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1 
Rings and Subrings 

The Notion of a Ring 
In 1888 — when he was only 26 years old — David Hilbert stunned 
the mathematical world by solving the main outstanding problem in 
what was then called invariant theory. The question that Hilbert settled 
had become known as Gordan’s Problem, for it was Paul Gordan who, 20 
years earlier, had shown that binary forms have a finite basis. Gordan’s  
proof was long and laboriously computational; there seemed little hope 
of extending it to ternary forms, and even less of going beyond. We 
will not take the time here to explore any of the details of Gordan’s 
problem or even the nature of invariant theory (and you shouldn’t be at 
all concerned if you don’t have the foggiest idea what binary or ternary 
forms are or what a basis is), but Hilbert — in a single brilliant stroke — 
proved that there is in fact a finite basis for all invariants, no matter how 
high the degree. 

The structure of Hilbert’s proof is really quite simple and is worth 
looking at (againwewill notworry at all about most of the details). First, 
Hilbert showed that if a ring R has a certain property P , then the ring of 
polynomials in a single variable x with coefficients from the ring R also 
has that same property P . (Today we would say that P is the property 
that any ideal is finitely generated, but that is getting well ahead of our 
story.) We will use the convenient notation R[x] to represent this ring 
of polynomials in x with coefficients from R, and so we can summarize 
Hilbert’s first step as 

if a ring R has property P , then so does the ring R[x]. 

Next, Hilbert wanted to show that the ring of polynomials in two 
variables x and y with coefficients from the ring R also has property P . 
We represent this ring of polynomials in two variables by R[x, y]. These 
polynomials are just like ordinary polynomials we are used to such as 
x2 + 4 and 2y2 − y + 3, except that now we can have the two variables 
x and y mixed together in a single polynomial. An example of such a 
polynomial is 

3x2 + 4xy + 2y2 + 7x − 5y + 12, 
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where in this case the coefficients are all integers. Hilbert saw that this 
ring of polynomials R[x, y] in  two variables x and y with coefficients 
from the ring R can be thought of as the ring of polynomials in a 
single variable y with coefficients from the ring of polynomials in x. For  
example, we canwrite the above polynomial in twoways, depending on 
how we choose to group the terms: 

3x2 + 4xy + 2y2 + 7x − 5y + 12 = 2y2 + (4x − 5)y + (3x2 + 7x + 12). 

On the left the polynomial is written as a polynomial in the ring R[x, y], 
whereas on the right it iswritten as a polynomial in one variable y where 
the coefficients are themselves polynomials in x. Our notation for this 
latter ring is R[x] [y] — or more simply  R[x][y] — emphasizing the fact 
that the coefficients are now polynomials in the ring R[x]. 

Using this simple idea, Hilbert concluded that the ring of polynomi
als R[x, y] also has property P . His argument went like this: since the 
ring R has property P , so does the ring R[x]; but then since the ring 
R[x] has property P , so does the ring R[x][y]; and, as we have just seen, 
this latter ring is really the same as the ring R[x, y]. 

In this way, by adding one variable at a time, Hilbert showed that the 
polynomial ring in any finite number of variables has property P . For  
example, we could now conclude that the ring R[x, y, z] has property P 
since this ring is the same as the ring R[x, y][z] and we have just argued 
that R[x, y] has property P . The key to Hilbert’s argument, then, is to 
verify his very first step — namely, that if a ring R has property P , then  
so does the polynomial ring with coefficients from R. 

NowHilbert did this not by explicitly constructing a basis (as Gordan 
had done for the binary case), but rather — and this is the brilliant 
part of his proof — by showing that if there were no finite basis, then 
a contradiction arises. Therefore, there must be a finite basis after all! 
Nowadays, we are  very comfortable with such a  proof by contradiction, 
but Hilbert had used this technique in a new way: he had proved the 
existence of something without actually constructing it. This existence 
proof did not meet with universal favor in the mathematical climate 
of his day. In fact, Gordan — hardly an impartial observer — chose 
this time to issue one of the most memorable lines in all of mathe
matics: “Das is nicht Mathematik. Das ist Theologie.” It was not until 
four years later, when Hilbert was able to use the existence of a finite 
basis to show how such a basis could actually be constructed, that 
Gordan conceded: “I have convinced myself that theology also has its 
advantages.” 

At the heart of Hilbert’s proof — and the attendant controversy — 
lies the abstract notion of a ring, though it would be several years until 
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Hilbert would actually provide us with the term ring (or Zahlring — 
literally, number ring) which we now use today. The idea is that, for 
instance, although polynomials certainly differ in many obvious ways 
from integers, there are ways in which polynomials and integers are 
similar: for example, you can add or multiply integers and you can also 
add or multiply polynomials. It is the differences between integers and 
polynomials that most of us notice first, but Hilbert focused instead 
on their similarities. So, the idea behind the notion of a ring is that 
integers, rationals, reals, complex numbers, polynomials with complex 
coefficients, and continuous functions, as different as all of these sys
temsmay appear to us, all share certain characteristics. It is these shared 
underlying characteristics which provide the basis for the following 
unifying axioms and our definition of a ring, for it is the abstract notion 
of a ring that so elegantly captures the essence of what these familiar 
mathematical systems share in their behavior. 

The Definition of a Ring 
Before we actually define a ring, let us talk a bit about what a ring 
is. Quite simply it is a set of elements (typically a set of numbers of 
some kind, or perhaps a set consisting of a particular type of function) 
together with two operations on those elements called addition and 
multiplication. It is very important to think of a ring as a single object 
consisting of both the underlying set and the two operations, and not 
just as a set by itself. Furthermore, these operations will need to behave 
the way we expect them to behave. For example, if a and b are two 
elements in a ring, we expect a + b and b+ a to be equal, or we expect 
a + 0 to equal  a, or we expect a(a + b) to equal  a2 + ab. We have these  
expectations no matter whether a and b are numbers, or polynomials, 
or matrices. 

Let us look at some specific examples of rings. In each case, note that 
we present both a set and two operations on that set in order to describe 
the ring. 

Example 1 
Certainly the single most fundamental example of a ring is the ring 
based on the numbers . . . ,−3,−2,−1,0,1,2,3, . . .  . We will call this 
ring the ring of integers or, more simply, the integers, and we will denote 
this ring by Z. This letter for the integers may seem peculiar to you at 
first, but it comes from Zahl, the German word for number, and serves 
as a nice reminder to us of the history of the notion of a ring. The 
ring Z then consists of the set of integers together with the ordinary 
operations of addition and multiplication. 
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Example 2 
Themost natural ring to consider next is the ring based on the numbers 
that are fractions of integers, such as 1 and 22 . Thus, we will consider3 7 
the rational numbers or, more simply, the rationals as a ring with the  
ordinary operations of addition and multiplication of fractions. This 
ring is denoted byQ. (By the way, why do you suppose mathematicians 
long ago decided on this particular letter to represent the rationals?) 

Example 3 
Similarly the real numbers or, more simply, the reals together with the 
ordinary operations of addition and multiplication form a ring which 
we denote byR. 

Example 4 
The complex numbers with their ordinary operations of addition and 
multiplication form a ring which we denote by C. A complex number 
is a number of the form a + b i, where  a and b are real numbers and 
i2 = −1. The two operations of addition and multiplication in this ring 
are completely natural — for example, 

(1 + 7 i) + (2 − 3 i) = 3 + 4 i 

and 

(1 + 7 i) · (2 − 3 i) = 2 − 21 i2 − 3 i + 14 i = 23 + 11 i, 

since i2 = −1. 
Somewhat more formally, the two operations of addition and mul

tiplication of complex numbers can be defined as follows, where 
a, b, c, d ∈ R: 

(a + b i) + (c + d i) = (a + c) + (b+ d) i 

and 

(a + b i) · (c + d i) = (ac − bd) + (ad + bc) i. 

Example 5 
The set of polynomials with integer coefficients together with the ordinary 
operations of addition and multiplication of polynomials — that is, you 
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add and multiply polynomials just as you did in high school — also 
form a ring. We denote this ring by Z[x]. So, for example, 

(1 + x + x2) + (−2 + 3x − x3) = −1 + 4x + x2 − x3 

and 

(1 + x + x2) · (−2 + 3x − x3) = −2 + x + x2 + 2x3 − x4 − x5 . 

Example 6 
The set of 2 by 2 matrices whose entries are real numbers together with 
the ordinary operations of matrix addition and multiplication form a 
ring. We denote this ring by  M2. Formally, the two operations for M2 

are defined as follows, where a, b, c, d, e, f, g, h ∈ R: 

a b  e f a + e b  + f 
+ = 

c d g h  c + g d  + h 

and 

a b e f ae + bg af + bh 
· = . 

c d g h  ce + dg c f + dh 

This might be a good time to point out that often we are quite casual 
about making distinctions in either notation or language between oper
ations on sets that are in fact not at all the same operation. For instance, 
in Example 6 we use the same symbol, a plus sign (+), to denote both 
the operation of matrix addition and the operation of addition of 
real numbers; moreover, we normally refer to each of these operations 
simply as “addition” as we do in this example and in Example 3. 

With these six examples of rings well in hand, we are now ready for 
the formal definition of a ring. Our definition will lay down the list of 
axioms that any set with two operations must satisfy in order to attain 
the status of being called a ring. As you read this list of axioms, you 
might want to pause in turn and think about what each axiom says in 
the context of each of our six examples. 

Definition 1.1. A ring is a set R together with two operations on R (addition 
and multiplication) such that: 

1. addition is associative — that is, for all a, b, c ∈ R 

a + (b+ c) = (a + b) + c; 
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2. addition is commutative — that is, for all a, b ∈ R 

a + b = b+ a; 

3. R has a zero element — that is, there is an element 0 in R such that, 
for all a ∈ R 

a + 0 = a; 

4. for every a ∈ R, there is an element −a in R such that 

a + (−a) = 0; 

5. multiplication is associative — that is, for all a, b, c ∈ R 

a(bc) = (ab)c; 

6. multiplication is distributive over addition — that is, for all 
a, b, c ∈ R 

(a + b)c = ac + bc and a(b+ c) = ab + ac. 

The previous six axioms define a ring, but we will want to concern 
ourselves in this book only with rings that satisfy two additional 
axioms. Thus, a commutative ringwith identity is a ring R 
such that: 

7. multiplication is commutative — that is, for all a, b ∈ R 

ab = ba; 

8. R has a multiplicative identity — that is, there is an element 1 in R 
such that for all a ∈ R 

a · 1 = a. 

It will be extremely important to remember that throughout the rest 
of this book the word ring will always mean commutative ring with an 
identity element. This should cause no confusion, but should always be 
kept firmly in mind, since the theory of noncommutative rings has 
quite a different character from commutative ring theory. Note that 
we have already seen one example of a noncommutative ring, the ring 
of 2 by 2 matrices, M2, defined in Example 6, and that the set of even 
integers, 2Z, forms a commutative ring without an identity element. 
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Verifying that a given set together with two operations of addition 
and multiplication is in fact a ring — that is, that it satisfies all eight 
axioms— can be a long and tedious process (see Problem 1.7). Note also 
that the zero element mentioned in Axiom (3) can take different forms 
depending on the ring in question. For the rings Z, Q, and  R the zero 
element is just the number 0. For the ring C it is the complex number 
0 + 0 i which we also usually denotemore simply by 0. Similarly, for the 
ring of polynomials, Z[x], the zero element is the constant polynomial 

0 00. For M2 it is the zero matrix 0 0  . You should make sure that, 

for each of these examples of rings, you can identify the additive 
inverse mentioned in Axiom (4), as well as the multiplicative identity 
of Axiom (8). 

Given that the eight ring axioms stated above were motivated by our 
desire to have rings behave algebraically just as we expect, it is not at all 
surprising that the following three familiar rules of algebra still hold in 
an arbitrary ring R: 

1. 0a = 0 , for all  a ∈ R ; 
2. (−a)b = −(ab) , for all  a, b ∈ R ; 
3. a(b− c) = ab − ac , for all  a, b, c ∈ R . 

The verification of these rules from the axioms is left to you 
(see Problem 1.2). 

The Definition of a Subring 
It is frequently the case that we wish to focus our attention on a 
particular subset of a ring. For example, within the ring R of all real 
numbers we may wish to deal with the integers. The point here is that 
the integers themselves form a ring, and this ring shares with the larger 
ring R the operations of addition and multiplication, as well as having 
the same identity. In such a situation, we say that the subset in question 
is a subring of the larger ring. 

As mentioned above, it is would be tedious always to have to check 
in complete detail that a given subset of a ring is itself a ring in order to 
know it is a subring. Fortunately, in the context we are discussing, there 
is a shortcut which we will adopt as our definition of a subring. Then 
I will leave to you in Problem 1.13 the one-time-only details of showing 
that this shortcut is in fact equivalent to the notion of a subring given 
in the preceding paragraph. 

Using this shortcut, then, in order to verify that a given subset of a 
ring is indeed a subring, all that needs to be done is to check that the 
subset contains the identity of the larger ring, that the subset is closed 
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under addition and multiplication — that is, if you add or multiply two 
elements of the subset then you get an element of the subset — and, 
finally, that the subset contains additive inverses — that is, for each 
element in the subset, its additive inverse is also in the subset. 

Definition 1.2. A subset S of a ring R is a subring of R if S is closed under 
the addition and multiplication operations of R, contains additive inverses, 
and contains the (multiplicative) identity of R. 
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Problems 

1.1	 Show that in a ring the zero element, the multiplicative identity, and 
additive inverses are each unique — that is, there is only one element 
that behaves like 0, only one element that behaves like 1, and for each 
element a only one element that behaves like −a. 

1.2	 Use the eight ring axioms to prove the three familiar rules of algebra 
(1)–(3) listed on page 7. (Of course, b− c is simply a convenient 
shorthand for b+ (−c).) 

1.3	 Let R be a ring, and let a, b ∈ R. Prove that (−a)(−b) = ab. 

1.4	 In this problemwe see that the ordinary rules for exponents we are 
familiar with still work perfectly in a ring. Let R be a ring and let a ∈ R. 
We can inductively define powers of a as follows: 

a0 = 1 and  an = an−1a for n > 0 . 

Use induction on n (fixing mas necessary) to prove that: 

(i) (ab)n = anbn ; (ii) aman = am+n ; (iii) (am)n = amn , 

for any non-negative integersmand n. 
Note that we have not defined a−1 since in an arbitrary ring a given  

element a may or may not have a multiplicative inverse. For example, 
the element 2 does not have a multiplicative inverse in the ring Z. 
Therefore, the symbol a−1 should only be written when you are sure 
that the element a does in fact have amultiplicative inverse in the ring. 

1.5	 Let R be a ring such that 1 = 0, where 0 is the zero element and 1 is the 
multiplicative identity in the ring. Show that R consists of just a single 
element. (By the way, you should convince yourself that, conversely, 
the set R = {0} where the operations of addition and multiplication are 
defined by 0 + 0 = 0 and 0  · 0 = 0 is actually a ring by verifying all the 
axioms.) This rather trivial, yet not altogether uninteresting, example 
of a ring is called the zero ring. 

1.6	 We define the set Z × Z to be the set of all ordered pairs of integers — 
that is, Z × Z = { (a, b) | a, b ∈ Z }. Show how tomake  Z × Z into a ring 
by suitably defining the operations of addition and multiplication. 
What is the zero element of this ring? What is the multiplicative 
identity? 
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1.7	 Youmay want to skip this exercise. It is long and tedious, but you 
should probably do it anyway, just so that you know you can go 
through the details of verifying the ring axioms when necessary. 
Assuming that the set of real numbers R is a ring, show that the 
complex numbers form a ring with operations as defined in Example 4. 

1.8	 We quite naturally denote the set of even integers by 2Z. Is 2Z a 
subring of Z ? 

1.9	 Do the rationals form a subring of the reals? 

√ 
1.10	 Does the set of all numbers of the form a + b 3 where  a and b are 

rational numbers form a subring of the reals? 

1.11	 Do the reals form a subring of the complex numbers? 

1.12	 Does the set of all numbers of the form a + b i where a and b are 
integers form a subring of the complex numbers? 

1.13	 Let S be a subset of a ring R. Show that if S is a subring by the 
definition on page 7, then S is itself a ring. 




