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Mathematical Preliminaries

This chapter lays the mathematical foundation for the study of optimization that
occupies the rest of this book. It focuses on three main topics: the topological structure
of Euclidean spaces, continuous and differentiable functions on Euclidean spaces and
their properties, and matrices and quadratic forms. Readers familiar with real analysis
at the level of Rudin (1976) or Bartle (1964), and with matrix algebra at the level of
Munkres (1964) or Johnston (1984, Chapter 4), will find this chapter useful primarily
as a refresher; for others, a systematic knowledge of its contents should significantly
enhance understanding of the material to follow.

Since this is not a book in introductory analysis or linear algebra, the presentation
in this chapter cannot be as comprehensive or as leisurely as one might desire. The
results stated here have been chosen with an eye to their usefulness towards the book’s
main purpose, which is to develop a theory of optimization in Euclidean spaces. The
selective presentation of proofs in this chapter reveals a similar bias. Proofs whose
formal structure bears some resemblance to those encountered in the main body of
the text are spelt out in detail; others are omitted altogether, and the reader is given
the choice of either accepting the concerned results on faith or consulting the more
primary sources listed alongside the result.

It would be inaccurate to say that this chapter does not presuppose any knowl-
edge on the part of the reader, but it is true that it does not presuppose much. Ap-
pendices A and B aim to fill in the gaps and make the book largely self-contained.
Appendix A reviews the basic rules of propositional logic; it is taken for granted
throughout that the reader is familiar with this material. An intuitive understanding
of the concept of an “irrational number,” and of the relationship between rational
and irrational numbers, suffices for this chapter and for the rest of this book. A
formal knowledge of the real line and its properties will, however, be an obvious
advantage, and readers who wish to acquaint themselves with this material may
consult Appendix B.
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2 Chapter 1 Mathematical Preliminaries

The discussion in this chapter takes place solely in the context of Euclidean spaces.
This is entirely adequate for our purposes, and avoids generality that we do not need.
However, Euclidean spaces are somewhat special in that many of their properties
(such as completeness, or the compactness of closed and bounded sets) do not carry
over to more general metric or topological spaces. Readers wishing to view the
topological structure of Euclidean spaces in a more abstract context can, at a first
pass, consult Appendix C, where the concepts of inner product, norm, metric, and
topology are defined on general vector spaces, and some of their properties are
reviewed.

1.1 Notation and Preliminary Definitions
1.1.1 Integers, Rationals, Reals, R"

The notation we adopt is largely standard. The set of positive integers is denoted by
N, and the set of all integers by Z:

N=1{1,2,3,..}
Z=1{..,-2-101,2..}

The set of rational numbers is denoted by Q:

Q = [x]x:?, p,qéZ,q#O}.

Finally, the set of all real numbers, both rational and irrational, is denoted by R. As
mentioned earlier, it is presumed that the reader has at least an intuitive understanding
of the real line and its properties. Readers lacking this knowledge should first review
Appendix B.

Given a real number z € R, its absolute value will be denoted |z|:

z ifz>0
lz] = .
—z ifz<O.

The Euclidean distance between two points x and y in R is defined as |x — y|, i.e.,
as the absolute value of their difference.

For any positive integer n € N, the n-fold Cartesian product of R will be denoted
R”. We will refer to R” as n-dimensional Euclidean space. When n = 1, we shall
continue writing R for R!.

A point in R” is a vector x = (x1,...,x,) where foreachi = 1,...,n,x;is a
real number. The number x; is called the i-th coordinate of the vector x.

We use 00 denote the real number O as well as the null vector (0, ...,0) € R”.
This notation is ambiguous, but the correct meaning will usually be clear from the
context.
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Fig. 1.1. Vector Addition and Scalar Multiplication in R?
Vector addition and scalar multiplication are defined in R” as follows: for x, y €
R" and @ € R,

X+y=E+y1,..., %+ yn)

ox = (@X1,...,0Xn).

Figure 1.1 provides a graphical interpretation of vector addition and scalar mutipli-

cation in R2.
Given any two n-vectors x = (x1,...,xp)and y = (y1, ..., ¥n), We write
x=yp ifx=y i=1,...,n
x>y ifx;>y, i=1,...,n
x>y, ifx>y and x # y.
x>y x>y, i=1,...,n.
Note that

e x > y does nor preclude the possibility that x = y, and

e forn > 1, the vectors x and y need not be comparable under any of the categories
above; for instance, the vectors x = (2,1) and y = (1, 2) in R? do not satisfy
x > y, but neither is it true that y > x.

The nonnegative and strictly positive orthants of R”, denoted R’ and R’ , re-
spectively, are defined as

F={xeR"|x=0}
and

ti={xeR" x>0}
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4 Chapter 1 Mathematical Preliminaries

1.1.2 Inner Product, Norm, Metric

This subsection describes three structures on the space R”: the Euclidean inner
product of two vectors x and y in R”, the Euclidean norm of a vector x in R”, and
the Euclidean metric measuring the distance between two points x and y in R”. Each
of these generalizes a familiar concept from R. Namely, when n = 1, and x and y
are just real numbers, the Euclidean inner product of x and y is just the product xy
of the numbers x and y; the Euclidean norm of x is simply the absolute value |x| of
x; and the Euclidean distance between x and y is the absolute value |x — y| of their
difference.

Given x, y € R”, the Euclidean inner product of the vectors x and y, denoted
x - y, is defined as:

n
X-y=) Xiyi.
i=1
We shall henceforth refer to the Euclidean inner product simply as the inner product.

Theorem 1.1 The inner product has the following properties foranyvectorsx, y, z €
R" and scalars a, b € R:

1. Symmetry:x-y=y x.
2. Bilinearity: (ax + by) -z=ax-z+by-zandx - (ay+bz) =x-ay+x - bz
3. Positivity: x - x > 0, with equality holding if and only if x = 0.

Proof Symmetry and bilinearity are easy to verify from the definition of the inner
product. To check that positivity holds, note that the square of a real number is always
nonnegative, and can be zero if and only if the number is itself zero. It follows that
as the sum of squared real numbers, x - x = Y1, xi2 is always nonnegative, and is
zero if and only if x; = O for each i, i.e., if and only if x = 0. O

The inner product also satisfies a very useful condition called the Cauchy—Schwartz
inequality:

Theorem 1.2 (Cauchy-Schwartz Inequality) For any x, y € R" we have

Xyl < -0V 2
Proof For notational ease,let X =x -x,Y = y- y,and Z = x - y. Then, the result
will be proved if we show that XY > Z2, since the required inequality will follow
simply by taking square roots on both sides.

If x =0, then Z = X = 0, and the inequality holds trivially. Suppose, therefore,
that x # 0. Note that by the positivity property of the inner product, we must then
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1.1 Notation and Definitions 5

have X > 0. The positivity property also implies that for any scalar a € R, we have

0<(ax+y)-(ax+y)
=a’x - x+2ax-y+y-y
=a’X+2aZ+7.

In particular, this inequality must hold for a = —Z/ X. When this value of a is used
in the equation above, we obtain

Z\? z z?
—) X=-2{=)Z+Y=—-|— Y >0,
(X) (X) * (X) =
orY > Z2/ X. Since X > 0, this in turn implies XY > Z2, as required. a

The Euclidean norm (henceforth, simply the norm) of a vector x € R", denoted

lx|l, is defined as
n 172
el = (zx,?) |
i=1

The norm is related to the inner product through the identity
Ikl = - x)'/?
for all x € R”; in particular, the Cauchy—Schwartz inequality may be written as
lx -yl < llx(llixll.
Our next result, which describes some useful properties of the norm, uses this obser-

vation.

Theorem 1.3 The norm satisfies the following properties at all x, y € R", and
aelR:

1. Positivity: ||x|| = 0, with equality if and only if x = 0.
2. Homogeneity: |lax|| = |a| - |ix]l.
3. Triangle Inequality: ||x + y|| < |lx|| + ¥l

Proof The positivity property of the norm follows from the positivity property of
the inner product, and the fact that [|x|| = (x - x)12, Homogeneity obtains since

n 1/2 n 1/2
2.2 2 2
lax|| = (Za x,-) = (a Zx,-) = la|l|x]l.
i=1 i=1
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6 Chapter 1 Mathematical Preliminaries

The triangle inequality is a little trickier; we will need the Cauchy—Schwartz
inequality to establish it. Observe that for any x and y in R”?, we have
b+ yI2 = (e +3) - @+ ) = Ixl® +2x -y + IyI%

By the Cauchy—-Schwartz inequality, x - y < ||x ||| »||. Substituting this in the previous

equation, we obtain

I + 12 < el + 20yl + Iyl = el + iyl

The proof is completed by taking square roots on both sides. m|

The Euclidean distance d(x, y) between two vectors x and y in R” is given by

n 1/2
d(x, y) = (Z(xi - yi>2> :
i=1

The distance function d is called a metric, and is related to the norm || - || through
the identity

d(x,y) = llx =yl
forall x, y € R".

Theorem 1.4 The metric d satisfies the following properties atall x, y, z € R" :
1. Positivity: d(x, y) = O with equality if and only if x = y.

2. Symmetry: d(x, y) =d(y, x).

3. Triangle Inequality: d(x,z) <d(x, y) +d(y,z) forall x, y, z € R”.

Proof The positivity property of the metric follows from the positivity property of
the norm, and the observation that d(x, y) = ||x — y||. Symmetry is immediate from
the definition. The inequality d(x, z) < d(x, y) + d(», z) is the same as

e —zll < llx =yl + Ly = zll.

This is just the triangle inequality for norms, which we have already established. O

The concepts of inner product, norm, and metric can be defined on any abstract
vector space, and not just R”. In fact, the properties we have listed in Theorems 1.1,
1.3, and 1.4 are, in abstract vector spaces, defining characteristics of the respective
concepts. Thus, for instance, an inner product on a vector space is defined to be any
operator on that space that satisfies the three properties of symmetry, bilinearity, and
positivity; while a norm on that space is defined to be any operator that meets the
conditions of positivity, homogeneity, and the triangle inequality. For more on this,
see Appendix C.
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1.2 Sets and Sequences in R"

1.2.1 Sequences and Limits

A sequence in R” is the specification of a point x; € R" for each integer £k €
{1, 2, ...}. The sequence is usually written as

X1, X2, X35 .00

or, more compactly, simply as {x;}. Occasionally, where notational clarity will be
enhanced by this change, we will use superscripts instead of subscripts, and denote
the sequence by {xk}.

A sequence of points {x;} in R”" is said to converge to a limit x (written x; — x)if
the distance d (x;, x) between x; and x tends to zero as & goes to infinity, i.e., if for all
€ > 0, there exists an integer k(¢) such that for all £ > k(e), we have d(x, x) < €.
A sequence {x;} which converges to a limit x is called a convergent sequence.

For example, the sequence {x;} in R defined by x4 = 1/k for all & is a convergent
sequence, with limit x = 0. To see this, let any € > 0 be given. Let k(¢) be any
integersuchthatk(e) > 1/e.Then, forallk > k(¢),wehaved(xy,0) =d(1/k,0) =
1/k < 1/k(e) < €, so indeed, x; — 0.

Theorem 1.5 A sequence can have at most one limit. That is, if {x;} is a sequence
in R" converging to a point x € R", it cannot also converge to a point y € R” for

y#x.

Proof This follows from a simple application of the triangle inequality. If x; — x
and y # x, then

d(Xk, }’) _>_ d(xa y) - d(Xk,JC).

Since d(x, y) > 0 and d(xg, x) — 0, this inequality shows that d(x, y) cannot go
to zero as k goes to infinity, so xx — y is impossible. ) O

A sequence {x;} in R” is called a bounded sequence if there exists a real number
M such that ||x; || < M for all k. A sequence {x;} which is not bounded is said to
be unbounded, that is, {x;} is an unbounded sequence if for any M € R, there exists
k(M) such that |xg )| > M.

Theorem 1.6 Every convergent sequence in R" is bounded.

Proof Suppose x; — x. Let € = ! in the definition of convergence. Then, there
exists k(1) such that for all £ > k(1), d(xx, x) < 1. Since d(xg, x) = ||xx — x]|, an
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8 Chapter 1 Mathematical Preliminaries

application of the triangle inequality yields for any & > k(1)

lxell =[Gk — %) + x|
< llxe — xlf + fixll
< 14 |Ix|.

Now define M to be the maximum of the finite set of numbers

{lxtlly - oy xeay=tll, T+ (x|t}

Then, M > [|xt|| for all £, completing the proof. a

While Theorem 1.5 established that a sequence can have at most one limit, The-
orem 1.6 implies that a sequence may have no limit at all. Indeed, because every
convergent sequence must be bounded, it follows that if {x;} is an unbounded se-
quence, then {x;} cannot converge. Thus, for instance, the sequence {x;} in R defined
by x; = k for all k is a non-convergent sequence.!

However, unboundedness is not the only reason a sequence may fail to converge.
Consider the following example: let {x;} in R be given by

1
' k=1,3,5,...
k

Xk =

1
1——, k=2,4,6,...
k

This sequence is bounded since we have |x;| < 1 for all £. However, it does not
possess a limit. The reason here is that the odd terms of the sequence are converging
to the point 0, while the even terms are converging to the point 1. Since a sequence
can have only one limit, this sequence does not converge.

Our next result shows that convergence of a sequence {x*} in R” is equivalent
to convergence in each coordinate. This gives us an alternative way to establish
convergence in R”. We use superscripts to denote the sequence in this result to avoid
confusion between the k-th element x; of the sequence, and the i-th coordinate x; of
a vector x.

Theorem 1.7 A sequence {x*} in R" converges to a limit x if and only if x{‘ — X;
foreachi e {1,...,n}, where x* = (x{‘,...,xff) andx = (X1, ..., Xp)-

!'This may also be shown directly: for any fixed candidate limit x the distance d (xx, x) = |x —x¢| = Ix — |
becomes unbounded as & goes to infinity. It follows that no x € R can be a limit of this sequence, and
therefore that it does not possess a limit.
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1.2 Sets and Sequences 9

Proof We will use the fact that the Euclidean distance between two points x =
(*1,...,xp)and y = (31, ..., yn) in R" can be written as

n 1/2
d(x,y) = (lei —in2> ,
i=1

where |x; — y;| is the Euclidean distance between x; and y; in R.
First, suppose that x* — x. We are to show that x{‘ — x; foreachi,i.e., that, given
any i and € > 0, there exists k;(¢) such that for k£ > &;(e), we have |x{‘ —xi| < e.
So let € > 0 be given. By definition of x* — x, we know that there exists k(¢)
such that d(x*, x) < € forall k > k(e). Therefore, for k > k(¢) and any i, we obtain:

. 1/2
12
k k 2 k 2 k
ek =zl = (xf =) T < [ D F-m?) = dehn < e
j=1

Setting k; (¢) = k(e) for each i, the proof that x{‘ — x; for each i is complete.
Now, suppose that {x!c } converges to x; for each i. Let € > O be given. We will
show that there is k(¢) such that d (xk ,x) < € for all k£ > k(¢), which will establish
that x* — x.
Define n = €/+/n. For each i, there exists k;(n) such that for & > k;(n), we
have le‘ — x;| < n. Define k(€) to be the maximum of the finite set of numbers
k1(m), ..., kn(n). Then, for k > k(€), we have lx{‘ —x;| < nforalli, so

n 172 nor e 72\ /2
d(x",x>=< Ixf —xilz) <( [—]) =,
X 2\

which completes the proof. O
Theorem 1.7 makes it easy to prove the following useful result:

Theorem 1.8 Ler {x*} be a sequence in R" converging to a limit x. Suppose that
Jor every k, we have a < xk < b, wherea = (ay,...,as) andb = (b, ..., by) are
some fixed vectors in R". Then, it is also the case thata < x < b.

Proof The theorem will be proved if we show that a; < x; < b; foreach i €
{1, ..., n}. Suppose that the result were false, so for some i, we had x; < a; (say).
Since x* — x, it is the case by Theorem 1.7 that xj’.c — x;foreach j € {1,...,n};
in particular, x{‘ — x;. But x{‘ — x; combined with x; < a; implies that for all large
k, we must have xf < a;. This contradicts the hypothesis that g; < xl{‘ < b; for all
k. A similar argument establishes that x; > b; also leads to a contradiction. Thus,
a; < x; < b;, and the proof is complete. ' O
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10 Chapter 1 Mathematical Preliminaries

1.2.2 Subsequences and Limit Points

Let a sequence {x;} in R” be given. Let m be any rule that assigns to eachk € N a
value m (k) € N. Suppose further that m is increasing, i.e., for each k € N, we have
m(k) < m(k + 1). Given {x;}, we can now define a new sequence {x,; ()}, whose
k-th element is the m (k)-th element of the sequence {x}. This new sequence is called
a subsequence of {x;}. Put differently, a subsequence of a sequence is any infinite
subset of the original sequence that preserves the ordering of terms.

Even if a sequence {xi} is not convergent, it may contain subsequences that con-
verge. For instance, the sequence0, 1, 0, 1, 0, 1, . . . has nolimit, but the subsequences
0,0,0,...and 1, 1, 1,...which are obtained from the original sequence by selecting
the odd and even elements, respectively, are both convergent.

If a sequence contains a convergent subsequence, the limit of the convergent
subsequence is called a limit point of the original sequence. Thus, the sequence
0,1,0,1,0,1, ... has two limit points 0 and 1. The following result is simply a
restatement of the definition of a limit point:

Theorem 1.9 A point x is a limit point of the sequence {x;} if and only if for any
€ > 0, there are infinitely many indices m for which d(x, x) < €.

Proof If x is a limit point of {x;} then there must be a subsequence {x,;)} that
converges to x. By definition of convergence, it is the case that for any € > 0, all
but finitely many elements of the sequence {x,, ()} must be within € of x. Therefore,
infinitely many elements of the sequence {x;} must also be within € of x.
Conversely, suppose that for every € > 0, there are infinitely many m such that
d(xm,x) < €. Define a subsequence {xu )} as follows: let m(1) be any m for
which d(xp, x) < 1. Now for &k = 2,3,... define successively m (k) to be any
m that satisfies (a) d(x,x,) < 1/k, and (b) m > m(k — 1). This construction
is feasible, since for each %, there are infinitely many m satisfying d(xp,,x) <
1/ k. Moreover, the sequence {x, )} evidently converges to x, so x is a limit point
of {xz}. 0o

If a sequence {x;} is convergent (say, to a limit x), then it is apparent that every
subsequence of {x;} must converge to x. It is less obvious, but also true, that if every
subsequence {x, )} of a given sequence {x;} converges to the limit x, then {x;}
itself converges to x. We do not offer a proof of this fact here, since it may be easily
derived as a consequence of other considerations. See Corollary 1.19 below.

In general, a sequence {x;} may have any number of limit points. For instance,
every positive integer arises as a limit point of the sequence

1,1,2,1,2,3,1,2,3,4, ...
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