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7.6 Function fields over Q

Working over the complex numbers C we have considered the universal
curve Ej and the field containments

C(j) ⊂ C(j, Ej [N ]) ⊂ C(j).

Corollary 7.5.3 established that the extension C(j, Ej [N ])/C(j) is Galois with
group SL2(Z/NZ). This section studies the situation when the underlying field
is changed to the rational numbers Q. The result will be that the Galois group
enlarges to GL2(Z/NZ). Large enough subgroups correspond to intermediate
fields that are the function fields of algebraic curves over the rational numbers.
The next section will show that the intermediate fields Q(j, f0) and Q(j, f1)
define X0(N) and X1(N) over Q. The field Q(j, f1,0, f0,1) defines X(N) over
the field Q(µN ) where µN is the group of complex Nth roots of unity.

Since Q is the prime subfield of C, much of the algebraic structure from
the previous section carries over. The equation defining Ej has its coeffi-
cients in Q(j). Viewing the curve as defined over this field means considering
points (x, y) ∈ Q(j)

2
satisfying the equation. This includes the nonzero points

of Ej [N ] over C(j) from before, and in the field containments

Q(j) ⊂ Q(j, Ej [N ]) ⊂ Q(j)

the extension Q(j, Ej [N ])/Q(j) is again Galois. The only difference between
the field theory over Q and over C will involve µN .

Consider the Galois group

HQ = Gal(Q(µN , j, Ej [N ])/Q(j))

and the representation

ρ : HQ −→ GL2(Z/NZ)

describing how HQ permutes Ej [N ]. This is defined as before in terms of the
ordered basis (Pτ , Qτ ) of Ej [N ] over Z/NZ from (7.11), so that

[
Pσ

τ

Qσ
τ

]
= ρ(σ)

[
Pτ

Qτ

]
, σ ∈ HQ.

Lemma 7.6.1. The function det ρ describes how HQ permutes µN ,

µσ = µdet ρ(σ), µ ∈ µN , σ ∈ HQ.

(Here µσ is µ acted on by σ while µdet ρ(σ) is µ raised to the power det ρ(σ).)

This is shown with the Weil pairing as in the proof of Corollary 7.5.3
(Exercise 7.6.1). To use the lemma, suppose σ ∈ HQ fixes Ej [N ]. This means
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Figure 7.3. Fields and groups over Q

that σ ∈ ker(ρ), so σ ∈ ker(det ρ) and the lemma says that σ fixes µN . Thus
µN ⊂ Q(j, Ej [N ]) by Galois theory, showing that HQ is in fact the Galois
group of Q(j, Ej [N ]) over Q(j), the analog over Q of the group H in the
proof of Corollary 7.5.3. Consider the configuration of fields and groups in
Figure 7.3. Since the field extension is generated by Ej [N ], now ρ clearly is
injective, and by the lemma it restricts to

ρ : HQ(µN ) −→ SL2(Z/NZ).

To analyze the images of HQ and HQ(µN ) under ρ, recall a result from Galois
theory.

Lemma 7.6.2 (Restriction Lemma). Let k and F be extension fields of f
inside K with F/f Galois. Suppose K = kF. Then K/k is Galois, there is a
natural injection

Gal(K/k) −→ Gal(F/f),

and the image is Gal(F/(k ∩ F)).

K = kF •

k •

∣∣∣∣
∣∣∣∣∣∣
• F

• k ∩ F
• f

Figure 7.4. Setup for the Restriction Lemma

Proof. The situation is shown in Figure 7.4. Any map σ : K −→ K fixing k
restricts to a map F −→ F fixing k ∩ F. Since the extension F/(k ∩ F) is
Galois, the restriction is an automorphism of F and therefore σ is an auto-
morphism of K = kF. This shows that K/k is Galois and that restriction
gives a homomorphism

Gal(K/k) −→ Gal(F/(k ∩ F)) ⊂ Gal(F/f).
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If the restriction of some σ fixes F along with k then it fixes K and is trivial,
so the restriction map injects. Since the fixed field of K under Gal(K/k) is k,
the fixed field of F under the restriction is k ∩ F and so restriction maps to
all of Gal(F/k ∩ F). ��

One application of the lemma is implicit in Figure 7.3, where (Z/NZ)∗ is
displayed as Gal(Q(µN , j)/Q(j)) (Exercise 7.6.2). For another, consider the
situation shown in Figure 7.5.

SL2(Z/NZ)
{ C(j, Ej [N ]) •

C(j) •

∣∣∣∣
∣∣∣∣∣∣
• Q(j, Ej [N ])

• C(j) ∩ Q(j, Ej [N ])
• Q(µN , j)


HQ(µN )

Figure 7.5. Applying the Restriction Lemma

The Restriction Lemma shows that SL2(Z/NZ) injects into HQ(µN ). But
also ρ injects in the other direction, making the two groups isomorphic since
they are finite,

ρ : HQ(µN )
∼−→ SL2(Z/NZ).

Now the lemma also shows that C(j) ∩ Q(j, Ej [N ]) = Q(µN , j), and inter-
secting with Q gives

Q(j, Ej [N ]) ∩ Q = Q(µN ).

Also, Figure 7.3 now shows that

|HQ| = |HQ(µN )| |(Z/NZ)∗| = |SL2(Z/NZ)| |(Z/NZ)∗|.

But |SL2(Z/NZ)| |(Z/NZ)∗| = |GL2(Z/NZ)|, so the representation ρ sur-
jects,

ρ : HQ
∼−→ GL2(Z/NZ).

This lets us specify which intermediate fields of Q(j, Ej [N ])/Q(j) corre-
spond to algebraic curves over Q. Let K be an intermediate field and let the
corresponding subgroup of HQ be K = Gal(Q(j, Ej [N ])/K), as in Figure 7.6.

Recall that det ρ describes how HQ permutes µN . This gives the equiva-
lences

K ∩ Q = Q ⇐⇒ K ∩ Q(µN ) = Q

⇐⇒ det ρ : K −→ (Z/NZ)∗ surjects.

Summing up the results of this section,
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Figure 7.6. Subgroup and fixed field

Theorem 7.6.3. Let HQ denote the Galois group of the field extension
Q(j, Ej [N ])/Q(j). There is an isomorphism

ρ : HQ
∼−→ GL2(Z/NZ).

Let K be an intermediate field and let K be the corresponding subgroup of HQ.
Then

K ∩ Q = Q ⇐⇒ det ρ : K −→ (Z/NZ)∗ surjects.

Thus K is the function field of an algebraic curve over Q if and only if det ρ
surjects.

The last statement in the theorem follows from Theorem 7.2.5.

Exercises

7.6.1. Prove Lemma 7.6.1.

7.6.2. Justify the relation Gal(Q(µN , j)/Q(j)) ∼= (Z/NZ)∗ shown in Fig-
ure 7.3.

7.7 Modular curves as algebraic curves and Modularity

This section defines the modular curves X0(N) and X1(N) as algebraic curves
over Q and then restates the Modularity Theorem algebraically.

Consider three intermediate fields of the extension Q(j, Ej [N ])/Q(j),

K0 = Q(j, f0), K′
0 = Q(j, jN ), K1 = Q(j, f1),

analogous to the function fields C(j, f0) = C(j, jN ) and C(j, f1) of the modu-
lar curves X0(N) and X1(N) as complex algebraic curves. The subgroups K0,
K ′

0, and K1 of HQ corresponding to K0, K′
0, and K1 satisfy (Exercise 7.7.1)

ρ(K0) = ρ(K ′
0) =

{[
a b
0 d

]}
, ρ(K1) =

{
±

[
a b
0 1

]}
, (7.13)

running through all such matrices in GL2(Z/NZ), so in fact K0 = K′
0. Thus

det ρ : Kj −→ (Z/NZ)∗ surjects for j = 0, 1, and so by Theorem 7.6.3 the


