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9.5 Galois representations and modular forms

This section associates Galois representations to modular curves and then
decomposes them into 2-dimensional representations associated to modular
forms.

Let N be a positive integer and let � be prime. The modular curve X1(N)
is a projective nonsingular algebraic curve over Q. Let g denote its genus. The
curve X1(N)C over C defined by the same equations can also be viewed as a
compact Riemann surface. As in Chapter 6 the Jacobian of the modular curve
is a g-dimensional complex torus obtained from integration modulo homology,

J1(N) = Jac(X1(N)C) = S2(Γ1(N))∧/H1(X1(N)C,Z) ∼= Cg/Λg.

The Picard group of the modular curve is the Abelian group of divisor classes
on the points of X1(N),

Pic0(X1(N)) = Div0(X1(N))/Div�(X1(N)).

By the methods of Section 7.9, Pic0(X1(N)) can be identified with a subgroup
of Pic0(X1(N)C), and the complex Picard group is naturally isomorphic to
the Jacobian by Abel’s Theorem as in Section 6.1. Thus there is an inclusion
of �n-torsion,

in : Pic0(X1(N))[�n] −→ Pic0(X1(N)C)[�n] ∼= (Z/�nZ)2g.

Recall that Igusa’s Theorem (Theorem 8.6.1) states that X1(N) has good
reduction at primes p � N , so also there is a natural surjective reduction map
Pic0(X1(N)) −→ Pic0(X̃1(N)) restricting to

πn : Pic0(X1(N))[�n] −→ Pic0(X̃1(N))[�n].

We state without proof two generalizations of facts we have used about elliptic
curves:

• The inclusion in is in fact an isomorphism.
• So is the surjection πn for p � �N .

These follow from results of algebraic geometry. Specifically, if a curve X
over a field k has genus g and M is coprime to char(k) then Pic0(X)[M ] ∼=
(Z/MZ)2g, and if a curve X over Q has good reduction at a prime p � M then
the reduction map is injective on Pic0(X)[M ].

The �-adic Tate module of X1(N) is

Ta�(Pic0(X1(N))) = lim←−
n

{Pic0(X1(N))[�n]}.

Similarly to the previous section, choosing bases of Pic0(X1(N))[�n] compat-
ibly for all n shows that
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Ta�(Pic0(X1(N))) ∼= Z2g
� .

Any automorphism σ ∈ GQ defines an automorphism of Div0(X1(N)),
(∑

nP (P )
)σ

=
∑

nP (Pσ).

Since div(f)σ = div(fσ) for any f ∈ Q(X1(N)), the automorphism descends
to Pic0(X1(N)),

Pic0(X1(N)) × GQ −→ Pic0(X1(N)). (9.13)

The field extension Q(Pic0(X1(N))[�n])/Q is Galois for each n ∈ Z+, so the
action restricts to Pic0(X1(N))[�n]. For each n there is a commutative diagram

GQ

���������������

����������������

Aut(Pic0(X1(N))[�n]) Aut(Pic0(X1(N))[�n+1]).��

Again as in the previous section this leads to a continuous homomorphism

ρX1(N),� : GQ −→ GL2g(Z�) ⊂ GL2g(Q�).

This is the 2g-dimensional Galois representation associated to X1(N).
Recall from Chapter 6 that the Hecke algebra over Z is the algebra of

endomorphisms of S2(Γ1(N)) generated over Z by the Hecke operators,

TZ = Z[{Tn, 〈n〉 : n ∈ Z+}].

The Hecke algebra acts on Pic0(X1(N)), cf. the bottom rows of diagrams
(7.18) and (7.19),

TZ × Pic0(X1(N)) −→ Pic0(X1(N)). (9.14)

Since the action is linear it restricts to �-power torsion, and so it extends
to Ta�(Pic0(X1(N))). From Section 7.9 the Hecke action is defined over Q. So
the Galois action (9.13) and the Hecke action (9.14) on Pic0(X1(N)) commute,
and therefore so do the two actions on Ta�(Pic0(X1(N))).

Theorem 9.5.1. Let � be prime and let N be a positive integer. The Galois
representation ρX1(N),� is unramified at every prime p � �N . For any such p

let p ⊂ Z be any maximal ideal over p. Then ρX1(N),�(Frobp) satisfies the
polynomial equation

x2 − Tp x + 〈p〉p = 0.
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Similarly to how we have abbreviated Tp,∗ to Tp on Pic0(X1(N)) all along,
the last formula in the theorem omits the asterisk from the subscript of both
Hecke operators on Ta�(Pic0(X1(N))). As in the previous section, the vector
space V�(X1(N)) = Ta�(Pic0(X1(N))) ⊗ Q can be taken as the Galois repre-
sentation rather than ρX1(N),�, there is a corresponding commutative diagram,
and the theorem can be rephrased appropriately.

Proof. Let p � �N and let p lie over p. As in the proof of Theorem 9.4.1 there
is a commutative diagram

Dp
��

��

Aut(Pic0(X1(N))[�n])

��

GFp
�� Aut(Pic0(X̃1(N))[�n]).

The map down the right side is an isomorphism as explained at the beginning
of the section. Similarly to before, Ip ⊂ ker ρX1(N),�.

For the second part, the Eichler–Shimura Relation (Theorem 8.7.2) re-
stricts to �n-torsion,

Pic0(X1(N))[�n]
Tp

��

��

Pic0(X1(N))[�n]

��

Pic0(X̃1(N))[�n]
σp,∗+〈̃p〉∗σ∗

p
�� Pic0(X̃1(N))[�n].

The same diagram but with Frobp + 〈p〉pFrob−1
p across the top row instead

also commutes, cf. (8.15). Since the vertical arrows are isomorphisms, Tp =
Frobp + 〈p〉pFrob−1

p on Pic0(X1(N))[�n]. This holds for all n, so the equality
extends to Ta�(Pic0(X̃1(N))). The result follows. �	

To proceed from Picard groups to modular forms, consider a normalized
eigenform

f ∈ S2(N, χ).

Recall from Chapter 6 that the Hecke algebra contains an ideal associated
to f , the kernel of the eigenvalue map,

If = {T ∈ TZ : Tf = 0},

and the Abelian variety of f is defined as

Af = J1(N)/IfJ1(N).

This is a complex analytic object. We do not define an algebraic version of
it because its role here is auxiliary. By (6.12) and Exercise 6.5.2 there is an
isomorphism
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TZ/If
∼−→ Of where Of = Z[{an(f) : n ∈ Z+}].

Under this isomorphism each Fourier coefficient ap(f) acts on Af as Tp + If .
Also, Of contains the values χ(n) for n ∈ Z+ and χ(p) acts on Af as 〈p〉+ If .
The ring Of generates the number field of f , denoted Kf . The extension
degree d = [Kf : Q] is also the dimension of Af as a complex torus. As with
elliptic curves and modular curves, the Abelian variety has an �-adic Tate
module,

Ta�(Af ) = lim←−
n

{Af [�n]} ∼= Z2d
� .

The action of Of on Af is defined on �-power torsion and thus extends to an
action on Ta�(Af ). The following lemma shows that GQ acts on Ta�(Af ) as
well.

Lemma 9.5.2. The map Pic0(X1(N))[�n] −→ Af [�n] is a surjection. Its ker-
nel is stable under GQ.

Proof. Multiplication by �n is surjective on the complex torus J1(N). This
makes it surjective on IfJ1(N) as well. Indeed, any y ∈ IfJ1(N) takes the
form y =

∑
i Tiyi with Ti ∈ If and yi ∈ J1(N) = �nJ1(N) for each i, so

y =
∑

i Ti(�nxi) = �n
∑

i Tixi ∈ �nIfJ1(N) as desired.
To show the first statement of the lemma, take any y ∈ Af [�n]. Then y =

x + IfJ1(N) for some x ∈ J1(N) such that �nx ∈ IfJ1(N). Thus �nx = �nx′

for some x′ ∈ IfJ1(N) by the previous paragraph. The difference x − x′ lies
in J1(N)[�n] = Pic0(X1(N))[�n] and maps to y as desired.

The kernel is Pic0(X1(N))[�n] ∩ IfJ1(N) = (IfJ1(N))[�n]. We claim that
the inclusion (IfPic0(X1(N)))[�n] ⊂ (IfJ1(N))[�n] is in fact an equality. To
see this, let S2 = S2(Γ1(N)) and H1 = H1(X1(N)C,Z) ⊂ S∧

2 . Thus J1(N) =
S∧

2 /H1 and

IfJ1(N) = (IfS∧
2 + H1)/H1 ∼= IfS∧

2 /(H1 ∩ IfS∧
2 ). (9.15)

Proposition 6.2.4 shows that IfH1 is a subgroup of H1 ∩ IfS∧
2 with some

finite index M . This shows that M(H1 ∩ IfS∧
2 ) ⊂ IfH1. Now suppose

that y ∈ (IfJ1(N))[�n]. Then (9.15) shows that y = x + H1 ∩ IfS∧
2 with

x ∈ IfS∧
2 , and since �ny = 0 this implies �nx ∈ H1 ∩ IfS∧

2 . Therefore
M�nx ∈ M(H1 ∩ IfS∧

2 ) ⊂ IfH1, and so x ∈ If (M−1�−nH1). It follows that
y ∈ If (J1(N)[M�n]) ⊂ IfPic0(X1(N)), and since �ny = 0 the equality is
proved. Thus the kernel is (If (Pic0(X1(N)))[�n]. This is stable under GQ as
desired since the Galois and Hecke actions on Pic0(X1(N)) commute. �	

So GQ acts on Af [�n] and therefore on Ta�(Af ). The action commutes
with the action of Of since the GQ-action and the TZ-action commute
on Ta�(Pic0(X1(N))). Choosing coordinates appropriately gives a Galois rep-
resentation

ρAf ,� : GQ −→ GL2d(Q�).



390 9 Galois Representations

This is continuous because ρX1(N),� is continuous and (Exercise 9.5.1)

ρ−1
X1(N),�(U(n, g)) ⊂ ρ−1

Af ,�(U(n, d)), (9.16)

where U(n, g) = ker
(
GL2g(Z�) −→ GL2g(Z/�nZ)

)
and similarly for U(n, d).

The representation is unramified at all primes p � �N since its kernel con-
tains ker ρX1(N),�. For any such p let p ⊂ Z be any maximal ideal over p.
At the level of Abelian varieties, since Tp acts as ap(f) and 〈p〉 acts as χ(p),
ρAf ,�(Frobp) satisfies the polynomial equation

x2 − ap(f)x + χ(p)p = 0.

The Tate module Ta�(Af ) has rank 2d over Z�. Since it is an Of -module the
tensor product V�(Af ) = Ta�(Af )⊗Q is a module over Of ⊗Q� = Kf ⊗QQ�.

Lemma 9.5.3. V�(Af ) is a free module of rank 2 over Kf ⊗Q Q�.

Proof. Again let S2 = S2(Γ1(N)) and H1 = H1(X1(N)C,Z) ⊂ S∧
2 . Consider

the quotients S∧
2 = S∧

2 /IfS∧
2 and H1 = (H1 + IfS∧

2 )/IfS∧
2 . Then Af =

S∧
2 /(H1 + IfS∧

2 ) = S∧
2 /H1. Thus H1 is an Of -module whose Z-rank is 2d.

Since Kf is a field, H1 ⊗ Q is a free Kf -module of rank 2, and therefore
H1 ⊗ Q� = H1 ⊗ Q ⊗Q Q� is free of rank 2 over the ring Kf ⊗Q Q�.

The Of -linear isomorphisms �−nH1/H1 −→ H1/�nH1 induced by multi-
plication by �n on �−nH1 assemble to give an isomorphism of Of ⊗Z�-modules,

Ta�(Af ) = lim←−
n

{Af [�n]} = lim←−
n

{�−nH1/H1} ∼= lim←−
n

{H1/�nH1} ∼= H1 ⊗ Z�,

where the transition maps in the last inverse limit are the natural projection
maps. And now V�(Af ) = Ta�(Af ) ⊗ Q ∼= H1 ⊗ Z� ⊗ Q ∼= H1 ⊗ Q� is an
isomorphism of modules over Of ⊗ Z� ⊗ Q = Kf ⊗ Q�, showing that V�(Af )
is free. �	

The absolute Galois group GQ acts (Kf ⊗Q Q�)-linearly on V�(Af ), and
V�(Af ) ∼= (Kf ⊗Q Q�)2 by the lemma. Choose a basis B of V�(Af ) to get
a homomorphism GQ −→ GL2(Kf ⊗Q Q�). Also, (9.9) specializes to give
Kf ⊗Q Q�

∼=
∏

λ|� Kf,λ, so for each λ we can compose the homomorphism
with a projection to get

ρf,λ : GQ −→ GL2(Kf,λ).

This is continuous (Exercise 9.5.2(b)), making it a Galois representation. And
ker(ρAf ,�) ⊂ ker(ρf,λ) (Exercise 9.5.2(c)). We have proved

Theorem 9.5.4. Let f ∈ S2(N, χ) be a normalized eigenform with number
field Kf . Let � be prime. For each maximal ideal λ of OKf

lying over � there
is a 2-dimensional Galois representation
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ρf,λ : GQ −→ GL2(Kf,λ).

This representation is unramified at every prime p � �N . For any such p
let p ⊂ Z be any maximal ideal lying over p. Then ρf,λ(Frobp) satisfies the
polynomial equation

x2 − ap(f)x + χ(p)p = 0.

In particular, if f ∈ S2(Γ0(N)) then the relation is x2 − ap(f)x + p = 0.

Exercises

9.5.1. Establish (9.16). (A hint for this exercise is at the end of the book.)

9.5.2. (a) Let i : Kf ⊗Q Q� −→
∏

λ|� Kf,λ be the isomorphism of (9.9).
For each λ, let eλ be the element of Kf ⊗Q Q� that is taken by i to
(0, . . . , 0, 1Kf,λ

, 0, . . . , 0) and let Vf,λ = eλ(V�(Af )). Show that each Vf,λ is
a 2-dimensional vector space over Kf,λ and that

V�(Af ) =
⊕
λ|�

Vf,λ.

Show that each Vf,λ is invariant under the GQ-action on V�(Af ). Show that
if each Vf,λ is given the basis eλB over Kf,λ where B is the basis of V�(Af )
over Kf ⊗Q Q� in the section then each ρf,λ is defined by the action of GQ

on Vf,λ. (Hints for this exercise are at the end of the book.)
(b) To show that ρf,λ is continuous it suffices to show that the action

Vf,λ × GQ −→ Vf,λ

is continuous. Explain why this statement is independent of whether Vf,λ is
viewed as a vector space over Kf,λ or over Q�. Explain why the action is
continuous in the latter case.

(c) Use the decomposition from (a) to show that ker(ρAf ,�) ⊂ ker(ρf,λ) for
each λ.

9.6 Galois representations and Modularity

This last section states the Modularity Theorem in terms of Galois represen-
tations, connects it to the arithmetic versions in Chapter 8, and describes how
the modularity of elliptic curves is part of a broader conjecture. Finally we
discuss how the modularity of Galois representations and of mod � represen-
tations are related.

Definition 9.6.1. An irreducible Galois representation

ρ : GQ −→ GL2(Q�)

such that det ρ = χ� is modular if there exists a newform f ∈ S2(Γ0(Mf ))
such that Kf,λ = Q� for some maximal ideal λ of OKf

lying over � and such
that ρf,λ ∼ ρ.


