
IEC 61131-3: Programming Industrial Automation Systems

Concepts and Programming Languages, Requirements for Programming Systems, Decision-Making Aids

Bearbeitet von
Karl-Heinz John, Michael Tiegelkamp

2nd Edition. 2010. Buch. vi, 390 S. Hardcover
ISBN 978 3 642 12014 5

Format (B x L): 15,5 x 23,5 cm
Gewicht: 760 g

Weitere Fachgebiete > Technik > Elektronik > Überwachungstechnik

Zu Inhaltsverzeichnis

schnell und portofrei erhältlich bei

Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft.
Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm
durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr

als 8 Millionen Produkte.

http://www.beck-shop.de/John-Tiegelkamp-IEC-61131-3-Programming-Industrial-Automation-Systems/productview.aspx?product=684471&utm_source=pdf&utm_medium=clickthru_lp&utm_campaign=pdf_684471&campaign=pdf/684471
http://www.beck-shop.de/trefferliste.aspx?toc=9748
http://www.beck-shop.de/fachbuch/inhaltsverzeichnis/9783642120145_TOC_001.pdf

2 Building Blocks of IEC 61131-3

This chapter explains the meaning and usage of the main language elements of the
IEC 61131-3 standard. These are illustrated by several examples from real life,
with each example building upon the previous one.

The reader is introduced to the terms and ways of thinking of IEC 61131-3. The
basic ideas and concepts are explained clearly and comprehensively without dis-
cussing the formal language definitions of the standard itself [IEC 61131-3].

The first section of this chapter gives a compact introduction to the conceptual
range of the standard by means of an example containing the most important
language elements and providing an overview of the methodology of PLC pro-
gramming with IEC 61131-3.

The term “POU” (Program Organisation Unit) is explained in detail because it
is fundamental for a complete understanding of the new language concepts.

As the programming language Instruction List (IL) is already well known to most
PLC programmers, it has been chosen as the basis for the examples in this chapter.
IL is widespread on the European PLC market and its simple syntax makes it easy
to comprehend.

The programming language IL itself is explained in Section 4.1.

2.1 Introduction to the New Standard

IEC 61131-3 not only describes the PLC programming languages themselves, but
also offers comprehensive concepts and guidelines for creating PLC projects.

The purpose of this section is to give a short summary of the important terms of
the standard without going into details. These terms are illustrated by a simple
example. More detailed information will be found in the subsequent sections and
chapters.

K.-H. John, M. Tiegelkamp, IEC 61131-3: Programming Industrial Automation
Systems, 2nd ed., DOI 10.1007/978-3-642-12015-2_2,
© Springer-Verlag Berlin Heidelberg 2010

22 2 Building Blocks of IEC 61131-3

2.1.1 Structure of the building blocks

POUs correspond to the Blocks in previous (conventional) programming systems.
POUs can call each other with or without parameters. As the name implies, POUs
are the smallest independent software units of a user program.

There are three types of POUs: Function (FUN), Function block (FB) and
Program (PROG), in ascending order of functionality. The main difference
between functions and function blocks is that functions always produce the same
result (function value) when called with the same input parameters, i.e. they have
no “memory”. Function blocks have their own data record and can therefore
“remember” status information (instantiation). Programs (PROG) represent the
“top” of a PLC user program and have the ability to access the I/Os of the PLC and
to make them accessible to other POUs.

IEC 61131-3 predefines the calling interface and the behaviour of frequently
needed standard functions (std. FUN) such as arithmetic or comparison functions,
as well as standard function blocks (std. FB), such as timers or counters.

Declaration of variables
The IEC 61131-3 standard uses variables to store and process information.
Variables correspond to (global) flags or bit memories in conventional PLC
systems. However, their storage locations no longer need to be defined manually
by the user (as absolute or global addresses), but they are managed automatically
by the programming system and each possess a fixed data type.

IEC 61131-3 specifies several data types (Bool, Byte, Integer, ...). These differ,
for example, in the number of bits or the use of signs. It is also possible for the
user to define new data types: user-defined data types such as structures and
arrays.

Variables can also be assigned to a certain I/O address and can be battery-
backed against power failure.

Variables have different forms. They can be defined (declared) outside a POU and
used program-wide, they can be declared as interface parameters of a POU, or they
can have a local meaning for a POU. For declaration purposes they are therefore
divided into different variable types. All variables used by a POU have to be
declared in the declaration part of the POU.

The declaration part of a POU can be written in textual form independently of
the programming language used. Parts of the declaration (input and output
parameters of the POU) can also be represented graphically.

2.1 Introduction to the New Standard 23

VAR_INPUT (* Input variable *)
ValidFlag : BOOL; (* Binary value *)

END_VAR
VAR_OUTPUT (* Output variable *)

RevPM : REAL; (* Floating-point value *)
END_VAR
VAR RETAIN (* Local variable, battery-backed *)

MotorNr : INT; (* Signed integer *)
MotorName : STRING [10]; (* String of length 10 *)
EmStop AT %IX2.0 : BOOL; (* Input bit 2.0 of I/O *)

END_VAR

Example 2.1. Example of typical variable declarations of a POU

Example 2.1 shows the variable declaration part of a POU. A signed integer
variable (16 bits incl. sign) with name MotorNr and a text of length 10 with name
MotorName are declared. The binary variable EmStop (emergency stop) is
assigned to the I/O signal input 2.0 (using the keyword “AT”). These three
variables are known only within the corresponding POU, i.e. they are “local”.
They can only be read and altered by this POU. During a power failure they retain
their value, as is indicated by the qualifier “RETAIN”. The value for input variable
ValidFlag will be set by the calling POU and have the Boolean values TRUE or
FALSE. The output parameter returned by the POU in this example is the floating-
point value RevPM.

The Boolean values TRUE and FALSE can also be indicated by “1” and “0”.

Code part of a POU
The code part, or instruction part, follows the declaration part and contains the
instructions to be processed by the PLC.

A POU is programmed using either the textual programming languages
Instruction List (IL) and Structured Text (ST) or the graphical languages Ladder
Diagram (LD) and Function Block Diagram (FBD). IL is a programming language
closer to machine code, whereas ST is a high-level language. LD is suitable for
Boolean (binary) logic operations. FBD can be used for programming both
Boolean (binary) and arithmetic operations in graphical representation.

24 2 Building Blocks of IEC 61131-3

%IX23.5 Motor

Button
N

S1

R

SR
FlipFlop

Q1 VarOut

VarIn

EmStop

Ladder Diagram

>=%IW3

%MW3

Function Block Diagram

Instruction List Structured Text

LD
ORN
ANDN
S

S

%IX23.5
Button
EmStop
Motor

FlipFlop (
R := VarIn);
S1 := (%IW3 >= %MW3),

VarOut := FlipFlop.Q1;

Figure 2.1. Simple examples of the programming languages LD, FBD, IL and ST. The
examples in LD and IL are equivalent to one another, as are those in FBD and ST.

Additionally, the description language Sequential Function Chart (SFC) can be
used to describe the structure of a PLC program by displaying its sequential and
parallel execution. The various subdivisions of the SFC program (steps and
transitions) can be programmed independently using any of the IEC 61131-3
programming languages.

2.1 Introduction to the New Standard 25

Sequential Function Chart

t3

t4

t5

S0

S1

S3

S2

&

t1

t2

Figure 2.2. Schematic example of structuring using SFC. The execution parts of the steps
(S0 to S3) and the transitions (t1 to t5) can be programmed using any other programming
language.

Figure 2.2 shows an SFC example: Steps S0, S1 and S3 are processed sequentially.
S2 can be executed alternatively to S1. Transitions t1 to t5 are the conditions
which must be fulfilled before proceeding from one step to the next.

2.1.2 Introductory example written in IL

An example of an IEC 61131-3 program is presented in this section. Figure 2.3
shows its POU calling hierarchy in tree form.

This example is not formulated as an executable program, but simply serves to
demonstrate POU structuring.

26 2 Building Blocks of IEC 61131-3

MotorControl
program

MotAccel
function block

MotStart
function

LOG
standard function

MotBrake
function block

Figure 2.3. Calling hierarchy of POUs in the example

The equivalent IL representation is shown in Example 2.2.

PROGRAM MotorControl
VAR_INPUT (* inpu t variable *)

MaxRPM : REAL;
END_VAR
VAR (* local variable *)

S tart : MotStart;
Braking : MotBrake;

END_VAR

... (* FB call *)
CAL Start (RPM := MaxRPM)
LD Start.running
...
CAL Braking (* FB call *)
...

END_PROGRAM

Named POU type

End of POU

Declaration part

Code part

Example 2.2. Declaration of the program MotorControl from Figure 2.3 together with
corresponding code parts in IL. Comments are represented by the use of
brackets: “(* ... *)”.

2.1 Introduction to the New Standard 27

FUNCTION_BLOC K MotStart (* function block *)
VAR_INPUT RPM: REAL; END_VAR (* declaration of RPM*)
VAR_OUTPUT running: BOOL; END_VAR (* declaration of running*)

...
LD RPM
MotAccel 100.0 (* function call *)
...

END_FUNCTION_BLOCK

FUNCTION_BLOC K MotBrake (* function block *)
...
END_FUNCTION_BLOCK

FUNCTION MotAccel : REAL (* function *)
VAR_INPUT Param1, Param2: REAL; END_VAR (* declaration of variables*)

LD Param2
LOG (* invoc. of Std. FUN LOG *)
...
ST MotAccel

END_FUNCTION

Example 2.3. The three subprograms of Fig. 2.3 in IL. LOG (logarithm) is predefined
standard function of IEC 61131-3.

MotorControl is the main program. When this program is started, the variable RPM
is assigned an initial value passed with the call (as will be seen later). This POU
then calls the block Start (MotStart). This POU in turn calls the REAL function
MotAccel with two input parameters (RPM and 100.0). This then calls LOG – the
IEC 61131 standard function “Logarithm”. After processing Start (MotStart),
MotorControl is activated again, evaluates the result running and then calls Braking,
(MotBrake).

As shown in Example 2.2, the function blocks MotStart and MotBrake are not
called directly using these names, but with the so-called “instance names” Start
and Braking respectively.

2.1.3 PLC assignment

Each PLC can consist of multiple processing units, such as CPUs or special
processors. These are known as resources in IEC 61131-3. Several programs can
run on one resource. The programs differ in priority or execution type
(periodic/cyclic or by interrupt). Each program is associated with a task, which
makes it into a run-time program. Programs may also have multiple associations
(instantiation).

28 2 Building Blocks of IEC 61131-3

Before the program described in Examples 2.2 and 2.3 can be loaded into the PLC,
more information is required to ensure that the associated task has the desired
properties:

- On which PLC type and which resource is the program to run?
- How is the program to be executed and what priority should it have?
- Do variables need to be assigned to physical PLC addresses?
- Are there global or external variable references to other programs to be

declared?

This information is stored as the configuration, as illustrated textually in Example
2.4 and graphically in Figure 2.4.

CONFIGURATION MotorCon
VAR_GLOBAL Trigger AT %IX2.3 : BOOL; END_VAR
RESOURCE Res_1 ON CPU001

TASK T_1 (INTERVAL := t#80ms, PRIORITY := 4);
PROGRAM MotR WITH T_1 : MotorControl (MaxRPM := 12000);

END_RESOURCE
RESOURCE Res_2 ON CPU002

TASK T_2 (SINGLE := Trigger, PRIORITY := 1);
PROGRAM MotP WITH T_2 : MotorProg (...);

END_RESOURCE
END_CONFIGURATION

Example 2.4. Assignment of the programs in Example 2.3 to tasks and resources in a
“configuration”

2.1 Introduction to the New Standard 29

Res_1

MotStart MotBrake

MotAccel LOG

Program MotorProg

...

cyclic

high priority
interrupt

low priority

CONFIGURATION

Allocation of hardware addresses
global & access variables

...

Task: Task:

CPU001
Res_2

CPU002

MotorCon

Program MotorControl

cyclic

high priority
interrupt

low priority

Figure 2.4. Assignment of the programs of a motor control system MotorCon to tasks in
the PLC “configuration”. The resources (processors) of the PLC system execute the
resulting run-time programs.

Figure 2.4 continues Example 2.3. Program MotorControl runs together with its
FUNs and FBs on resource CPU001. The associated task specifies that
MotorControl should execute cyclically with low priority. Program MotorProg runs
here on CPU002, but it could also be executed on CPU001 if this CPU supports
multitasking.

The configuration is also used for assigning variables to I/Os and for managing
global and communication variables. This is also possible within a PROGRAM.

A PLC project consists of POUs that are either shipped by the PLC manufacturer
or created by the user. User programs can be used to build up libraries of tested
POUs that can be used again in new projects. IEC 61131-3 supports this aspect of
software re-use by stipulating that functions and function blocks have to remain
“universal”, i.e. hardware-independent, as far as possible.

After this short summary, the properties and special features of POUs will now be
explained in greater detail in the following sections.

30 2 Building Blocks of IEC 61131-3

2.2 The Program Organisation Unit (POU)

IEC 61131-3 calls the blocks from which programs and projects are built Program
Organisation Units (POUs). POUs correspond to the program blocks, organisation
blocks, sequence blocks and function blocks of the conventional PLC program-
ming world.

One very important goal of the standard is to restrict the variety and often
implicit meanings of block types and to unify and simplify their usage.

DB
Data
block

OB
Organisation
block PB

Program
block

SB
Sequence
block

Block types used in DIN 19239 POUs in IEC 61131-3

PROGRAM

Main program

FB
Function
block

FUNCTION

Function

FUNCTION

Function
block

BLOCK

Figure 2.5. Evolution from previous block types (e.g. German DIN 19239) to the POUs of
IEC 61131-3

As Figure 2.5 shows, IEC 61131-3 reduces the different block types of PLC
manufacturers to three unified basic types. Data blocks are replaced by FB data
memories (“instances”, see below) or global multi-element variables (see also
Chapter 3).

The following three POU types or “block types” are defined by the new
standard:

2.2 The Program Organisation Unit (POU) 31

POU type Keyword Meaning
Program PROGRAM Main program including assignment to I/O,

global variables and access paths
Function
block

FUNCTION_BLOCK Block with input and output variables; this is the
most frequently used POU type

Function FUNCTION Block with function value, input and output
variables for extension of the basic PLC
operation set

Table 2.1. The three POU types of IEC 61131-3 with their meanings

These three POU types differ from each other in certain features:
- Function (FUN). POU that can be assigned parameters, but has no static

variables (without memory), which, when invoked with the same input
parameters, always yields the same result as its function value (output).

- Function block (FB). POU that can be assigned parameters and has static
variables (with memory). An FB (for example a counter or timer block), when
invoked with the same input parameters, will yield values which also depend
on the state of its internal (VAR) and external (VAR_EXTERNAL) variables,
which are retained from one execution of the function block to the next.

- Program (PROG). This type of POU represents the “main program”. All
variables of the whole program that are assigned to physical addresses (for
example PLC inputs and outputs) must be declared in this POU or above it
(Resource, Configuration). In all other respects it behaves like an FB.

PROG and FB can have both input and output parameters. Functions, on the other
hand, have input and output parameters and a function value as return value. These
properties were previously confined to “function blocks”.

The IEC 61131-3 FUNCTION_BLOCK with input and output parameters
roughly corresponds to the conventional function block. The POU types
PROGRAM and FUNCTION do not have direct counterparts in blocks as defined
in previous standards, e.g. DIN 19239.

A POU is an encapsulated unit, which can be compiled independently of other
program parts. However, the compiler needs information about the calling
interfaces of the other POUs that are called in the POU (“prototypes”). Compiled
POUs can be linked together later in order to create a complete program.

The name of a POU is known throughout the project and may therefore only be
used once. Local subroutines as in some other (high-level) languages are not
permitted in IEC 61131-3. Thus, after programming a POU (declaration), its name
and its calling interface will be known to all other POUs in the project, i.e. the
POU name is always global.

32 2 Building Blocks of IEC 61131-3

This independence of POUs facilitates extensive modularisation of automation
tasks as well as the re-use of already implemented and tested software units.

In the following sections the common properties of the different types of POUs
will first be discussed. The POU types will then be characterised, the calling
relationships and other properties will be described, and finally the different types
will be summarised and compared.

2.3 Elements of a POU

A POU consists of the elements illustrated in Figure 2.6:

- POU type and name (and data type in the case of functions)
- Declaration part with variable declarations
- POU body with instructions.

PROGRAM PROG name

END_PROGRAM

FUNCTION_BLOCK FB name

END_FUNCTION_BLOCK

Instructions
(POU body)

FUNCTION FUN name:

END_FUNCTION

Data type

Interface variables

Declaration part

Code part

local variables

Figure 2.6. The common structure of the three POU types Program (left), Function Block
(centre) and Function (right). The declaration part contains interface and local variables.

Declarations define all the variables that are to be used within a POU. Here a
distinction is made between variables visible from outside the POU (POU
interface) and the local variables of the POU. These possibilities will be explained
in the next section and in more detail in Chapter 3.

Within the code part (body) of a POU the logical circuit or algorithm is pro-
grammed using the desired programming language. The languages of IEC 61131-3
are presented and explained in Chapter 4.

Declarations and instructions can be programmed in graphical or textual form.

2.3 Elements of a POU 33

2.3.1 Example

The elements of a POU are illustrated in Example 2.5.

VarIn : BOOL; END_VAR

LD VarIn

ST VarOut1

...

FUNCTION_BLOCK FB name

Instructions
(POU body)

Interface variables

Local variables

FUNCTION_BLOCK NextState

VarOut1 : BYTE;VAR_OUTPUT
VAR_INPUT

VAR

VarOut2 : BOOL; END_VAR

VarLocal : BYTE; END_VAR

ST VarOut2
...

(* input *)
(* outputs *)

(* state value *)

END_FUNCTION_BLOCK END_FUNCTION_BLOCK

LD VarLocal

Example 2.5. Elements of a POU (left) and example of a function block in IL (right). The
FB contains the input parameter VarIn as well as the two return values VarOut1 and
VarOut2. VarLocal is a local variable.

The function block NextState written in IL contains the input parameter VarIn, the
two return values VarOut1 and VarOut2 and the local variable VarLocal. In the FB
body the IL operators LD (Load) and ST (Store) are used.

BOOL BYTEVarIn VarOut1

FUNCTION_BLOCK NextState

END_FUNCTION_BLOCK

BOOLVarOut2

Example 2.6. Graphical representation of the calling interface of FB NextState in
Example 2.5.

When using the graphical representation of the calling interface, local FB variables
such as VarLocal are not visible.

34 2 Building Blocks of IEC 61131-3

2.3.2 Declaration part

In IEC 61131-3 variables are used for initialising, processing and storing user data.
The variables have to be declared at the beginning of each POU, i.e. their
assignment to a specific data type (such as BYTE or REAL) is made known.

Other attributes of the variables, such as battery backup, initial values or assign-
ment to physical addresses, can also be defined during declaration.

As shown by Example 2.7, the declaration of POU variables is divided into
separate sections for the different variable types. Each declaration block
(VAR_*...END_VAR) corresponds to one variable type and can contain one or
more variables. As Example 2.8 shows, the order and number of blocks of the
same variable type can be freely determined or can depend on how the variables
are used in a particular programming system.

(* Local variable *)
VAR VarLocal : BOOL; END_VAR (* local Boolean variable *)
(* Calling interface: input parameters *)
VAR_INPUT VarIn : REAL; END_VAR (* input variable *)
VAR_IN_OUT VarInOut : UINT; END_VAR (* input and output variable *)
(* Return values: output parameters *)
VAR_OUTPUT VarOut : INT; END_VAR (* output variable *)
(* Global interface: global/external variables and access paths *)
VAR_EXTERNAL VarGlob : WORD; END_VAR (* external from other POU *)
VAR_GLOBAL VarGlob : WORD; END_VAR (* global for other POUs *)
VAR_ACCESS VarPath : WORD; END_VAR (* access path of configuration *)

Example 2.7. Examples of the declarations of different variable types

2.3 Elements of a POU 35

(* Declaration block 1 *)
VAR VarLocal1, VarLocal2, VarLocal3: BOOL; END_VAR
 (* Declaration block 2 *)
VAR_INPUT VarIn1 : REAL; END_VAR
 (* Declaration block 3 *)
VAR_OUTPUT VarOut : INT; END_VAR
 (* Declaration block 4 *)
VAR VarLocal4, VarLocal5 : BOOL; END_VAR
 (* Declaration block 5 *)
VAR_INPUT VarIn2, VarIn3 : REAL; END_VAR
 (* Declaration block 6 *)
VAR_INPUT VarIn4 : REAL; END_VAR

Example 2.8. Examples of declaration blocks: the order and number of the blocks is not
specified in IEC 61131-3.

Types of variables in POUs.
As shown by Table 2.2, different types of variables may be used depending on the
POU type:

Variable type Permitted in:
PROGRAM FUNCTION_BLOCK FUNCTION

VAR yes yes yes
VAR_INPUT yes yes yes
VAR_OUTPUT yes yes yes
VAR_IN_OUT yes yes yes
VAR_EXTERNAL yes yes no
VAR_GLOBAL yes no no
VAR_ACCESS yes no no
VAR_TEMP yes yes no

Table 2.2. Variable types used in the three types of POU

As Table 2.2 shows, all variable types can be used in programs. Function blocks
cannot make global variables available to other POUs. This is only permitted in
programs, resources and configurations. FBs access global data using the variable
type VAR_EXTERNAL.

Functions have the most restrictions because only local and input and output
variables are permitted in them. They return their calculation result using the
function return value.

Except for local variables, all variable types can be used to import data into and
export data from a POU. This makes data exchange between POUs possible. The
features of this POU interface will be considered in more detail in the next section.

36 2 Building Blocks of IEC 61131-3

Characteristics of the POU interface
The POU interfaces, as well as the local data area used in the POU, are defined by
means of assigning POU variables to variable types in the declaration blocks. The
POU interface can be divided into the following sections:

- Calling or invocation interface: formal parameters (input and input/output
parameters)

- Return values: output parameters or function return values
- Global interface with global/external variables and access paths.

The calling interface and the return values of a POU can also be represented
graphically in the languages LD and FBD.

The variables of the calling interface are also called formal parameters. When
calling a POU the formal parameters are replaced with actual parameters, i.e.
assigned actual (variable) values or constants.

In Example 2.3 FB MotStart has only one formal parameter RPM, which is given
the value of the actual parameter MaxRPM in Example 2.2, and it also has the
output parameter running. The function MotAccel has two formal parameters (one
of which is assigned the constant 100.0) and returns its result as the function return
value

This is summarised by Table 2.3.

Variable types Remarks
Calling interface
(formal parameters)

VAR_INPUT, VAR_IN_OUT Input parameters, can
also be graphically
displayed

Return values VAR_OUTPUT Output parameters, can
also be graphically
displayed

Global interface VAR_GLOBAL, VAR_EXTERNAL,
VAR_ACCESS

Global data

Local values VAR, VAR_TEMP POU internal data

Table 2.3. Variable types for interface and local data of a POU. See the comments in
Example 2.7.

Formal input parameter (VAR_INPUT): Actual parameters are passed to the
POU as values, i.e. the variable itself is not used, but only a copy of it. This
ensures that this input variable cannot be changed within the called POU. This
concept is also known as “call-by-value”.

2.3 Elements of a POU 37

Formal input/output parameter (VAR_IN_OUT): Actual parameters are passed
to the called POU in the form of a pointer to their storage location, i.e. the variable
itself is used. It can thus be read and changed by the called POU. Such changes
have an automatic effect on the variables declared outside the called POU. This
concept is also known as “call-by-reference”.

By working with references to storage locations this variable type provides
pointers like those used in high-level languages like C for return values from
subroutines.

Formal output parameters, return values (VAR_OUTPUT) are not passed to
the called POU, but are provided by that POU as values. They are therefore not
part of the calling interface. They appear together with VAR_INPUT and
VAR_IN_OUT in graphical representation, but in textual languages such as IL or
ST their values are read after calling the POU.

The method of passing to the calling POU is also “return-by-value”, allowing the
values to be read by the calling instance (FB or PROG). This ensures that the
output parameters of a POU are protected against changes by a calling POU. When
a POU of type PROGRAM is called, the output parameters are provided together
with the actual parameters by the resource and assigned to appropriate variables
for further processing (see examples in Chapter 6).

If a POU call uses complex arrays or data structures as variables, the use of
VAR_IN_OUT results in more efficient programs, as it is not the variables
themselves (VAR_INPUT and VAR_OUTPUT) that have to be copied at run
time, but only their respective pointers. However such variables are not protected
against (unwelcome) manipulation by the called POU.

External and internal access to POU variables
Formal parameters and return values have the special property of being visible
outside their POU: the calling POU can (but need not) use their names explicitly
for setting input values.

This makes it easier to document the POU calling interface and parameters may
be omitted and/or their sequence may be altered. In this context input and output
variables are also protected against unauthorised reading and writing.

Table 2.4 summarises all variable types and their meaning. Access rights are
given for each variable type, indicating whether the variable:

- is visible to the calling POU (“external”) and can be read or written to there
- can be read or written to within the POU (“internal”) in which it is defined.

38 2 Building Blocks of IEC 61131-3

Variable type Access rightsa Explanation
external internal

VAR, VAR_TEMP
Local Variables

- RW A local variable is only visible within its POU and
can be processed only there.

VAR_INPUT
Input Variables

Wb R An input variable is visible to the calling POU and
may be written to (changed) there. It may not be
changed within its own POU.

VAR_OUTPUT
Output Variables

R RW An output variable is visible to the calling POU and
may only be read there. It can be read and written to
within its own POU.

VAR_IN_OUT
Input and Output
Variables

RW RW An input/output variable possesses the combined
features of VAR_INPUT and VAR_OUTPUT: it is
visible and may be read or changed within or
outside its POU.

VAR_EXTERNAL
External Variables

RW RW An external variable is required to enable read and
write access from within a POU to a global variable
of another POU. It is visible only to POUs that list
this global variable under VAR_EXTERNAL; all
other POUs have no access to this global variable.
Identifier and type of a variable under
VAR_EXTERNAL must coincide with the
corresponding VAR_GLOBAL declaration in
PROGRAM.

VAR_GLOBAL
Global Variables

RW RW A variable declared as GLOBAL may be read and
written to by several POUs.
For this purpose, the variable must be listed with
identical name and type under VAR-EXTERNAL in
the other POUs.

VAR_ACCESS
Access Paths

RW RW Global variable of configurations as communication
channel between components (resources) of
configurations (see also Chapter 6). It can be used
like a global variable within a POU.

a W=Write, R=Read, RW=Read and Write
b can be written to only as formal parameter during invocation

Table 2.4. The meaning of the variable types. The left-hand column contains the keyword
of each variable type in bold letters. In the “Access rights” column the read/write rights are
indicated for the calling POU (external) and within the POU (internal) respectively.

IEC 61131-3 provides extensive access protection for input and output variables,
as shown in Table 2.4 for VAR_INPUT and VAR_OUTPUT: input variables may
not be changed within their POU, and output parameters may not be changed
outside.

The special relevance of the declaration part to function blocks will be discussed
again in Section 2.4.1 when explaining FB instantiation.

The following examples show both external (calling the POU) and internal (within
the POU) access to formal parameters and return values of POUs:

2.3 Elements of a POU 39

FUNCTION_BLOCK FBTwo FUNCTION_BLOCK FBOne
VAR_INPUT

VarIn : BYTE;
END_VAR

VAR ExampleFB : FBTwo; END_VAR

VAR_OUTPUT
VarOut : BYTE;

END_VAR
VAR
 VarLocal : BYTE;
END_VAR
...
LD VarIn
AND VarLocal
ST VarOut
...

…
LD 44
ST ExampleFB.VarIn
CAL ExampleFB (* FB call *)
LD ExampleFB.VarOut
...

END_FUNCTION_BLOCK END_FUNCTION_BLOCK

Example 2.9. Internal access (on the left) and external access (on the right) to the formal
parameters VarIn and VarOut.

In Example 2.9 FBOne calls block ExampleFB (described by FBTwo). The input
variable VarIn is assigned the constant 44 as actual parameter, i.e. this input
variable is visible and initialised in FBOne. VarOut is also visible here and can be
read by FBOne. Within FBTwo VarIn can be read (e.g. by LD) and VarOut can be
written to (e.g. using the instruction ST).

Further features and specialities of variables and variable types will be explained
in Section 3.4.

2.3.3 Code part

The instruction or code part (body) of a POU immediately follows the declaration
part and contains the instructions to be executed by the PLC. IEC 61131-3 pro-
vides five programming languages (three of which have graphical representation)
for application-oriented formulation of the control task.

As the method of programming differs strongly between these languages, they
are suitable for different control tasks and application areas.

40 2 Building Blocks of IEC 61131-3

Here is a general guide to the languages:

SFC Sequential Function Chart: For breaking down the control task into parts
which can be executed sequentially and in parallel, as well as for controlling
their overall execution. SFC very clearly describes the program flow by
defining which actions of the controlled process will be enabled, disabled or
terminated at any one time. IEC 61131-3 emphasises the importance of SFC as
an Aid for Structuring PLC programs.

LD Ladder Diagram: Graphical connection (“circuit diagram”) of Boolean
variables (contacts and coils), geometrical view of a circuit similar to earlier
relay controls. POUs written in LD are divided into sections known as
networks.

FBD Function Block Diagram: Graphical connection of arithmetic, Boolean or other
functional elements and function blocks. POUs written in FBD are divided into
networks like those in LD. Boolean FBD networks can often be represented in
LD and vice versa.

IL Instruction List: Low-level machine-oriented language offered by most of the
programming systems

ST Structured Text: High-level language (similar to PASCAL) for control tasks as
well as complex (mathematical) calculations.

Table 2.5. Features of the programming languages of IEC 61131-3

In addition, the standard explicitly allows the use of other programming languages
(e.g. C or BASIC), which fulfil the following basic requirements of PLC pro-
gramming:

- The use of variables must be implemented in the same way as in the other
programming languages of IEC 61131-3, i.e. compliant with the declaration
part of a POU.

- Calls of functions and function blocks must adhere to the standard, especially
calls of standard functions and standard function blocks.

- There must be no inconsistencies with the other programming languages or
with the structuring aid SFC.

Details of these standard programming languages, their individual usage and their
representation are given in Chapter 4.

2.4 The Function Block 41

2.4 The Function Block

Function blocks are the main building blocks for structuring PLC programs. They
are called by programs and FBs and can themselves call functions as well as other
FBs.

In this section the basic features of function blocks will be explained. A detailed
example of an FB can be found in Appendix C.

The concept of the “instantiation of FBs” is of great importance in IEC 61131-3
and is an essential distinguishing criterion between the three POU types. This
concept will therefore be introduced before explaining the other features of POUs.

2.4.1 Instances of function blocks

What is an “instance”?
The creation of variables by the programmer by specifying the variable’s name and
data type in the declaration is called instantiation.

In the following Example 2.10 the variable Valve is an instance of data type
BOOL:

Valve : BOOL; (* Boolean variable *)

Motor1 : MotorType; (* FB instance *)

Name of variable data type

Name of FB instance FB type (user-defined)

Example 2.10. Declaration of a variable as an “instance of a data type” (top). Declaration
of an FB “variable” as an “instance of a user-defined FB type” (bottom).

Function blocks also are instantiated like variables: In Example 2.10 the FB
instance Motor1 is declared as an instance of the user-defined function block (FB
type) MotorType in the declaration part of a POU. After instantiation an FB can be
used (as an instance) and called within the POU in which it is declared.

This principle of instantiation may appear unusual at first sight but, in fact, it is
nothing new.

Up until now, for example, function blocks for counting or timing, known for
short as counters and timers respectively, were mostly defined by their type (such

42 2 Building Blocks of IEC 61131-3

as direction of counting or timing behaviour) and by a number given by the user,
e.g. Counter “C19”.

Instead of this absolute number the standard IEC 61131-3 requires a (symbolic)
variable name combined with the specification of the desired timer or counter type.
This has to be declared in the declaration part of the POU. The programming
system can automatically generate internal, absolute numbers for these FB
variables when compiling the POU into machine code for the PLC.

With the aid of these variable names the PLC programmer can use different
timers or counters of the same type in a transparent manner and without the need to
check name conflicts.

By means of instantiation IEC 61131-3 unifies the usage of manufacturer-
dependent FBs (typically timers and counters) and user-defined FBs. Instance
names correspond to the symbolic names or so-called symbols used by many PLC
programming systems. Similarly, an FB type corresponds to its calling interface. In
fact, FB instances provide much more than this: “Structure” and “Memory” for
FBs will be explained in the next two subsections.

The term “function block” is often used with two slightly different meanings: it
serves as a synonym for the FB instance name as well as for the FB type (= name
of the FB itself). In this book “function block” means FB type, while an FB
instance will always be explicitly indicated as an instance name.

Example 2.11 shows a comparison between the declarations of function blocks
(here only standard FBs) and variables:

VAR
FillLevel : UINT; (* unsigned integer variable *)
EmStop : BOOL; (* Boolean variable *)
Time9 : TON; (* timer of type on-delay *)
Time13 : TON; (* timer of type on-delay *)
CountDown : CTD; (* down-counter *)
GenCounter : CTUD; (* up-down counter *)

END_VAR

Example 2.11. Examples of variable declaration and instantiation of standard function
blocks (bold).

Although in this example Time9 and Time13 are based on the same FB type (TON)
of a timer FB (on-delay), they are independent timer blocks which can be
separately called as instances and are treated independently of each other, i.e. they
represent two different “timers”.

2.4 The Function Block 43

FB instances are visible and can be used within the POU in which they are
declared. If they are declared as global, all other POUs can use them as well (with
VAR_EXTERNAL).

Functions, on the other hand, are always visible project-wide and can be called
from any POU without any further need of declaration. Similarly FB types are
known project-wide and can be used in any POU for the declaration of instances.

The declaration and calling of standard FBs will be described in detail in
Chapter 5. Their usage in the different programming languages is explained in
Chapter 4.

Instance means “structure”.
The concept of instantiation, as applied in the examples of timer or counter FBs,
results in structured variables, which:

- describe the FB calling interface like a data structure,
- contain the actual status of a timer or counter,
- represent a method for calling FBs.

This allows flexible parameter assignment when calling an FB, as can be seen
below in the example of an up/down counter:

VAR
Counter : CTUD; (* up/down counter *)

END_VAR

Example 2.12. Declaration of an up/down counter with IEC 61131-3

After this declaration the inputs and outputs of this counter can be accessed using a
data structure defined implicitly by IEC 61131-3. In order to clarify this structure
Example 2.13 shows it in an alternative representation.

44 2 Building Blocks of IEC 61131-3

TYPE CTUD : (* data structure of an FB instance of FB type CTUD *)
STRUCT

(* inputs *)
CU : BOOL; (* count up *)
CD : BOOL; (* count down *)
R : BOOL; (* reset *)
LD : BOOL; (* load *)
PV : INT; (* preset value *)
(* outputs *)
QU : BOOL; (* output up *)
QD : BOOL; (* output down *)
CV : INT; (* current value *)

END_STRUCT;
END_TYPE

Example 2.13. Alternative representation of the data structure of the up/down counter
(standard FB) in Example 2.12

The data structure in Example 2.13 shows the formal parameters (calling interface)
and return values of the standard FB CTUD. It represents the caller's view of the
FB. Local or external variables of the POU are kept hidden.

This data structure is managed automatically by the programming or run-time
system and is easy to use for assigning parameters to FBs, as shown in Example
2.14 in the programming language IL:

LD 34
ST Counter.PV (* preset count value *)
LD %IX7.1
ST Counter.CU (* count up *)
LD %M3.4
ST Counter.R (* reset counter *)
CAL Counter (* invocation of FB with actual parameters *)
LD Counter.CV (* get current count value *)

Example 2.14. Parameterisation and invocation of the up/down counter in Example 2.12

In this example the instance Counter is assigned the parameters 34, %IX7.1 and
%M3.4, before Counter is called by means of the instruction CAL (shown here in
bold type). The current counter value can then be read.

As seen in Example 2.14, the inputs and outputs of the FB are accessed using the
FB instance name and a separating period. This procedure is also used for struc-
ture elements (see Section 3.5.2).

Unused input or output parameters are given initial values that can be defined
within the FB itself.

In Section. 4.1.4 further methods of calling FBs in IL by means of their instance
names are shown.

2.4 The Function Block 45

Instance means “memory”.
When several variable names are declared for the same FB type a sort of “FB data
copy” is created for each instance in the PLC memory. These copies contain the
values of the local (VAR) and the input or output variables (VAR_INPUT,
VAR_OUTPUT), but not the values for VAR_IN_OUT (these are only pointers to
variables, not the values themselves) or VAR_EXTERNAL (these are global
variables).

This means that the instance can store local data values and input and output
parameters over several invocations, i.e. it has a kind of “memory”. Such a
memory is important for FBs such as flip-flops or counters, as their behaviour is
dependent on the current status of their flags and counter values respectively.

All variables of this memory are stored in a memory area which is firmly
assigned to this one FB instance (by declaration). This memory area must therefore
be static. This also means that the stack cannot be used in the usual way to manage
local temporary variables!

Particularly in the case of function blocks which handle large data areas such as
tables or arrays, this can lead to (unnecessarily) large static memory requirements
for FB instances.

IEC 61131-3 has therefore defined variable type VAR_TEMP. A value of a
variable that does not have to be maintained between calls is defined with the
VAR_TEMP declaration. In this case the programming system uses a dynamic
area or stack to create memory space that is valid only while the instance is
executed.

Furthermore, large numbers of input and output parameters can lead to memory-
consuming FB instances. The use of VAR_IN_OUT instead of VAR_INPUT and
VAR_OUTPUT respectively can help reduce memory requirements.

In Section 2.3.2 the read/write restrictions on the input and output variables of
POUs were detailed. This is of particular importance for FB instances:

- Input parameters (formal parameters) of an FB instance maintain their values
until the next invocation. If the called FB could change its own input variables,
these values would be incorrect at the next call of the FB instance, and this
would not be detected by the calling POU.

- Similarly, output parameters (return values) of an FB instance maintain their
values between calls. Allowing the calling POU to alter these values would
result in the called FB making incorrect assumptions about the status of its own
outputs.

Like normal variables, FB instances can also be made retentive by using the key-
word RETAIN, i.e. they maintain their local status information and the values of
their calling interface during power failure.

Finally, the relationship between FB instances and conventional data blocks (DB)
will be explained.

46 2 Building Blocks of IEC 61131-3

Relationship between FB instances and data blocks.
Before calling a conventional FB, which has no local data memory (besides

formal parameters), it is common practice to activate a data block containing, for
example, recipe or FB-specific data. Within the FB the data block can also serve
as a local data memory area. This means that programmers can use a conventional
FB with individual “instance data”, but have to ensure the unambiguous
assignment of the data to the FB themselves. This data is also retained between FB
calls, because the data block is a global “shared memory area”, as shown in
Example 2.15:

VAR_GLOBAL
JU DB 14 (* global DB *) FB_14 : FB_Ex; (* global instance *)

END_VAR
JU FB 14 (* FB call *) CAL FB_14 (* invocation of FB instance*)
... ...

a) Conventional DB/FB pair b) FB instance in IEC 61131-3

Example 2.15. The use of a conventional DB/FB pair is similar to an FB instance as
defined in IEC 61131-3. This topic will be discussed in more detail in Section 7.7.

This type of instantiation is restricted to function blocks and is not applicable to
functions (FUNCTION).

Programs are similarly instantiated and called as instances in the Configuration
as the highest level of the POU hierarchy. But this (more powerful) kind of
instance differs from that for FBs, in that it leads to the creation of run-time
programs by association with different tasks. This will be described in Chapter 6.

2.4.2 Re-usable and object-oriented FBs

Function blocks are subject to certain restrictions, which make them re-usable in
PLC programs:

- The declaration of variables with fixed assignment to PLC hardware addresses
(see also Chapter 3: “directly represented variables”: %Q, %I, %M) as “local”
variables is not permitted in function blocks. This ensures that FBs are
independent of specific hardware. The usage of PLC addresses as global
variables in VAR_EXTERNAL is, however, not affected.

- The declaration of access paths of variable type VAR_ACCESS (see also
Chapter 3) or global variables with VAR_GLOBAL is also not permitted
within FBs. Global data, and thus indirectly access paths, can be accessed by
means of VAR_EXTERNAL.

2.4 The Function Block 47

- External data can only be passed to the FB by means of the POU interface
using parameters and external variables. There is no “inheritance”, as in some
other programming languages.

As a result of these features, function blocks are also referred to as encapsulated,
which indicates that they can be used universally and are free from unwelcome
side effects during execution - an important property for parts of PLC programs.
Local FB data and therefore the FB function do not directly rely on global
variables, I/O or system-wide communication paths. FBs can manipulate such data
areas only indirectly via their (well-documented) interface.

The FB instance model with the properties of “structure” and “memory” was
introduced in the previous section. Together with the property of encapsulation for
re-usability a very new view of function blocks appears. This can be summarised
as follows:

“A function block is an independent, encapsulated data structure
with a defined algorithm working on this data.”

The algorithm is represented by the code part of the FB. The data structure corres-
ponds to the FB instance and can be “called”, something which is not possible with
normal data structures. From each FB type any number of instances can be
derived, each independent of the other. Each instance has a unique name with its
own data area.

Because of this, IEC 61131-3 considers function blocks to be “object-oriented”.
These features should not, however, be confused with those of today’s modern
“object-oriented programming languages (→OOP)” such as, for example, C# with
its class hierarchy!

To summarise, FBs work on their own data area containing input, output and
local variables. In previous PLC programming systems FBs usually worked on
global data areas such as flags, shared memory, I/O and data blocks.

2.4.3 Types of variables in FBs

A function block can have any number of input and output parameters, or even
none at all, and can use local as well as external variables.

In addition or as an alternative to making a whole FB instance retentive, local or
output variables can also be declared as retentive within the declaration part of the
FB.

Unlike the FB instance itself which can be declared retentive using RETAIN, the
values of input or input/output parameters cannot be declared retentive in the FB
declaration part (RETAIN) as these are passed by the calling POU and have to be
declared retentive there.

For VAR_IN_OUT it should be noted that the pointers to variables can be
declared retentive in an instance using the qualifier RETAIN. The corresponding

48 2 Building Blocks of IEC 61131-3

values themselves can, however, be lost if they are not also declared as retentive in
the calling POU.

Due to the necessary hardware-independence, directly represented variables
(I/Os) may not be declared as local variables in FBs, such variables may only be
“imported” as global variables using VAR_EXTERNAL.

One special feature of variable declaration in IEC 61131-3 are the so-called edge-
triggered parameters. The standard provides the standard FBs R_TRIG and
F_TRIG for rising and falling edge detection (see also Chapter 5).

The use of edge detection as an attribute of variable types is only possible for
input variables (see Section 3.5.4).

FBs are required for the implementation of some typical basic PLC functions, such
as timers and counters, as these must maintain their status information (instance
data). IEC 61131-3 defines several standard FBs that will be described in more
detail and with examples in Chapter 5

2.5 The Function

The basic idea of a function (FUN) as defined by IEC 61131-3 is that the
instructions in the body of a function that are performed on the values of the input
variables result in an unambiguous function value (free from side effects). In this
sense functions can be seen as manufacturer- or application-specific extensions of
the PLC’s set of operations.

The following simple rule is valid for functions: the same input values always
result in the same output values and function (return) value. This is independent of
how often or at what time the function is called. Unlike FBs, functions do not have
a memory.

Functions can be used as IL operators (instructions) as well as operands in ST
expressions. Like FB types, but unlike FB instances, functions are also accessible
project-wide, i.e. known to all POUs of a PLC project.

For the purpose of simplifying and unifying the basic functionality of a PLC
system, IEC 61131-3 predefines a set of frequently used standard functions, whose
features, run-time behaviour and calling interface are standardised (see also
Chapter 5).

With the help of user-defined functions this collection can be extended to
include device-specific extensions or application-specific libraries.

A detailed example of a function can be found in Appendix C. Functions have
several restrictions in comparison to other POU types. These restrictions are
necessary to ensure that the functions are truly independent (free of any side

2.5 The Function 49

effects) and to allow for the use of functions within expressions, e.g. in ST. This
will be dealt with in detail in the following section.

2.5.1 Types of variables in functions and the function value

Functions have any number of input and output parameters and exactly one
function (return) value.

The function value can be of any data type, including derived data types. Thus a
simple Boolean value or a floating-point double word is just as valid as an array or
a complex data structure consisting of several data elements (multi-element
variable), as described in Chapter 3.

Each programming language of IEC 61131-3 uses the function name as a special
variable within the function body in order to explicitly assign a function value.

As functions always return the same result when provided with the same input
parameters, they may not store temporary results, status information or internal
data between their invocations, i.e. they operate “without memory”.

Functions can use local variables for intermediate results, but these will be lost
when terminating the function. Local variables can therefore not be declared as
retentive.

Functions may not call function blocks such as timers, counters or edge detec-
tors. Furthermore, the use of global variables within functions is not permitted.

The standard does not stipulate how a PLC system should treat functions and the
current values of their variables after a power failure. The POU that calls the
function is therefore responsible for backing up variables where necessary. In any
case it makes sense to use FBs instead of functions if important data is being
processed.

Furthermore, in functions (as in FBs) the declaration of directly represented
variables (I/O addresses) is not permitted.

How a function for root calculation is declared and called is shown in Example
2.16: return parameters include the extracted root as well as the error flag
indicating an invalid root with a negative number.

50 2 Building Blocks of IEC 61131-3

FUNCTION SquareRoot : INT (* square root calculation *)
(* start of declaration part *)

VAR_INPUT (* Input parameter *)
VarIn : REAL; (* input variable *)

END_VAR
VAR_TEMP (* temporary values *)

Result : REAL; (* local variable *)
END_VAR
VAR_OUTPUT (* output parameter *)

Error : BOOL; (* flag for root from neg. number *)
END_VAR

(* start of instruction part *)
LD VarIn (* load input variable *)
LT 0 (* negative number? *)
JMPC M_error (* error case *)
LD VarIn (* load input variable *)
SQRT (* calculate square root *)
ST Result (* result is ok *)
LD FALSE (* logical “0” for error flag: reset *)
ST Error (* reset error flag *)
JMP M_end (* done, jump to FUN end *)
M_error: (* handling of error “negative number” *)
LD 0 (* zero, because of invalid result in case of error *)
ST Result (* reset result *)
LD TRUE (* logical “1” for error flag: set *)
ST Error (* set error flag *)
M_end:
LD Result (* result will be in function value! *)
RET

(* FUN end *)
END_FUNCTION

Example 2.16. Declaration and call of a function “Square root calculation with error” in
IL.

2.6 The Program

Functions and function blocks constitute “subroutines”, whereas POUs of type
PROGRAM build the PLC’s “main program”. On multitasking-capable controller
hardware several main programs can be executed simultaneously. Therefore
PROGRAMs have special features compared to FBs. These features will be
explained in this section.

2.6 The Program 51

In addition to the features of FBs, a PLC programmer can use the following
features in a PROGRAM:

- Declaration of directly represented variables to access the physical I/O
addresses of the PLC (%Q, %I, %M) is allowed,

- Usage of VAR_ACCESS or VAR_GLOBAL is possible,
- A PROGRAM is associated with a task within the configuration, in order to

form a run-time program, i.e. programs are not called explicitly by other POUs.

Variables can be assigned to the PLC I/Os in a PROGRAM by using directly
represented or symbolic variables as global or POU parameters.

Furthermore programs describe the mechanisms by which communication and
global data exchange to other programs take place (inside and outside the
configuration). The variable type VAR_ACCESS is used for this purpose.

These features can also be used at the resource and configuration levels. This is, in
fact, to be recommended for complex PLC projects.

Because of the wide functionality of the POU PROGRAM it is possible, in
smaller projects, to work without a configuration definition: the PROGRAM takes
over the task of assigning the program to PLC hardware.

Such possibilities depend on the functionality of a programming system and will
not be dealt with any further here.

A detailed example of a PROGRAM can be found in Appendix C.

The run-time properties and special treatment of a PROGRAM in the CPU are
expressed by associating the PROGRAM with TASKs. The program is instan-
tiated, allowing it to be assigned to more than one task and to be executed several
times simultaneously within the PLC. This instantiation differs, however from that
for FB instances.

The assignment of programs to tasks is done in the CONFIGURATION and is
explained in Chapter 6.

52 2 Building Blocks of IEC 61131-3

2.7 The Execution control with EN and ENO

In the ladder diagram LD, functions have a special feature not used in the other
programming languages of IEC 61131-3: here the functions possess an additional
input and output. These are the Boolean input EN (Enable In) and the Boolean
output ENO (Enable Out).

LockOff NoError
EN

In

Fun1

ENO
VarIn VarOutOut

Example 2.17. Graphical invocation of a function with EN/ENO in LD

Example 2.17 shows the graphical representation for calling function Fun1 with
EN and ENO in LD. In this example Fun1 will only be executed if input EN has
the value logical “1” (TRUE), i.e. contact Lockoff is closed. After error-free
execution of the POU the output ENO is similarly “1” (TRUE) and the variable
NoError remains set.

With the aid of the EN/ENO pair it is possible to at least partially integrate any
function, even those whose inputs or function value are not Boolean, like Fun1 in
Example 2.17, into the “power flow”. The meaning of EN/ENO based on this
concept is summarised in Table 2.6:

2.7 The Execution control with EN and ENO 53

EN Explanationa ENO
EN = FALSE If EN is FALSE when calling the POU, the code-

part of the function may not be executed. In this
case output ENO will be set to FALSE upon
exiting the unexecuted POU call in order to
indicate that the POU has not been executed.
Note for FB: Assignments to inputs are
implementation independent in FB. The FB
instance’s values of the previous call are retained.
This is irrelevant in FUN (no memory).

ENO = FALSE

EN = TRUE If EN is TRUE when calling POU , the code-part
of the POU can be executed normally. In this case
ENO will initially be set to TRUE before starting
the execution.

ENO = TRUE

ENO can afterwards be set to TRUE or FALSE by
instructions executed within the POU body.

ENO = individual
value

If a program or system error (as described in
Appendix E) occurs while executing the function
ENO will be reset to FALSE by the PLC.

ENO = FALSE
(error occurred)

a TRUE = logical “1”, FALSE = logical “0”

Table 2.6. Meaning of EN and ENO within functions

As can been seen from Table 2.6, EN and ENO determine the control flow in a
graphical network by means of conditional function execution and error handling
in case of abnormal termination. EN can be connected not only to a single contact
as in Example 2.17, but also with a sub-network of several contacts, thus setting a
complex precondition. ENO can be similarly be evaluated by a more complex sub-
network (e.g. contacts, coils and functions). These control flow operations should
however be logically distinguished from other LD/FBD operations that represent
the data flow of the PLC program.

These special inputs/outputs EN and ENO are not treated as normal function
inputs and outputs by IEC 61131-3, but are reserved only for the tasks described
above. Timers or counters are typical examples of function blocks in this context.

The use of these additional inputs and outputs is not included in the other
IEC 61131-3 programming languages. In FBD the representation of EN/ENO is
allowed as an additional feature.

The function call in Example 2.17 can be represented in IL if the programming
system supports EN/ENO as implicit system variables.

If a programming system supports the usage of EN and ENO, it is difficult to
convert POUs programmed with these into textual form. In order to make this
possible, EN/ENO would also have to be keywords in IL or ST and would need to
be automatically generated there, as they are in LD/FBD. Then a function called in
LD could be written in IL and could, for example, set the ENO flag in case of an

54 2 Building Blocks of IEC 61131-3

error. Otherwise only functions written in LD/FBD can be used in LD/FBD
programs. The standard, however, does not make any statement about how to use
EN and ENO as keywords and graphical elements in LD/FBD in order to set and
reset them.

On the other hand, it is questionable whether the usage of EN and ENO is ad-
vantageous in comparison functions (std. FUN, see also Appendix A). A compa-
rison function then has two Boolean outputs, each of which can be connected with
a coil. If this comparison is used within a parallel branch of an LD network, ENO
and the output Q have to be connected separately: ENO continues the parallel
branch while Q, in a sense, opens a new sub-network.

Because of this complexity only some of today’s IEC programming systems use
EN/ENO. Instead of dictating the Boolean pair EN/ENO in LD/FBD there are
other conceivable alternatives:

- EN and ENO can be used both implicitly and explicitly in all programming
languages,

- Each function which can be called in LD/FBD must have at least one binary
input and output respectively,

- Only standard functions have an EN/ENO pair (for error handling within the
PLC system). This pair may not be used for user-defined functions.

The third alternative is the nearest to the definition in IEC 61131-3. This would,
however, mean that EN and ENO are PLC system variables, which cannot be
manipulated by the PLC programmer.

2.8 Calling Functions and Function Blocks

In this section we will deal with the special features which have to be considered
when calling functions and function blocks. These features apply to standard as
well as user-defined functions and function blocks.

The following examples will be given in IL. The use of ST and graphical repre-
sentation in LD and FBD are topics of Chapter 4.

2.8.1 Mutual calls of POUs

The following rules, visualised in Figure 2.7, can be applied to the mutual calling
of POU types:

- PROGRAM may call FUNCTION_BLOCK and FUNCTION, but not the
other way round,

- FUNCTION_BLOCK may call FUNCTION_BLOCK,
- FUNCTION_BLOCK may call FUNCTION, but not the other way round,

2.8 Calling Functions and Function Blocks 55

- Calls of POUs may not be recursive, i.e. a POU may not call (an instance of)
itself either directly or indirectly.

PROGRAM

FUNCTION_BLOCKFUNCTION

1 Program calls function or function block

2 Function calls function

3 Function block calls function or function block

FUNCTION FUNCTION FUNCTION_BLOCK

1

32

Figure 2.7. The three possible ways of invocation among the POU types

Programs and FB instances may call FB instances. Functions, on the other hand,
may not call FB instances, as otherwise the independence (freedom from side
effects) of functions could not be guaranteed.

Programs (PROGRAM) are instantiated to form run-time programs within the
Configuration by association with a TASK. They are then called by the Resource.

2.8.2 Recursive calls are invalid

IEC 1131-3 clearly defines that POUs may not call themselves (“recursion”) either
directly or indirectly, i.e. a POU may not call a POU instance of the same type
and/or name. This would mean that a POU could “define itself” by using its own
name in its declaration or calling itself within its own body. Recursion is, however,
usually permitted in other programming languages in the PC world.

If recursion were allowed, it would not be possible for the programming system
to calculate the maximum memory space needed by a recursive PLC program at
run time.

Recursion can always be replaced by corresponding iterative constructs, i.e. by
building program loops.

56 2 Building Blocks of IEC 61131-3

Both the following figures show examples of invalid calls:

INT
INT

Par1
Par2

FUNCTION Fun1 : BOOL

END_FUNCTION

BOOL

Par1 Par1
Par2 Fun1Par2

Fun1

VAR_INPUT
Par1, Par2 : INT;

FUNCTION Fun1 : BOOL

END_FUNCTION

LD Par1
Fun1 Par2

END_VAR

ST Fun1

Example 2.18. Invalid recursive call of a function in graphical and IL representation:
nested invocation.

In Example 2.18 the same function is called again within function Fun1.
The top half of this example shows the declaration part of the function (input

variables Par1 and Par2 of data type INT and function value of type BOOL).
In the bottom part, this function is called with the same input variables so that

there would be an endless (recursive) chain of calls at run time.

FUNCTION_BLOCK FunBlk
VAR_INPUT

In1 : DINT; (* input variable *)
END_VAR
VAR

InstFunBlk : FunBlk; (* improper instance of the same type *)
Var1 : DINT; (* local variable *)

END_VAR
...

CALC InstFunBlk (In1 := Var1); (* invalid recursive invocation! *)
...
END_FUNCTION_BLOCK

Example 2.19. Invalid recursive call of an FB in IL: nesting already in declaration part.

Example 2.19 shows function block FunBst, in whose local variable declaration
(VAR) an instance InstFunBlk of its own type (FunBst) is declared. This instance
is called in the function body. This would result in endlessly deep nesting when
instantiating the FB in the declaration, and the memory space required for the
instance at run time would be impossible to determine.

2.8 Calling Functions and Function Blocks 57

Programmers themselves or the programming/PLC system must check whether
unintentional recursive calling exists in the PLC program.

This checking can be carried out when creating the program by means of a POU
calling tree, as the invalid use of recursion applies to FB types and not to their
instance names. This is even possible if FB instance names are used as input
parameters (see also Section 2.8.6).

The following example shows how recursive calls can occur even if a function or
FB instance does not directly call itself. It suffices if they mutually call each other.

INT
INT

Par1
Par2

FUNCTION Fun1 : BOOL

END_FUNCTION

BOOL

Par1 Par1
Par2 Fun1Par2

Fun2

INT
INT

Par1
Par2

FUNCTION Fun2 : BOOL

END_FUNCTION

BOOL

Par1 Par1
Par2 Fun1Par2

Fun1

Example 2.20. Recursion by mutual invocation in graphical representation

Such types of recursion are, on principle, not permitted in IEC 61131-3. The
calling condition may be defined as follows: if a POU is called by POU A, that
POU and all the POUs below it in the calling hierarchy may not use the name of
POU A (FB instance or function name).

Unlike most of the modern high-level languages (such as C), recursion is
therefore prohibited by IEC 61131-3. This helps protect PLC programs against
program errors caused by unintentional recursion.

2.8.3 Extendibility and overloading

Standard functions such as additions may have more than two input parameters.
This is called input extension and will make use of the same function for multiple
input parameters clearer. A standard function or a standard function block type is
overloaded if these POUs can work with input data elements of various data
types. These concepts are described in detail in Section 5.1.1.

58 2 Building Blocks of IEC 61131-3

2.8.4 Calling with formal parameters

When a FUN/FB is called, the input parameters are passed to the POU’s input
variables. These input variables are also called formal parameters, i.e. they are
placeholders. The input parameters are known as actual parameters in order to
express that they contain actual input values.

When calling a POU, the formal parameters may or may not be explicitly
specified. This depends on the POU type (FUN or FB) and the programming
language used for the POU call (see also Chapter 4).

Table 2.7 gives a summary of which POU types can be called, in textual and
graphical representation, with or without giving the formal parameter names
(without also called “non-formal”).

Language Function Function block Program
IL with or without with a with
ST with or without b with with
LD and FBD with b with with

a possible in three different ways, see Section 4.1.4
b with std. FUN: if a parameter name exists; EN will always come first.

Table 2.7. Possible explicit specification of formal parameters (“with” or “without”) in
POU calls

In FBs and PROGs the formal parameters must always be specified explicitly,
independently of the programming language. In IL there are different ways of
doing this (see Section 4.1.4).

In ST functions can be called with or without specifying the names of the formal
parameters.

Many formal parameters of standard functions do not have a name (see
Appendix A.2). Therefore these cannot be displayed in graphical representation
and cannot be explicitly specified in textual languages.

IEC 61131-3 does not state whether the names of formal parameters can be
specified when calling user-defined functions in IL. However, in order to keep
such function calls consistent with those of standard functions, it is assumed that
the names of formal parameters may not be used with function calls in IL.

The same rules are valid for the calling of standard functions and standard function
blocks. Example 2.21 shows examples for each POU type.

2.8 Calling Functions and Function Blocks 59

FB declaration: FUN declaration: PROG declaration:

FUNCTION_BLOCK FBlk
VAR_INPUT

Par1 : TIME;
Par2 : WORD;
Par3 : INT;

END_VAR

FUNCTION Fctn : INT
VAR_INPUT

Par1 : TIME;
Par2 : WORD;
Par3 : INT;

END_VAR

PROGRAM Prgrm
VAR_GLOBAL

FunBlk : FBlk;
VarGlob : INT;
AT %IW4 : WORD;

END_VAR
... (*instructions *)
END_FUNCTION_BLOCK

... (*instructions *)
END_FUNCTION

... (* instructions *)
END_PROGRAM

(* 1. Invocations in IL *)
LD t#20:12
Fctn %IW4, VarGlob (* function call *)
CAL FunBlk (Par1 := t#20:12, Par2 := %IW4, Par3 := VarGlob) (* FB call *)

(* 2. Invocations in ST *)
Fctn (t#20:12, %IW4, VarGlob) (* function call *)
Fctn (Par1 := t#20:12, Par2 := %IW4, Par3 := VarGlob); (* function call *)
FunBlk (Par1 := t#20:12, Par2 := %IW4, Par3 := VarGlob); (* FB call *)

Example 2.21. Equivalent function and function block calls with and without explicit
formal parameters in the textual languages IL and ST. In both cases the invocation (calling)
is done in the program Prgrm.

In IL the first actual parameter is loaded as the current result (CR) before the
invocation instruction (CAL) is given, as can be seen from the call of function Fctn
in Example 2.21. When calling the function the other two parameters are specified
separated by commas, the names of these formal parameters may not be included.

The two equivalent calls in ST can be written with or without the names of
formal parameters. The input parameters are enclosed in brackets each time.

In the call of FB instance FunBlk in this example all three formal parameters are
specified in full in both IL and ST.

The usage of formal and actual parameters in graphical representation is shown in
Example 3.19.

2.8.5 Calls with input parameters omitted or in a different order

Functions and function blocks can be called even if the input parameter list is
incomplete or not every parameter is assigned a value.

If input parameters are omitted, the names of the formal parameters that are
used must be specified explicitly. This ensures that the programming system can
assign the actual parameters to the correct formal parameters.

60 2 Building Blocks of IEC 61131-3

If the order of the parameters in a FUN/FB call is to be changed, it is also
necessary to specify the formal parameter names explicitly. These situations are
shown, as an example in IL, in Example 2.22.

(* 1. complete FB call *)
CAL FunBlk (Par1 := t#20:12, Par2 := %IW4, Par3 := VarGlob);

(* 2. complete FB call with parameters in a changed order *)
CAL FunBlk (Par2 := %IW4, Par1 := t#20:12, Par3 := VarGlob);

(* 3. incomplete FB call *)
CAL FunBlk (Par2 := %IW4);

(* 4. incomplete FB call with parameters in a changed order *)
CAL FunBlk (Par3 := VarGlob, Par1 := t#20:12);

Example 2.22. Examples of the FB call from Example 2.21 with parameters omitted and in
a different order, written in IL

This means that either all formal parameters must be specified, and the parameter
order is not relevant, or no formal parameters are used and the entries must appear
in the correct order. The formal parameters always have to be specified when
calling FBs, for functions this is, however, language-dependent (see Table 2.7).

Assignments to input variables can be omitted if the input variables are
“initialised” in the declaration part of the POU. Instead of the actual parameter that
is missing the initial value will then be used. If there is no user-defined initial value
the default value for the standard data types of IEC 61131-3 will be used. This
ensures that input variables always have values.

For FBs initialisation is performed only for the first call of an instance. After this
the values from the last call still exist, because instance data (including input
variables) is retained.

2.8.6 FB instances as actual FB parameters

This section describes the use of FB instance names as well as their inputs and
outputs as actual parameters in the calling of other function blocks.

Using Example 2.23 this section explains what facilities IEC 61131-3 offers for
indirect calling or indirect parameter assignment of FB instances.

2.8 Calling Functions and Function Blocks 61

FUNCTION_BLOCK MainFB
VAR_IN_OUT

Time1 : TON; (* 1st instance of TON *)
Time2 : TON; (* 2nd instance of TON *)

InstFB : SubFB; (* Instance of SubFB *)

END_VAR
... (* FB instance call *)
CAL InstFB (Timer := Time1, (* FB instance name *)

TimeQ :=Time2.Q, (* FB output *)
TimeIN :=TRUE) (* FB input *)

...
LD InstFB.Time3.Q (* Loading the FB output *)
...
CAL Time1 (* Invocation of on-delay timer*)

Example 2.23. Using the FB instance name Time1 and the output parameter Time2.Q as
actual parameters of another FB. The timers Time1 and Time2 are instances of the
standard FB TON (on-delay, see Chapter 5). SubFB will be declared in Example 2.24.

Instance names and the inputs and outputs of instances can be used as the actual
parameters for input or input/output variables. Table 2.8 shows the cases where
this is allowed (in table: “yes”) and not allowed (“no”).

As actual parameter
for SubFB

Return value,
External variable

Instance Example VAR_INPUT VAR_IN_OUT
(pointer)

VAR_EXTERNAL
VAR_OUTPUT

Instance name Time1 yes a yes b yes c

-input Time2.IN - - -
-output Time2.Q yes no d -
a Instance may not be called within SubFB (indirect FB call not possible)
b Indirect FB call is possible, output of instance may not be changed within SubFB
c Direct FB call, output of instance may not be changed within MainFB
d The function (return) value of a function cannot be used either

Table 2.8. Possible cases for using or indirectly calling FB instances as actual parameters
of FBs. The “Example” column refers to Example 2.23. The last column shows that FB
instances may also be used as external variables or as return values. Time2.IN may not be
used for read access and cannot therefore be passed as a parameter.

62 2 Building Blocks of IEC 61131-3

As this summary shows, only certain combinations of function block instance
names and their inputs and outputs can be passed as actual parameters to function
blocks for each of the variable types.

VAR_INPUT: FB instances and their outputs cannot be called or altered within
SubFB if they are passed as VAR_INPUT. They may, however, be read.

VAR_IN_OUT: The output of an FB instance, whose pointer would be used here,
is not allowed as a parameter for this variable type. An erroneous manipulation of
this output can thus be prevented. Similarly, a pointer to the function value of a
function is not allowed as a parameter for a VAR_IN_OUT variable.

The instance passed as a parameter can then be called, thereby implementing an
indirect FB call.

The outputs of the FB instance that has been passed may not be written to. FB
instance inputs may, however, be freely accessed.

VAR_EXTERNAL, VAR_OUTPUT: FB instances are called directly, their
inputs and outputs may only be read by the calling POU.

Example of an indirect FB call.
Example 2.24 shows (together with Example 2.23) the use of some cases permitted
in Table 2.8 within function block SubFB.

2.8 Calling Functions and Function Blocks 63

FUNCTION_BLOCK SubFB
VAR_INPUT

TimeIN : BOOL; (* Boolean input variable *)
TimeQ : BOOL; (* Boolean input variable *)

END_VAR
VAR_IN_OUT

Timer : TON; (* pointer to instance Time1 of TON – input/output variable *)
END_VAR
VAR_OUTPUT

Time3 : TON; (* 3rd instance of TON *)
END_VAR
VAR

Start : BOOL := TRUE; (* local Boolean variable *)
END_VAR

...
(* Indirect call of Time1 setting/checking the actual parameter values using Timer *)
LD Start
ST Timer.IN (* starting of Timer Time1 *)
CAL Timer (* calling the on-delay timer Time 1 indirectly *)
LD Timer.Q (* checking the output of Time1 *)
...
(* Direct call of Time3; indirect access to Time2 *)
LD TimeIN (*indirect checking of the input of Time2 is not possible *)
ST Time3.IN (* starting the timer using Time3.IN *)
CAL Time3 (* calling the on-delay timer Time3 directly *)
LD Time3.Q (*checking the output using Time3.Q *)
...
LD TimeQ (*indirectly checking the output of Time 2 *)
...
END_FUNCTION_BLOCK

Example 2.24. Alternative ways of calling the on-delay FB Time1 from Example 2.23
indirectly and usage of its inputs and outputs

This example shows the indirect call of FB Time1, whose instance name was
passed to FB SubFB as an input/output variable in Example 2.23. The function
block SubFB is only assigned the FB instance name Time1 at the run time of
MainFB. In SubFB Time1 (as input variable Timer) is provided with the parameter
Timer.IN and then called.

As shown with Example 2.24, it is also possible to access the inputs and outputs
of an FB passed as an instance name. Here the instance inputs (Timer.IN) can be
read and written to, whereas the outputs (as Timer.Q) can only be read.

The FB instance Time3 in this example serves as a comparison between the
treatment of input parameters and of the return values of an FB as output variables.

64 2 Building Blocks of IEC 61131-3

FB instance names as actual parameters of functions.
Instance names (such as Time1) and components of an FB instance (such as
Time2.Q) can also be used as actual parameters for functions. Initially this appears
to be inconsistent with the requirement that functions have to produce the same
result when supplied with the same inputs and that they may not call FBs.

This is, however, not as contradictory as it seems: the FB instance passed as a
parameter is not called, but its input and output variables are treated like elements
of a normal data structure, see also Section 2.4.1.

Function values as actual parameters.
Functions and function values may also be used as actual parameters for functions
and function blocks. The input variables have the same data type as the function
and are assigned the function value when called.

IEC 61131-3 does not give any explicit instructions about this possibility, thus
making it implementation-dependent.

Initialisation of FB instances.
Instances of function blocks store the status of input, output and internal variables.
This was called “memory“ above. FB instances can also be initialised, as shown in
example 2.25.

VAR Instance_Ex :
FunBlk (Par3 := 55, Par1 := t#20:12);

END_VAR

Example 2.25. Example of FB call from example 2.21 with parameters omitted and in a
different order, written in IL

2.9 Summary of POU Features 65

2.9 Summary of POU Features

The following table summarises all essential POU features that have been
presented and discussed in this chapter.

Feature Function Function Block Program
Input parameter yes yes yes
Output parameter yes yes yes
Input/output parameter yes yes yes
Function value yes no no
Invocation of functions yes yes yes
Invocation of function blocks no yes yes
Invocation of programs no no no
Declaration of global variables no no yes
Access to external variables no yes yes
Declaration of directly represented
variables a

no no yes

Declaration of local variables yes yes yes
Declaration of FB instances no yes yes
Overloading b yes yes no

Extension c yes no no
Edge detection possible no yes yes
Usage of EN/ENO c yes yes no
Retention of local and output
variables

no yes yes

Indirect FB call no yes yes
Initialisation of FB instances no yes no
Usage of function values as input
parameters d

yes yes yes

Usage of FB instances as input
parameters

yes yes yes

Recursive invocation no no no
a for function blocks only with VAR_EXTERNAL
b for standard functions
c for standard functions and standard function blocks
d not in IL, otherwise: implementation-dependent

Table 2.9. An overview of the POU features summarising the important topics of this chap-
ter. The entries “yes” or “no” mean “permitted” and “not permitted” for the corresponding
POU type respectively.

