Introduction to plasticity: experimental facts

1.1 Elastic and plastic behaviours

Although the underlying microscopic mechanisms are relatively complex, viewed on a macroscopic scale – as will be the case in this book – the plastic phenomenon can be quite simple. Plasticity, in particular, is characterized by the existence of a stress threshold, or plastic threshold, and the behaviour of the medium differs, depending upon whether the stress state is on the inside or right on this threshold. On the inside of the threshold, the medium is supposed to have a linear or nonlinear elastic behaviour. Typically, this elastic behaviour is characterized by a stress–strain response curve of the type sketched in Fig. 1.1 for a one-dimensional model. Loading from a natural stress-free state causes a reversible increase in the measure ε of strain. The unloading path in this diagram reproduces the loading path precisely in reverse, returning to the origin as the applied stress goes back to zero. In a more vivid way, it can be said that the material possesses the ‘memory’ of only one state, the natural free state. We remind the reader that elasticity derives from an energy density $W(\varepsilon)$ per unit volume. Here we consider only small strains ε. Cauchy’s stress tensor is obtained by

$$\sigma = \frac{\partial W}{\partial \varepsilon}, \quad W = W(\varepsilon).$$

(1.1)

In the linear anisotropic case W is a general homogeneous function of degree 2 of the components ε_{ij} of ε in a Cartesian reference frame,

$$W = \frac{1}{2} \varepsilon \cdot : E : \varepsilon = \frac{1}{2} \varepsilon_{il} E_{ijkl} \varepsilon_{kl},$$

(1.2)

and thus

$$\sigma = E : \varepsilon \quad \text{or} \quad \sigma_{ij} = E_{ijkl} \varepsilon_{kl},$$

(1.3)

where E_{ijkl} is a fourth-order tensor of elasticity coefficients. In the isotropic case, which is very often considered in engineering, there are only two independent elasticity coefficients, and eqn (1.3) takes on the special form
2

Introduction to plasticity: experimental facts

\[\sigma_{ij} = \lambda (\varepsilon_{kk}) \delta_{ij} + 2\mu \varepsilon_{ij}, \quad (1.4) \]

where \(\lambda \) and \(\mu \) are Lamé’s elasticity coefficients.

Nonlinear elasticity (curved part of the response in Fig. 1.1) may correspond to an energy \(W \) of order higher than 2 in the components of \(\varepsilon \). In general, however, the situation is more complex than that and the notion of Piola–Kirchhoff stress tensor must be introduced in the nonlinear, finite-displacement case (see Chapter 8). In the greater part of this book the elastic behaviour is described with sufficient accuracy by the simple equations (1.1)–(1.3).

Right on the plastic threshold, the mechanical behaviour of elastic–plastic materials is quite different from the elastic one. We must formulate new laws. For perfectly plastic media, the threshold is invariable; it is defined once and for all by the material’s data and is therefore independent of the ‘history’ of the material. For a not perfectly plastic material, a material with so-called hardening, this threshold may evolve with the loading. This will bring some complications in the modelling.

More accurately, we should say that we call ‘plastic’ the behaviour of a solid body acquiring permanent strains without cracking, that is, without loss of the material’s cohesion along certain surfaces. These permanent strains are produced starting from the plasticity threshold, or elasticity limit. This threshold is considered as a schematization.

An example of mechanical behaviour or response in simple traction for

Fig. 1.1. Reminder: elastic behaviour in a simple traction test
1.1 Elastic and plastic behaviours

Soft steel (with a low – below 0.2% – carbon content) is given in Fig. 1.2. The case of copper is also given for comparison purposes. In this figure, the plateau BC is called the apparent yield stress limit or threshold. It has been experimentally shown (experiments of P.W. Bridgman (1952) on the triaxial compression of nonporous solids and liquids) that the alteration in volume, and, consequently, the alteration of the mass per unit volume of a body, correspond to an elastic (reversible) strain, defined by an average pressure. So, in general, we leave out of consideration the insignificant alterations of the density caused by plastic strain while the form alteration is only due to the slip (or shear) strain. This means that, in a plastic regime, the only thing that enters into consideration is the deviatoric part of the strain (and, because of duality, also of the stress). We note (tr = trace)

\[e = \text{deviator of } \varepsilon, \quad e_{ij} = \varepsilon_{ij} - \frac{1}{3}(tr \varepsilon) \delta_{ij}, \quad tr e = 0, \]

(1.5)

and if \(\tau \) denotes a tangential stress we consider the schematization of Fig. 1.3. Clearly, an experimentalist would describe this schematic behaviour by a succession of three ‘regimes’:

- for \(\tau < \tau_1 \): \(\tau = G \gamma \): this is Hooke’s law in shear;
- for \(\gamma_2 < \gamma < \gamma_1 \): \(\tau = \tau_1 \): flow phase; the strain increases at fixed stress; it is said that the material flows plastically;
- for \(\gamma > \gamma_1 \): \(\tau = g(\gamma) \gamma \): hardening occurs; the variable quantity \(g(\gamma) \) is called the plasticity modulus, while \(G \) was the constant elastic modulus; it is an experimental fact that

\[0 \leq g(\gamma) \leq G \]

(1.6)

Materials that exhibit a plastic regime before failure are said to be ductile,

Fig. 1.2. Real elastoplastic behaviour, soft steel behaviour in simple traction

\[\sigma \text{ (MPa) = 10}^6 \text{ Pa = 10 bar) } \]

© Cambridge University Press
4

Introduction to plasticity: experimental facts

while materials that exhibit fracture while still in the elastic regime are called brittle materials. Obviously, the part AC in Fig. 1.3 corresponds to a nonlinear behaviour. In some cases the plateau AB is practically nonexistent. In some other cases the straight linear-elastic part is very short or not even apparent. This is illustrated by the broken-line curve OD in Fig. 1.3 and even more vividly in Fig. 1.4 which demonstrates the typical variation in shape of a tension-test curve of an artificially prepared two-phase iron–silver material in terms of the phase concentration. Pure iron exhibits a response of the type of soft steel in Fig. 1.2, while pure silver is typically of the hardening type, like copper. But this is not all, as plasticity is essentially characterized by unloading paths that differ from the loading one.

Hardening When we unload metallic test samples, the return curve ABC in Fig. 1.5 is practically rectilinear. If we load again, the load curve CDE differs from the curve ABC. So, after an initial extension, the metal behaves as if it had acquired better elastic properties and a higher elastic limit, while at the same time it had lost, it is true, a great part of the plastic strain. This is the phenomenon of work hardening. We may also say that the point at which we stop loading defines instantaneously an elastic limit. Further loading after unloading will define a new instantaneous elastic limit and so forth.

The Bauschinger effect Work hardening is, as a rule, oriented in such a way that, generally speaking, the material, following a plastic strain, acquires a

![Diagram](https://example.com/diagram.png)
Fig. 1.3. Schematic elastic–plastic behaviour
1.1 Elastic and plastic behaviours

strain anisotropy; one of the manifestations of this phenomenon is the Bauschinger effect: a previous plastic strain with a certain sign diminishes the material’s resistance with respect to the next plastic strain with the opposite sign. The plastic traction of a rod leads to a remarkable decrease of the yield limit of this rod when it is subsequently compressed again (Fig. 1.6). Here we have

\[|S_2| < |S_1| \]

with, in all cases,

Fig. 1.4. Tension-test curve of two-phase iron–silver for various phase concentrations (solid lines). Broken lines correspond to a three-phase model (after Brethou et al., 1991)
6 Introduction to plasticity: experimental facts

\[|S'_2| < |S'_1| + S_2 - S_1. \]

In the case of metals, \(S'_2 = -S'_1 \) and \(S'_2 > -S_2 \). The discovery of the effect goes back to Bauschinger (1886).

Rest and annealing With the passage of time, we can observe the partial disappearance of the hardening; this phenomenon is called the material’s rest and it becomes increasingly apparent as the temperature goes up. In

Fig. 1.5. Hardening

![Diagram of hardening](image)

Fig. 1.6. Bauschinger effect

![Diagram of Bauschinger effect](image)
1.2 Influence of the strain rate

In fact, the acquired hardening disappears under the effect of sufficiently high temperatures (we say that there is annealing of the material).

1.2 Influence of the strain rate

If the mechanical tests occur in ordinary time intervals and at room temperature, the mechanical properties of steel and of brittle materials in general (for example, heat-resistant materials) depend hardly at all upon the strain rate.

Fig. 1.7 illustrates the case for iron. This was well shown also in experiments by Manjoine (1944) on mild steel. Still, the velocity of the test is very important in the case of ductile materials (for example, lead, tin), in the case of lengthy tests on steel, copper and other metals under high-temperature conditions, and, finally, in the case of high strain rates. The effect of velocity depends to a great extent upon temperature, and, at rather low temperatures, it practically disappears. To conclude, in ordinary conditions, the plastic strain of brittle materials is practically independent of the thermal motion of atoms and of the strain rate. But, if velocity does play a part, then the behaviour is viscoplastic.

When there is neither viscosity, nor hardening, nor nonlinear elasticity, the scheme in Fig. 1.3 is reduced to perfect elastoplasticity (Fig. 1.8) whose rheological model is provided by a dry friction element. A word must be

![Fig. 1.7. Influence of strain rate (iron)](image-url)
Introduction to plasticity: experimental facts

said about these rheological models. Very often we shall have recourse to them as they exhibit strong pedagogical and heuristic values. Their use in rheology (the science of what flows) has become general since Zener (1948). The combination in series or parallel of a few standard elements (spring, dashpot, dry friction, and others) provides a picturesque illustration of complex behaviours and the direct addition of stretches or forces, depending on the case, rapidly yields simple constitutive equations. In the present case, a spring (Hooke = H) and a dry-friction element are set in series. The same force is transmitted through the two elements. We call it \(\sigma \). The total stretch is the sum of those in each element, i.e., \(\varepsilon = \varepsilon^* + \varepsilon^p \), where \(\varepsilon^* = \sigma/E \) if \(E \) is the spring constant. The dry-friction element slides only if a sufficiently intense force \(\sigma \) is transmitted to it so as to exceed, or indeed equal, the threshold of the dry-friction element \(\sigma_0 \). That is,

\[
\begin{align*}
|\sigma| & \leq \sigma_0, & 3\sigma = E \cdot \varepsilon^*, \\
\sigma & = \sigma_0, & \varepsilon = \varepsilon^* + \varepsilon^p = \frac{\sigma_0}{E} + \varepsilon^p.
\end{align*}
\]

(1.7)

Dry-friction elements are also called Saint Venant ideal (perfect) plastic elements (or short, SV elements). An SV element is such that

\[\varepsilon_{SV} = 0 \quad \text{if} \quad \sigma < \sigma_0, \quad \varepsilon_{SV} \neq 0 \quad \text{possibly} \quad \text{if} \quad \sigma = \sigma_0. \]

(1.8)

Fig. 1.8. Perfect elastoplasticity (one dimension) rheological model

\[\sigma \\
\sigma_0 \\
0 \quad \varepsilon_0 \quad \varepsilon^* \quad \varepsilon \\
\varepsilon = \varepsilon^* + \varepsilon^p \]
1.3 Other effects

Note on creep At high temperatures we observe that plastic strain, under the effect of a relatively small stress, grows with time. This phenomenon, which is called creep, is expressed in certain cases by strains that increase with time, while the load remains constant, and, in some other cases, by the continuous decrease of stress, while the strain remains constant (relaxation). Creep is what determines the resistance and life duration of mechanical elements subjected to high temperatures. A creep curve is typically as shown in Fig. 1.9, exhibiting the regimes called primary, secondary, and tertiary creeps. In secondary creep $\dot{\varepsilon}$, the rate of strain, is nearly constant. Creep is hardly studied in this book. For this subject we refer the reader to Norton (1929) and Odqvist (1966), two pioneers in the field. Rabotnov (1969) and Cadek (1988) are also recommended references. Chapter 10 deals briefly with some aspects of creep in relation to damage (see below).

1.3 Other effects

The term hysteresis means that the loading and unloading curves do not coincide in spite of having similar upper and lower points in the load-versus-strain diagram. This may be due to plasticity (a phenomenon that, as we saw, is independent of velocity) or to viscoelasticity (where one or more characteristic times may interfere). We often consider a cyclic load

![Graph showing the three regimes of creep in uniaxial constant load](attachment:image.png)
Introduction to plasticity: experimental facts

(i.e., a time-periodic loading). In that case, either the response curve does not close up and the strain increases at each period with the so-called ratcheting effect, until the point of fracture at point R (Fig. 1.10(a)), or else the curve closes up after a certain number of periods in a closed cycle, called the hysteresis cycle. In this case we say that there is plastic shakedown (Fig. 1.10(b)). The presence of angular points on the cycle (Fig. 1.10(c)) hints at the existence of plastic strains that are not affected by viscosity. If there are plastic strains, they are of opposite signs on the two halves of the cycle and, after a small number of cycles, fracture occurs as a result. When there is no plastic strain, the strains during the cycle, as long as there is no progressive cracking, are viscoelastic. If, moreover, the viscosity is negligible, then we have an elastic cycle, flattened, that is (Fig. 1.10(d)); then, after a certain number of periods, the material begins to react as an elastic material; in this case we say that there is elastic shakedown. If the strain is imposed cyclically, there is always plastic shakedown.

Damage This is an alteration of the elastic properties due to the fact that, in the course of loading, the effective resisting area diminishes as a result of the expansion of the voids and microcracks. This phenomenon, which results in the decrease in Hooke’s modulus E, may be coupled up with plasticity (see Chapter 10). Fig. 1.11 provides an example pertaining to an aluminium alloy with a slight decrease in E. This decrease is much more drastic in materials like concrete that are not our concern.

![Fig. 1.10. Ratcheting and shakedown](image-url)