the initial density values

ρ(x, 0) =
{

ρm x < 0,
ρm/2 x ≥ 0,

(2.80)

we get the first solution as a shock wave given by

s = vf − vf

ρm
(ρR + ρL) = vf − vf

ρm
(ρm/2 + ρm) = −0.5 vf

As we can see “−0.5 vf” is the same shock speed as in the previous
example and it is plotted in the Fig. 2.11b. The second solution is
continuous and it provides another way to fill the wedge. It is called
the rarefaction wave solution. The general form of the solution for
traffic flow is given by

ρ(x, t) =

⎧⎪⎨
⎪⎩

ρL x < f ′(ρL) t,

f ′(
x

t
)−1 f ′(ρL) t ≤ x < f ′(ρR) t,

ρR x ≥ f ′(ρR) t,

(2.81)
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Fig. 2.10. Shock solution
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Fig. 2.11. Initial density profile followed by two weak solutions, shock
and fan respectively

where the “−1” is an inverse mapping. For the traffic flow problem,
f ′(

x

t
)−1 can be found by letting

f ′(
x

t
)−1 = vf − vfρ

ρm
=

x

t
, (2.82)

and solving for the density solution to get

ρ(x, t) = f ′(
x

t
)−1 =

ρm

2
− ρm x

2vf t
. (2.83)

Then, the continuous solution for the PDE is given by

ρ(x, t) =

⎧⎪⎨
⎪⎩

ρL x < −vf t,

f ′(
x

t
)−1 −vf t ≤ x < 0,

ρR x ≥ 0.
(2.84)

For the initial data given in Fig. 2.11a, the rarefaction wave solution
is plotted in Fig. 2.11c.
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Fig. 2.12. Lax shock condition for traffic flow problem: (a) not a
shock, (b) shock

Such multiplicity of solutions is unacceptable. Thus we need a
selection criterion that picks out the physically reasonable solution
from among the possible weak solutions (2.81), and (2.84). Lax shock
condition or Lax entropy condition [66] is a sufficient condition for
scalar conservation laws. The condition for the traffic flow PDE
states that the discontinuous solution for the traffic flow problem
is admissible (i.e., a shock solution is selected with the direction of
increased entropy) if

ρL < s < ρR, (2.85)

otherwise, the rarefaction wave solution is the admissible one (see
Fig. 2.12 for easy interpretation). In the example of Fig. 2.11a, and
according to the Lax condition, the rarefaction solution is the ad-
missible one and the shock solution is not admissible. Finally, we
summarize the solution for the LWR model by mentioning the fol-
lowing two points:

• The solution is piece-wise smooth as t 	→ ∞ with jumps in
density (shocks) separating the pieces.

• This means traffic is predicted to be stable with transition be-
tween stable regions approximated by discontinuous shocks.




