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Variance Reduction Techniques

This chapter develops methods for increasing the efficiency of Monte Carlo
simulation by reducing the variance of simulation estimates. These meth-
ods draw on two broad strategies for reducing variance: taking advantage of
tractable features of a model to adjust or correct simulation outputs, and
reducing the variability in simulation inputs. We discuss control variates,
antithetic variates, stratified sampling, Latin hypercube sampling, moment
matching methods, and importance sampling, and we illustrate these meth-
ods through examples. Two themes run through this chapter:

◦ The greatest gains in efficiency from variance reduction techniques result
from exploiting specific features of a problem, rather than from generic
applications of generic methods.

◦ Reducing simulation error is often at odds with convenient estimation of the
simulation error itself; in order to supplement a reduced-variance estimator
with a valid confidence interval, we sometimes need to sacrifice some of the
potential variance reduction.

The second point applies, in particular, to methods that introduce dependence
across replications in the course of reducing variance.

4.1 Control Variates

4.1.1 Method and Examples

The method of control variates is among the most effective and broadly ap-
plicable techniques for improving the efficiency of Monte Carlo simulation.
It exploits information about the errors in estimates of known quantities to
reduce the error in an estimate of an unknown quantity.

To describe the method, we let Y1, . . . , Yn be outputs from n replications
of a simulation. For example, Yi could be the discounted payoff of a derivative
security on the ith simulated path. Suppose that the Yi are independent and
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identically distributed and that our objective is to estimate E[Yi]. The usual
estimator is the sample mean Ȳ = (Y1+· · ·+Yn)/n. This estimator is unbiased
and converges with probability 1 as n → ∞.

Suppose, now, that on each replication we calculate another output Xi

along with Yi. Suppose that the pairs (Xi, Yi), i = 1, . . . , n, are i.i.d. and that
the expectation E[X ] of the Xi is known. (We use (X, Y ) to denote a generic
pair of random variables with the same distribution as each (Xi, Yi).) Then
for any fixed b we can calculate

Yi(b) = Yi − b(Xi − E[X ])

from the ith replication and then compute the sample mean

Ȳ (b) = Ȳ − b(X̄ − E[X ]) =
1
n

n∑
i=1

(Yi − b(Xi − E[X ])). (4.1)

This is a control variate estimator; the observed error X̄ − E[X ] serves as a
control in estimating E[Y ].

As an estimator of E[Y ], the control variate estimator (4.1) is unbiased
because

E[Ȳ (b)] = E
[
Ȳ − b(X̄ − E[X ])

]
= E[Ȳ ] = E[Y ]

and it is consistent because, with probability 1,

lim
n→∞

1
n

n∑
i=1

Yi(b) = lim
n→∞

1
n

n∑
i=1

(Yi − b(Xi − E[X ]))

= E [Y − b(X − E[X ])]
= E[Y ].

Each Yi(b) has variance

Var[Yi(b)] = Var [Yi − b(Xi − E[X ])]
= σ2

Y − 2bσXσY ρXY + b2σ2
X ≡ σ2(b), (4.2)

where σ2
X = Var[X ], σ2

Y = Var[Y ], and ρXY is the correlation between X and
Y . The control variate estimator Ȳ (b) has variance σ2(b)/n and the ordinary
sample mean Ȳ (which corresponds to b = 0) has variance σ2

Y /n. Hence, the
control variate estimator has smaller variance than the standard estimator if
b2σX < 2bσY ρXY .

The optimal coefficient b∗ minimizes the variance (4.2) and is given by

b∗ =
σY

σX
ρXY =

Cov[X, Y ]
Var[X ]

. (4.3)

Substituting this value in (4.2) and simplifying, we find that the ratio of
the variance of the optimally controlled estimator to that of the uncontrolled
estimator is
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Var[Ȳ − b∗(X̄ − E[X ])]
Var[Ȳ ]

= 1 − ρ2
XY . (4.4)

A few observations follow from this expression:

◦ With the optimal coefficient b∗, the effectiveness of a control variate, as mea-
sured by the variance reduction ratio (4.4), is determined by the strength of
the correlation between the quantity of interest Y and the control X . The
sign of the correlation is irrelevant because it is absorbed in b∗.

◦ If the computational effort per replication is roughly the same with and
without a control variate, then (4.4) measures the computational speed-up
resulting from the use of a control. More precisely, the number of replications
of the Yi required to achieve the same variance as n replications of the
control variate estimator is n/(1 − ρ2

XY ).
◦ The variance reduction factor 1/(1− ρ2

XY ) increases very sharply as |ρXY |
approaches 1 and, accordingly, it drops off quickly as |ρXY | decreases away
from 1. For example, whereas a correlation of 0.95 produces a ten-fold speed-
up, a correlation of 0.90 yields only a five-fold speed-up; at |ρXY | = 0.70
the speed-up drops to about a factor of two. This suggests that a rather
high degree of correlation is needed for a control variate to yield substantial
benefits.

These remarks and equation (4.4) apply if the optimal coefficient b∗ is
known. In practice, if E[Y ] is unknown it is unlikely that σY or ρXY would
be known. However, we may still get most of the benefit of a control variate
using an estimate of b∗. For example, replacing the population parameters in
(4.3) with their sample counterparts yields the estimate

b̂n =
∑n

i=1(Xi − X̄)(Yi − Ȳ )∑n
i=1(Xi − X̄)2

. (4.5)

Dividing numerator and denominator by n and applying the strong law of
large numbers shows that b̂n → b∗ with probability 1. This suggests using
the estimator Ȳ (b̂n), the sample mean of Yi(b̂n) = Yi − b̂n(Xi − E[X ]), i =
1, . . . , n. Replacing b∗ with b̂n introduces some bias; we return to this point
in Section 4.1.3.

The expression in (4.5) is the slope of the least-squares regression line
through the points (Xi, Yi), i = 1, . . . , n. The link between control variates
and regression is useful in the statistical analysis of control variate estimators
and also permits a graphical interpretation of the method. Figure 4.1 shows
a hypothetical scatter plot of simulation outputs (Xi, Yi) and the estimated
regression line for these points, which passes through the point (X̄, Ȳ ). In the
figure, X̄ < E[X ], indicating that the n replications have underestimated E[X ].
If the Xi and Yi are positively correlated, this suggests that the simulation
estimate Ȳ likely underestimates E[Y ]. This further suggests that we should
adjust the estimator upward. The regression line determines the magnitude of
the adjustment; in particular, Ȳ (b̂n) is the value fitted by the regression line
at the point E[X ].




