## 7.6 Function fields over Q

Working over the complex numbers  $\mathbf{C}$  we have considered the universal curve  $E_i$  and the field containments

$$\mathbf{C}(j) \subset \mathbf{C}(j, E_j[N]) \subset \mathbf{C}(j).$$

Corollary 7.5.3 established that the extension  $\mathbf{C}(j, E_j[N])/\mathbf{C}(j)$  is Galois with group  $\mathrm{SL}_2(\mathbf{Z}/N\mathbf{Z})$ . This section studies the situation when the underlying field is changed to the rational numbers  $\mathbf{Q}$ . The result will be that the Galois group enlarges to  $\mathrm{GL}_2(\mathbf{Z}/N\mathbf{Z})$ . Large enough subgroups correspond to intermediate fields that are the function fields of algebraic curves over the rational numbers. The next section will show that the intermediate fields  $\mathbf{Q}(j, f_0)$  and  $\mathbf{Q}(j, f_1)$ define  $X_0(N)$  and  $X_1(N)$  over  $\mathbf{Q}$ . The field  $\mathbf{Q}(j, f_{1,0}, f_{0,1})$  defines X(N) over the field  $\mathbf{Q}(\boldsymbol{\mu}_N)$  where  $\boldsymbol{\mu}_N$  is the group of complex Nth roots of unity.

Since  $\mathbf{Q}$  is the prime subfield of  $\mathbf{C}$ , much of the algebraic structure from the previous section carries over. The equation defining  $E_j$  has its coefficients in  $\mathbf{Q}(j)$ . Viewing the curve as defined over this field means considering points  $(x, y) \in \overline{\mathbf{Q}(j)}^2$  satisfying the equation. This includes the nonzero points of  $E_j[N]$  over  $\mathbf{C}(j)$  from before, and in the field containments

$$\mathbf{Q}(j) \subset \mathbf{Q}(j, E_j[N]) \subset \overline{\mathbf{Q}(j)}$$

the extension  $\mathbf{Q}(j, E_j[N])/\mathbf{Q}(j)$  is again Galois. The only difference between the field theory over  $\mathbf{Q}$  and over  $\mathbf{C}$  will involve  $\boldsymbol{\mu}_N$ .

Consider the Galois group

$$H_{\mathbf{Q}} = \operatorname{Gal}(\mathbf{Q}(\boldsymbol{\mu}_N, j, E_j[N]) / \mathbf{Q}(j))$$

and the representation

$$\rho: H_{\mathbf{Q}} \longrightarrow \mathrm{GL}_2(\mathbf{Z}/N\mathbf{Z})$$

describing how  $H_{\mathbf{Q}}$  permutes  $E_j[N]$ . This is defined as before in terms of the ordered basis  $(P_{\tau}, Q_{\tau})$  of  $E_j[N]$  over  $\mathbf{Z}/N\mathbf{Z}$  from (7.11), so that

$$\begin{bmatrix} P_{\tau}^{\sigma} \\ Q_{\tau}^{\sigma} \end{bmatrix} = \rho(\sigma) \begin{bmatrix} P_{\tau} \\ Q_{\tau} \end{bmatrix}, \quad \sigma \in H_{\mathbf{Q}}$$

**Lemma 7.6.1.** The function det  $\rho$  describes how  $H_{\mathbf{Q}}$  permutes  $\boldsymbol{\mu}_N$ ,

$$\mu^{\sigma} = \mu^{\det \rho(\sigma)}, \quad \mu \in \boldsymbol{\mu}_N, \ \sigma \in H_{\mathbf{Q}}.$$

(Here  $\mu^{\sigma}$  is  $\mu$  acted on by  $\sigma$  while  $\mu^{\det \rho(\sigma)}$  is  $\mu$  raised to the power  $\det \rho(\sigma)$ .)

This is shown with the Weil pairing as in the proof of Corollary 7.5.3 (Exercise 7.6.1). To use the lemma, suppose  $\sigma \in H_{\mathbf{Q}}$  fixes  $E_j[N]$ . This means

288 7 Modular Curves as Algebraic Curves

$$\begin{array}{c} \mathbf{Q}(j, E_j[N]) \bullet \\ \mathbf{Q}(\boldsymbol{\mu}_N, j) \bullet \\ \mathbf{Q}(j) \bullet \end{array} \begin{array}{c} H_{\mathbf{Q}(\boldsymbol{\mu}_N)} \\ (\mathbf{Z}/N\mathbf{Z})^* \end{array} \end{array} \right\} H_{\mathbf{Q}} \xrightarrow{\rho} \mathrm{GL}_2(\mathbf{Z}/N\mathbf{Z})$$

Figure 7.3. Fields and groups over Q

that  $\sigma \in \ker(\rho)$ , so  $\sigma \in \ker(\det \rho)$  and the lemma says that  $\sigma$  fixes  $\mu_N$ . Thus  $\mu_N \subset \mathbf{Q}(j, E_j[N])$  by Galois theory, showing that  $H_{\mathbf{Q}}$  is in fact the Galois group of  $\mathbf{Q}(j, E_j[N])$  over  $\mathbf{Q}(j)$ , the analog over  $\mathbf{Q}$  of the group H in the proof of Corollary 7.5.3. Consider the configuration of fields and groups in Figure 7.3. Since the field extension is generated by  $E_j[N]$ , now  $\rho$  clearly is injective, and by the lemma it restricts to

$$\rho: H_{\mathbf{Q}(\boldsymbol{\mu}_N)} \longrightarrow \mathrm{SL}_2(\mathbf{Z}/N\mathbf{Z})$$

To analyze the images of  $H_{\mathbf{Q}}$  and  $H_{\mathbf{Q}(\boldsymbol{\mu}_N)}$  under  $\rho$ , recall a result from Galois theory.

**Lemma 7.6.2 (Restriction Lemma).** Let  $\mathbf{k}$  and  $\mathbf{F}$  be extension fields of  $\mathbf{f}$  inside  $\mathbf{K}$  with  $\mathbf{F}/\mathbf{f}$  Galois. Suppose  $\mathbf{K} = \mathbf{kF}$ . Then  $\mathbf{K}/\mathbf{k}$  is Galois, there is a natural injection

$$\operatorname{Gal}(\mathbf{K}/\mathbf{k}) \longrightarrow \operatorname{Gal}(\mathbf{F}/\mathbf{f}),$$

and the image is  $\operatorname{Gal}(\mathbf{F}/(\mathbf{k} \cap \mathbf{F}))$ .



Figure 7.4. Setup for the Restriction Lemma

*Proof.* The situation is shown in Figure 7.4. Any map  $\sigma : \mathbf{K} \longrightarrow \overline{\mathbf{K}}$  fixing  $\mathbf{k}$  restricts to a map  $\mathbf{F} \longrightarrow \overline{\mathbf{F}}$  fixing  $\mathbf{k} \cap \mathbf{F}$ . Since the extension  $\mathbf{F}/(\mathbf{k} \cap \mathbf{F})$  is Galois, the restriction is an automorphism of  $\mathbf{F}$  and therefore  $\sigma$  is an automorphism of  $\mathbf{K} = \mathbf{kF}$ . This shows that  $\mathbf{K}/\mathbf{k}$  is Galois and that restriction gives a homomorphism

$$\operatorname{Gal}(\mathbf{K}/\mathbf{k}) \longrightarrow \operatorname{Gal}(\mathbf{F}/(\mathbf{k} \cap \mathbf{F})) \subset \operatorname{Gal}(\mathbf{F}/\mathbf{f}).$$

If the restriction of some  $\sigma$  fixes  $\mathbf{F}$  along with  $\mathbf{k}$  then it fixes  $\mathbf{K}$  and is trivial, so the restriction map injects. Since the fixed field of  $\mathbf{K}$  under  $\operatorname{Gal}(\mathbf{K}/\mathbf{k})$  is  $\mathbf{k}$ , the fixed field of  $\mathbf{F}$  under the restriction is  $\mathbf{k} \cap \mathbf{F}$  and so restriction maps to all of  $\operatorname{Gal}(\mathbf{F}/\mathbf{k} \cap \mathbf{F})$ .

One application of the lemma is implicit in Figure 7.3, where  $(\mathbf{Z}/N\mathbf{Z})^*$  is displayed as  $\text{Gal}(\mathbf{Q}(\boldsymbol{\mu}_N, j)/\mathbf{Q}(j))$  (Exercise 7.6.2). For another, consider the situation shown in Figure 7.5.

$$\operatorname{SL}_{2}(\mathbf{Z}/N\mathbf{Z})\left\{\begin{array}{c} \mathbf{C}(j, E_{j}[N]) \\ \mathbf{C}(j) \end{array}\right\} \left(\begin{array}{c} \mathbf{Q}(j, E_{j}[N]) \\ \mathbf{C}(j) \cap \mathbf{Q}(j, E_{j}[N]) \\ \mathbf{Q}(\boldsymbol{\mu}_{N}, j) \end{array}\right\} H_{\mathbf{Q}(\boldsymbol{\mu}_{N})}$$

Figure 7.5. Applying the Restriction Lemma

The Restriction Lemma shows that  $\operatorname{SL}_2(\mathbf{Z}/N\mathbf{Z})$  injects into  $H_{\mathbf{Q}(\boldsymbol{\mu}_N)}$ . But also  $\rho$  injects in the other direction, making the two groups isomorphic since they are finite,

$$\rho: H_{\mathbf{Q}(\boldsymbol{\mu}_N)} \xrightarrow{\sim} \mathrm{SL}_2(\mathbf{Z}/N\mathbf{Z})$$

Now the lemma also shows that  $\mathbf{C}(j) \cap \mathbf{Q}(j, E_j[N]) = \mathbf{Q}(\boldsymbol{\mu}_N, j)$ , and intersecting with  $\overline{\mathbf{Q}}$  gives

$$\mathbf{Q}(j, E_j[N]) \cap \overline{\mathbf{Q}} = \mathbf{Q}(\boldsymbol{\mu}_N).$$

Also, Figure 7.3 now shows that

$$|H_{\mathbf{Q}}| = |H_{\mathbf{Q}(\boldsymbol{\mu}_N)}| |(\mathbf{Z}/N\mathbf{Z})^*| = |\mathrm{SL}_2(\mathbf{Z}/N\mathbf{Z})| |(\mathbf{Z}/N\mathbf{Z})^*|.$$

But  $|SL_2(\mathbf{Z}/N\mathbf{Z})||(\mathbf{Z}/N\mathbf{Z})^*| = |GL_2(\mathbf{Z}/N\mathbf{Z})|$ , so the representation  $\rho$  surjects,

$$\rho: H_{\mathbf{Q}} \longrightarrow \mathrm{GL}_2(\mathbf{Z}/N\mathbf{Z}).$$

This lets us specify which intermediate fields of  $\mathbf{Q}(j, E_j[N])/\mathbf{Q}(j)$  correspond to algebraic curves over  $\mathbf{Q}$ . Let  $\mathbf{K}$  be an intermediate field and let the corresponding subgroup of  $H_{\mathbf{Q}}$  be  $K = \text{Gal}(\mathbf{Q}(j, E_j[N])/\mathbf{K})$ , as in Figure 7.6.

Recall that  $\det \rho$  describes how  $H_{\mathbf{Q}}$  permutes  $\boldsymbol{\mu}_N$ . This gives the equivalences

$$\begin{split} \mathbf{K} \cap \overline{\mathbf{Q}} &= \mathbf{Q} \iff \mathbf{K} \cap \mathbf{Q}(\boldsymbol{\mu}_N) = \mathbf{Q} \\ \iff \det \rho : K \longrightarrow (\mathbf{Z}/N\mathbf{Z})^* \text{ surjects.} \end{split}$$

Summing up the results of this section,

290 7 Modular Curves as Algebraic Curves

$$\begin{array}{c} \mathbf{Q}(j, E_j[N]) \bullet \\ \mathbf{K} \bullet \\ \mathbf{Q}(j) \bullet \end{array} \overset{\rho}{\longrightarrow} \mathrm{GL}_2(\mathbf{Z}/N\mathbf{Z}) \end{array}$$

Figure 7.6. Subgroup and fixed field

**Theorem 7.6.3.** Let  $H_{\mathbf{Q}}$  denote the Galois group of the field extension  $\mathbf{Q}(j, E_j[N])/\mathbf{Q}(j)$ . There is an isomorphism

$$\rho: H_{\mathbf{Q}} \xrightarrow{\sim} \mathrm{GL}_2(\mathbf{Z}/N\mathbf{Z}).$$

Let **K** be an intermediate field and let K be the corresponding subgroup of  $H_{\mathbf{Q}}$ . Then

$$\mathbf{K} \cap \overline{\mathbf{Q}} = \mathbf{Q} \iff \det \rho : K \longrightarrow (\mathbf{Z}/N\mathbf{Z})^* \text{ surjects.}$$

Thus **K** is the function field of an algebraic curve over **Q** if and only if det  $\rho$  surjects.

The last statement in the theorem follows from Theorem 7.2.5.

## Exercises

**7.6.1.** Prove Lemma 7.6.1.

**7.6.2.** Justify the relation  $\text{Gal}(\mathbf{Q}(\boldsymbol{\mu}_N, j)/\mathbf{Q}(j)) \cong (\mathbf{Z}/N\mathbf{Z})^*$  shown in Figure 7.3.

## 7.7 Modular curves as algebraic curves and Modularity

This section defines the modular curves  $X_0(N)$  and  $X_1(N)$  as algebraic curves over **Q** and then restates the Modularity Theorem algebraically.

Consider three intermediate fields of the extension  $\mathbf{Q}(j, E_j[N])/\mathbf{Q}(j)$ ,

$$\mathbf{K}_0 = \mathbf{Q}(j, f_0), \qquad \mathbf{K}'_0 = \mathbf{Q}(j, j_N), \qquad \mathbf{K}_1 = \mathbf{Q}(j, f_1),$$

analogous to the function fields  $\mathbf{C}(j, f_0) = \mathbf{C}(j, j_N)$  and  $\mathbf{C}(j, f_1)$  of the modular curves  $X_0(N)$  and  $X_1(N)$  as complex algebraic curves. The subgroups  $K_0$ ,  $K'_0$ , and  $K_1$  of  $H_{\mathbf{Q}}$  corresponding to  $\mathbf{K}_0$ ,  $\mathbf{K}'_0$ , and  $\mathbf{K}_1$  satisfy (Exercise 7.7.1)

$$\rho(K_0) = \rho(K'_0) = \left\{ \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} \right\}, \qquad \rho(K_1) = \left\{ \pm \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} \right\}, \tag{7.13}$$

running through all such matrices in  $\operatorname{GL}_2(\mathbf{Z}/N\mathbf{Z})$ , so in fact  $\mathbf{K}_0 = \mathbf{K}'_0$ . Thus det  $\rho : K_j \longrightarrow (\mathbf{Z}/N\mathbf{Z})^*$  surjects for j = 0, 1, and so by Theorem 7.6.3 the